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We present the design and control of an energy-efficient, knee-less, essentially

planar, four-legged bipedal robot called Ranger. In separate trials, Ranger: 1)
walked a 40.5 mile ultra-marathon on a single charge and without human touch,

setting a robot distance record; and 2) walked stably at Total Cost Of Transport
(TCOT= total energy used per unit weight per unit distance travelled) of 0.19,

apparently less than that of any other legged robot to date. Key design features

are: a light weight and high strength box body, low-inertia leg design for fast
and efficient swing, foot actuation that combines toe-off and ground clearance,

a steering mechanism that enables turning of this essentially planar robot, and

a low-power modular networked electronics hardware system. The model-based
control approach uses a simplified offline trajectory optimization with a reflex-

based feedback controller for stabilization. Ranger’s reasonable success suggests

that these design and control ideas could be extended to the development of
an energy-efficient higher degree of freedom, 3-D bipedal robot.

1. Introduction and Motivation

Present legged robots are either highly energy-efficient like passive dy-

namic walkers5 but fall down frequently, or like PETMAN,1 BigDog,6 and

ASIMO8 are more robust but guzzle energy. For legged robots to be useful

they will have to be energy-efficient as well as robust. Here we present some

progress made in this direction: the design and control of a simple planar

robot with just 4 degrees of freedom that is highly energy-efficient and re-

liable at the limited task of steady level walking. We believe that aspects

of the design and control approach we present here can scale up to more

complex machines and to more versatile tasks.
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Fig. 1. (a) Ranger. (b) 2D schematic. The fore-aft cylinders with ‘eyes’ and the foam

‘ears’ (both visible in photo) are only for shock absorption in case of falls. The hat is

decorative (hollow). The closed and rigid aluminum lace boxes, conceptually shown as
point H, house all of the motors and gearing, various pulleys for the ankle cable drives,

and most of the electronics (on the drawing the hip motor location is only schematic).

There are two boxes connected by a hinge: an outer box, shaped like an upside-down U,
rigidly connected to the outer legs, and an inner box, filling the space in the U, holding

the inner legs (each of which can twist for steering). The hip spring, which aids leg swing,

is shown schematically as symmetric between the two legs but shows as a diagonal cable
and spring in the photograph. The feet are shaped so that toe-off is possible, so that no

torques are needed during single stance, and so that ground clearance during swing can

be achieved (by rotating the toe towards the hip).

2. Ranger

The Cornell Ranger is a four-legged knee-less biped (figure 1 a). It is

about 1m tall and has a total mass, including batteries of 9.9 kg.

It is autonomous in that all sensing and computation is on board, bat-

teries are on board, and it has no booms, tethers or cable connections. It

is not autonomous in that, at least so far, it needs to be started manually,

and steering is done with a model plane type radio control.

Hardware. Leg swing is powered by a DC brushed hip motor. Each of

the ankle pairs (one inner pair and one outer pair) has a motor along the

hip axis that actuates the ankle via a one-way (toe-off) cable drive. Foot
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lifting, for ground clearance, is powered by a return spring on each ankle.

A fourth motor twists the inner legs about a vertical axis with each step in

order to steer the robot; the amount and direction of steering is governed

by the remote control. The motors and electronics are powered by seven

25.9 V lithium-ion batteries with a total capacity of about 493 watt-hours.

Electronics. The main control loop runs, with no supervisory operating

system, on an ARM9 microcontroller. Four ARM7 processors on custom

boards monitor and control the three main joints (the outer ankles are

counted as a single joint) and the steering. Two more ARM7 processors su-

pervise the on-board communications network (CAN), the Bluetooth data

reporting, and the onboard data display and lights. The Inertial Measure-

ment Unit (IMU) also contains a proprietary microprocessor board. The

multi-processor bus-based architecture (CAN) was chosen to facilitate de-

sign evolution, to simplify overall wiring (e.g., so a new sensor could be

added without new wiring into the main processor) and to compartmental-

ize the control software (high-level on ARM9, low level on ARM7s). Sensors

for each motor include an optical encoder, a voltage sensor, and a current

sensor. In addition, each joint has an absolute angle sensor. Each foot has an

optical strain gauge for measuring foot distortion (and hence foot contact).

From the 3D IMU, Ranger’s control only uses the sagittal plane angular

rate sensor. The top-level control loop runs at 500 Hz on the ARM9 pro-

cessor; data is sent to and from the satellite ARM7 processors once per

loop execution; the motor current controllers, and their associated sensors

operate at 2 kHz on the ARM7 processors.

Software. The total custom control code is about 10,000 lines of C and

C++ code, the bulk of which is associated with low-level measurement,

low-level control and communications protocols. The main control loop is

based on hierarchical concurrent finite state machines. Control and estima-

tion tasks are coordinated by a simple cooperative-multitasking scheduler,

while low-level input-output, such as from motor encoders, uses processor

interrupts.

For debugging and development, walking data is viewed and logged via

wireless system. Although control parameters can be adjusted wirelessly

mid-walk, during attempts at walking distance records autonomy is main-

tained by sending to the robot only steering signals and requests for data

(e.g., cumulative number of steps, battery voltage) and not sending any

walking control nor any changes of walking control parameters.
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3. Control

Our model-based robot control algorithm is presented next. We summarize

the key aspects of the control. For more details please see.3,4

Model for simulation. The 2D model (figure 1 b) consists of two rigid

legs characterized by a mass, center of mass and polar moment of inertia

about the center of mass. The feet are massless and round and are assumed

to roll without slip when on the flat, level ground. The robot is powered

by three motors; one for the hip and one for each ankle. The ankle motors

are connected to the feet through a linear, torsional spring (‘series elastic

actuation’). Also, there is a zero-free-length hip spring pulling the legs to

their parallel position. We assume a walking step to consist of the following

concatenation of phases: single stance → heel-strike → double stance. The

foot-to-ground collisions are assumed to be instantaneous, hard, with no

slip and bounce, and with continuity in the position by discontinuity in

the velocities. The power to the DC motor model is the sum of two parts:

mechanical work, and electrical dissipation in the motor resistance and

brush contact. The output torque from the DC motor is proportional to

the current to the motor minus the frictional torque, which we found to be

load-dependent.

Energy-optimal trajectory control (Fine grid). We try to find that

periodic motion which minimizes the Total Cost Of Transport (TCOT),

defined as the power used per unit weight per unit speed. The optimization

variables are the time to take one step, all initial angles, and velocities in sin-

gle stance. The control functions to be optimized are motor currents, which

are parameterized as piecewise linear functions of time. We also enforced

various constraints: current should be within actuator bounds, tensional

contact with the ground is forbidden, and the swinging leg’s foot should

have sufficient ground clearance.

Simplifying the optimal trajectory. In order to implement the energy-

optimal trajectory control solution presented above we proceed in two

stages; first, we simplify the description of the near-optimal trajectory, and

then we add a reflexive (event-based) feedback. These are discussed in the

next two sections.

(i) Optimizing the coarse-grid description. First, we use a simpler

coarse-grid representation that has few parameters. We did this by looking
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at the general shape of the fine-grid optimization and choosing intervals

where we could use a simpler controller (see figure 2). The coarse-grid form

is chosen manually so as to best catch the features of the fine-grid optimiza-

tion but with fewer terms. Our goal is to achieve a gait with close to the

same TCOT, informally doing a simultaneous optimization of both energy

use and simplicity.
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Fig. 2. Numerically, the fine-grid optimum (solid red) is obtained by solving the energy-

optimal control problem (see energy-optimal trajectory control section). The current
obtained was a piecewise linear function of time involving about 126 parameters, with

TCOT = 0.167. The coarse-grid optimal (dashed blue) motor currents are the simplified

version of the fine-grid solution (see optimizing the coarse-grid description above). Here,
we first divide an entire step into phases (e.g., pre-mid swing, foot flip-up). Next, in

each phase we use a compliant controller that involves selecting a constant, a stiffness,
and a damping term (i.e. I = I0 +Kθ + Cθ̇, where I is current, θ is angle and I0,K,C

are constants). Our coarse-grid description has only 15 parameters and a TCOT = 0.18.

Thus, in going from a fine grid to a coarse grid we have reduced the parameters by almost
a factor of 8, but have increased the cost by only 14%.
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(ii) Reflex feedback: discrete intermittent feedback control. Next,

to stabilize the gait we wrap a linear feedback controller around this nominal

trajectory. If the control output is U (e.g., current), then we decompose the

control into two parts: a trajectory generator part (coarse-grid optimization

described above) and a stabilizing controller part (described here).

a) Trajectory without stabilization b) Stabilizing controller c) Trajectory with stabilization
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Fig. 3. A schematic example of our reflex-based discrete intermittent feedback controller

We illustrate the idea with a schematic example. Consider the nominal

trajectory of a second-order system shown as a continuous red color line

in figure 3a. Let n and n + 1 be instances of time at which we are taking

measurements from sensors. Let us assume that we take two measurements,

x = [x1 x2]
′ at time n (e.g., a position and velocity). We are interested in

regulating two outputs, z1 and z2 at time n+ 1.

Suppose that due to an external disturbance the system deviates from

its nominal trajectory, and thus follows the deviated trajectory shown as

a dashed blue line in figure 3a. Now, the sensors read x̄ at time n. In the

absence of any feedback correction, the output values would become z̄ = [z̄1
z̄2]

′.
The stabilizing controller measures deviations at time n (δxn = x −

x̄) and uses actuation to minimize the deviations in output variables

(δzn+1 = z − z̄). For illustration we choose two control actions, δun =

[U1f1(t) U2f2(t)]
′, a half sinusoid and a hat function, each active for half

the time between time n+ 1 and n. This is shown in figure 3b. We adjust

the amplitudes of the two control functions U1 and U2, based on measured

deviations δxn, to regulate the deviated outputs δzn. For example, with a

proper selection of the amplitudes of the two functions it is possible to fully

correct the deviations in the output variables, as shown in figure 3c.

In order to compute the amplitudes U1 and U2 we use a linear controller

as follows: We linearize the system about the nominal trajectory (actually,

we only linearize the section to section map). The sensitivities of the dy-

namic state to the previous state and the controls δUn = [U1 U2]
′ are:

A = ∂xn+1/∂xn, B = ∂xn+1/∂Un, C = ∂zn+1/∂xn and D = ∂zn+1/∂Un.
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Thus we have δxn+1 = Aδxn + BδUn and δzn+1 = Cδxn +DδUn. Using

the above two equations, we set up a discrete linear quadratic regulator

(DLQR) that is to find δUn from δxn. Our resulting linear controller has

the form δUn = −Kδxn.

On Ranger. In order to implement the stabilizing controller described

above, we used the following heuristics: we measure the robot state xn dur-

ing mid-stance, i.e., when the stance leg is vertical; then we try to regulate

the robot velocity at the next mid-stance zn+1. Our control actions Un are

as follows: If the robot velocity at mid-stance is slower than the nominal,

then the robot has lower energy than the nominal at mid-stance and so we

inject energy by pushing off harder (similar to walking uphill). If the robot

velocity at mid-stance is faster than nominal, then the robot has higher

energy than the nominal at mid-stance and so we extract out energy by in-

creasing the step length (similar to walking downhill). We use the linearized

version of the equation presented above to do the stabilizing control.

4. Results

(i) Energy-efficiency record. Table 1 lists the various gait parameters

and energetics for the fine-grid trajectory control problem, the coarse-grid

control representation and the experimental robot data.

For the energy-optimal trajectory control problem we had 126 param-

eters in all and a TCOT of 0.167. With our coarse-grid representation we

reduced the parameters to 15 while increasing the TCOT to 0.18, a 7%

increase in cost. However, the coarse-grid representation could not realize

stable walking and had to turn on the stabilizing controller. We see that

in going from the optimal trajectory control of the robot to our coarse-grid

control with stabilizing control, we have reduced the parameters from 126

to 30 and added gait reliability, but at the cost of increasing the TCOT

from 0.167 to 0.19, a 14% increase. The TCOT of 0.19 makes our robot

perhaps slightly more energy-effective than the Collins walker, which had

a TCOT of about 0.2.2

(ii) Long distance walking record. The broad goal of the Ranger

project7 is to develop a reliable robot capable of walking long distances on

minimal amounts of energy. We set ourselves the goal of making Ranger

walk a marathon distance of 26.2 miles or 42.2 kilometers, without falling

down, without stopping, and without recharging.

On 1-2 May 2011, before we had optimized the energy-effective con-

troller presented earlier in this paper, Ranger walked 40.5 miles or 65 kilo-

meters, non-stop, and on a single battery charge. Ranger took 186,076 steps
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Gait Parameter Fine-grid Coarse-grid Experiment

Total COT 0.167 0.180 0.190

Motor COT 0.087 0.100 0.110

Overhead COT 0.083 0.080 0.080

Hip COT 0.019 0.018 0.030

Ankle COT (push-off) 0.029 0.052 0.046

Ankle COT (foot-flip) 0.039 0.029 0.034

Step Length 0.38 0.39 0.38

Step Velocity 0.64 0.66 0.62

Step Time 0.60 0.60 0.61

Double Stance (%) 9.5 5.0 3.0

Control Parameters 126 15 30

at a leisurely pace of 2.12 kilometers per hour or 1.32 miles per hour to set

this distance record. The total energy consumption for Ranger for this walk

was 493 watt-hours and it had a TCOT of 0.28 (as noted, this was later

reduced to TCOT = 0.19).
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