15) What means "rate of change of angular momentum" for a SYSTEM of particles?

For which of these definitions of \vec{H}/c is the following equation of motion true: $\vec{M}_c = \vec{H}/c$?

a) $\vec{H}/c = \sum \vec{r}/c' \times \vec{v}/c' m_i$

where c' is a point fixed in \mathcal{Q} that instantaneously coincides with c

First, we know that $\vec{v}_{i/0} = \vec{v}_{c'/0} + \vec{v}_{i/c'}$

$\Rightarrow \star \vec{v}_{i/c'} = \vec{v}_{i/0} - \vec{v}_{c'/0} \star$

Subbing this into our expression for \vec{H}/c:

$\vec{H}/c = \sum \vec{r}/c' \times (\vec{v}_{i/0} - \vec{v}_{c'/0}) m_i$

Since c' is a fixed point in \mathcal{Q}, $\vec{v}_{c'/0} = \vec{0}$
15) a) (continued)

\[\vec{\mathbf{H}}_{c} = \sum \vec{r}_{i}^{c/c'} \times (\vec{v}_{i/0} - \vec{v}) \, m_{i} \]

\[\vec{H}_{c} = \sum \vec{r}_{i}^{c/c'} \times \vec{v}_{i/0} \, m_{i} \]

\[\Rightarrow \vec{\dot{H}}_{c} = \sum \left[(\vec{r}_{i}^{c/c'} \times \vec{v}_{i/0} \, m_{i}) + (\vec{r}_{i}^{c/c'} \times \vec{\dot{v}}_{i/0} \, m_{i}) \right] \]

\[\vec{\dot{H}}_{c} = \sum \left[(\vec{v}_{i/c'} \times \vec{v}_{i/0} \, m_{i}) + (\vec{r}_{i}^{c/c'} \times \vec{\ddot{v}}_{i/0} \, m_{i}) \right] \]

Since \(C' \) is fixed in \(\mathcal{F} \) and the origin \(O \) is also fixed, the velocity of particle \(i \) with respect to \(C' \) and \(O \) will be the same

\[\Rightarrow \vec{v}_{i/c'} = \vec{v}_{i/0} \]

\[\Rightarrow \vec{\dot{H}}_{c} = \sum \left[(\vec{v}_{i/0} \times \vec{v}_{i/0} \, m_{i}) + (\vec{r}_{i}^{c/c'} \times \vec{\ddot{v}}_{i/0} \, m_{i}) \right] \]

Since a vector crossed with itself is 0

\[\Rightarrow \vec{\dot{H}}_{c} = \sum \vec{r}_{i}^{c/c'} \times \vec{\ddot{v}}_{i/0} \, m_{i} \]
15) a) (continued)

Finally, since C' instantaneously coincides with C we have

$$\vec{\mathbf{x}}_i / c' = \vec{\mathbf{v}}_i / c$$

$$\Rightarrow \quad \vec{\mathbf{H}} / c = \sum \vec{\mathbf{v}}_i / c \times \vec{\mathbf{a}}_i / \mu_0 \, m_i$$

It has been shown that this definition works in general
15) b)

\[\hat{\mathbf{H}}_c = \sum \hat{r}_{i/c} \times \hat{v}_{i/0} m_i \]

\[\Rightarrow \hat{\mathbf{H}}_c = \sum \left[(\hat{r}_{i/c} \times \hat{v}_{i/0} m_i) + (\hat{\mathbf{r}}_{i/c} \times \hat{\mathbf{a}}_{i/0} m_i) \right] \]

This expression collapses to \(\hat{\mathbf{H}}_c = \sum \hat{r}_{i/c} \times \hat{\mathbf{a}}_{i/0} m_i \) for some special cases:

1) If C is stationary

If C is stationary, then we know that \(\hat{v}_{i/c} = \hat{v}_{i/0} \). Since the origin O is also stationary,

\[\Rightarrow \hat{\mathbf{H}}_c = \sum \left[\hat{v}_{i/0} \times \hat{v}_{i/0} m_i \right] + (\hat{\mathbf{r}}_{i/c} \times \hat{\mathbf{a}}_{i/0} m_i) \]

\[\hat{\mathbf{H}}_c = \sum \hat{r}_{i/c} \times \hat{\mathbf{a}}_{i/0} m_i \]
15) b) (continued)

2) If all particles i are moving away from point C in the same or opposite direction that they are moving away from point O

$$\Rightarrow \vec{v}_{i/c} \times \vec{v}_{i/0} = 0$$

$$\Rightarrow \text{The point } C \text{ is the origin, } O$$

$$\dot{\mu}_{1/c} = \sum \left[(\vec{v}_{i/c} \times \vec{v}_{i/0} \text{ m}) + (\vec{v}_{i/c} \times \vec{a}_{i/0} \text{ m/s}) \right]$$

$$\dot{\mu}_{1/c} = \sum \left[(\vec{v}_{i/0} \times \vec{v}_{i/0} \text{ m/s}) + (\vec{v}_{i/c} \times \vec{a}_{i/0} \text{ m/s}) \right]$$

$$\dot{\mu}_{1/c} = \sum \vec{v}_{i/c} \times \vec{a}_{i/0} \text{ m/s} \checkmark$$
3) All of the systems particles \(i \) are "stuck" to the point \(C \)

\[\vec{v}_{i/c} = 0 \]

\[\vec{H}_{i/c} = \sum (\vec{r}_{i/c} \times \vec{v}_{i/0 \, m_i}) + (\vec{r}_{i/c} \times \vec{a}_{i/0 \, m_i}) \]

\[\vec{H}_{i/c} = \sum \vec{r}_{i/c} \times \vec{a}_{i/0 \, m_i} \quad \checkmark \]

\[\Rightarrow \]

This definition works for some special cases concerning the motions of the particles \(i \) and point \(C \) that I have outlined previously.
15) c)

\[\dot{\mathbf{H}}/c = \sum \dot{\mathbf{r}}_{i}/c \times \dot{\mathbf{v}}_{i}/c \; m_{i} \]

\[\Rightarrow \dot{\mathbf{H}}/c = \sum \left[(\dot{\mathbf{r}}_{i}/c \times \dot{\mathbf{v}}_{i}/c \; m_{i}) + (\dot{\mathbf{r}}_{i}/c \times \dot{\mathbf{v}}_{i}/c \; m_{i}) \right] \]

\[\dot{\mathbf{H}}/c = \sum \left[(\dot{\mathbf{v}}_{i}/c \times \dot{\mathbf{v}}_{i}/c \; m_{i}) + (\dot{\mathbf{r}}_{i}/c \times \ddot{\mathbf{r}}_{i}/c \; m_{i}) \right] \]

The expression collapses to \(\dot{\mathbf{H}}/c = \sum \dot{\mathbf{r}}_{i}/c \times \ddot{\mathbf{r}}_{i}/c \; m_{i} \) for the following cases:

1) \text{C is stationary} \quad \text{can just refer to (a)}

If \(C \) is fixed, the the velocity of particles \(i \) with respect to \(C \) will be the same as the velocity of particles with respect to the origin \(O \) (since \(O \) is also fixed)

\[\Rightarrow \dot{\mathbf{v}}_{i}/c = \dot{\mathbf{v}}_{i}/o \]
15) c) (continued)

Taking a derivative yields that

* $\dot{\vec{a}} / c = \vec{a} / 10 *$

Thus, we have

$\dot{\vec{H}} / c = \sum \dot{\vec{r}} / c \times \dot{\vec{a}} / c \vec{m}_i$

$\dot{\vec{H}} / c = \sum \ddot{\vec{r}} / c \times \vec{a} / 10 \vec{m}_i \checkmark$

2) C is the origin, O

\[\Rightarrow \dot{\vec{a}} / c = \vec{a} / 10 \text{ and we get} \]

$\dot{\vec{H}} / c = \sum \ddot{\vec{r}} / c \times \dot{\vec{a}} / c \vec{m}_i$

$\dot{\vec{H}} / c = \sum \ddot{\vec{r}} / c \times \vec{a} / 10 \vec{m}_i \checkmark$

AND fixed! (not just instantaneously)

So this is a special case of (21) above.
(Not needed)
3) \(C \) is the center of mass (CoM)

We know that \[\sum \mathbf{F}^{\text{ext}} = \sum m_i \mathbf{a}_{G/0} \]

Thus, if the sum of the external forces on this system is zero (a valid assumption) we get that

\[\mathbf{a}_{G/0} = \mathbf{0} \]

since \(\sum m_i \) will not feasibly be equal to \(0 \)

Also, we have that

\[\mathbf{a}_{i/0} = \mathbf{a}_{G/0} + \mathbf{a}_{i/G} \]

Differentiating twice with respect to time we get

\[\ddot{\mathbf{a}}_{i/0} = \ddot{\mathbf{a}}_{G/0} + \ddot{\mathbf{a}}_{i/16} \]

\[\mathbf{a}_{i/10} = \mathbf{a}_{i/16} \]
15) c) (continued)

Thus, we had

\[\hat{p}/c = \sum \hat{p}/ic \times \hat{a}/ic m_i \]

\[\hat{p}/c = \sum \hat{p}/ic \times \hat{a}/i/0 m_i \quad \text{(if } C = G) \]

Using the result that \(\hat{a}/i/0 = \hat{a}/i/0 G \) gives

\[\hat{p}/c = \sum \hat{p}/ic \times \hat{a}/i/0 m_i \quad \checkmark \]

This definition works for some special cases concerning the motions of particles \(i \) and point \(C \) which have been previously outlined.

Also if \(\hat{a}_c \) is parallel to \(\hat{p}/c \).

\[\text{[then] } \hat{p}/c \times \hat{a}_c = \hat{0} \]

This is one of the ways people get the right answers sometimes.