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Abstract

We have devised a simple, yet predictive model of the mechanics of both sculling
and sweep rowing that reasonably mimics observed kinematic and force data. Our
physical model is largely based upon the model proposed by Alexander [Alexan-
der, F.H. (1925), “The theory of rowing”, Proceedings of the University of Durham
Philosophical Society, (pp. 160-179)]. The model’s primary features include: one di-
mensional momentum balance, a point mass rower, infinitely stiff oars with inertia
and non-infinitesimal stroke angles, and quadratic relationships between force and
velocity for the boat and oar blade. Using an inverse dynamics approach, we are
able to construct reasonable fits to force and kinematic data of real rowing. We show
that the model is able to reasonably well predict boat velocity even when we do not
fit for it. A sensitivity analysis shows that the quality of fit is more sensitive to the
boat and oar drag coefficients than to other physical parameters. Allowing oar slip
(Cp < o0) proves to be a necessary model ingredient but, for example, allowing for
oar flexibility does not improve the quality of fit. The model seems to have the key
terms and a minimum of superfluous terms for investigations of rowing.
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1 Introduction

Coordination strategies used by competitive rowers seem to be rather stereo-
typical. Starting in a crouched position with legs fully bent and arms out-
stretched (a position called frontstops), the rower accelerates herself towards
the front of the boat, ending in a leaned-back position with legs fully ex-
tended and arms fully contracted (a position called backstops) by generally
sequencing her body motions in the following order: (1) leg extension, (2)
back rotation, and (3) arm retraction. The oars are put in the water just af-
ter the legs begin to extend and are removed from the water just before the
arms are fully retracted. The opposite sequencing (arm extension, back rota-
tion, and leg retraction) is used upon returning to frontstops. Of the many
possible coordination patterns one can use to propel a boat, why do rowers
tend to use this particular one? If the choice of coordination is determined by
optimization, what kind of performance criterion will predict observed rowing
patterns? Before getting to this optimization approach one needs a model that
can reasonably match observed behavior.

In this paper, we present what we believe to be the most accurate model of
rowing to date and which also has minimal complexity. The model is validated
for both sculling and sweep rowing using numerical fitting to match on-water
force and kinematic data. Hopefully, this model can also be used to answer
such questions applicable to rowing as: How can rigging be adjusted for various
strength and height rower to row together optimally? Can a moving coxswain
make a boat go faster? How much do oar blade properties affect boat speed,
etc.?

Previous Research

Starting with Alexander (1925), a handful of attempts have been made to accu-
rately model the mechanics of sculling/sweep rowing. In his model, Alexander
assumed one dimensional (1D) mechanics, a point mass rower, an infinitely
stiff oar, and quadratic force-velocity relationships to model drag forces on
the boat and oar blade. Alexander assumes that the resultant force on the oar
blade is perpendicular to the blade and that its magnitude is proportional to
the square of the blade’s slip velocity (i.e. the component of the blade velocity
relative to the water that is perpendicular to the blade). He accounted for the
2D (as viewed from above) kinematics of the oar, the oar’s inertia, and also for
boat “added-mass” (an effective additional boat mass due to the oscillating ki-
netic energy of fluid moving around the boat). Alexander prescribed ficticious
(but plausible) coordination patterns for the rower’s legs, back, and arms as
well as the angular velocity of the oar to predict the motions of the system
using numerical integration (note the date). Comparison with the scant data



available was somewhat favorable in that there was some agreement with the
measured oar handle force profile and with the path traced out by the tip
of the oar blade. However, only qualitative kinematics data was available so
Alexander did not quantitatively verify his made-up coordination and boat
velocity curves.

More recent models resembling those of Alexander have been posed (Pope,
1973; Atkinson, 2004; van Holst, 2004) as well as other simpler models (Sander-
son & Martindale, 1986; Millward, 1987; Brearley & de Mestre, 1996; Lazauskas,
1997; Simeoni et al., 2002). See Appendix A.1 for a discussion of these models.
With the exception of Atkinson who accurately predicts boat velocity, none
of these models is shown to accurately predict observed forces and motions.

2 Methods

2.1 Model Description

The gross features of our model are similar to those of Alexander’s. A schematic
of the model is shown in Fig. 1. All rowers are assumed to be identical in size,
strength, and coordination; they row together in perfect synchrony. For fluid
forces we take into account large angular displacements of the oar in a plane
parallel to the water surface. We consider leg, back, and arm motions in the
fore-aft direction. We neglect the pitching and yawing motions of the boat
and assume that the rower keeps the boat balanced using zero effort. In our
idealization, the rower’s center of mass and shoulder height from the sliding
seat are constant, the rower’s mass is concentrated in her gut, the oars have
inertia and are perfectly rigid oars, the force on the oar blade is normal to the
oar axis, the water is still, and there is no air resistance.

2.2 Governing FEquations

The model is governed by the laws of classical rigid-body mechanics. Because
we assume identical and perfectly synchronous rowers, we analyze the me-
chanics of a single rower while scaling masses accordingly. We evaluate linear
momentum balance for the rower, oar, and boat in the fore-aft direction and
angular momentum balance for the oar about the oarlock to determine the
equations of motion for each phase of the stroke: drive and recovery. The
drive is defined as the portion of the stroke when the oars are in the water
while the recovery is the remainder of the stroke when the oars are in the air.
(Note that this definition differs slightly from the definition of drive and re-
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Fig. 1. The model. A geometric schematic and free body diagrams of the model
used for both sculling and sweep rowing. Mass is located in the rower’s gut, the oar,
and the boat. Geometric constants are s, ¢, d, hr, hs, and dp,/p. Time-dependent
geometric quantities are zgr, zp (= zr), zo, TB/F, TS/Bs TH/S 0, vy, vo, and VO /b-
vy, is the boat velocity, v is the oar blade velocity, and vqy, is the velocity of the
blade with respect to the boat and is in the éy-direction. See text for model details.

covery as 0 <0andd >0, respectively.) Sculling can be modeled by changing
geometric parameters and multiplying the oar force and mass by 2.

For the drive, linear momentum balance in the z-direction for the rower gives:

. . d*x
ZFx:meR, (ZL’R = dt2R>

—Fhand, + Ffoot, = MRIR, (1)

where Fhand, = Fhand, c0s 6 is the component of the force at the oar handle in
the z-direction, Fi,e, is the force at the foot stretcher in the z-direction, mg
is the rower’s mass, and xg is the absolute z-position of the rower’s center of
mass relative to the starting line.

Linear momentum balance in the x-direction for the boat gives:

> Fy=myi,
_Fboat - Ffootx + Fiockx - mbi'b, (2)



where Fjoat is the magnitude of boat drag, Flow, is the force at the oarlock
in the z-direction, my, is the boat’s mass, and x}, is the absolute z-position of
the foot stretcher ( fixed on the boat) relative to the starting line.

Linear momentum balance in the z-direction for the oar gives:

Z F:c - mOiO>
F’handgc — F’IOCkI + Foarg cosf = m0j07 (3)

where F,,;, is the €j-component of the force at the oar blade,  is the oar angle
in a plane parallel to the water, mg is the oar’s mass, and x¢ is the absolute
x-position of the oar’s center of mass relative to the starting line.

Finally, angular momentum balance for the oar about a non-accelerating point
instantaneously conincident with the oarlock gives:

XMy j k= {Hpj -k,

{rH/L X Fhand + To/L X Foar} k= {TG/L X moag + IGék} -k,

— Fhand, 8 €08 0 + Foory € =mod cos 0y, + (Ig + mod?)d, (4)

where >7 M, are the moments about the oarlock due to the forces at the oar
handle and oar blade, Hj, is the oar’s angular momentum about the oarlock,
k is the unit vector in the z-direction, ryy, is the position of the rower’s hands
relative to the oarlock, ro/, is the position of the oar blade relative to the
oarlock, rg 1, is the position of the oar’s center of mass relative to the oarlock,
ag is the absolute acceleration of the oar’s center of mass, I is the polar
moment of inertia of the oar about its center of mass, s is the inboard oar
length, ¢ is the outboard oar length, and d is the distance from the oarlock to
the oar’s center of mass. We assume that the hand force is in the x-direction.

Rower and oar center of mass positions, g and zg, are given by the kinematic
relations:

TR =2Tp + Tp/F + rTs/B,
ro =Ty + dyp + dsind, (5)

where g /p is the hip position with respect to the feet, r = hg/hg is the ratio
of rower center of mass height to shoulder height from the seat, xg/p is the
shoulder position with respect to the hips, and dy,/r is the fore-aft position of
the oarlock with respect to the feet. Their accelerations are found by twice
differentiating the positions with respect to time:



Ir =Ty, + Ip/r + risp, (6)
io =iy 4 df cos§ — df?sin . (7)

In our model, oar rotation is known once the rower’s coordination and the
oarlock fore-aft positioning are specified. Since the rower always has a grip on
the oar handle, the fore-aft positions of the rower’s hand and the oar handle
relative to the foot stretcher are the same. So, we have:

dyr — ssinf = rg/p + Ts/B — THys, (8)

where the left and right hand sides are the oar handle and rower hand po-
sition with respect to the foot stretcher, respectively. The term xy/s is the
hand position with respect to the shoulders. Here, we are only considering the
movement of the arm in the fore-aft direction even though the actual path
of the hands relative to the boat nearly follows the arc of a circle. In effect,
we are neglecting the projected arm shortening due to the arms not being
parallel to the boat. Rewriting the above expression and differentiating twice
with respect to time we get:

s6 cos ) = Tuys — Tpr — Ty + s6?sin 6. 9)

For the recovery, the governing equations are the same as for the drive except
that the force of the water on the oar blade is zero and that of the air is
neglected.

2.3 Drag on the Boat

The drag force (D) on an object (e.g. oar or boat) moving at constant velocity
in a stationary medium (or, equivalently, a stationary object in a constant far
field velocity crossflow) is typically written as a function of fluid density (p),
a characteristic area (A), and velocity (v). D = (1/2)pCAv? where (nondi-
mensional) C' is typically dependent on Reynolds number (ratio of inertial to
viscous forces) as well as the object’s shape (e.g., see Fox & McDonald (1992)).
Drag tests performed by Hoerner (1965) and Wellicome (1967) further support
this suggested quadratic relationship for rowing boats. Therefore, we use the
following expression for boat drag in our model:

Fboat = C’lit‘2ba (10>

where C = (1/2)pC A is the boat drag coefficient. Fluctuations in boat veloc-
ity during a stroke are typically on the order of £25% of the average velocity.
So the Reynolds number, defined by R, = vL/v (where L is a characteristic



length and v is the fluid’s kinematic viscosity), does not vary much during the
stroke. Therefore, C' should mostly depend on boat shape. Furthermore, in his
study of the relationship between boat speed and number of oarsman, McMa-
hon (1971) noted that big and small boats have the same shape; the ratio of
boat length to width is relatively constant for all boat types. Lazauskas (1998)
also reports relatively constant ratios of boat length to width and boat length
to depth for several boat types, further supporting this notion of geometric
similarity. Based on these findings, one can take C' to be roughly constant
across all boat types. C is then approximately just a function of the boat’s
characteristic area, A, which then varies with the square of boat length. A
could be wetted area or the projected cross-sectional area. A more accurate
value of C' or 'y could be determined for a given boat using drag data where
the boat speed fluctuates rather than being pulled at a constant speed.

2.4  Models of the Oar Blade Force

We tried two different force-velocity relationships to model the oar-fluid inter-
action, finding Fi,,, from the blade velocity, vo = vy, sin e, + (€6 + vy, cos 0)éy.

Model 1 is that of Pope. Pope assumes that the resultant force is only in the
ép-direction and that the magnitude of the force is proportional to the square
of the component of blade velocity in the es-direction:

Foury = Co(Vo - €9)% = Co(00 + iy cos 0)?, (11)

where Cy = (1/2)pC’ A’ is the equivalent blade force coefficient, A’ is the area
of the face of the oar blade, and C’ is a shape-determined constant.

Model 2 of the oar blade force is based on the quasi-steady model used by
Wang et al. (2004) for predicting the forces on a hovering insect wing. This
model takes into account lift and drag forces on the blade, where drag opposes
the blade velocity and lift is perpendicular to drag as depicted in Fig. 2. The
magnitudes of the lift and drag forces, Fiix and Fy,ag, are proportional to the
square of blade velocity, vo:

Bty = Cr|vol?, (12)
Fdrag:CD|VO|2a (13)

where the lift and drag coefficients, C';, and Cp, are functions of the angle of
attack, ¢, the angle between the blade velocity relative to the fluid and the
é,-direction as shown in Fig. 2. The relationships between Cp, Cp, and ¢ are
shown in the lift-drag polar (the plot of C, versus Cp) in Fig. 2. In particular,
we have:



Vo = Vyaqe (relative to fluid) A

blade

I:Iift

Fig. 2. Oar force models. In Model 2 of the oar blade force, the resultant fluid
force on the oar blade is broken up into lift and drag as shown on the left. The angle
of attack, ¢, is the angle between vyaq. and the axis of the plate. The relationship
between the lift and drag coefficients is shown on the right for both models of the
oar blade force. The equivalent lift and drag forces of Model 1 are the forces in
Model 2 multiplied by sin ¢. When ¢ = 0 or 180° (marked with a * in the plot of C7,
versus Cp), there is no lift and the drag force is at a minimum (zero in this case as
we neglect the thickness of the plate). When ¢ = 90° (marked with a #x) the plate is
perpendicular to the flow and the lift is zero but the drag now attains its maximum
value. In aerodynamics, the region near ¢ = 0° (x) is of central importance. In
rowing, near ¢ = 90° () is most relevant.

Cr = C1*™ sin 2¢, (14)
Cp=C71"(1 — cos2¢), (15)

where C7'** is the maximum lift coefficient. This force turns out to be or-
thogonal to the blade. In the end we found the model results from this model
similar enough to those from Model 1 that we used Model 1 for most of our
calculations.

2.5 Transition Rule at Catch and Finish

Rowers avoid splash at the catch (when the oars are put in the water). Too
much backsplash is naturally considered bad and a late catch results in “missed
water.” We assume a priori that the rowers perfectly avoid backsplash and
missed water. The drive starts when the velocity of the oar blade’s absolute



velocity normal to the blade is zero, i.e.

Vo - ég =0. (16)

Note that the reaction force on a submerged blade is zero at the start of the
drive for both models of the blade dynamics. In Model 1 we define the force
as being proportional to the square of the normal velocity so the force will be
zero at the catch. In Model 2, when there is no €y component to the blade
velocity, the angle of attack is 0° and the lift and drag coefficients are both 0
(point * in Fig. 2).

Rowers also avoid an early and a late release (when the oars are removed
from the water). Finishing late results in a braking effect while finishing early
results in missed water. Therefore, we end the drive when the force on the
blade is exactly zero which, again, corresponds to vp - €9 = 0 in both oar
models.

2.6 Model Summary

Equations 1-7, 9 and the boat and oar drag laws (Equations 10 and 11) com-
pletely define the state of the system of rower, boat, and oar. These equations
are linear in the forces and accelerations. Therefore, at any time ¢ we have a
linear system of 7 equations in 10 unknowns. We can write this system in the
following matrix form:

[Alz = b, (17)

where

m, 0 0000 0 1/cosf —1 0 ]
0 my 0 00O 0 0 1 -1
0 0 mo00 0 0 —1/cosf 0 1
A=1| 0 modcosfd 0 00 0 I s 0 0 |,
-1 1 0O 1r 0 0 0 0 0
0 1 —100 0 dcosé 0 0 0
0 0 0 11—1scos# 0 0 0
T

z= {i’R Ty Zo Ip/r Zs/B Tu/s 0 Fhandy Froot, Hockz} ;

b

. . T
[0 —Foost Foar, (Foas, 0 d6?sin s¢?sin6 | .

In order to solve the above system we generally need to know 10 — 7 = 3 of
the 10 forces and accelerations in z. (Note: Specifying x(¢) implicitly specifies



Z(t).) Prescribing more than 3 variables leads to an overdetermined system
and no solutions (unless the prescribed functions are perfect) while prescribing
less than three variables leads to an underdetermined system and an infinite
number of solutions. However, there are instances where nonunique solutions
exist even when we specify 3 variables. Specifically, if none of the body posi-
tions (zp/r, os/B, and zu/g) is one of the three specified variables, then any
vector [rg/p, Ts/B, Tu/s| that satisfies [A]z = b can have any vector propor-
tional to [—r, 1, 1 — r] added to it without affecting any other forces and
accelerations. That is, the rank of A reduces from 7 to 6 if 3 columns are re-
moved and none of the 3 are columns 4, 5, or 6. The reason for this redundancy
is due to the fact that we use 3 variables (xp/r, zs/B, Tu/s) to characterize 2
dynamic degrees of freedom (wy/gr, Tr/r). The extra body degree of freedom
is left in for better comparison with data.

A common practice in the modelling of biomechanical tasks is to drive the
model with muscle forces, joint torques, or muscle activation patterns (e.g.
Atkinson). Instead, we drive our model by prescribing the rower’s coordination
(rg/r, rs/B, and xy/g) as functions of time (e.g. Alexander). In the end, the
ability of the model to fit data does not depend on whether forces or motions
are prescribed in the differential equation solutions.

Once the body positions are prescribed we also know their accelerations by
twice differentiating the positions. Furthermore, the equations for boat drag
and oar blade force (being dependent on velocity and not on acceleration)
are uncoupled from the remaining equations. Thus, the system of governing
equations reduces to 7 equations in 7 unknowns whose solution may be ob-
tained at any time ¢ by a matrix inversion. Thus, Equation 17 can be solved
at each instant in time for use in a numerical ordinary differential equation
(ODE) solver to find all variables as functions of time. For convenience, we
further simplify the set of equations by combining them to eliminate all of the
unknown forces (Fhandy, Footss Flock,) and the rower and oar center of mass
accelerations (Zg, Zo). Furthermore, since we prescribe the body positions, 6
and its derivatives are known at any time from Equation 8. Therefore, we are
left with a single, second order ODE in boat position (or, equivalently, a first
order ODE in boat velocity):

. — Farag + Foar, cos 0 — mg(dpp + ris/p) — mod(é cos ) — 0% sin 0) (18)
Ty = ,
b mg -+ my + mo

where Fy,s and Fi,, are quadratic in boat velocity, @y,. After solving this
ODE we can determine all of the forces, accelerations, velocities, and positions
needed to compare with documented data.

For each numerical integration the body coordination is given (x;(t) given).
However, we allow the coordination to vary from one simulation to the next

10



Table 1

Listed are the values of the variables fixed in the simulations. The first value listed
is for singles while the second is for fours. The resulting mass is divided by four for
the simulation of fours.

Variable Value Description
T 1.94, 1.65 s stroke period
MR 75, 92 kg rower mass
s* 0.89, 1.16 m actual inboard oar length
S 0.83, 1.01 m modified inboard oar length
(s* —0.06 m, sculls; s* —0.15 m, sweeps)
r* 2.02, 2.62 m actual outboard oar length
l 1.805, 2.36 m modified outboard oar length
(¢*—(blade length)/2)
mo 1.2, 2.6 kg oar mass
mpy 19.7, 14.475 kg boat mass

4 3.16, 1.99 N/(m/s)? boat drag coefficient (Fyoar = C107)
Cs 58.7, 84.5 N/(m/s)? oar drag coefficient (Fya, = C2(vo - €4)?)

r 0.4,04 ratio of shoulder height to center of mass
height (hr/hg)

d 0.565, 0.73 m distance from oarlock to oar center of mass

Ig 0.85, 3.1 kg m? oar moment of inertia (mo (£* 4 5*)%/12)

when we minimize errors between the model and on-water data.

2.7 Model Constants

Listed in Table 2.7 are the values of the model constants used in our simula-
tions. The values of stroke period (7'), rower mass (mg), inboard oar length
(s), outboard oar length (¢), and oar mass (mgo) are measured off of the water.
The values of s are 6 cm and 15 c¢m less than the actual inboard oar lengths,
s*, assuming that the rower applies a force at the oar handle 6 cm and 15 cm
from the end for sculls and sweeps, respectively. Also, ¢ is half of the blade
length (21.5 cm for sculls, 26 cm for sweeps) less than the actual outboard
oar length, ¢*. Boat mass, my,, is the sum of the fully rigged boat mass and
the mass of the data collection equipment. Boat added-mass is neglected be-
cause, using the relation m,/my; = a/(3h — a) for a “Rankine ovoid” (taken
as roughly the shape of a rowing shell) from Lighthill (1986) where m, is the
added mass, m, is the displaced mass, a is boat width, and & is (roughly) boat
length, the added mass is only 0.0065 of the displaced water mass. (Alexander
assumed an overly large added mass of 0.2 of the displaced water mass.)

The boat drag coefficient, C, used in Equation 10 is computed as C; =
(1.07)(1/2)pC*D*3 where D is displaced volume (assuming D?? is propor-
tional to the boat’s wetted area) and C* is a nondimensional shape factor.
The factor of 1.07, suggested by Pope, accounts for the additional (wave) drag

11



due to the deformation of the water surface. For eights we have drag test data
that gives C; = 11.8 N/(m/s)? (from Lazauskas (1998)). We compute C; for
fours and singles using geometric similarity, i.e. we take C* as constant for all
boat types. For fours, (; is divided by 4 since we only consider the motion
of a single rower. Therefore, for fours we have Cy = (1.07)(11.8)/(4 x 2%3) =
1.99 N/(m/s)? and for singles we have C; = (1.07)(11.8)/(8%3) N/(m/s)? =
3.16 N/(m/s)%.

The oar drag coefficient, Cy, is computed as Cy = (1/2)pC"A’. The blade area,
A’ is 0.0903 m? for sculls and 0.13 m? for sweep oars (from measurements of
the oar blades). The value of C” is obtained from a plot in Hoerner (1965)
showing the drag coefficient as a function of Froude number, F,, for a sta-
tionary flat plate perpendicular to a constant velocity crossflow. The plate
is completely submerged but the top of edge of the plate is just below the
free surface. The Froude number is computed as F, = V/+y/gh where V is the
blade velocity, g is the acceleration of gravity, and h is the width of the blade.
Using V =1 m/s, g = 9.81 m/s?, and h = 25 cm, we obtain F, &~ 0.64 which
corresponds to roughly € = 1.3 from the Hoerner plot.

The ratio of rower center of mass height to shoulder height, r, is estimated
from measurements of the masses and center of mass locations of a human
(Zatsiorsky, 2002). Oar center of mass distance from the oarlock, d, and the
oar’s moment of inertia about its center of mass, I, are calculated assuming
that the oar is a uniform rigid rod (d = (¢* —s*)/2 and I = mo(¢* +5*)?/12).

2.8 Model Analysis

2.8.1 Parameterization of the Body Position Functions

The method of parameterizing the body position functions is somewhat arbi-
trary. The only properties we require of the functions are that they be periodic
(assuming that the rower reaches a steady-state) and twice differentiable (be-
cause we want continuous accelerations and forces). Periodic cubic splines
satisfy both of these requirements and they also allow us to parameterize the
curves using as many parameters as we desire. We have tried other parameter-
izations (Fourier Series, for example) and found the present choice adequate.
The numerical procedure used to construct the splines is discussed in Ap-
pendix A.2.

2.8.2 Integration of the Governing Equations

The nonlinear ODE that governsboat position (Equation 18) cannot be solved
analytically. Therefore, to integrate the equation we use a 4-stage, Runge-
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Kutta method where the integration step size is held constant except near
the spline knot times and near the transition times from recovery to drive
and vice versa. In order to maintain the desired integration accuracy over the
entire stroke period, we avoid integrating over the knot times (where the boat
acceleration is nondifferentiable since the body accelerations are piecewise
linear functions of time) by adjusting the integration step size so that we
integrate to exactly these times. As a matter of convenience, the integration
step size is chosen so that the integration times coincide exactly with the times
at which the raw data is interpolated. Since the raw data we use is interpolated
over fifty equal time intervals, we use an integration step size of h = T'/(2 x 50)
where T is the stroke period. Using this step size and an arbitrary set of knot
ordinates, convergence tests show that we are able to integrate boat velocity
to within an absolute numerical error of 107% m/s. Transition times between
drive and recovery are determined accurately by an iterative process outlined
in Appendix A.3.

We seek steady-state motions of the rower-boat-oars system since the data
collected is more-or-less periodic. Since the coordination is parameterized by
periodic cubic splines, periodicity of the rower-boat-oars system will occur
with the proper choice of boat velocity at the start of one stroke (see Appendix
A4).

2.8.3 Data Collection

The measurements were conducted during on-water rowing in a competitive
single scull and four without coxswain (Jeff Sykes & Associates Pty Ltd.) The
fully rigged boat masses were 15.8 and 52 kg, respectively, and Dreissigacker

racing oars were used (CONCEPT2 Inc., Vermont, USA). See Appendix A.5
for detailed descriptions of the measurement techniques and data analysis.

Two data sets are used to validate the model:

(1) a set of women’s singles; measured were 5 functions of time: Zp/r(t),
i’S/B(t)a 9(1&), Fhandg(t>7 and S(Zb(t) and

(2) a set of men’s fours (without coxswain); measured were 4 functions of
time: Zg/r(t), 0(t), Fhand,(t), and @y (t). We think of all derivatives and
integrals of the measured quantities as measured data.

The functions Zg/p(t) and Tg/p(t) are the leg and back displacements from

their positions at ¢ = 0. That is, ZTg/p(t) = xp/r(t) — v5/wr(0) and Tg/p(t) =
ZES/B(t) - :L’S/B(O).
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2.8.4 Measurement of Model vs. Data Error

We validate the model by showing how closely it can simulate the observed
forces and motions observed. We quantify how well the simulated variables
compare with the measured data using an analysis similar to that of McLean
et al. (2003) wherein both kinematic and dynamic consistency between model
and data is desired. The data collected have different scales and units and we
have more data for singles than we do for fours. Therefore, we construct a
measurement of error, J, between the model and on-water data that is unit-
independent, reasonably scaled, and independent of the number of curves to be
fitted. See Appendix A.6 for a detailed description of the function, J, used to
quantify the net error. Appendix A.6 also describes how the coordination pat-
terns (motions and, thus, through the governing equations, forces) are found.

2.9 Root Finding Versus Minimization

Minimizing the net error, J, may turn out to be a root finding problem (with
J =0 as a solution) depending on how many variables we fit. For clarification
we define the following:

e n; = number of functions of time in the model. We count x(t), (t), and Z(t)
together as one function of time. For this model, ny = 10 and the functions
are listed in Equation 17.

e n, = number of independent equations to solve. These include momentum
balance and kinematic constraint equations (as well as drag laws). We do
not count v(t) = dz/dt and a(t) = dv/dt as equations for any kinematic
variable x. For this model, n, = 7 and the equations are given by Equations
1-4, 6, 7, and 9.

e n, = number of variables (functions of time) measured in each data set. For
data set 1 we have n, = 4 and for data set 2 we have n, = 5.

e 1, = number of measured variables used to evaluate the ultimate error. We
will always evaluate the ultimate error using all n, measured variables so
Ny = Ny

e n,, = number of measured variables used in the evaluation of J, i.e. used in
the minimization of model versus on-water data error. We do not necessarily
use all data for assessment of J because we want to know what data predicts
what other data so n,, < n,.

e n, = number of functions prescribed for the ODE solution. To obtain a
unique, exact solution to the governing equations of our model, ny = ny —
ne = 10 — 7 = 3. We always solve the ODE using n, = 3. An alternative
we don’t use is to not solve the ODE explicitly and include the degree of
ODE satisfaction as part of the error to be minimized in the curve fitting.
Instead, we always solve the ODE exactly (to numerical precision) using
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prescribed functions (zg/r(t), 2s/8(t), x1/s(t)) whether or not we have data
for these functions. In other words, periodic ODE solution is a (pre-satisfied)
constraint in our error minimization problem.

Since we need to specify 3 forces and/or accelerations (or positions/velocities)
in order to solve the governing equations (Equation 17) we can generally fit
the data exactly if we fit no more than 3 data variables (n, < 3) and we
parameterize each input function with at least as many parameters, n, as we
have data points, N. The J-minimizing solutions will be unique if we fit at least
three variables (n,, > 3) and at least one of these variables is one of the three
body position functions (rg/r,vs/s,¥u/s). The latter condition is necessary
due to the existence of a non-zero vector in the null space of the A-matrix in
Equation 17 as mentioned earlier. If we fit more than 3 variables (n,, > 3)
we cannot expect to drive J to zero no matter how many parameters we use
to parameterize our input functions, unless the model and reality coincide
exactly.

In all but one of our simulations we use n < NN so in these cases we will always
have J > 0. Furthermore, we always fit at least three variables and one of
these variables is always Zp/r so we always have a unique minimal-.J solution.

3 Results

Plots of force and motion time histories from the best fit simulation of singles
using n,, = 5 and n = 16 (see Appendix A.7 for a discussion of the choice of
n) along with the measured data are shown in Fig. 3 for Model 1. Agreement
with the measured data is apparent in both the shape and magnitude of the
time histories. The contributions to the fit error, J, are shown in the first row
of Table 2 (trial a). The largest error is due to differences in oar angle while
the smallest error is in the prediction of back position. The averages of the
magnitudes of the residuals, R(Y;) = Z;V:l |Y;; — Yi;|/N, are also shown in the
first row of Table 2. Using both models of the oar blade force, the residuals are
less than 2.1° for oar angle, 0.35 cm for seat slide, 0.13 m/s for boat velocity,
11 N for oar handle force, and 0.11 ¢m for back position.

The average residual magnitudes and the error contributions to J from the
best fit simulation of fours using n,, = 4 and n = 16 are shown in the fourth
row of Table 2 (trial d). Again, the largest error contribution is from differences
in oar angle while the best fit variable is leg position. As in the simulation of
singles, we also find good agreement for fours. The averages of the residual
magnitudes in this case are less than 2.2°, 0.26 cm, 0.15 m/s, and 26 N for oar
angle, seat slide, boat velocity, and oar handle force, respectively. Given the
good agreement for both models, we use Model 1 in all subsequent simulations
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Fig. 3. Best fit. Comparison of the simulated and measured curves for the best
fit simulation of singles where we fit all of the measured variables (see Table 2a).
Here, we use Model 1 for the oar blade force and 16 parameters to define each
coordination spline. The heavy, solid curves are the measured data while the thin,
solid curves are the simulated results. The catch is indicated in each plot with a
filled circle while the release is indicated with an open circle. Note that with a poor
physical model we could only fit 3 of these curves at a time.

as it is conceptually simpler than Model 2.

4 Discussion

4.1 Predicting Unfit Variables

A measure of the model’s ability to well simulate observed forces and motions
is how well it can predict unfit variables. We test the model’s ability to do
this by (1) fitting for all variables except for boat velocity (n,, = 4 for singles,
nm = 3 for fours) and (2) fitting for Zg,r, Zs/s, and 6 for singles (n,, = 3).

Fig. 4 shows the simulated and measured boat velocity resulting from fitting
Tpyr, 0, Ts/p, and Fiang, for singles. The resulting errors are listed in the
second row of Table 2 (trial b). We notice from the table that, compared with
the case when we fit all measured variables, the fits to Zp/r, 0, Zs/B, and
Fhang, are slightly better while the error contribution due to differences in
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Table 2

Listed are the errors, R(Y;) and E(Yj), in the prediction of the measured variables,
ffj, for all minimizations performed to validate the model. R(Y]) is the average
residual magnitude and E(Y;) is the error contribution to J for variable Y; (see
Appendix A.6). The penultimate column indicates which variables are fitted in
each minimization. The ultimate error is the weighted sum of the errors, E(Yy),
divided by the number of measured variables. (Note: * is the error when a penalty

is added for roughness in the leg and back position curves.)

trial | data set | Y R(Y;) E(Y;) fitted? | ultimate error
a 1 Th 0.053048 m/s | 0.00023121 fit 0.00024192
T/ 0.003162 m | 0.00004363 fit
0 2.01887 deg | 0.00065243 fit
Fhand, 6.43392 N 0.00027439 fit
Ts/B 0.000925 m | 0.00000797 fit
b 1 Th 0.079532 m/s | 0.00050840 | predicted | 0.00027935
/R 0.001194 m | 0.00000932 fit
0 1.87307 deg | 0.00055312 fit
Fhang, 7.76152 N 0.00032128 fit
Ts/B 0.000600 m | 0.00000462 fit
c 1 Th 0.392070 m/s | 0.00904122 | predicted 0.00353617
Tg/F 0.000451 m | 0.00000127 fit
0 0.099239 deg | 0.00000138 fit
Fhand, 36.0826 N 0.00865295 | predicted
Is/B 0.000580 m | 0.00000407 fit
d 2 Th 0.145617 m/s | 0.00072300 fit 0.00096626
Tg/F 0.002577 m | 0.00003078 fit
0 2.18270 deg | 0.00101337 fit
Fhand, 25.5341 N 0.00213842 fit
e 2 Th 1.74873 m/s | 0.04726161 | predicted 0.02284396
Tg/F 0.002577 m | 0.00003112 fit
0 0.552746 deg | 0.00006355 fit
Fhand, 17.9031 N 0.00148194 fit
f 2 Th 0.361990 m/s | 0.00439295 | predicted 0.0038239*
Tg/F 0.012922 m | 0.00059961 fit
0 1.90408 deg | 0.00069936 fit
Fhand, 23.9773 N 0.00196224 fit

boat velocity more than doubles. Despite the increased error in the prediction
of boat velocity, the average of the residual magnitudes are still small (~
0.08 m/s =~ 2%). In fact, the differences between the predicted velocities
for these cases are almost indistinguishable (compare the predicted velocity
curves in Figs. 3 (n,, =5) and 4 (n,, = 4)).

The results after fitting Zp/r, 0, and Fiang, for fours are listed in the fifth row
of Table 2 (trial e). As explained in Section 2.9, the fits to g/, 0, and Fjana,
are good, with the fit to # being much better than that obtained when we fit
all measured variables. However, the boat velocity is predicted rather poorly.
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Fig. 4. Predicting boat velocity. Comparison of simulated (thin curves) and
measured (heavy curves) results from the best fit simulation of singles where we fit
Fhandg, Tg/F, 0, and Tg/p (nm = 4) (see Table 2b; boat velocity is predicted, not
used in the fit). Here we see slightly less agreement with boat velocity than in the
case when we fit for all variables. Nevertheless, the agreement is still good even
though we don’t fit for boat velocity and we don’t reward smoothness in the body
positions.

The predicted back velocity and acceleration curves contain several oscillations
which contribute greatly to the poor prediction of boat velocity. The seat
slide velocity and accelerations curves also contain oscillations, although they
are not as pronounced as those in the back kinematic profiles. To get rid of
these oscillations we added a penalty for non-smooth curves by minimzing
J* (see Appendix A.6). The model now does a reasonable job of predicting
boat velocity (see plots in Cabrera (2005)). However, the predicted average
boat velocity differs from the measured average velocity by about 0.37 m/s
(= 5% of 5.90 m/s). This discrepancy is most likely due to our choices of
model constants, in particular, the oar drag coefficient and assumed location
of the resultant blade force. Our predictions of all other variables are slightly
worse as a result of penalizing roughness.

Another test of the model is to fit only three variables for singles and to see how
well the model can predict the remaining measured variables. The resulting
errors after fitting Zp,r, 0, and Zg/p for singles (and trying to predict boat
velocity and hand force) are shown in the third row of Table 2 (trial ¢). The
largest error contribution is from differences in Fiang,. This error represents
deficiencies in our model or parameter values. The shape of the velocity curve
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matches the measured curve well but the simulated average speed is less than
the measured average speed (3.83 m/s compared to 4.18 m/s). The peak oar
handle force and the magnitude of the force during the recovery are matched
well by the model but the shape and magnitude of the time histories during
the drive do not agree well.

4.2 Fitting False Data

If the fits we obtain are a result of good curve fitting (as opposed to good
modelling) then we should be able to obtain good fits to false data. We test the
model in this manner by adding a sine wave to the boat velocity data for singles
and finding best fits to this corrupted data for various amplitudes of the sine
wave. Fig. 5a shows the value of J;, versus the amplitude of the corrupting
sine wave. In general, perturbations to the velocity data decrease the quality
of fit. We see in Fig. 5b that the minimization ignores the corrupted velocity
(despite the penalty for lack of fit) and captures the original uncorrupted
velocity. These results suggest that the fits we obtain are not the result of
performing good curve fitting but rather the result of having a good model.

4.8 Sensitivity Analysis: How the fit depends on mechanical constants

Some model parameters (Table 2.7) are estimated since they were not mea-
sured when the force and kinematic measurements were taken. These estimates
seem to be reasonable as we observe good agreement between simulation and
measurements. However, it is possible that even better agreement may be
achieved if we use different and, perhaps, more accurate values for these pa-
rameters. Fig. 6 shows plots of net error, Jy;,, versus select model parameters
for the simulation of singles. A single point on any one of these plots is gener-
ated by minimizing J, letting the rower’s coordination and the oarlock fore-aft
positioning be variable while fixing all other parameters to their values as listed
in Table 2.7, except for the parameter indicated on the horizontal axis in each
plot. The value of this parameter is held fixed during the minimization but is
different from its nominal value. The filled circles in each plot correspond to
the value of J,;, when using the parameter listed in Table 2.7. The choices
of Cy, r, and my, appear to be nearly optimal. If we do not account for wave
drag (i.e. we take out the factor of 1.07 when calculating C), the boat drag
coefficient reduces to C; = 2.95 N/(m/s)? and we obtain slightly worse fits to
oar handle force and oar angle. So it seems that accounting for wave drag is
somewhat important.

We can achieve a slightly better fit if we choose my, = 24 kg (instead of
19.7 kg). This change corresponds to a boat added-mass of 4.3 kg which is
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Fig. 5. Fitting corrupted data. (a) Plot of error, Jyi,, versus the amplitude
of the sine wave corrupting the boat velocity data for singles. The filled circle is
the fit to the uncorrupted data. (b) Comparison of simulated (thin curves) and
measured (heavy curves) results from the best fit simulation of singles where we fit
all measured variables while corrupting the boat velocity data by the addition of
the term: 0.50sin(27t/T") m/s. The dashed curve in the velocity plot is the original
uncorrupted data. Note how the minimization essentially ignores the corruption
term. 20
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Fig. 6. Plots of Jy;, versus a single parameter value as the parameter is varied about
the nominal values shown in Table 2.7. The filled circles correspond to the value of
Jmin at the nominal parameter values.

about 4.3% of the displaced mass but, still, a small percentage. Alternatively,
instead of considering boat added-mass being due to fluid effects, we can
think of it as being a fraction of the rower’s mass put into the boat rather
than into the rower’s gut (not all of the rower’s mass moves with the gut; for
example, the rower’s feet are attached to the boat and, thus, should probably
be considered part of the boat). Taking 3.25 kg (= 35% of the foot and calf
mass) of the rower’s mass and putting it into the boat gives us a slightly better
fit (Jmin = 0.0002323654).

However, the value of C5 which minimizes the net error is about 2.4 times
the nominal value we used. Using this near-optimal value of Cy, the best fit
simulation results in a better prediction of oar angle (E(#) is halved). Fig. 7
shows the path of the oar blade tip for three cases: (1) using the measured
data, (2) using the nominal value of C5, and (3) using a value of Cy that is
2.4 times the nominal value. Using a larger Cy, we see that the model does a
better job of predicting the actual path of the blade tip. Wang (2005) notes
that during the transient motion of a plate accelerated from rest to a constant
velocity, the maximum lift force is about 50% greater than the average lift force
during steady-state. This suggests that larger values for Cy and C}"** should
be used in our model. However, it is not certain that the lack-of-fit of the oar
angle is necessarily due to a poor choice of Cy. The fact that the deviations
between the predicted and measured angle are greatest near the catch and
release indicate that perhaps our enforcement of the instantaneous transition
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Fig. 7. Shown are traces of the tip of the oar blade (as viewed from above the water
surface) (1) as indirectly inferred from boat velocity and oar angle data for singles
(indicated by the heavy, solid line), (2) from the best fit simulation of singles using
the oar drag coefficient in Table 2.7 (indicated by the thin, solid line), and (3) from
the best fit simulation of singles using an oar drag coefficient 2.4 times the value of
that in Table 2.7 (indicated by the dashed line).

from drive to recovery (and vice versa) when the blade normal velocity is zero
is imperfect.

4.4 Unnecessary Improvements and Destructive Simplifications

4.4.1 Use Cp=oc?

If the blade did not slip during the drive, it would cut through the water (fol-
lowing a tractrix) so that its velocity has a component only in the €,-direction
(see Fig. 1). Since the ép-component of the blade velocity would be zero, we
would have vg - € = 00 + Tpcos = 0. Differentiating this equation with
respect to time gives us the following expression for the boat’s acceleration,
Tp:

B :i:bé sinf — ¢

Ty
cos

(19)

This would be equivalent to setting Cp = oo for the oar blade. So, enforcing
the no-slip condition leads to the boat’s motion being determined by the kine-
matics of the oar rather than the oar blade force, boat drag, or any masses. We
determine the best fit to the singles data while enforcing the no-slip condition
to determine whether or not the simplification produces similar results as the
case when we allow for slip. The resulting best fit to all of the data (n,, = 5)
for singles is shown in Fig. 8. The force applied at the oar handle is predicted
rather poorly during the drive phase even though the remaining variables are
well-predicted throughout the stroke. The predicted peak force applied at the
oar handle is nearly twice that of the maximum measured force and there is a
marked rise and fall of the force during the initial moments of the drive that is

22



(N)

% 5 = 1000
S~ N{ £
o TR 600
*x 3 — I 5 AN\
E_— 5 \ release ?:," 400 I’\)L/ \\
o
2z catch = 200
5 0T 3 oK DY
a 0 ©
0 02040608 1 12141618 2 "; 0 020406 08 1 12 1416 18 2
time, t (s) o time, t (s)
e 0.6 =)
E ~ g 60
= . () —
z><m 0.4 / \ ==} 20 ™N /
2 03 // \ g 0 //
2 02 2 -20 N
A 4 S 40 _e
ko) 0 3 60
0 02040608 1 12141. 18 2 0 0204 0608 1 12141618 2
time, £ (s) time,  (s)
E oa
2 g / \
P y
%' 02
5 01 \.
5 o0
e}

0 0204 0608 1 12 1416 18 2
time, t (s)

Fig. 8. Comparison of the simulated (thin curves) and measured (heavy curves)
results from the best fit simulation of singles while enforcing no-slip of the oar
blade. The oar handle force is poorly predicted in this case while the remaining
variables are still well-predicted.

not seen in practice. Thus, the no-oar-slip simplification would prove to have
a high cost in terms of model error.

4.4.2  Allowing for Oar Flexibility

In our model we assume a rigid oar. However, a study performed by Brearley
& de Mestre (1998) shows that oars may bend anywhere from 2 to 7 degrees
during on-water rowing, depending on oar type (sculls/sweeps) and stroke
rate. We investigate the possible improvement of our model (better fits) by al-
lowing for oar flexibility. We assume the oar is composed of two rigid rods (the
inboard and outboard) with inertia, hinged together at the hinge with a tor-
sional spring. The moment, M, applied to each rod by the spring is modelled
as M = KAf where K is a constant and A# is the relative angle between the
inboard and outboard. Due to the additional degree of freedom (the relative
angle), there is an additional governing equation which is derived by taking
angular momentum balance for the outboard portion of the oar about the oar-
lock. This gives us an equation for the relative angular acceleration of the two
rods, Af. Since the spring constant, K, is not known, it is included as a variable
parameter. Fig. 9 shows the resulting best fits to all of the data for singles us-
ing n = 16. The value of the minimized cost function is J,;, = 0.00038239 and
the error contributions to J are E(dy,) = 0.00004755, E(Fhana,) = 0.00009349,
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Fig. 9. Comparison of simulated and measured results from the best fit simulation
of singles while accounting for oar flexibility. The addition of this flexibility does not
improve the overall fit to the data so we deem this added improvement unnecessary.

E(zg/r) = 0.00000730, E(#) = 0.00006123, and E(Zs/z) = 0.00000160. Com-
paring these errors with those of the best fit simulation using a stiff oar (Table
2a) we conclude that the addition of oar flexibility is an unnecessary improve-
ment for fitting purposes.

4.5  Kinematic Complexity

One of the major simplifications is the pair of assumptions that (a) the resul-
tant oar handle force is parallel to the boat and (b) the arms are parallel to
the boat. Observation of real rowers shows this to be a drastic (perhaps over-)
simplification. However, introducing force and motion of the arms not parallel
to the boat would require more new assumptions than we thought would be
useful.

5 Conclusion

We have constructed a model of rowing that does a reasonable job of imitating
the forces and kinematics observed in actual rowing through comparison with
documented data. The model accurately reproduces these forces and motions,
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even those not included in the fit. Allowing oar slip proves to be necessary
for accurately predicting the force generated at the oar handle. Allowing for
oar flexibility, while making the model more realistic, does not result in better
predictions.

The model seems promising for various rowing investigations such as: (1) using
optimization to predict the coordination patterns that maximize boat speed
subject to various biological constraints, (2) to determine the broadness of
coordination and other system variables near an optimum to see what addi-
tional ingredients must be included in our optimization problem to predict the
stereotypical legs-back-arms coordination pattern in rowing, and (3) to deter-
mine rigging changes for a boat with differently sized rowers or how coxswain
motions might make a boat go faster.
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A Appendices

A.1  Previous Rowing Models

Recent rowing models that resemble Alexander’s are those of Pope (1973), van
Holst (2004), and Atkinson (2004). All of these models assume 1D momen-
tum balance (yet account for large oar angles) and quadratic force-velocity
relationships to model boat drag. To model the oar blade force, Pope uses
Alexander’s model which only considers drag while van Holst and Atkinson
consider both lift and drag forces on the blade. The lift and drag forces are
assumed to be proportional to the square of velocity, I = Cv?, where v is the
absolute blade velocity and C' is the lift/drag coefficient which is a function
of water density, blade surface area, and the angle of attack, i.e. the angle
between the blade velocity and the oar longitudinal axis. Both van Holst and
Atkinson consider boat added-mass as well as the oar’s inertia in their models.
Atkinson’s model also accounts for oar flexibility, blade cant angle (angle be-
tween the oar shaft and the blade), and variation of the boat drag coefficient
with water temperature and Reynolds number.

Like Alexander, Atkinson prescribes velocities of the rower’s legs, back, and
arms relative to the boat. However, Atkinson prescribes the force applied
by the rower perpendicular to the oar handle as a function of time whereas
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Alexander prescribes oar angle. Because, ultimately, both force and kinematic
data are used in model fits, the difference between kinematic control (Alexan-
der) and force control (Atkinson) is a matter of researcher taste, numerical
convenience, and so on. In Pope’s model, oar angular velocity and rower cen-
ter of mass velocity relative to the boat are the dynamic degrees of freedom.
Pope assumes that oar angular velocity is linearly proportional to the rower’s
center of mass velocity relative to the boat. He also assumes a constant in-
stantaneous “propulsive efficiency” which he defines as the ratio of the rate at
which “useful” work is done at the oar blade (the component of force at the
oar blade in the direction of boat motion times boat velocity) to the power
supplied by the rower at the oar handle. This second energetic assumption
results in another kinematic coupling between oar angular velocity and rower
velocity relative to the boat which then allows for the (numerical) solution of
the boat’s equation of motion. Van Holst prescribes both the component of
the oar blade force in the direction of boat motion and the rower’s center of
mass position as functions of oar angle.

The above models are relatively simple and mechanically complete. Atkinson’s
and van Holst’s models are more complex than the others in that they incor-
porate a slightly more complicated oar blade force law, requiring a look-up
table or mathematical relationship to determine the lift and drag coefficients
once the angle of attack has been calculated. These models require an itera-
tive procedure to determine the oar angle once the blade force (in van Holst’s
model) or the force at the oar handle (in Atkinson’s model) is specified. Also,
in Atkinson’s model, it is unknown whether oar flexibility, cant angle, and
Reynolds number and temperature-dependent boat drag coefficient are nec-
essary model ingredients. Although these models are mostly simple, none of
them has been shown to accurately predict the forces and motions observed
in actual rowing (with the exception of Atkinson who is able to accurately
predict boat velocity). Alexander was presumably limited by the lack of data
and computational power. Pope’s model, while simple and easy to implement
on a computer, is too simple to accurately model actual rowing. Instead of
allowing his dynamic degrees of freedom (rower position relative to the boat
and oar angle) to be freely selected, Pope assumes (but does not justify) a
linear coupling between the two and provides another coupling based on his
(flawed) measure of efficiency. Furthermore, due to his fixed duty cycle (ratio
of the time when the oar is in the water to the period of the stroke), his model
necessarily results in an (unrealistic) infinite acceleration and deceleration of
the boat at the moments when the oar is inserted into and removed from the
water, respectively. Atkinson’s and van Holst’s models, even with documented
data to compare with, are limited in their predictive capabilities by the as-
sumed forms of their dynamic degrees of freedom (force and rower velocity
relative to the boat). Because no quantitative comparisons were made with
measured variables (other than boat velocity in Atkinson’s study), it is not
known whether any of the assumptions used in the above models prevent the
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models from accurately predicting the forces and motions experienced in an
actual boat.

Our group at Cornell (Cardhana, Santos, Mukherjee, and Ruina (unpub-
lished)) also posed several models in the spirit of Alexander’s. However, until
now, no results were objectively compared with on-water data, so no conclu-
sions were reached about the veracity of the various assumptions.

Other simpler models posed by Sanderson & Martindale (1986), Millward
(1987), Brearley & de Mestre (1996), Lazauskas (1997), and Simeoni et al.
(2002) were developed to predict race times for various boat types. These
models assume force and/or kinematic profiles that differ in many respects
from those observed in real rowing. For example, Millward assumes that the
force at the oarlock in the direction of boat motion has the shape of the square
of a sine curve as a function of time and that this force acts for exactly half of
the stroke period. None of these models is useful towards predicting forces and
motions experienced during actual rowing. However, these models show that
modelling the boat and rowers together as a single point mass can reasonably
predict race times based on measured oar forces. That is, balancing average oar
propulsive force with boat drag, based on average boat speed, gives reasonable
predictions for average boat speed.

A.2  Constructing the Body Position Splines

We construct a spline by first selecting a set of points (t;,z;) (where i =
1,...,n+1), called knots, through which we want the curve, z(t), to pass. For
convenience, we space the knots evenly in time starting at t; = 0 and ending at
tne1 = T where t;y 1 = t;+ At = t;+T/nfori = 1,...,n. By spacing the knots
evenly, our freedom in manipulating the spline is restricted to choosing only
the knot ordinates, x;, rather than both the ordinates, x;, and the abscissae,
t;. We then construct a cubic function, y;(t), over each time interval [t;,t;1]
fori = 1,...,n. The cubic functions are given by v;(t) = A;t>+ Bit>+ Cit + D;
where the constants A;, B;, C;, and D; are to be determined from the points
(t;,z;) for i = 1,...,n. Since each cubic, y;(t), is defined by 4 coefficients (A;,
B;, C;, D;), and there are n cubic functions, we must determine a total of
4n constants to completely define the spline which is a concatenation of the n
cubics. The constants are determined by satisfying the following 4n conditions:

e Each cubic passes through its endpoints: y;(t;) = x; and y;(t;41) = x4 for
1 =1,...,n = 2n conditions.

e Adjacent cubics maintain continuity in their first and second derivatives
at their points of intersection: ¢;_1(t;) = ¢;(t;) and %;_1(t;) = #:(t;) for
1 =2,..n = 2n — 2 conditions.
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e To enforce periodicity, the first and last cubics maintain continuity in their
first and second derivatives at t = 0 and t = T, respectively: ¢,(t;) =
yn(tn+1)> and ?jl(tl) = ?jn(tn-i-l) = 2 conditions.

The above 4n conditions result in a linear system of 4n equations with 4n
unknown spline coefficients which are found with a standard linear solver.

A.8  Procedure for Determining the Recovery-to-Drive and Drive-to-Recovery
Transition Times

We enforce the transition from recovery to drive (and vice versa) to occur
when the slip velocity goes to zero (see Equation 16). The time when this
transition occurs is calculated using an iterative procedure. Let 7; be the time
when the sign of the slip velocity changes and let vy, be the slip velocity
at this time. Then, using (7;, vsip,) and the two integration times and slip
velocities prior to the sign change ((7;—1, vaip, ,) and (7—2, vaip, ,)), We form
a quadratic approximation of vy, as a function of time:

vaip(t) = at® + bt + ¢, (A.1)

where the constants a, b, and ¢ are found by solving the following system of 3
equations in three unknowns:

2

7; T; 1 a Vslip,
2

Ti_1 Ti—1 1 b| = fUSlipifl (AQ)
2

Ti_o Ti—2 1 C Vslip,;_,

We then find the time, 7%, when the minimum of this quadratic occurs (i.e. when
dvgip/dt = 0) and is given by 7* = —b/2a. We then integrate one time step
from 7;_1 to 7. If the slip velocity at ¢t = 7* has a magnitude that is less than
the integration tolerance we then take 7* as the transition time. Otherwise, we
form successive quadratic approximations of vy, as above, each time replacing
the point with the largest slip velocity magnitude with the newest point, until
the newest slip velocity is less than the integration tolerance.

A.4  Procedure for Finding a Periodic Motion

We find the steady state of the rower-boat-oars system for given coordina-
tion splines using an iterative process. Because periodicity only depends on
the choice of initial boat velocity, the process of finding a periodic motion is
simply a one-dimensional root find. The function whose root we seek, g, is the
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difference between the initial and final boat velocities over a stroke. That is,
we seek the value of v which makes g(v) = V — v = 0 where v = v,(0) is
the boat velocity at ¢t = 0 and V' = v,(T) is the boat velocity at ¢ = T'. The
root finding is carried out using a secant method. Starting with an initial boat
velocity, vy, we integrate for two consecutive strokes. The initial boat velocity
used for the second stroke, vo, is the boat velocity at t = T for the first stroke
(i.e. vg = V4). If |gs] = |v; — V| is less than the integration tolerance, we de-
termine that steady state has been reached. If not, which is usually the case,
we use the points (v, g1) and (vg, g2) to construct a linear approximation of

g(v):

92— T
V2 — U1

g(v) (v —v2) + ga. (A.3)

The next guess to the initial boat velocity is then found by determining the
root of the linear approximation given by

92— 9
Vs = Uy — g2 2 1. (A4)
Vg — U1

We then check the value of |gs| = |vs — V3| to determine whether steady state
has been reached. If not, further linear approximations of g are formed until
|g:| is less than the integration tolerance. The procedure normally requires 5
or 6 iterations to make |g;| < 107%. A numerically slower method would be to
integrate forward in time over many strokes until steady-state is accurately-
enough reached.

A.5 Measurement Techniques and Data Analysis

A radio telemetry system was used for data acquisition. The system had 12 bit
resolution, 32 channels, and the sampling frequency was 51.9 Hz. The data was
telemetered from the rowing boat to the motor-boat, where it was collected
in real time using a notebook PC (Compaq N80Ow).

The oar angles in horizontal and vertical planes were measured using servo
potentiometers (Bourns 6538, linearity 1%) connected with a light arm and
bracket to the oar shaft (Kleshnev, 1999). Force applied to the oar handle was
defined by means of measurement of the oar shaft deflection using removable
strain-gauges connected in a Wheatstone bridge (Vishay Micro-Measurements
250BB, accuracy +0.5%). Each oar was calibrated with a force applied 0.06 m
from the handle top for sculling and 0.15 m for sweep rowing. Boat velocity was
measured using a micro-impeller (Nielsen-Kellerman Co.). Seat position was
measured using a multi-turn potentiometer (Bourns 3540, linearity 0.25%)
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Fig. A.1. Shown is a sketch of the setup used to collect seat slide and back position
data. In the case of fours, back position data was not collected due to the difficulty
in setting up the equipment.

connected to the seat with low stretchable fishing line. The position of the
top of the trunk was measured using the same potentiometer as for the seat
position (Kleshnev, 2000). The device was attached to the boat deck and the
fishing line went through a pulley mounted on a mast and attached to the
trunk at the level of the joint Sternum and Clavicle (C7). See Fig. A.1 for a
schematic of the setup used to measure seat and trunk position. Note that
trunk position was not measured for fours due to the difficulty in connecting
the fishing line to the middle rowers. The total masses of the data acquisition
system including sensors, cables, and electronics were 3.9 and 6 kg for singles
and fours, respectively.

The average stroke period and its standard deviation are calculated over sev-
eral cycles in the sample. Cycles deviating from the average by more than
three standard deviations (plus or minus) are excluded. After the filtering de-
scribed above, each cycle is normalized in time, i.e. stretched or compressed
to make each cycle time equal to the average cycle time. The moment when
the right oar crossed zero angle value during recovery is chosen as the cycle
start. Each cycle time is then divided into 50 equal time intervals. Values at
the start of the cycle and at the end of these intervals are calculated from the
raw data using cubic interpolation. These values are then averaged over the
sample period. The amount of points per stroke cycle (50) was chosen as a
compromise between data accuracy and volume.

A.6  Quantification and Minimization of Difference Between Model and Data

Given model parameters we can solve the governing equations to a high nu-
merical accuracy (say, 1 part in 107%) for the prediction of all force and motion
quantities. Similarly, we can imagine that we have precise data for the same
quantities measured for a real boat with real people. The error in our pre-
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diction of the forces and motions for given model values for the coordination
pattern, u(t), can be quantified using the following function, Jy, describing
the net error in the various curve predictions:

i w; E(Y;)

Measure of fit-error = Jo[u(t)] = S ,
j=1Wj

(A.5)

where

o u(t) = (zgr(t), Ts/B(t), Tuys(t)) is the list of body displacements as func-
tions of time,

e n,, is the number of measured variables to be fit,

e Y;[u(t),t] is the simulated value of variable j and is a function of the coor-
dination and (possibly) time,

. )A/](t) is the measured value of variable j and is a function of time,

e w; are weights in the error assessment,

o E(Y)) = (1/T) J3 (Yi[u(t), ] — Y;(t))?/(Y;)2dt is the weighted error contri-
bution to Jy for the variable Y;, and

e Y is a characteristic value of variable j.

The integrals in Jy are commonly referred to as the “L?-norms” of the dimen-
sionless residuals, (Y;[u(t),t] — Y;(t))/ Y;*. We use the average boat velocity,
peak oar handle force, and peak-to-peak amplitudes of seat slide, oar angle,
and back position as the characteristic values, Y. We also use equal weights,
w; = 1 for all j, in the error assessment. Note that Y E(Y;) ~ 1 if all errors
are about as big as the curve magnitudes.

We cannot measure the forces and motions in a continuous manner and the
governing equations cannot be solved exactly. Therefore, we can only obtain an
approximation of Jy which we find by evaluating its discretized form in which
the Y} are determined by numerical integration of the equations of motion and
in which the integrals become summations of the squares of the residuals over
the discrete data points. The new objective function, .J, is then:

> wiE(Y))
Jo(u) = J(p) = (A.6)
N Zf:”l wj
where
® p=(p1,...,P3m—1)+1) is the vector of spline knots defining the coordination

and the oarlock fore-aft positioning,
e N is the number of data points collected for each variable,
e Y, is the simulated value of variable j at time step 4,
° Yij is the measured value of variable j at time step 7, and
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e E(Y;) = (1/N)SN,(Yi;(p) — }A/,J)z/(Y]*)2 is the weighted error contribution
to J for the variable Y;.

The overall goal in choosing the form of J is to ensure that the computed
error has the following invariance properties:

(1) If the errors in each curve are the same (i.e. 3 E(Y;) is the same for all
j) then the value of J does not depend on how many variables we include
in the fit (n,,).

(2) For each fitted variable, j, if the residuals are the same for each measure-
ment (Y;; — Yij is the same for all 7) then the value of J does not depend
on how many data points we have (N).

(3) The value of J does not change if we scale the weights, w;, by a constant.

Although 3n + 1 parameters define the coordination and oarlock fore-aft posi-
tion, we only have 3(n—1)+1 free parameters in the minimization procedure.
The reason for this reduction from 3n + 1 to 3(n — 1) + 1 parameters is as
follows. Since we do not have measurements of the initial leg and back po-
sition (wg,r(0) and zg/8(0)) we fix these values to be constant, reducing the
number of free parameters by 2. We obtain a further reduction by considering
the equation defining the oar angle:

ssinf =dyr + ru/s(t) — xs/p(t) — rp/r(t),
=dpr + z1ys(0) + Fuys(t) — wg/8(0) — Fs/p(t) —
rg/r(0) — ZTp/r(t), (A7)

The values of zg/r(0) and zg/5(0) are now fixed but we still have dy,p and
rr/s(0) as free parameters. However, we cannot choose these latter two pa-
rameters independently. That is, if we want the sum of these values to equal
1, there are an infinite number of choices of (dy,/r,z1/s(0)) pairs to make this
happen. Therefore, we fix zy,5(0) and allow di,/r to be free (equivalently, we
could fix dp p and let 2y/5(0) be free) giving us 1 less free parameter. Thus,
we have 3(n — 1) parameters defining the body displacements (since the ini-
tial positions are now fixed) and 1 additional parameter defining the oarlock
fore-aft positioning.

In Section 4.1, we penalize roughness in the coordination by minimizing J*:

T

J*(p) = (1= A)J(p) + A /([ils/p(lt)]2 + [Es/m(t)]) dt, (A.8)

where A = 5 x 107° determines the relative weight between model error and
coordination roughness.
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Using the integration step size h = T'/(2 x N) and an arbitrary p, we are able
to calculate J to within an absolute numerical error of 1078, Because typical
values of J are 1073, J is calculated with a precision of about 1 part in 107°.

We find the best fits to the data by searching for the set of parameters, p,
that minimize J. The optimization problem is solved using a quasi-Newton
method with a line search. Gradients of the objective function are computed
using forward differencing with a step size of 10~7 for all variables. A care-
ful investigation of the accuracy of these gradient calculations show that this
step size results in relative errors on the order of not more than 10=° for all
derivatives. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) update (outlined
in Nocedal & Wright (1999)) is used to approximate the Hessian of the ob-
jective function and a quadratic-cubic polynomial line search (also outlined
in Nocedal & Wright (1999)) is implemented to determine an appropriate step
in the ‘search direction’; i.e. the vector given by the inverse (approximate) Hes-
sian multiplied by the gradient of J. The minimization is terminated when the
magnitude of the dot product of the gradient with the ‘search direction’ vector
is less than 50 x 1078,

A.7 How Jy;, Varies with n

For each n (number of knots used to define the coordination splines) we find
best fits to the data for fours and singles by picking the values of the knot
ordinates describing the body displacement curves and the oarlock fore-aft
positioning that minimize J. All other parameters are fixed to their values as
given in Table 2.7. We fit for all of the data (n,, = 4 for fours and n,, =5 for
singles) and for only three of the measured variables for fours. We start with
n = 3 and increment n by 1 until we reach n = 10 after which n is incremented
by 2 until we reach n = 30. The initial seed for the n = 3 case is randomly
generated. Initial seeds for subsequent values of n are generated by interpo-
lating the resulting coordination patterns from the previous minimization and
using the resulting fore-aft oarlock positioning. Plots of the logarithm (base
10) of Juyin versus n are shown in Fig. A.2 for both singles and fours using
both models for the oar blade force. The fits naturally tend to get better as
the parameterization grid is refined beyond n = 8. In the case when we only
fit three of the measured variables for fours, the variables we fit are vy, 0, and
rg/r. We notice in Fig. A.2 that the value of J, is smaller for n,, = 3 than
it is for n,, = 4 for all n. We also notice in this case that J,;, decreases more
rapidly as n is increased. When n,, = 3 and we choose n = 50 we should be
able to obtain exact fits to the data since there are 50 data points for each
measured variable. This case is not shown in the plot but we obtain an objec-
tive function value of 1.62 x 107°. The fact that we do not obtain zero in this
case (to within the accuracy of the calculation of J) is due to the imperfect
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convergence of the curve-fit optimization.

In the plot of J,;, versus n using Model 1, it appears that J,;, begins to level
off at about n = 16. So we use 16 parameters to define each coordination
spline for all subsequent investigations.
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Fig. A.2. Plots of Jyi, versus the number of knots used in each body position curve
using (a) Model 1 and (b) Model 2 for the oar blade force. Here, we are fitting all
of the measured variables.
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