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Abstract

Terrestrial legged locomotion requires repeated support forces to redirect the body’s vertical velocity component from down to
up. We assume that the redirection is accomplished by impulsive leg forces that cause small-angle glancing collisions of a point-mass
model of the animal. We estimate the energetic costs of these collisions by assuming a metabolic cost proportional to positive muscle
work involved in generating the impulses. The cost of bipedal running estimated from this collisional model becomes less than that
of walking at a Froude number (v?/gf) of about 0.7. Two strategies to reduce locomotion costs associated with the motion
redirection are: (1) having legs simulate purely elastic springs, as is observed in human running; and (2) sequencing the leg forces
during the redirection phase; examples of this sequencing are the ba-da-dump pattern of a horse gallop and having push-off followed

by heel-strike in human walking.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The footfall pattern of a galloping horse has been a
curiosity at least since the famous studies of Muybridge
(1887) and Marey (1874). Through high-speed photo-
graphs and hoof sensors (Fig. 1) Muybridge and Marey
observed that a moderate speed gallop (or canter)
consists of an aerial flight phase alternating with a
support phase. At the start of support a rear foot lands,
then the other rear foot and a front foot land together,
and finally the remaining front foot lands. Modern data
reveals the same pattern (e.g. Eaton et al., 1995; Potard
et al., 1998; Minetti, 1998). This three-beat ba-da-dump
ba-da-dump is familiar from the horse gallop we hear in
Rossini’s William Tell Overture (e.g. TV’s The Lone

*Corresponding author.
E-mail address: ruina@cornell.edu (A. Ruina).

0022-5193/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/].jtbi.2005.04.004

Ranger theme). Why should a horse prefer sequenced
footfalls, ba-da-dump, to, say, a pronk where all four feet
hit simultaneously? We approach this and related
questions from an old and intuitive perspective,

“A perpetual law of Nature consists of acting with
the smallest work ...” Borelli (1680)

more recently championed by Alexander (2001).
The general energetic view comes into sharper focus
by considering these two points

e Only losses cost: In a complex mechanism moving in
complex ways it is easy to forget that muscular work is
only required to make up for loss of mechanical
energy. As a rule, no energy is required for the
dizzying array of passive (e.g. ‘“‘pendular”) energy
exchanges that can occur in a multi-segmented animal
or machine.
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Fig. 1. (a—c) Plate 57 (panels 3, 5 and 7) from the 1957 Dover edition
of Muybridge’s 1887 photos of a cantering horse. Shown are (a) initial
rear foot contact, (b) simultaneous diagonal contact, and (c) front foot
contact. The time between the photos shown is 0.112s. The
approximate instants of the Muybridge photos is indicated on (d)
the footfall pattern of a galloping horse as recorded by Marey (1874).
Each horse foot had a pneumatic sensor which drove a pen on a
rotating drum. The bars indicate times of high pressure.

o Collisions are big losses: In legged locomotion, a big
mechanical energy loss is associated with the feet
pressing on the ground to redirect body motion. Thus
the coordination strategies employed by terrestrial
animals might be designed to minimize the cost of this
redirection during stance.

One of nature’s design issues when using legs for
terrestrial locomotion is this: after gravity pulls an
animal down, either during a parabolic free flight or
over an inverted pendulum arc, how does the animal get
going back up again with least energy cost? This paper is
centered around two model-based results

1. Leg forces that act elastically (as in running) are
energetically beneficial, even in the extreme case that
all the spring-like behavior is from positive muscle
work with no genuine elasticity whatsoever.

2. Deflection of the body from downwards to upwards
is accomplished with about half the energy dissipa-
tion if accomplished with two leg impulses in
sequence instead of just one, and one-third the cost
if with three sequenced impulses.

Nature seems to use both of these mechanical results to
its advantage, as is explained in more detail below.

1.1. The plan of the paper

We start with a general discussion of rigid-objects
modeling of locomotion followed by motivation for
the collisional perspective. To avoid ambiguity we
next describe our assumptions concerning work and

metabolic cost. The point-mass collisional model of
legged locomotion, the associated vocabulary, and some
general collisional formulas are next presented in detail.
These formulas are applied to various special locomo-
tion cases, especially running, galloping and walking,
with an emphasis on coordination strategies that
minimize energetic costs. Finally, model predictions
are compared to human and animal behavior and
metabolic data.

2. Rigid-body and muscle models for locomotion
We start with some central ideas and vocabulary.
2.1. Mechanically consistent models of locomotion

Our overall view is to model an animal as one would
model a robot. One easily imagines a robot as being
accurately modeled by assuming that the parts are rigid,
that the bearings are frictionless, and that the motors
have well-characterized torque—velocity relationships.
Animal joints also have low friction, body parts that
move almost as linked rigid objects with small deforma-
tion, and air friction is also often relatively small. So as a
first approximation, one can use physical robots as
models of animals, and one can use the robot-modeling
assumptions for the description of animals. The robot
modeling assumptions provide a test-bed for general
locomotion analysis techniques. In particular, we are
interested here in the analysis of energetics. If a
mechanical energy accounting scheme is to make sense
for animals it should make sense for robots, real or
simulated, where all the quantities of interest are more
precisely defined. In this paper, the mechanical model is
simple in the extreme, so all quantities are particularly
easy to track.

In these idealized robotic models dissipation of
mechanical energy is mostly due to two overlapping
mechanisms, collisions and negative muscle work.
Understanding negative muscle work and collisional
losses are thus central to understanding locomotion
energetics.

2.2. Positive and negative muscle work

The overall energy accounting of muscle work starts
by considering the work of one muscle. The rate at
which a muscle does work on its environment is

W puse = (tension) x (shortening rate).

W use and all other quantities are defined in the glossary
in Appendix B. In a so-called ‘concentric’ (towards the
center) contraction, a shortening muscle has substantial
tension and does mechanical work on the skeleton
(W yuse >0). In turn, the skeleton can gain gravitational
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potential energy, be accelerated or do work on the
outside world. In an ‘eccentric’ (away from the center)
‘contraction’ a muscle still in tension (muscles never
have substantial compression) lengthens and thus
absorbs mechanical work (W s <0) from the skeleton,
slowing it down, lowering it, or indirectly absorbing
work from its environment.

2.3. Muscle work and metabolic cost

Our underlying assumption that animals minimize
energy use is probably best expressed as a minimization
of food fuel use, that is, a minimization of metabolic
cost. So we need to relate muscle use to metabolic cost.
The correlation between muscle activity and energy
consumed (as food digested, ATP hydrolized, or oxygen
consumed) depends, in complex and as yet poorly
understood ways, on the molecular dynamics of
contraction, activation and energy conversion within
the muscle. There currently are no molecular-based and
in vivo tested equations relating muscle activity to use of
chemical energy from food.

Empirical curve-fits and guesses for the rate of
metabolic energy use include dependencies on rate of
contraction based on Hill-type equations (e.g. Minetti
and Alexander, 1997), dependence on the integral of
muscle tension over time, and more subtle dependencies
on force and time (Kram and Taylor, 1990). We resort
to an older more-approximate constant-efficiency model
(e.g. Margaria, 1976; Alexander, 1992). This way the
simplicity of our muscle modeling matches the simplicity
of the mechanics. We use a metabolic cost rate

. { bl Wmusc if Wmusc = 0,
E, =

. 1
if W pnuse <0, ( )

b2 | Wmusc |

where b; and b, are positive constants. Typically b; ~ 4
and b, ~ g (Margaria, 1976). Margaria motivates Eq. (1)
by measurements of oxygen consumption for people
walking uphill and downhill. More generally Eq. (1)
may be expected to be a reasonable approximation if
most of the individual muscle contraction and lengthen-
ing rates are mostly in an intermediate (near-optimal
efficiency) regime where muscle efficiency is not highly
sensitive to rate.

More elaborately one might imagine a slightly more
sophisticated cost-law for muscle that includes a sum of
terms. One, say, for work, one for force (for the costs of
isometric contractions), one for force rate, etc. With
such a more accurate constitutive law in mind, where the
work accounting here is just one term in a series, the
metabolic cost calculated in this paper may be viewed as
that part of the metabolic cost associated with muscle
work and not including the part associated with
maintaining force, etc.

2.4. Mechanical energy balance

As complex as legged locomotion appears, the basic
mechanical energy balance equation for steady locomo-
tion over level ground is simply

The net positive muscle work is equal to the net
mechanical energy lost.

All work production, absorption and energy conver-
sions are subsumed by this simple relation. Over an
average step at steady speed a body’s kinetic energy is
unchanged. The main force that the muscles are
superficially fighting, gravity, is orthogonal to the
average motion so uses up no net work. Thus, no net
work goes into increasing either kinetic or potential
energy. We term the sum of positive muscle work
increments over a fixed period of time (0<¢< T, one full
stride, say) over all muscles as W ,,, and the sum of
negative muscle work increments as W, with

T
Wpos = /0 Z [Wi]+ dr,

muscles
T .
W ey = / > [-Witde )
0 juscles
[x]* indicates what electrical engineers call ‘rectification’

and is x if x>0 and 0 if x<0. Neglecting air friction and
friction in joints, and neglecting non-collisional material
deformation, mechanical energy balance gives

Wpos = |Wloss| = |Wneg| + |WdiSS|7 (3)

where W, is the total of mechanical energy sinks
including negative muscle work and other dissipation.
W 4iss 18 the collisional dissipation not already taken up
in negative muscle work; W, accounts for energy
absorbed by deformation other than the lengthening of
muscle (deformation of material that in non-collisional
circumstances is approximated as rigid).

2.5. Energy balance and metabolic cost of locomotion

We can now use our relation between muscle use and
metabolic cost with the energy balance equations to get
a simpler estimate of metabolic cost. Combining Egs. (1)
and (3) the metabolic cost over a gait cycle is

Em = bl(| Wneg| + |Wdiss|) + b2| Wneg| (4)
=bh Wlom (5)
=b Wpos: (6)

where Eq. (5) defines b. In detail, the value of b depends
on whether the loss is from negative work (W 4 = 0 so
b=by+b), from other dissipation (W,, =0 so
b = by) or a mixture (b <b<b; + by).

With reference to Eq. (1) it is often said that positive
work is performed with efficiency (ratio of work to fuel



A. Ruina et al. | Journal of Theoretical Biology 237 (2005) 170-192 173

use) of about 1/b; ~ 25%, whereas negative work is
more efficient at 1/b, ~ 120% (sometimes more accu-
rately reported as -120% efficiency). Similarly, it is
noted that negative work only costs b, /b; = 21% of an
equal amount of positive work. However, a periodic gait
cycle implies that a given amount of negative work
needs to be compensated by an equal amount of positive
work. Conversely, a given amount of positive work
performed needs to be lost by an equal amount of
dissipation or negative work. This symmetry is reflected
in the similarity between Egs. (5) and (6). Thus in the
context of locomotion, it is more revealing to say that

Over a full gait cycle, any extra negative work must
be balanced by an equal amount of extra positive
work, and vice versa, so any increment in negative
work has about the same net metabolic consequence
as any increment in positive work.

The primary metabolic cost of negative muscular
contractions is not the direct effect characterized by b,
but the indirect effect characterized by the larger b;. In
words, Eq. (5) says that, to the extent that fuel use is
related to muscle work,

the metabolic cost of locomotion is approximately
proportional to the energy lost

with little difference whether this loss is from eccentric
contractions (metabolic cost = b; + b, ~ 483% of ne-
gative work) or from non-muscular dissipation losses
(metaboliccost = by =~ 400% of dissipation). For sim-
plicity, when numbers are needed, we over-estimate the
cost using b = by + b, & 5.

In contrast, for applications to robots powered by,
say, 80% efficient but non-regenerative electric motors
one might set b ~ 1.25.

2.6. Energetic cost of transport

It is convenient to have a simple dimensionless
measure of the energy required for locomotion. A
commonly used dimensionless cost-to-benefit ratio is the
specific energetic cost of transport,

E,
~ (weight moved) - (distance moved)

CVH

(Note that ¢, differs by a factor of g from another oft-
used dimensional measure that has units of J/kgm.)
Because we approximate metabolic cost E,, as propor-
tional to energy losses (Eq. (5)),

Wloss
mgvT’

Cm = b (7)
where m is the body mass, ¢ is the gravity constant, v is
the average forward speed, and T is the period over
which the work is measured. Sometimes it is useful to

consider the mechanically defined work-based cost of
transport which here would be ¢, = ¢,,,/b.

3. The collisional perspective

In locomotion muscles have various functions. We
can roughly divide these into a cost of support and a
cost of swinging the limbs about. This paper concerns
the cost of support. In particular, the metabolic cost we
calculate here is from muscle used to redirect an
animal’s body motion from generally down to generally
up during the support phase. This redirection from large
leg forces will be modeled as a collision.

A collision is the sudden change in relative motion
between two solid objects associated with large brief
contact-interaction forces.

In the model here, one object is a mass representing
the body of the person or animal and the other is the
immovable ground. The brief contact-interaction forces
are the leg forces causing the down-to-up redirection of
the center of mass. Our emphasis here will be on
energetic aspects of this collisional redirection.

3.1. Passive-dynamic walking

Collisional energy accounting is especially useful for
analysis of the passive-dynamic walkers first developed
by McGeer (1990a, 1990b). These machines are basically
a collection of solid parts connected by hinges, with no
motors and no controls. That such machines, appro-
priately designed and appropriately launched, can walk
down a gentle slope with a rather human-like appear-
ance (Collins et al., 2001) suggests that they may be
relevant to human walking.

Exactly in theory, and approximately in practice, the
full energetic cost of locomotion for passive-dynamic
walkers is passive dissipation at collisions. Essentially,
all of this collisional loss is at heel-strike (knee-strike,
the collision of a leg with itself as it straightens,
generally uses a near-negligible fraction of the energy
budget, Garcia et al., 2000).

A simpler point-mass passive-dynamic model of
walking is detailed in Garcia et al. (1998). The collisional
aspect of this model will be reviewed here later. The
Garcia et al. (1998) model predicts that

U2 3/2
¢y ~ 6.9 (—) , (8)
7]

where ¢ is the leg length. Garcia et al. (2000) show that
the proportionality in Eq. (8) holds with reasonable
accuracy even for more complex passive-dynamic
models with knees, rigid rounded feet, and distributed
mass.
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Passive-dynamic walkers are one class of biomimetic
robots that have an energy budget accurately deter-
mined by collisional accounting. Further, the collisional
losses seem well-approximated with a point-mass model.

3.2. Other collisional models of locomotion

Rashevsky (1944, 1948) seems to have been first to use
collisional accounting to estimate the energetic cost of
transport. The details of his point-mass model will be
reviewed later. The rimless wheel, another famous
collisional model of locomotion (e.g. Bekker, 1956;
Margaria, 1976; Rubanovich and Formalskii, 1981),
shows a connection between rolling and walking (also to
be discussed more later). For energetic purposes (but not
for study of the stability) a slight generalization of the
rimless wheel (Alexander, 1991) has a point-mass that
can place massless rigid legs on the ground at arbitrary
angles or times. A related model adds a cost for leg
swinging (Kuo, 2001, 2002).

3.3. Recent human walking research that uses collisional
accounting

Recent studies (Donelan et al., 2002a, b; Kram and
Taylor, 1990; Kuo, 2001, 2002) have shown a sub-
stantial metabolic cost for the ‘“‘step-to-step transition”
in human walking. Like the models here, this step-to-
step transition research was inspired by analysis of
passive-dynamic-based biomimetic robots. The walking
““step-to-step transition” is one example of the “down-
to-up” redirection we discuss here. The walking portion
of the paper here formalizes and generalizes some
portions of this work.

3.4. The lack of collisions in brachiation: Bouncing
without springs

In contrast to common notions about running over-
ground, brachiation (arm swinging from branch to
branch) of gibbons uses a mechanism of apparent
“bouncing” (Fig. 4a) that has no essential dependence
on elasticity (Bertram et al., 1999). Ricochetal brachia-
tion, analogous to upside-down running, has a flight
phase between hand holds. If the velocity of the body at
the end of free-flight is tangent to the circular path of the
body at the beginning of the swing, then the redirection
from downwards to upwards motions has no essential
collisional loss. The ape effectively bounces, ricocheting
along the curve determined by her extended swing arm.
That is, the essence of the pendulum in ricochetal
brachiation is not to exchange gravitational and
potential energy, but to redirect the body motion from
generally down to generally up. Of particular note is the
fact that this apparent ‘“bouncing” motion is not
mediated by any spring-like exchange of energy. Rather,

energy is available to re-elevate the animal simply
because it was not lost in the interaction with the
supporting hand hold.

A 5-link muscle-free brachiation model (Gomes and
Ruina, 2005) shows realistic-looking steady-state rico-
chetal brachiation (i.e. including a ballistic flight phase
between contacts). These gaits were found by numerical
searches for solutions with no collisional (or other) loss.
Real gibbons seem to choose motions close to these
collision-free motions: (1) the bounce from downwards
to upwards motion is accomplished with an impact-free
mechanism, and (2) the making of contact with the
handholds is at near-zero relative velocity, also mini-
mizing impact losses. For ricochetal locomotion colli-
sional dissipation shows its importance not by the
energy it demands, but by its avoidance.

3.5. Can an animal swing against the ground?

It is puzzling that gibbons can ‘run’, albeit sort of
upside-down, with no dissipative collisional impacts, but
that right-side-up legged locomotion seems tied to
collisional loss. Are there corresponding collisional-loss
reduction mechanisms for running right-side-up? Of
course the obvious answer is yes, ‘‘springs” (e.g.
Alexander, 1990). But because animal limbs are not
passive elastic springs (apparent leg elasticity is achieved
with at least some muscle work). A motivation for the
present research was a hope of finding dissipation
reduction schemes that, like the dissipation-avoidance
schemes used by gibbons, are not tied to material
elasticity.

4. The point-mass compressional-leg glancing collision
model

Before we can discuss how metabolic costs of
locomotion can be reduced, we first present our
collisional model for calculating some of these costs.
This collisional model allows simple approximate
calculation of costs associated with leg forces that,
when viewed in detail, are smooth and non-impulsive.
All later discussions of biologically relevant cost-
reduction mechanisms are based on the formulas
developed in this section.

We approximate the body as a point mass and the leg
as a massless strut that can only transmit forces along its
axis (that is, for most of the discussion we neglect hip
and shoulder torques during the collision). For calcula-
tions we assume, consistent with the assumption of short
contact time, that during a collision gravity forces are
negligible and that the leg angle changes negligibly.
Within this context, our overall model of locomotion is
of smooth flight or stance phases punctuated by sudden
velocity changes caused by impulsive leg forces.
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Our collisional model is similar to the “‘compression-
restitution” model of point-mass collisions discussed in
elementary mechanics books but with 4 differences

1. Here we have an emphasis on glancing, shallow angle
collisions rather than normal (direct) impact,

2. Here, we take account that biomechanical collisions
need not cause a reduction in system Kinetic energy.
In classical mechanics, a collision typically refers to a
purely passive, dissipative interaction between two
objects which approached each other rapidly. Here, a
collision can involve both purely passive mechanisms
and actively muscular mechanisms. Collisions here
can increase kinetic energy. In this sense, these
collisions are a generalization of conventional passive
collisions.

3. Here, we look at one collisional episode as possibly
made up of a sequence of sub-collisions, and

4. The energy accounting here considers the metabolic
cost of doing work.

4.1. Energetics of a single collision

The velocity v~ of the animal center of mass H is
initially at an angle ¢~ with a line orthogonal to the
nominal leg (see Fig. 2a). During the absorbing part of
the collision, H gets closer to the nominal foot contact

(@ absorbing
generating

+ +
v \ v ,,~"'\,¢/’ '
I (,;/—‘Tf e =73 x
o [ Ry o T 3 )
-~ Fh A
c
(b) Sy
"4 \\\ "Lq)‘*
¢ 20
P*
(@ \ ©
N\ \
et T
exclusively pseudo- exclusiv_ely
absorbing ,,,\S,,,, elastic generating

Fig. 2. The glancing collision model. (a) A particle collides with the
ground through a single leg with a net deflection angle of
¢ = ¢t 4+ ¢. The force F during the collision comes from the leg
whose direction is approximated as constant y during the collision. (b)
The net impulse of one leg on the mass m is P*. (c) The same collision
viewed at a coarser scale where the details of the collisional interaction
are not shown. (d) A point-mass has an exclusively absorbing (perfectly
plastic) collision. (¢) A point-mass has a pseudo-elastic collision and (f)
A point-mass has an exclusively generating collision.

point C and the kinetic energy decreases. In this
portion energy is absorbed by extending muscles and
tendons (as joints flex) as well as by deformation of
other tissues and the ground. Then at the point of
maximum leg compression the distance CH begins to
increase, the kinetic energy increases and work is
generated by muscles, tendon recoil, and possibly
ground recovery. In classical mechanics the generation
phase is called the ‘restitution’” phase. But some
collisions we consider here have no compression/
absorbing phase, and the generating phase then has
nothing to restitute. So we drop the classical vocabulary.
Eventually contact is lost and the animal H completes
the generation phase with velocity vt at an angle ¢
with respect to the normal of the nominal leg orienta-
tion. We generally assume that both ¢+ and ¢~ are
nonnegative. The net deflection of the path in a single
collision is

d=¢ +¢". ©)

Usually we think of both ¢ and v~ = |v~| as given.
Throughout we are interested in locomotion, that is
motion that is more sideways than up or down. We
further assume that all portions of all trajectories are not
far from level. So we simplify the formulas, at little cost
in accuracy if the angles are indeed small, by using small
angle approximations: sin¢ ~ ¢ and cos¢ ~ 1. Simi-
larly ¢*, ¢~ and ¢ are assumed small.

Conservation of linear momentum in the direction
orthogonal to the leg (or, equivalently, angular momen-
tum balance about the foot contact) demands that
v cos¢p” =vtcospt. Thus, v~ ~ vt ~v. One can
think of v as the average forward speed of the animal.
Although the fluctuations of v are of central interest in
the energetics, they are assumed to be a small fraction of
v. The small velocity variations are made manifest in the
energy terms discussed below.

The energy change is completely accounted for by
changes in the component of velocity normal to the leg
(from the collisional impulse).

AE = —E,+E,, (10)

where E, = m(¢"v)*/2 and E, = m(¢ " v)* /2.

E, is the energy absorbed in leg shortening and E, is
the work done by the leg in the generating (lengthening)
phase. Alternatively one may want to calculate the
change in energy from the impulse P* where, with the
small angle approximation |P*| = mv¢. Either by re-
arranging Eq. (9) and (10) and making suitable
geometric interpretations, or by the derivation in the
appendix (Eq. (38)),

AE = m*(—pdp™ + ¢>/2) = v~ - P* + |P*>/2m). (11)

In a single collision AE can be positive or negative.
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4.2. Collision coefficients e, and e,

Collisions are commonly characterized by the coeffi-
cient of restitution

__ (separation speed)
" (approach speed)

=vsingt/vosing” ~ ¢ /P

r

In the case that ¢ = 0 the collision is equivalent to a
‘perfectly plastic’ (perfectly inelastic, coefficient of
‘restitution’ e, = 0) frictionless collision against a sur-
face normal to the leg. We call such a plastic collision
exclusively absorbing (Fig. 2d).

If ~ = ¢ the collision is kinematically equivalent to
a ‘perfectly elastic’ collision with e, = 1 (Fig. 2e). We
call such an kinetic-energy preserving collision a pseudo-
elastic collision; it is elastic in effect, with the amount of
work done equal to the amount previously absorbed. It
is ‘pseudo’-elastic because the work in the generation
phase may not be recovered clastic storage. Rather, the
positive work could come in part or full from muscle
work (see the concept of ‘“‘pseudo-compliance” in
Alexander, 1997).

If ¢~ =0 the collision is exclusively generating
(Fig. 2f). This is a classically ignored ‘super-elastic’ case
with e, = co. It’s like a backwards-run movie of clay
hitting the floor. This e, = co case cannot be ignored
here because muscles can do work even with no previous
negative-work phase.

Thus, to avoid use of oo in formulas, we introduce a
new collision coefficient, the coefficient of generation e,

(separation speed) — (approach speed)
(separation speed) + (approach speed)
ee—1 (/)+ — ¢

e +1 ¢

g

(12)

Inversely, e, = (1 +¢,)/(1 — ey). The coefficient of gen-
eration e, respects the symmetry between an exclusively
absorbing collision (e, = —1,¢7 =0) and a exclusively
generating collision (e, =1, ¢~ = 0). For the energeti-
cally neutral pseudo-elastic collision e¢; =0 (¢~ = ¢™).
For intermediate cases the pre- and post-collision angles
can be calculated from the net collision angle ¢ and the
coefficient of generation e, by ¢* = (1 +¢,)¢/2 and

¢~ = (1 —ey)¢/2. From Eq. (10),
AE = mv*¢e,)2. (13)

Thus another interpretation of the coefficient of
generation e, is as the ratio of the collisional
energy gain to that which would be lost for the same
angular deflection in a totally plastic (dead, absorbing)
collision with the same v and ¢. That is, ¢, =
AE [(mv* ¢ )2).

4.3. Elastic recovery r

Although the current discussion considers both active
(muscle-determined) and passively mediated absorption
and restitution, the terminology can be related to more
commonly considered elastic behavior. The classical
concept of elastic recovery is characterized by

r = fraction of E, stored and used for E,. (14)

Thus the total positive muscle work during the collision,
excluding the positive work contributed by parallel and
series elastic components, is E; —rE,. The sum of
dissipation and negative muscle work (excluding work
absorbed by elastic tissue to be returned later) during
the collision is given by E, — rE,. The elastic recovery r
is an extra parameter that needs to be specified in order
to calculate the metabolic cost of collisions. A truly
elastic collision (e, = 0,7 = 1) is kinematically identical
to a pseudo-elastic collision (e, = 0,7 = 0) where all
incoming energy is lost but replaced by positive muscle
work. Because we do not imagine elastic storage being
used for anything but the subsequent generative
phase, it is sensible to assume that for every collision
or sub-collision that rE,<E, so r<E,/E, or r<
(1+¢)* /(1 — ¢,

4.4. Inferred energetic cost of a gait cycle with exactly
one collision

A gait might involve positive and negative muscle
work not only during collisions but also between
collisions. The overall energy balance equation e.g.
Eq. (3) concerns all of this work. In particular if £, > E,
then at least some negative work or other dissipation
is needed in a non-collisional part of the gait cycle.
On the other hand, if E;<E, then at least some
positive work need be done in a non-collisional part
of the gait cycle. We take the inferred energetic cost
of collision over a gait cycle to be the minimum
possible cost based on the minimum positive work in
the cycle, taking account that some positive work might
have to be done between collisions in order to conserve
energy.

The energy change across a collision AE = E, — E, =
(Ey — rE,) — (E, — rE,) = (positive muscle work) —
|(negative muscle work)| can be negative, zero or
positive. When AE <0, the positive muscle work during
the collision E, —rE, is less than the negative muscle
work and dissipation E, — rE,. For energy balance over
the whole gait cycle, the total positive work over the
whole gait cycle (including that accounted for by the
collision) must at least be E, — rE,. Thus, for AE<0 a
lower bound on the total metabolic cost of a gait cycle is
that inferred from the negative muscle work during the
collision. Using the small angle approximation with
Eqgs. (10) and (14), the inferred collisional metabolic cost
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per gait cycle E,, when AE<0 (and ¢,<0) is

%:Ea—rEuz(l—r)Ea
_ (@7 ) @rvm, _,
d’ —e,). (15)

Similarly, when AE>0 (and ¢,>0), the total inferred
metabolic cost during the whole gait cycle is at least that
due to the positive muscle work during collision. So the
necessary inferred metabolic cost of collision per gait
cycle is

E

% =E,—-rE,
S (@ =)
2 2
= U0 (1~ e o) (16)

The recovery r affects our interpretation of the
metabolic energetics through Egs. (15) and (16).
However, r does not affect the kinematics (v, ¢p) which
we take as given.

4.5. Multiple sequenced collisions per gait cycle

In one down-to-up redirection an n legged animal
may have up to n sub-collisions. Each sub-collision i is
expected to obey the equations above, each with its own
Gir ;> b ey, AE;, Eqiy Eyi and r;. From these it is
possible to evaluate the energetic cost of the net down-
to-up redirection.

The net changes in the collisional episode are given by

¢ = Z d)i?
AE = Z AE;,

{ Z (Eai_riEai) if AE<O,
m

17
b (Ey—riEa) if AE>0, (7

where the expressions inside the sums can be expanded
to look identical to Egs. (15) and (16) with the subscript
i added to ¢,r and e,. Fortunately, the relevant
examples do not depend on the full generality and
complexity of such expanded equations.

5. Examples, models and consequences

In this section we show some special cases. These
illustrate the formulas above and in some cases hint at
their biological relevance. A comparison of the predic-

tions here with human and animal behavior is given in
the next section.

5.1. A glancing perfectly plastic collision can superficially
appear elastic

Some subtlety in even the meanings of the words
‘elastic’ and ‘plastic’ are illustrated by the following
example. Consider a perfectly absorbing (e, =0,
e, = —1) collision mediated by a single rigid massless
leg (Fig. 2d). Just after the collision the outgoing
velocity is orthogonal to the leg because the leg then
pivots about the ground contact point. As discussed
before, conservation of momentum orthogonal to the
leg yields v =wv~cos¢, where v~ and v™ are the
incoming and outgoing speeds and ¢ is the deflection
angle. The post-collisional energy is E* = E~cos’¢ and
the fractional energy loss is AE/E~ =sin’¢ ~ ¢* (for
small ¢).

However, viewing this collision as occurring against
the ground (ignoring the leg for a moment) one sees a
redirection from downwards to upwards motion, a
bounce. On the final upward path the overall speed of
the object is slower than the approach (some energy loss
has occurred). But the component of velocity normal to
the ground after the collision could even be greater than
before; the final upward velocity may be equal to or
greater than the original downward velocity. Thus
viewed as a collision with the ground this exclusively
absorbing (plastic) collision has a corresponding posi-
tive coefficient of restitution (e,>0, and arbitrarily
large). As discussed in, e.g. Chatterjee and Ruina
(1998a), when collisional impulses have a tangential
component, as here with the tipped leg, there is no
fundamental relation between dissipation and the
coefficient of normal restitution e, between the object
and ground.

Also, a plastic collision (plastic with respect to the
leg) can have, say, an angle of incidence =
angle of reflection (angles measured relative to the
ground).

The plastic-collision mediated pole-vaulting in this
example begins to hint that the concepts of bouncing
and of elasticity are not so tightly related.

5.2. A pseudo-elastic collision with no recovery has one
quarter the cost of a fully absorbing collision

The following example shows the energetic impor-
tance of pseudo-elasticity even in a collision that has
zero elastic recovery. Assume a mass m moving at speed
v that is to deflect an angle ¢ at a single collision per
cycle. Consider two types of collisions.

First consider a collision that is pseudo-elastic with no
recovery; none of the restitution work is recovered from
the absorption phase but is instead actively replaced in
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the generative phase. For such a collision we have e, =
l,e, =0,r =0,AE =0, and by Eq. (15) (or by Eq. (16))
that

E,, = bmv*$* /8. (18)
Next consider a collision that is fully absorbing. In

this case e = 0,¢, = —1,r =0, and

E,, = bmv*$* /2. (19)

The cost (Eq. (19)) associated with the plastic collision is
four times the cost associated with the elastic collision
(Eq. (18)), even with no recovery (r = 0).

For the pseudo-elastic collision the positive work
required for the generative phase is associated with a
collision with a deflection angle of ¢/2. On the other
hand for the fully plastic collision, positive work is
needed to make up for all the dissipation associated with
a collision with a glancing angle of ¢ = 2¢ /2. Because
the energy costs are proportional to the square of the
relevant normal velocity, the pseudo-elastic collision,
which has half the collision angle, has one-quarter the
energy cost.

5.3. Pseudo-elastic collisions minimize energetic cost

Assume we have a gait cycle with only one collision
but for which the coefficient of generation ¢, can be
chosen freely. Assume m, v, ¢ and r are given. For what
ey is the cost of collision minimized? By inspection, for
e, <0 Eq. (15) is minimized by e, =0 and for e,>0
Eq. (16) is minimized by setting ¢, = 0. Thus, over all
choices —1<e¢,<1 we find that ¢; =0 minimizes the
metabolic cost.

This observation has a strong consequence:

even with no elastic recovery, it is energetically
beneficial to make every collision a pseudo-elastic
collision.

This result is made intuitively plausible by recognizing
that the negative work E, varies as the square of the
absorbing portion ¢~ of the deflection angle. This cost is
quartered by the pseudo-clastic collision as compared to
a plastic collision. On the other hand, reducing the
absorbing angle further has an extra prohibitive penalty
of demanding non-collisional negative work or dissipa-
tion at another part of the gait cycle.

5.4. Dividing one collision into two smaller collisions
halves the cost

Consider a single plastic (perfectly absorbing) colli-
sion with deflection angle ¢. The energy lost in the
collision is the kinetic energy associated with the
component of the motion orthogonal to the eventual
direction of motion (Fig. 2d). For small angles the loss is
then —AE = mv*$* /2. Now decompose that one colli-

sional deflection into 2 smaller collisional deflections
each with deflection ¢/2. The energy loss in each of the
smaller collisions is calculated identically but with ¢/2.
Thus —AE = mvz(qS/2)2 /2; one-quarter the loss of the
single larger collision. The net loss of the combination of
two half-deflection collisions is thus % + i = % of the loss
of the single larger collision.

The key idea is that the relevant energies in a glancing
collision vary as the square of the deflection angle.
Halving the angle quarters the energy cost of a collision.
So two half-angle collisions together have half the
energy budget of a single full-angle collision. This hints
at the utility of sequencing leg collisions.

5.5. Dividing one collision into n sub-collisions reduces
the cost by a factor of n

Here we generalize the preceding result. Consider one
collision A with a mass m moving at speed v and
deflected by an angle ¢ with coefficient of generation e,
and recovery r.

Now consider replacing that one collision with a

sequence B of n sub-collisions each of which has
deflection angle ¢, = ¢/n and ey, =e, and r; =r as
the original collision. All energy terms in the smaller B
collisions are smaller by a factor of »* than in the
original larger A collision. Thus from Eq. (15), (16)
and (17).
EE 1
EA = (20)
Also, because AE® = n(AE*/n*) from Egs. (13) and
(17), we have that AE®/AE4 =1/n. That is, if the
collision is divided into n smaller collisions both
the work needed for generation during the collision
and the kinetic energy lost during the collision are
reduced by a factor of n.

As for the previous three examples, we gain an
intuitive understanding by noting that the energies
associated with a collision scale with the deflection
angle squared. Breaking a collision into » smaller
collisions makes each of the n sub-collisions have 1/n?
the energy associated with it. So the total energy cost is
that of n collisions each with 1/n? the cost.

5.6. An infinite sequence of plastic sub-collisions can
produce one elastic collision

Now we take the n — oo limit of the previous result.
Using Eq. (20) we see that

both the cost of collision E,, and the energy lost —AFE
in the collision tend to zero with increasing n.

This holds for arbitrary collision parameters including
totally plastic collisions (e;; = —1) with no recovery
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(r;=0). As an aside note, perhaps surprisingly, a
sequence of super-elastic collisions ¢, =1 also tends
towards an energetically neutral collision as the number
of sub-collisions gets large.

5.7. The collisional cost of transport for a point mass
runner

An estimate can be generated from the principles
described above for that portion of human running cost
that is derived from collisional loss. The presentation
here is an extension of that given in Bekker (1956) and
Rashevsky (1948). Consider running as a point mass
collision followed by a parabolic flight followed by a
collision, etc. We take the nominal (nearly constant)
forward speed as v. Various cases of this model of
running are pictured in Fig. 3.

The time of flight and distance per stride are 7 =
¢v/g and d =vT (Fig. 3). From Eq. (15), assuming
e, <0, and Eq. (7) we have
¢202m 2

ST (I =r)(1—ey)

= domg(l — r)(1 — e,))*/8
= dg’m(1 —r)(1 — e,)*/(8v),

E,/(bT)=

E,/T  dg(1 —r)(1—e,)*
=b
mgv 81?2
=b(1 —r)(1 —e,)>F/16. (21)

cn=>b

(@ Active bouncing.
Flight phase duration = T.
Path of CoM trajectory
» .

d

(b) Passive running
downhill

(© )
Impulse from "leg torque"

d .
pseudo-elastic V'

Fig. 3. (a) Collisional pseudo-elastic version of ‘pogo-stick’ (mass-
spring) running. (b) Downbhill passive running with no springs (plastic
e, = —1 collisions), energetically 4 times as costly as (a), even if (a) has
no elastic recovery (r = 0), (c) Level-ground running propelled by hip
torque, energetically identical to (b). (d) Hodographs show candidate
trajectories for the tip of the velocity vector, during collision, as it
moves from v~ to v'. Two cases are shown: (i) corresponding to
pseudo-elastic running, and (ii) corresponding to hip-powered running.

The Froude-like number

mgd
mv? /2

is based on stride length d rather than the usual €. Z is
the ratio of the locomotion credit per step (weight x step
length = mgd) to the kinetic energy (mv*/2). The usual
Froude number & = /v?/gl does not simplify the
collisional formulas here. Now, we can compare running
without and then with emulating a spring with the legs.

F = (2gd)/v* = (22)

5.8. Passive running with no springs may be like hip-
powered running

Although apparently a silly idea, we can imagine a
passive runner with no springs and no spring like
behavior. This (Fig. 3b) is the running analog to the
springless passive-dynamic walkers. Such a runner has a
plastic collision (e, =0,e, = —1) at each footfall. As
mentioned above, because of the tipped leg the collision
in some ways appears elastic, with the relative-to-ground
angle of incidence equal to the angle of reflection. For
this generation-free case there is no place to use
recovery, so r = 0. From Eq. (21) the collisional cost is

E./T dg

m=b =b_==
¢ mgv 212

bF /4. (23)

Energetically equivalent models can be considered
that replace gravity work with another source. For now
we do not allow use of work from an axial leg force.
Another possible energy source is an externally applied
impulse in the direction tangent to the outgoing path, as
shown in Fig. 3c. Such a force impulse is mechanically
equivalent (equipollent) to an externally imposed
impulsive torque applied to the rigid leg at, say, the hip.

Within the context of the point-mass model, but for
leg extension which we are excluding at the moment, no
scheme can supply mechanical work from within the
animal. But, as suggested by McGeer in the context of
walking (McGeer, 1990a, 1992) and running (McGeer,
1990b, 1992), point-mass concepts might apply to bodies
with extended mass. First, if the upper body is an
extended mass hinged to the leg(s) at the center of mass
(e.g. hip coincident with COM), the mechanics are
identical to that of the point-mass model. Next imagine
that, for collisional purposes, the COM is close enough
to the hip that the collisional mechanics is little effected.
But imagine that the center of mass is sufficiently
forward of the hip that substantial hip torque is needed
to balance the torque from the axial leg force (to prevent
net body angular momentum increase over a stride).
That is, Eq. (23) seems to apply, approximately, to an
imagined runner that uses hip torques (Fig. 3c), rather
than gravitational energy (Fig. 3b), to make up the
collisionally absorbed energy.



180 A. Ruina et al. | Journal of Theoretical Biology 237 (2005) 170-192

5.9. Running with pseudo-elastic springs

A popular mathematical model for running has a
massless foot connected to a rigid point-mass body by a
perfectly elastic and massless leg-spring (called variously
the mass-spring model, the Spring-Loaded Inverted
Pendulum SLIP model, or the pogo-stick model). In
flight the leg is positioned so the foot lands forward of
the body. During the support phase the body com-
presses the spring, passes over the foot, and flies off
again forward of the foot. In this model the ground
collision involves no dissipation. This spring-mass
model was the conceptual substrate of the highly
successful running robots made by Raibert, students
and colleagues (e.g. Raibert, 1986, 1990). A related
passive runner with springs (and dashpots) is discussed
in some detail in McGeer (1990b). But how important
are actual springs to the energy savings provided by the
mass-spring model?

In order to evaluate the potential saving of muscle-
mediated contact strategies in running it is necessary
to determine the potential costs incurred for running
without passive elastic recovery. For this comparison
we begin by taking the collisional limit (stiffness — c0)
and use ¢, =0 and ¢ = ¢ =¢/2. For better
comparison we assume no recovery r = (0 so that all
of the generative phase comes from muscle work. Then
by Eq. (21) the metabolic cost of transport for
collisions is

Em T Z
—/=b@=bg7/16. (24)
mgv 812

Cm = b
Comparing Egs. (23) and (24) we see again that the cost
of transport is still 4 times less with a pseudo-elastic
collision than with the positive work being done any
other way. That is, for example, it is inefficient to use hip
torque to make up for collisional losses.
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5.10. Caveat on the neglect of leg-swing costs

The model here only considers the energetics of
the redirection forces and thus cannot completely
characterize locomotion energetics. Real animals
move some body parts in non-passive, and thus
energetically costly ways not directly associated with
along-the-leg redirection forces considered here. Because
we do not consider these non-collisional costs the utility
of the calculations here are (1) as rough models that
neglect some important terms, (2) as models for only
part of the total cost, (3) as models for comparison
between cases where the other costs are approximately
fixed.

For example, note that in this running model the cost
of transport at a given speed v tends to zero as the step
length d tends to zero. This non-physical result is
common to the locomotion models below as well. Thus
when only counting collisional costs, optimization must
be done only at fixed step length d or at prescribed total
collision angle ¢. Otherwise the optimum is zero-cost
locomotion with step length tending to zero and
frequency tending to infinity.

6. Galloping

Galloping is a high-speed running gait in large
quadrupeds such as horses. Unambiguous mechanical
characterization of this gait has been elusive, inspite of
the horse being of substantial social and economic
importance to the history of human civilization.
Consideration of collisional cost provides insight into
the functional advantage of using this gait at high
speeds. However, before applying the collisional model
to the horse gallop it is useful to discuss some
motivational analogies.

oval rolling
& skipping
<\

©)

Spherical horse:
eccentric sphere
hopping & sliding

Fig. 4. (a) The point-mass ricochetal brachiation model from (Bertram et al., 1999). The dots show the body trajectory. The motion alternates
between flight and an effective bounce at the branch-holding swing phase. There is no collision loss if the flight trajectory is tangent to the circular
swing path at the transition. (b) A particle sliding on a frictionless corrugated surface can have motions identical to those in (a). The corrugated
surface can be simulated by an infinite number of massless legs which contact in sequence. Each leg is orthogonal to the path and produces only an
infinitesimal collision. Note, to match the path the legs have various lengths. (c) A football-like body can bounce with no elasticity if its rotation and
downwards translation are phased so that ground contact point has zero velocity just before contact. The center-of-mass motion is shown as a dotted
line. (d) If launched with the right spin, a sphere with an eccentric center-of-mass can hop on a rigid frictionless substrate, even with no elasticity.
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6.1. Galloping as sliding on a bumpy surface

We initiated this research project by looking for a
ground-support version of ricochetal brachiation
(Fig. 4a). Fig. 4b illustrates such a system. A point-
mass slides on and skips over a frictionless corrugated
surface. For both models the free-flight and sliding
motion paths are tangent at the time of contact and
there is no collisional dissipation.

Now we try to implement the idea using legs. As is
intuitively acceptable and demonstrated by Eq. (20) an
infinite number of infinitesimal glancing collisions, even
if each is fully plastic, is equivalent to frictionless sliding.
The right part of Fig. 4b shows that the frictionless
surface could be simulated by an infinite number of
massless legs each orthogonal to the path of the point-
mass and each providing a compressional force along
the leg. That is, a sequence of concave-down parabolic
arcs approximates a polygon. The long hindmost leg
lands first and the sequence of collisions proceeds
through shorter and then longer legs to final lift-off
mediated by the long foremost leg.

6.2. Assume a spherical horse

Even without a corrugated frictionless surface or an
infinite number of varying-length legs, an oval-shaped
rigid body can effectively bounce off a rigid flat surface
without elastic recoil (Fig. 4c¢). The occasional high
bounce of an end-over-end tumbling rugby or American
football seems to roughly illustrate this phenomenon. In
flight the lower-most point of the football oscillates up
and down relative to the center of mass. With the right
timing such a retraction can exactly cancel the down-
wards center of mass motion and the lower surface will
touch the ground with zero downwards velocity. If the
horizontal motion is also matched then the new contact
is made with zero relative velocity. With no velocity
discontinuity at contact there is no collisional dissipa-
tion. After a brief roll, the hop up proceeds with no
energy loss.

The analytic treatment of such a dissipation-free yet
inelastic collision is simplest with the vertical bouncing
of a frictionless ball or sphere that has an eccentric
center-of-mass, as discussed in Haggerty (2001). To
make this bouncing more like locomotion, a uniform
horizontal motion can be superposed to the center of
mass motion so that there is zero horizontal velocity at
ground contact. To recover the football-like motions we
can impose a non-slip condition during the contact
phase. Although rolling contact and sliding contact
phases have different details, they both have collision-
free motions and identical flight phases. (A technical
caveat: for the no-slip motion the rolling contact must
be with infinite coefficient of friction; a finite horizontal
force is needed at first and last contact.). In the

bouncing-egg case the bottom curved surface replaces
the continuum of legs in the point-mass model above.
Note that in such non-dissipative bouncing, energy is
not stored and returned. Rather, there is just no loss in
the process. A related elasticity-free bouncing mechan-
ism is pictured and briefly discussed in Tucker (1975).

We now try to emulate the gibbon-like corrugated-
sliding and spherical-horse mechanisms with a finite
number of collisions.

6.3. The point-mass collisional model of galloping

We treat a three beat horse gallop as a point mass
runner with each gait-cycle made up of three sub-
collisions (see Figs. 1 and 7). Although one can consider
other possibilities, for definiteness and simplicity assume
each sub-collision is pseudo-elastic (e, =1,¢, =0),
AE; = 0 and with recovery r not specified. From Egs.
(5), (18) and (20) for each collision we get that
E, = b¢*v*m(1 — r)/(8 - 3). Thus, proceeding similarly
to the running model calculation in Eq. (21), we have

(l—r)d)_b(l—r)g_bl—r %
24 7 24f 7 24 \ 2
=b(1 —r)7 /48 (25)

Cm = b

Comparing Eqgs. (24) and (25) we get a three-fold
reduction in cost by using three legs, as expected from
Eq. (20). Assuming a given speed v and stride length d
the triplet collisions use three times less energy as would
a pronk gait with one collision at each stride. This factor
of 3 improvement holds for plastic, pseudo-elastic or
with any other values of e, and r, so long as the same
values are used for the triplet as for the pronk.

7. Point-mass model of collisions in human walking

Here we consider the step-to-step transition in human
walking from the point-mass glancing-collision perspec-
tive. The relevant issues are conveniently displayed (e.g.
Kuo, 2001) by a nineteenth century visualization
technique called a “hodograph” (Fig. 5). If the velocity
vector is animated as it changes during the step-to-step
transition, always putting its tail at the origin, the tip
traces a curve. This velocity-trajectory curve is a
hodograph. Fig. 5 shows the velocity before collision
(v~ with tip at A) and just after collision (v with tip at
B). In this model v~ and v' are assumed to be
orthogonal to the old and new stance legs, respectively.
During a collision the tip of the velocity vector traces a
path on the hodograph. Shown are several such velocity-
tip trajectories, each with a different collisional meaning
and each with a different energetic cost.

Even though we track the velocity trajectory in detail,
the collisional model assumes that the path is traversed
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Fig. 5. Various collisional models for the step-to-step transition in walking. The hodographs show candidate trajectories for the tip of the velocity
vector, during collision, as it moves from v~ to v*. All are for walking models with collisional impulses from two legs. Several cases are shown. (i) In
passive-dynamic downhill walking, there is only impulse along the new stance leg. This case is the same for walking as for passive running with a dead
leg. At every instant on path AC dW = mv - dv<0 and the collision is exclusively absorbing (the length of v is decreasing throughout). The work
required to make-up the length of v* (path CB) is supplied by gravity. An energetically equivalent model has power supplied by the trailing old stance
leg after motion is constrained to the new stance arc. (ii) In the toe-off then heel-strike model of walking there is a purely generative phase with a force
along the old stance leg, followed by a purely absorbing heel-strike phase along the new stance leg. (iii) Using only impulses from the two legs the
vertical path requires overlapping impulses. (iv) The least energetically favorable collision using two compressional impulses along the legs, in which
the heel-strike impulse is complete before push-off starts. (v) In the new pseudo-elastic model proposed here there are two branches. One along the
virtual leg from hip to toe (¢/4 forward of the rear leg) and one along the virtual leg from hip to heel (¢/4 behind the front leg). This path is the
minimum-cost two-leg simultaneous collision for given ¢. (vi) A trajectory of constant energy. This trajectory has precisely zero ‘external work’ yet
requires leg work. Path (vi) can be traversed at no energy cost using a (slightly) rounded foot whose length is the step length.

in negligible time. In a sense we assume that a gait cycle @ (b) (d) impulsiverolling
can be characterized by two time-scales: the longer one

associated with, say, the period of one step; and a

é!mostflat

. . - ) . foot
shorter one associated with the collisional time. During 2
the short collisional time, the longer stride time is rimless  polygon  concave  convex convex
treated as frozen. wheel polygon  polygon foot

The details inside the short collisional time have a
huge effect on the energetics of the collision. Below we
consider various collision scenarios. All have the same
v~ and ¢. All but one of these has the same net
collisional impulse and the same impulses at each leg as
the other cases. Yet, these different contact strategies
have quite variable energetics.

Fig. 6. Relation between walking and rolling. (a) The rimless wheel.
(b) The rolling polygon, ill-defined (a distinguished limit). (c) The
concave rolling polygon is a rimless wheel. (d) The slightly convex
polygon rolls with no dissipation, but impulsively (¢) An almost-flat
foot with rigid ankle can, like the impulsive polygon, be part of the
step-to-step impulse, but absorb no energy. On the hodograph of
Fig. 5 the rounded foot with dy = d corresponds to constant energy
motion on the constant v circular arc.

7.1. The rimless wheel and passive-dynamic walking
7.2. Active collision reduction: push-off preceeding heel-

A special simple case for the model here is the famous strike
rimless wheel (Bekker, 1956; Margaria, 1976) with mass
only in the hub (see Fig. 6a) analysed in detail in

McGeer (1990a). The collision analysis is the same as for

As mentioned in Tucker (1975) and again in McGeer
(1993), the collisional cost of walking can be reduced by

the Simplest Walker (Garcia et al., 1998). In this case
the only collisional impulse is from the new stance leg.
The trajectory is labeled (i) in Fig. 5. The deficit in the
magnitude of v© must be made up by gravity (walking
down an incline) if the system is strictly passive. Using
the formalism here, the cost of this collision is, from
Eq. (15), using r = 0,e;, = —1,

E,, = bdp*v’m)2. (26)

This corresponds with path (i) on the hodograph of
Fig. 5, the most costly model for walking.

preceding the absorbing heel-strike collision with a push-
off (plantar extension) which we model as a generative
collision. At a given speed and step length the collisional
cost can be reduced by a factor of 4 this way (Kuo, 2001).

Using the formalism here we can look at a sequence of
two collisions with ¢, = ¢, = ¢/2. The first is a purely
generative push-off collision with e;; = 1 and the second
a purely absorbing collision with e, = —1. Using Eqgs.
(15)—(17) and r; =0,

E, = bdp*v’m/8 27)
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giving, comparing with Eq. (26), a factor of 4 reduction
in cost as compared to passive walking. Pushoff before
heelstrike is shown as path (ii) on Fig. 5. For given ¢
this two leg walking collision is energetically identical to
a single-leg pseudo-elastic collision (see Eq. (24)). Both
have generating and absorbing phases with deflection
angle ¢ /2. For walking, however, the ‘restitution’ occurs
before the absorption.

There are a few ways to understand the efficiency gain
of using pushoff before heel-strike as compared to the
purely passive, rimless-wheel collision. By pushing off
before heel-strike the collision loss at heel-strike is
reduced. Or, the angle at the absorbing part of the
collision is cut in half, reducing the absorption E, by }—‘.
Finally, using two legs with push-off before heel-strike is
effectively using two legs to make up a single pseudo-
elastic collision. Only a backwards pseudo-elastic
collision, one having generation before absorption
instead of the other way around.

7.3. Overlapping collisional force histories

Our sequenced collision calculations in Sections 4 and 6
have assumed that only one leg is in contact with the
ground at a time. But real leg contact times do overlap,
both in the horse gallop and in double-support in
human walking. As mentioned in Tucker (1975) and
discussed in detail by Donelan et al. (2002a, b), when
two legs simultaneously apply force one can do work
while the other absorbs work. So kinetic energy
fluctuations are less than the muscle work that causes
them.

Assume ¢ and v are given, the two impulses are
assumed to be along the legs, and the net collision
conserves energy (AE =0). Balance of momentum
determines the two impulses and balance of energy
determines that their total work is zero. But the
collisional cost is not determined. The collision cost
depends on the relative timing of the two impulses.

For example, consider truly simultaneous collisions.
Assume the two forces at all times proportional, giving
path (iii) in Fig. 5. The path integral from the appendix
(Eq. (42)) gives

Em = %mvz(bz/z- (28)

Comparing with Eq. (27) we see that truly simultaneous
push-off and heel-strike has twice the cost of push-off
entirely before heel-strike. For heel-strike entirely before
push-off, path (iv) in Fig. 5, we get

Ep =3m*¢’ /2. (29)

This is a peculiar limiting case. The lead foot first applies
an impulse, then waits for the trailing leg to apply an
impulse, and then (non-impulsively) begins single
stance. Considering only cases with compressional
impulses applied between stance phases this cost, three

times more than that in Eq. (27), is the most costly
down-to-up redirection.

A case mimicking passive downhill walking, path (i)
in Fig. 5 is also possible on level ground. First a heel-
strike collision occurs (with the full ¢ and with e, = —1)
following this both legs apply forces to bring the
magnitude of v up to its pre-collision value along path
CB in Fig. 5. This requires a physically unrealistic non-
working tension force from the lead leg as the rear leg
pushes off. Should this be implemented by a person or
robot, the time of collision could be spread and the
tension could be replaced by gravity, with identical net
energetics (as implemented in Collins et al., 2005).
Energetically this push-off-during-next-stance case is
identical to that for passive walking (e.g. Eq. (20)).

7.4. A collision with ‘no work’ but with a muscle work
cost

Another illustrative case is given by path (vi) in Fig. 5.
At every instant in time the net force (the sum of the two
leg forces) is orthogonal to the path. The kinetic energy
is constant throughout the collision. The ‘external work’
is precisely zero. But each of the legs does some mixture
of positive and negative work, a little more than in the
sequential collision model (Fig. 5 path ii). As presented
in the appendix, for this zero-external-work case we
have

E, = bmv2q52/6. (30)

This cost is % the cost of the push off entirely before
heel-strike (Eq. (27)).

This zero-‘external-work’ example suggests that mod-
eling double stance or a horse gallop as a sequence of
independent collisions may be closer to the appropriate
work accounting (e.g. the ‘individual-limbs’ method of
Donelan et al., 2002b) than just associating a cost with
the center-of-mass energy fluctuations (e.g. Minetti et
al., 1999).

7.5. The optimal step-to-step transition

Considering the full range of force histories, which
one is optimal? Minimization of the explicit formula
(Eq. (41)) in the appendix, for given v— and v™ shows
that, for forces along the legs, push-off entirely before
heel-strike, path (ii), is energetically optimal.

7.6. Pseudo-elastic legs

The variety of possible collision strategies raises the
following question. Given v~ and v*, if one assumes that
the collision is mediated by forces along two virtual legs
(not necessarily orthogonal to v~ and v*), how should
these legs be oriented and how should the separate force
histories vary so as to minimize the net collisional cost?
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A slightly involved argument shows that the solution is
the path (v) of Fig. 5; a sequence of two pseudo-elastic
collisions oriented at the quarter and three-quarter point
of the splayed double-stance legs. All other trajectories
based on forces along two legs, no matter what the leg
orientations or how the forces are distributed in time,
have greater cost.

The energetic cost of one such two-collision episode

(n=2,e;=0,¢,=¢/2)is
E,, =mb(l — r)d)21)2/16, (31)

one-eighth the cost of passive-dynamic walking and one
half of toe-off before heel-strike. This situation is
essentially identical to the model for a horse canter,
but with two beats here instead of the horse’s three.

7.7. Collisional rolling

One model of walking, used in McGeer-like passive
robots, is with round feet and locked ankles. To
understand such a foot from the collisional perspective
it is instructive to consider the subtle case of a rolling
polygon (Fig. 6).

So far the collisional walking models considered are
mechanically similar to the rimless wheel of Fig. 6a. For
simplicity assume passive rolling without slip, and with
all mass at the center point. One might think the rimless
wheel is equivalent to a rolling polygon (Fig. 6b). But
the polygon is ambiguous. Fig. 6¢ shows a concave
polygon which is equivalent to the rimless wheel, no
matter how small the concavity. On the other hand,
Fig. 6d shows a convex polygon. This polygon rolls with
no dissipation, no matter how small the convexity.
Machined solids similar to the slightly concave and
convex polygon, even if almost imperceptably different,
roll completely differently. The convex polygon rolls
well and the concave polygon loses a considerable
fraction of its energy at each collision. Thus, the regular
polygon is (in math language) a distinguished limit with
different behavior depending on whether it is considered
an extreme case of concavity or of convexity.

A rolling, slightly convex polygon has motions that
alternate between inverted pendulum motion (hinged at
a vertex) and a collisional phase. The collisional phase is
not dissipative but rather tracks path (vi) in Fig. 5, all in
an instant. This is equivalent to having a continuum of
legs.

From the collisional perspective we can treat rounded
feet, even if close to flat, as a means to track path (vi) in
Fig. 5. If the foot length is the step length d then there is
no dissipation. If the foot length dy is less than d then
the relevant collisional length is d —d,. This should
replace d in any of our formulas involving collisional
loss but not in formulas relating step length to speed.
Thus, at a given speed and with a given collisional
mechanism (be it passive walking, or push-off before

heel-strike), use of a rounded foot multiplies the
collisional cost per step by (d — df)z/dz; a rounded foot
with length of half the step-length quarters the
collisional cost.

7.8. Collision cost and the plethora of step-to-step
transition models

For walking the collisional cost depends sensitively on
the details of the step-to-step transition. We can
summarize the various scenarios for the cost of one
step-to-step transition, as
d*v?
2
where reviewing, v is average forward speed, b ~ 5 is an
average metabolic cost for negative work or absorption,
0<r<1 is an elastic recovery, and d>dy and ¢ are step
length, foot length and leg length, respectively. The
collision reduction factor for walking, taking dr = 0 is

J =1 for passive dynamic walking.

J = 3/4 for heel-strike before push-off.

J = 1/2 for simultaneous push-off and heel-strike.

J = 1/4 for push-off before heel-strike.

J = 1/8 for a pseudo-elastic toe and heel at the } and 3
points.

If dy #0 the above values of J should be multiplied by
(d— a’f)2 /d* for the first four cases above.

E, = mbJ(1 —r) (32)

8. Application to animals and people

The overly simple point-mass collisional models
discussed above obviously do not capture all of the
features of coordination in locomotion nor all of the
energy costs. Nonetheless, it is interesting to check the
predictions against human and animal behavior.

8.1. Human running

A popular observation is that human legs behave
much like springs while running (e.g. Alexander, 1990,
Blickhan, 1989, Farley and Gonzalez, 1996, McMahon,
1985). That is, a spring-mass model captures much
about the ground forces and center-of-mass motion in
running. This spring-like behavior is not claimed to be
literally elastic behavior, but rather the relation between
force at the foot and distance of the foot from the hip as
mediated by nerves, muscles, tendons, ligaments and
bones is similar to that which would result from spring-
like elastic return.

Given that people’s bodies are relatively large, that
their legs are relatively light, and that muscles for
activities other than leg compression have small
strength, the mass-spring model must be a reasonable
description at some level. But people could concievably
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run with other strategies than spring-like hopping. For
example the leg collision could be more absorbing (with
e, ~ —1) as per Figs. 3b, c. The energy lost could be
made up by hip torques. The collision calculation here
shows that, even neglecting recovery, such motion
would have four times the energetic cost of spring-like
leg action, even with no energy recovery involved. So
adding and using strong hip extensors would not be
energetically beneficial, but rather more costly. Thus,
the pseudo-elastic and “‘linear actuator’’—only nature of
the human leg in running is a prediction of this collision
theory. The energetic favorability of the approach is
independent of, although further enhanced by, any
genuine elastic recovery.

What about quantitative prediction of the ground-
contact costs of running? Applying the fastest forward
running data point in Wright and Weyand (2001) to
Eq. (24) we get

m -

dg
Vo2
4 b(l — r)@

(1.33m)(10m/s?)
8(3.5m/s)*
~ 0.68(1 — r), (33)

0.36 ~ 5(1 — r)

which gives a superficially reasonable elastic recovery of
r = 48%, assuming the total cost of running was due to
collisional small-angle ground contact.

8.2. Horse galloping
When Raibert built multi-leg robots, he simplified his

control-algorithm design by first making multiple legs
act like one, and then controlling that one virtual leg in

@ (b)

the same way that had worked for robots with one
physical leg (e.g. Raibert, 1986; Raibert et al., 1986).

A proponent of the spring-mass model (e.g. Blickhan
and Full, 1993) might suggest that what worked for
Raibert’s robots might work in natural systems as well.
According to this view animals should use multiple legs
to simulate a single leg. Applying this idea to fast
moving horses suggests they should pronk. But they do
not. Although a horse trot may be considered a two-leg
pronk, at higher speeds horses break their gait into a
three-beat gallop (canter).

The collisional model predicts even more savings on
the legwork cost by using a four-beat gait. And such is
used by horses at still higher speeds. Here are some
comparisons of the model predictions with what horses
do during the down-to-up redirection in a canter:

e The first-contacting rear leg ground-contact force
accelerates the horse and the last-contacting front
leg retards the horse. This is clear in Fig. 7. Thus
near mid-stance the horse is at maximum speed. In
contrast, the mass-spring model predicts the oppo-
site, that mid-stance is the time of minimum forward
velocity. The horse canter is also the opposite of
the normal spring-mediated-running paradigm for
the phasing of kinetic and potential energy. Rather,
the horse’s energy phasing is like that of human
walking, as predicted by the sequential collision model
here.

e The legs make contact from rear to front, not
simultaneously as in a pronk. This is clear in Figs. 1
and 7. Although our point-mass model cannot
distinguish front legs from rear legs, the analogy with
the rolling egg (Fig. 4) suggests that extended-body
considerations make landing on the rear most
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Fig. 7. (a) The three-pseudo-elastic-collions model of the horse gallop. (b) schematic strobe of a horse shows mid-contact of the trailing rear limb
(first contact, unshaded), contralateral lead rear and trailing fore limbs (contact together in canter, light shading) and lead fore limb (last contact
prior to non-contact flight phase, dark shading). Arrows indicate measured (Merkens et al., 1993) average ground reaction force for the contact of
each limb (shading matches corresponding image). The nearly simultaneous midfeet ground contacts (the two lightly shaded arrows) correspond to
the middle of the three feet in (a). (c) Center-of-mass horizontal velocity v, and height fluctuations / for a small horse galloping at 6.83 m/s (redrawn
from Minetti et al., 1999). Two complete strides are illustrated (one data set cut and pasted) with corresponding approximate footfall timing (as per
Fig. 1). The first contact after the flight phase occurs with the right rear (RR) limb. Horizontal velocity initially decreases slightly, but increases
substantially over this limb’s contact time. Meanwhile /1 decreases. Contact of the diagonal pair of left rear (LR) and right front (RF) limbs also
causes a transient decrease and increase in v,. During this second contact phase the / reaches its minimum height. Finally the left front (LF) ‘lead’
(pronounced leed) limb makes contact and v, decreases, bringing the instantaneous forward speed to the lowest in the gait cycle. During the lead-limb
contact /1 increases as the animal vaults into the next flight phase. During each limb contact a horizontal deceleration and reacceleration occurs which
is duplicated by a decrease and then increase in the total energy (not shown here). (Note, with better measurement the v, curve would be more
constant during the flight phases).
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appropriate. In particular, because the first contacting
leg has a primarily forwards force, its moment about
the center-of-mass is less if it is applied at the rear of
the horse. Similarly the moment of the rearwards
force of the last-contacting leg is less if applied at the
front of the horse.

e The fluctuations in v,, shown in Fig. 7, closely mimic
the fluctuations in the total energy (not shown). The
three-dip-per-stride pattern thus shows that each leg
absorbs and then returns energy (with the rear leg a
bit stronger on the generative part and the front a bit
stronger on the absorption). The collisional model
predicts that such pseudo-elasticity is energetically
advantageous (independent of recovery).

Overall, it seems, horses use a combination of two
strategies discussed here. On the one hand they mimic
the brachiation swing with a sequence of collisions. On
the other, they make each of those collisions close to
pseudo-clastic.

The metabolic energy of running horses has been
relatively well studied (Hoyt and Taylor, 1981; Eaton et
al., 1995; Potard et al., 1998; Langsetmo et al., 1997;
Butler et al., 1993; Wagner et al., 1989; Minetti et al.,
1999). Minetti et al. (1999) reports data from a horse
cantering at about v = 7m/s with a stride frequency of
about f = 1/0.6s. Minetti et al. also report a rate of
chemical energy expenditure of between 2 and 3 J/kgm.
Using g ~ 10m/s? this gives a specific energetic cost of
transport of between 0.2 and 0.3:

0.2<¢,<0.3 (as measured by VO,). (34)

From Eq. (25) using r =0, b =5 we get a mechanical
cost of transport due to collisions of

b(1=rg _ (S)(1)(10m/s?)
240f 24(Tm/s)(1/0.65)
~0.18 (35)

Cm =

That is, naive application of the formulas says collisions
account for about 60%-90% of the measured cost of
locomotion in a galloping horse. However, there are
three likely sources of error: (1) We have assumed no
recovery r = 0; (2) the collisional cost is sensitive to the
details of the collision (the value of e, and whether or
not there is force overlap); and (3) the collision model
assumes a duty factor of zero, far from the combined-
legs duty factor of about 0.75 observed in the horse data
(and also inferable by counting the three beats and rest
in each triplet of Rossini’s overture). The presence of
non-zero recovery will reduce the predicted cost. Thus
the support cost of transport, if estimated more
accurately using a more detailed model, may be
substantially less than 0.18.

8.2.1. Sequenced versus evenly spaced collisions

At the speed of a given gallop the collisional model
gives about the same cost if there are 3 independent
collisions (each with a parabolic arc in-between) in the
time of one ba-da-dump cycle. Our model does not give
one or the other gait much preference. A similar
situation holds for the 4 beat gallop. Curiously, there
are some horses that do have an even 4-beat gallop (the
Icelandic tolt and a ““full rack™ of other breeds have a
foot-fall pattern and timing of a fast walk).

8.3. Human walking

We can compare both the qualitative and quantitative
predictions of the collisional model with human walk-
ing. Some considerations:

8.3.1. The metabolic cost of walking

Data from Bertram (2005) is plotted in Fig. 8. A range
of frequencies are shown for 9 subjects with cost per step
on the y-axis (normalized by mean translational kinetic
energy) and dimensionless step length on the x-axis. The
dimensionless axes chosen highlight the collisional cost.
Also plotted is a fit from Eq. (32) where we use r = 0,
b =5,and J = 1/4. The data is unprocessed (A better fit
to theory is generated by subtracting the cost of walking
in place from each subject at each frequency). At larger
step lengths the predicted collisional cost accounts for a
large fraction of the total metabolic cost of walking. As
discussed, the details (values of r, J, and d) significantly
effect collisionally predicted cost.

8.3.2. Coordination patterns
Most significantly, as expected by the theory here
(and anticipated by Tucker and McGeer), the energetic
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favorability of using push-off to power walking might
explain that coordination strategy of humans. Further,
energetically favorable coordination features, as pre-
dicted by the collisional modeling, include

e having toes that push off, and heels that land
extending in front and behind the ankle, respectively.

e having some energy absorption before toe-off and
generation at the end of heel-strike (as shown clearly
in Kuo et al., 2005). This model of walking is
interesting in that it shows, perhaps, that the step-
to-step transition is one where people choose not to
simulate a single leg with two legs, but rather, to use
their two legs (with heels and toes) to simulate 4: the
rear stance leg to set up the initial pre-collision
velocity, the toes for a pseudo-elastic collision, the
heels for another pseudo-elastic collision, and the lead
stance leg to impose the post-collision inverted-
pendulum velocity.

e having push-off somewhat before heel-strike.

8.3.3. The walk to run transition

Because we do not account for leg swing cost, we
cannot fairly examine the unconstrained walk-to-run
transition. If, however, we assume that a person is given
a speed of locomotion (say on a treadmill) and also a
given frequency (say with a metronome) we can
compare the cost of locomotion of the two gaits using
the small angle collisional theory here. Using, say,
Eq. (32) with J:% and r =0 for walking we have
¢m = bdv? /(4g€%). Using Eq. (21) with r =0, e, = 0 for
running we have c¢,, = bdg/(8v?). The cost of running is
less than that of running for v?/(g€)>+/1/2. Note that
the transition speed turns out to depend only on speed
and leg length and to be independent of frequency.

In effect, the walk to run transition is thus explained
as occurring at that speed for which the collisional angle
in running (meeting of parabolic arcs) becomes less than
that of walking (meeting of circular arcs). This
explanation may be contrasted with the usual explana-
tion based on the centrifugal acceleration at mid-stance
in walking.

8.4. Children’s skipping

As noted in Marey (1874) and Minetti (1998)
children’s skipping, with two foot falls between succes-
sive flight phases, has a resemblence to galloping. One
version (asymmetric or unilateral skipping) is called
‘galloping’ by children. These gaits would correspond to
n = 2 (Minetti, 1998) and according to the theory here
should have an initial (rear) foot contact with a forward
thrust. Immediately following this the next foot (front)
should redirect the mass upward into the next flight
phase while slowing the forward motion. Both these
features appear to be true for human children. And, as is

true for horse galloping, the phasing of kinetic energy
for skipping is predicted to more resemble human
walking than human running (see the local maximum in
Ej at mid double-support in Fig. 3b of Minetti, 1998).
As noted, the collisional model, without other costs, is
not sufficient to explain why children and astronauts on
the moon like to skip and adults on earth generally do
not. However, given a velocity and stride length, the
collision-loss minimization of this sequential-collision
gait make it preferable to hopping with both feet
together. One does not need fancy equipment to find
that repeated jumping is more tiring than skipping.

8.5. Classification of gaits

Gaits can be classified any number of ways (e.g.
number of legs on the ground at a time, existence or not
of a flight phase, duty-cycles of legs, phasing of various
energy terms, the order of leg contact, whether legs are
compressed or extended mid-stance, etc). From the
collision perspective we can classify gaits into two types

e Gaits that use sequenced collisions and thus have a
maximum v, in the midst of the down-to-up redirec-
tion. These gaits include walking, cantering, galloping,
and children’s skipping.

o Gaits that do not use sequenced collisions and thus
should have a minimum v, in the middle of the down
to up redirection. These gaits include human running
and horse trotting. The Icelandic horse t6lt may also
be in this class.

8.5.1. If collision costs are bad, why do not animals avoid
collisions entirely?

One can imagine, say, a walking gait where the center
of mass moves at a constant speed at a constant height.
Simple experiments (Farley and Ortega, 2003; Gordon
et al., 2003) show that such smooth motion seems to add
to metabolic cost. We expect that simple theory will also
predict that smooth motions should have a higher
metabolic cost than the oscillatory (and thus somewhat
collisional) motions that animals choose.

9. Discussion

The leg of a bipedal animal typically contains many
muscles, which act in concert to produce legged
locomotion. Some of this work goes into swinging the
leg. This we have ignored. Also, no account is made here
for the costs of producing forces without work, in
isometric contractions. We have focused on the other
substantial fraction of locomotor metabolic cost: the
work of the leg on the upper body, to redirect its
motion. In particular, we have assumed that mechanical
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work correlates with metabolic cost. Of course, this
correlation is only approximate in detail.

In this paper, we approximate this cost by one that is
derived from a point mass model with a single actuator.
Why is this likely to be a good approximation? Firstly, if
we believe that muscles do not fight each other, it might
be reasonable to assume that in any given phase of the
gait cycle, muscles do mostly positive work or mostly
negative work but not both in comparable amounts
simultaneously. Given that this is true, the energetics of
a complex mechanism might be captured by a point-
mass model—the collisional energetics depends on the
foot-to-ground mass matrix (Chatterjee and Ruina,
1998a,b) whose dominant term will generally highly
correlate with the total mass.

The metabolic cost thus estimated is closely related to
some older energy accounting schemes. Complex animal
motion data is sometimes reduced using Konig’s
decomposition of total kinetic energy into a center-of-
mass energy, fluctuations of which define ‘“‘external
work”, plus a relative-to-center-of-mass energy, fluctua-
tions of which define various “‘internal work™ measures
(e.g. Cavagna et al., 1976, 1977; Fenn, 1930). For a
fictitious (or simulated) animal which is literally a point-
mass, the classical external work is the same as our
metabolic cost, if only one leg is on the ground at any
given time.

The idealized model here does neglect some important
mechanical features of locomotion. For example, as
mentioned before, we have not accounted for the costs
of moving limbs to and fro. Without this cost, the model
here predicts optimal energy performance by means of
having very small strides. Inclusion of such a cost, as in
Kuo (2001), makes such small strides energetically
unfavorable and can result in realistic predictions of
preferred step lengths.

We have simplified the analysis considerably by
assuming that the work is done by large leg forces of
short duration, abstracted as collisions here. This
assumption, however, can lead to over-estimation of
the metabolic cost. An extended stance can sometimes
produce a metabolic cost lower than that of a collisional
stance phase.

No detailed account has been made of how real
elasticity in the leg muscle-tendon complex can affect
choices. Rather we have assumed that the elastic
recovery fraction is independent of the details of the
task. The point-mass body assumption also rules out
other possible elastic mechanisms, for example, in the
back (Alexander, 1993) and neck (Gellman and Ber-
tram, 2002) in horse galloping. Another energy saving
mechanism available only for non-point-mass models, is
the possibility of kinetic energy storage (as is used by the
hopping egg model discussed earlier).

Together these missing effects preclude our explaining
here various scale effects.

10. Conclusions

The paper presents a simple model for evaluating a
dominant fraction of the metabolic cost of locomotion.
The model demonstrates two basic points independent of
the presence or absense of any elastic recovery mechan-
isms.

e Pseudo-elastic collisions are more energy effective
than more plastic-like collisions that demand work to
be made up elsewhere.

e Two, three, or more sequenced collisions per given
stride length and velocity are more energy effective
than a single collision.

Biologically relevant predictions are:

e Human walking should use, at double support,
sequenced collisions.

e Walking is less costly than running at speeds below
about /gl (depending on details of the collisional
model for running and walking).

e At each stride of a gallop, horses should go ba-da-
dump instead of pronk. And they do. With the first
foot-falls accelerating the horse and the later ones
retarding the horse.

e Human and horse legs should simulate elastic
behavior. This is well documented with human
running. There is evidence in support of this predic-
tion in human walking. The individual foot falls of the
galloping horse also seem to follow this trend.

e The range of estimated collisional costs explains a
reasonable fraction of the metabolic cost of human
running, horse galloping, and human walking.

We have shown that three apparently distinct gaits,
brachiating (swinging from branches) in primates,
galloping in horses and human walking, all use similar
collision-loss avoidance strategies. The qualitative cor-
relation between the model predictions and animal
behavior and architecture suggests that the energetic
cost of the down-to-up motion redirection during the
support phase is a key aspect of legged locomotion.
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Appendix A. Work of impulsive forces
A.1. Work of one impulse

Eqgs. (10)—(16) were developed using kinetic energy
changes for a given deflection angle. Here we calculate
the work of the impulsive force for given impulse.
Assume mass m, pre-collisional velocity v~ and the
collisional impulse P* are known (Fig. 2b). Linear
momentum balance gives that mvt = mv~ + P* so, by
the work-energy relation

W=AE=Z(v ] =y P)
=v - P" + |P*>/(2m). (36)

For use below, here is a more tortuous derivation of Eq.
(36). Assume that the impulsive force F is always in the
direction of constant unit vector A. Thus

%) R %)
P* :/ th:k/ Fds, (37)
1 h

where the period of force application is between ¢; and
t,. The partial impulse is P(7) = f;l F(7)dt = pP* with
parameter 0<p<1 expressing the degree of collision
completeness. We can calculate the work as

[5]
J 1

f, cxpm- g

!
= / (v~ 4+ pP*/m) - P*dp
0

1 * * 1
P . P
=V‘-P*/ dp+ /pdp
0 m 0
\1,—/ N——

1/2
=v - P*+ |P*?/2m), (38)

where we recover the result from Eq. (36), having
derived a special case of the work—energy relation. The
formula (36) gives the net work. If v - A is of different
sign than v~ - A then W is a difference between positive
and negative work terms, W = W o5 — [Wpeyl. To
calculate |W .| and |W,,| requires dividing the work
integral into its absorbing and generative portions. If the
interaction is entirely absorbing or entirely generating
then Eq. (38) suffices.

A.2. Work of two simultaneous impulses

Collisional episodes may include multiple impulsive
forces in various directions. If, within an episode, the
entire integral of force in one direction is complete

before force in another direction climbs above zero, then
the collisions are sequential and the net collision
energetics is calculated by successive use of Egs.
(10)—(16) or Eq. (36).

Now we allow the possibility of overlap of the
collisional forces (see Fig. 9). Assume mass m, pre-
collisional velocity v~ and both collisional impulses, P}
and P} are known. As for the case of a single impulse
(Eq. (36), we can calculate the net work as

mvt =mv- + P} + Pj,
W= AE=Z(() = (). (39)

For the cases of main interest we can assume that each
impulse only does work with one sign. For definiteness
assume P} is totally generative and Pj is totally
absorbing

Wi=20:v" 'i1>0 and V+~§\.1>0,

Wr<0:v -3,<0 and v'-i,<O0.

So Win Eq. (39) is
W = |W>| =W, (40)

where W and W, are the work generated by, and
absorbed by the two impulsive forces. However, the
separate works cannot be determined. That is, unlike
the case of a single impulse, the collisional energetics are
not fully determined by knowledge of the two impulses.
We will now reduce this indeterminacy to a single
parameter, 0<s,<1 which characterizes how much
overlap there is between the nominally simultaneous
impulses.

Duplicating the notation and argument used for
Eq. (38), using 0<p<1 and 0<g<1 to parameterize
the partial impulses Py =pP} and P, =¢Pj, we

. . F
A A o
o ; t

F, . \
ap,
* *
A P t

Fig. 9. A point-mass is acted upon by two impulses P and P5 which
accumulate in time as Py(f) = p(1)P] and P,(7) = ¢(r)P;. The area
under a cross-plot of ¢ vs. p defines an overlap parameter s, which is
0.5 if the impulses are truly simultaneous. The parameter allows the
calculation of the impulse work in Eq. (41). The various paths in the
p—q plane are labeled to correspond with the paths in Fig. 5.



190 A. Ruina et al. | Journal of Theoretical Biology 237 (2005) 170-192

can calculate

/dW1 / v-Fdt

:/0 (v~ +(P1+P2)/m) dP,

/(v + (PP} +¢P3)/m) - P dp

P*/d+ /pdp
P
+4_g/q@

m 0

So

PE 4 |PEP/2m) + (P - PY)s,/m. A1)

Similarly,

Wy =v -P5+|P52/2m) + P - P5(1 —s,)/m. (42)
The overlap parameter s, fully characterizes the degree
to which the collision is simultaneous (see Fig. 9). When
s, = 0, P] is complete before P} starts, and when s, = 1,
P; is complete before P} starts. When s, = 0.5, as would
be the case if the impulses progressed proportionally (i.e.
F(¢)/F,(t) = constant), then the collision might be
called truly simultaneous. Eq. (41) is used in the text
to describe various scenarios for the double-stance

collision in walking.

A.2.1. Application to walking

For walking we take P} to be the impulse from the
trailing old stance foot and P} to be the impulse from
the leading new stance foot. We can find the various
terms in these formulae using small angle formulas as:

P =0,v - P = —mv?$?/2, and |Pi]? =[P} =
P P} = m?0?¢? /4.

Thus, we can have an alternative derivation to Eq.
(27) (push-off before heel-strike). Using s, = 0 Eq. (42)
gives E,, = b|W| = bmv*$* /8 again.

For truly simultaneous collisions, the diagonal path
(i) on Fig. 9, s,=.5 and Eq. (42) gives E,, =
b|W 5| = bmv*$* /4.

For heel-strike before push-off, path (iv) on Fig. 9,
s, =1 and E,, = b|W,| = 3bmv’¢*/8.

For the circular arc (vi) in Fig. 9 the trajectory can be
parameterized, for small angles, by p and ¢ with

p=2/9—¢q. Thus so—jqdp—l—fpdq:% So,
from Eq. (42), E,, = b|W| = bmv*$* /6.

For any s, the cost is minimized with AE = 0. For a
given AE = 0, the cost E,, = b|W,| = —bW, in Eq. (42)
is minimized by s, = 0, with push-off entirely before
heel-strike.

Appendix B.

b

by

by

Cm

F.F,F;

~\§>

N«

¢

m

pP*, P}, P3,
P,Py, P,

p.q

So

Glossary

average metabolic energy per unit of ne-
gative or dissipated work over a periodic
gait cycle, by <b<by+by. b~ 4or 5
metabolic energy cost per unit of positive
muscle work, reciprocal of muscle effici-
ency, by ~ 4

metabolic energy cost per unit of negative
muscle work, b, ~ 2

specific metabolic cost of transport =
energy/(weight*distance), approximated
as bc,

specific positive-work-increment based en-
ergetic cost of transport

traditionally defined coefficient of restitu-
tion. ¢ptvt /(¢ v7)

coefficient of generation, a new parameter
replacing e,. e, ~ (T — ¢7) /¢

stride length. Here defined as distance of
travel from one support phase to the next
kinetic energy, E = muv*/2

kinetic energy increase in collision,

E, - E,

kinetic energy lost in absorbing part of a
collision (E,>0)

kinetic energy increase in the generating
part of a collision (£,>0)

inferred net metabolic cost of all the sub-
collisions over a stride

average rate of metabolic energy use due
to collisions, averaged over one or more
strides

forces of legs on body during an impulse
A Froude number based on step length,
2gd [ (mv?)

local gravity constant (e.g, ~ 10m/s?)
collision reduction factor in walking,
E,n/(bmv*¢*/2). Characterizes the
effectiveness of a deflection. Small J is high
effectiveness

leg length

mass of the animal—a point-mass

net impulses of legs on body
partial impulses: P = p|P*|, P,
Py = ¢q|P;|

dummy variables to parameterize the work
path-integral. 0<p<1,0<¢<1

recovery, fraction of absorbed energy that
is used, at no metabolic cost, in the
subsequent generative part of the co-
llision

characterizes force overlap in a nominally
simultaneous collision, 0 < s, < 1.5, =
0 or 1 if Py is entirely before or after P,,

= pIP]l,
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respectively. s, = 0.5 for a truly simulta-
neous collision

T step period = time from one step to the
next. For instantaneous collisions 7 is the
stance time in walking and the flight time
in running and galloping

v nominal locomotion speed, close to v~ and
ot

v, o" speeds before and after acollision

Wi, Wy net work of legs 1 and 2 in a simultaneous
collision

w net work of legs in a collision, W = AE

W pos positive muscle work

W eg negative muscle work

W s lost work, combined dissipation and nega-
tive work, Wiss + Wieg

W joss rate of mechanical energy loss, averaged
over one or more steps

W jiss dissipation other than negative muscle work,

e.g, from soft tissue deformation

muscle power = (muscle tension) x (short-

ening rate) added over all muscles, approxi-

mated here as (leg compression force) x (leg

lengthening rate)

¢ Deflection angle of path in a single colli-
sion (McGeer'so = ¢/2)¢p = ¢~ + ¢7.
For calculations ¢ <1

Wﬂ? usc

¢~ angle of incoming velocity (just before co-
llision) relative to the normal of the leg

ot angle of the outgoing velocity

o; deflection at a single sub-collision i in a re-

direction phase made up of sub-collisions
unit vectors in the direction of leg impulses
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