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[This is an expanded version of a letter sent to Nature and also sent directly to

Moffatt in June 2000. It was not accepted. Moffatt’s response to a different letter

makes a passing reference to some of this letter in its last paragraph (Nature 408

30 November 2000, pg 540).]

Moffatt (Nature 404, April 2000, pp 833 - 834) discusses the ever-intriguing
motions of a rolling disk, as it whirrs and shudders to a horizontal stop.
Everyone has watched coins do this and people who like science toys have seen
‘Euler’s Disk’, a commercial toy, do it much longer. Although a superficial
reading might make one think the paper addresses the question of why the
coin wobbles faster as it gets lower, this is not the topic. The issue the paper
addresses is how the tip angle changes with time.

First let me review the contents and claims of the paper. Without the
word limits of a Nature ‘Brief Communication’ I can explain at more leisure
than could Moffatt.

Summary of Moffatt’s paper
The paper starts with a rederivation, using angular momentum balance, of the
classical relations for one set of solutions of the rigid-body dynamics equations
for a uniform rigid disk that rolls without slip. This is the special family for
which the center of mass is stationary (doesn’t move).

Ω2 =
4g

aα
(for α � 1) (1)

where g = the gravity constant,
a = the radius of the thin disk,
α = the disk’s angle of tip as it wobbles around (assumed

to be small with 0 corresponding to flat), and
Ω = the angular velocity of the ground contact point,

= the precessional angular velocity.



Also, uncontroversially, the energy (kinetic +potential) of a disk in the mo-
tions as described by Eqn. (1) is

E =
3
2
Mgα. (2)

The key observation is that this equation says that the wobbling rate (Ω)
goes to infinity as the disk gets close to flat (α close to zero). This feature of
this classical formula corresponds well to what is observed with coins and the
Euler Disk toy where the shuddering gets fast as the disk falls.

Moffatt then assumes that at all times the motion is close to this steady
precession, so that Eqn. (1) can be used at all times. As energy is lost at a
rate

Φ = the energy dissipated per unit time,

α gets smaller and, by equation (1), Ω gets bigger.
Moffatt assumes that the only energy loss is from the flow of a viscous

fluid squished around between nearly parallel flat surfaces (the bottom of the
disk and the support). By an argument that is close to dimensional analysis
Moffatt estimates the rate of energy dissipation in terms of the parameters
above as well as

µ = the air viscosity,

keeping terms of order 1 (e.g., π) as he finds convenient. He gets

Φ = C · πµga2/α2 = C ·
(

πµa4

16g

)
· Ω4 (2.5)

where C is a proportionality constant which Moffatt takes as 1 for quanti-
tative purposes. A property of Moffatt’s assumed viscous solution is that it
applies a torque, but no net force, to the disk. Assuming that all energies and
dissipations have been accounted for, the loss of energy per unit time is the
dissipation, so

dE

dt
= −Φ. (3)

Because all quantities in Eqn. (3) can be written in terms of, say, α, Eqn.
(3) is then a first order differential equation in α. Moffatt observes that the
solution of this equation predicts that in some finite amount of time



a) α gets to zero, and
b) dα/dt goes to infinity as α goes to zero. Thus, justifying the title ‘Euler’s

disk and its finite-time singularity’, he notes that his model predicts that
there is a singularity that occurs in finite time.
The paradox of such a singularity is resolved, he says, by looking at

linear momentum balance in the vertical direction. As α goes to zero, in
his calculated solution, the disk’s downwards acceleration goes to infinity.
Linear momentum balance thus predicts that a tension force is needed from
the ground (gravity is constant and the fluid applies no net force) at a critical
time. At that time, says Moffatt, the calculation then ceases to be valid and
the singularity is avoided.

He notes confidently in the final technical sentence of the paper that “the
adiabatic approximation is still well satisfied” at this time.

Using a listed value for the viscosity of air, and assuming his proportion-
ality constant C = 1 (keeping the π) he predicts a total shuddering time of
100 seconds, close to what is observed with the toy.

Critique
I am critical of the paper in a number of ways at a number of levels.

But, to be clear, let me first say what I agree with in the paper.
The special classical solutions Moffatt uses for a rolling disk, Eqns. (1,2),

are probably good approximations for many rolling coins and the Euler Disk
toy once the angle of tip is small, but not too small. The people who wrote
the side of the toy’s box thought so also, before Moffatt had ever seen the toy
(In older versions of the toy, Eqn. 1 was printed on the box). In this regime,
the energy balance Eqn. (3) can be usefully used.

Any theory, such as Moffatt’s linear viscous dissipation, that uses Eqns.
(1-3) and which has a non-zero dissipation Φ predicts a singularity in finite
time. That is, the system only has finite energy, so with a non-zero dissipation
rate that energy must go to zero in finite time. According to Eqns (1,2) this
requires that Ω go to infinity in finite time. For one reason or another, all such
theories must become invalid before this singularity and Moffatt was right to
try to ‘resolve’ it.

Further, I could imagine a disk that was flat, smooth, and round enough
rolling on a surface that was flat, smooth and hard enough, so that Moffatt’s
theory would be a good approximation for some range of small angles.

But here the agreement ends. Some of the criticism below may be re-
garded as unfair in that it criticizes claims which Moffatt did not make. But
I believe that some of these claims are implied by Moffatt, how else could the



existence of the paper be justified.
Applicability of Moffatt’s theory
First, as was mentionned in the popular press by some critics and also by a
letter to Nature (408 pg 540) Moffatt’s theory cannot apply to all disks that
are observed to shudder rapidly as they come to a stop on a flat surface. The
clearest example is a wedding band which has nothing close to the needed flat
layer of air under it.

Moffatt’s calculation is not good for coins either. Most coins are hardly
flat compared to the assumed layer beneath them. And, should this be
doubted, one can look at the predicted scaling (comparing a US penny with
a US quarter, say) and see that the scaling from Moffatt’s theory is not pre-
dicted for coins. Finally, experiments in a vacuated bell-jar (Nature 408 pg
540) show no significant increase in settling time as would be predicted if air
friction were dominant.

Finally, I don’t believe Moffatt’s theory is good for the Euler disk toy
either, as I infer a few ways. First, the toy comes with a parabolic bowl.
Thus the gap between the disk and the toy does not have the needed shape
nor scaling as α gets small. Second, most disks the size of that toy are not
nearly as good as that toy. To assume that all the toy’s dissipation is fluid
loss is to assume that the toy manufacturer has done a perfect job of getting
rid of all the other common losses. It seems more natural to assume that
there is room for improvement in the toy design. Third, the toy, as purchased
gives vastly different settling times depending on what surface the support
surface is placed on. On a carpet the toy only shudders for a few seconds.
One would have to assume that the surface Moffatt used in his experiments
was the best of all possible surfaces. Fourth, experiments in a vacuum only
show a modest increase in settling time, even for the toy. Fifth, experiments
of McDonald using the toy show a dissipation rate that is not proportional to
Ω4 as Moffatt calculates, but something much less.

In play with various nominally flat round disks on various nominally flat
round tables one finds that a given disk has settling times that vary by factors
of two or so, while the disk parameters and air viscosity surely vary by far
less than 1% between observations. Thus Moffatt’s viscous mechanism can’t
be the primary damping for most disks most of the time.
How flat is flat?
To assume smooth steady rolling one needs flat contacting surfaces. How
flat? Presumably flat enough so that the accelerations are less than g. As-
suming n undulations per radian (about 6n undulations per circumference)



with roughness d, the associated bound on accelerations are

g > n2Ω2d ⇒ d <
g

n2Ω2

Setting g = 10m/s2, Ω = 500/s at the end (Moffatt’s paper misprints this
as 500 Hz), n = 4 (about one undulation per cm of circumference), we get
d < 2.5 ∗ 10−6m. That is, to keep smooth contact to the predicted liftoff time
would require surface undulations less than 2.5 µm over a cm and less than
25nm roughness per mm. This is highly stringent machining.

Electrical contact measurements for final shuddering of a nominally flat
round steel disk on a nominally flat steel plate showed intermittent contact
as the above roughness calculation shows should be likely (Simha, private
communication 2000) thus the smooth rolling assumption is questionable for
many disks near the end of their shuddering motion.

Altogether there is no evidence that I know of that indicates that Mof-
fatt’s Ω4 fluid dissipation dominates for any disk on any surface, although it
is concievable that such a disk could be made.
Moffatt’s math is a little wrong.
Moffatt’s algebra and calculus manipulations are good. But the math around
the algebra is not all there.

Assume that some disk is sufficiently flat and round and does roll on
a sufficiently stiff, flat surface that Moffatt’s fluid dissipation mechanism is
always dominant. How then is the singularity ‘resolved’?

The singularity is resolved by the breakdown of the accuracy of Eqns.
(1,2). Moffatt claims that the ‘adiabatic approximation’ is good all the way
up to tensional contact. Moffatt (personal communication 5/22/00) was un-
willing to bet on the correctness of this statement “I hold by the statement
that I made about this in the paper. I don’t like to bet on a certainty–it
wouldn’t be fair on you–”.

Moffatt checks the validity of its approximate solution at the time of
predicted contact loss by the consistency check of slow variation. But this is
not sufficient. At the predicted termination time, no-longer-negligible torque
from the air pressure has already changed the unperturbed dynamics (eq. 1
therein) by order 1.

That is, an integration of the full equations for a rolling disk with fluid
drag (not restricted to Eqns. 1,2) would differ markedly from Eqns. 1,2 before
tensional contact would be predicted. That this has to be the case is made
clear by the observation that the fluid mechanism has no net force, and thus



no means to pull the disk down with the accelerations that the restricted
theory predicts.

It turns out from integration of more full equations, that the breakdown
of the adiabatic approximation does occur before tensional contact, but that
the time of this breakdown is very close to the time predicted by Moffatt.
That is, Moffatt’s mistake was real, but this does not substantially affect
his predictions. I only harp on it because, once one discards the physical
applicability of his theory all that is left is the model, and even that is not
done correctly.
Competing Theories
Moffatt is correct to refute macroscopic frictional slip as a loss mechanism.
But there are other possible contact losses.

One loss mechanism of which one can be sure is radiation through the
support surface. This could be from collisions (non-flatness) or from defor-
mation of the support structure. There is no need for plastic contact to
invoke this mechanism. In effect, the disk could be rolling up hill all the time.
Primary evidence in favor of this mechanism is that the Euler Disk toy has
settling times that depend on the surface its base is placed on. Also, in our
own experiments with metal disks on thick metal plates, the settling time
depended on what surface the lower plate was supported by.

Another possible loss mechanism is from collisions, as noted in the rough-
ness calculations above.

Standard rolling friction due to plastic deformation of the contacting
surfaces and micro-slip there is another possible mechanism.

Assume, as one common class of rolling loss approximations, dissipation
proportional to (contact speed)β , and thus

Φ = CΩβ .

Classic rate-independent rolling friction would give β = 1. A viscous contact
term would give β = 2, and a quadratic collisional loss mechanism might give
β = 3.

In a slow-varying small-angle theory like in the paper, all of these give
a finite-time singularity; and the slow-varying singular approximation will be
inaccurate near stoppage for many reasons (one possibility being neglected
fluid effects).
Are Finite-time singularities any big deal? The title of Moffatt’s paper
leads one to think that there is a big surprise in having a mechanics problem



where an approximate theory predicts a singularity (and thus the breakdown
of the theory). Although always intriguing, finite-time singularities within
approximate theories are not so rare in classical mechanics.

1) Almost as soon as calculus and mechanics were invented Newton
worked out a finite-time singularity. Newton’s Principia describes the finite-
time singularity as two gravitationally attracted particles fall in to one an-
other.

2) The “Painleve paradox” describes a smoothly sliding rod that eventu-
ally jambs with infinite acceleration.

3) The rolling of a french curve (with zero curvature at the tail) on a flat
surface leads to infinite forces as a singular configuration is approached

4) A very well-known simple bouncing ball model predicts an infinite
number of bounces in finite time.
Why the special family of solutions? A final open question concerns
the classical” solution quoted for a rolling disk (Eqns 1,2). Really there is a
three-parameter family of classical solutions, and even a two-parameter family
of simply-expressed circular rolling motions. Without supporting comments,
Moffatt selects for perturbation a one-parameter subset of rolling solutions.
These solutions also are solutions for a disk freely sliding on a frictionless
plane. Play with coins, toys, etc., indeed shows that these seem to be about
the right subset for final shuddering during real rolling of many disks. The
possible dynamical attraction to this special one-parameter family of solutions
seems likely (to me) to follow from dissipative side-slip effects in the rolling
contact, a significant contact mechanism neglected in the paper.

But without considering the possibility of slip there is no a-priori reason
to expect that even a slowly damped perfect-rolling ideal disk should start at,
or stay near, Moffatt’s assumed one-parameter family of solutions.

Summary
Moffatt’s theory adds next to nothing to the understanding of rolling coins
or even of the beautiful Euler Disk toy. It does describe the behavior of some
ideal, perhaps never seen, disks for some time, but even then he incorrectly
gives the reason for the termination of his theory.


