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Abstract

Is the common folklore, that oars are less efficient at propulsion than propellers, correct? Here we

examine the propulsive efficiency of the oars used in competitive rowing. We take the propulsive efficiency

η of rowing to be the ratio of the energetic benefit, the energy Db dissipated by boat drag, to the energetic

cost, the work Wr performed by the rower. Air drag is neglected as is the energetic cost of raising and

lowering the oar out of and into the water. We calculate η first by directly using extensive data from

an instrumented single scull and again using less data and extrapolating on the basis of a simple rowing

model. From the data, we estimate that η ≈ 0.84. That is, about 84% of the rower’s energy dissipated

during a stroke is due to boat drag and the remaining 16% of the energy dissipated is due to oar drag.

The best marine propellers have efficiencies of about 80%. We also point out some subtleties in energetic

calculations in rowing, discuss the essential differences between oars and propellers, and discuss how oars

might be made still more efficient.
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1 Introduction

Modern propellers are obviously an improvement over more-ancient oars and paddles in that they are compact

and well suited to transmissions from rotary engines. It is thus commonly assumed that propellers are an

improvement over oars in other regards, for example, in propulsive efficiency. Is this really so? Several

authors have addressed the efficiency of oars using various definitions for efficiency. Alexander (1927), Affeld

et al. (1993), Kleshnev (1999), Pendergast et al. (2003), and Atkinson (2004) sensibly define oar efficiency,

η, as the ratio of work done by boat drag to the work done (discussed below) by the rowers. Meanwhile,

Wellicome (1967) defines efficiency as the ratio of “useful” work (discussed later) done by the crew to the

total crew work and Celentano et al. (1974) define efficiency as the ratio of crew work to the sum of crew

work and oar drag dissipation. Unfortunately, as discussed below, there are problems with how these authors

calculate the rowers’ work.

Here we use the first definition of propulsive efficiency from above, the ratio of the boat drag dissipation

to total rower work, but take some care in calculating the terms therein. We discuss the efficiencies of

oars versus propellers and show, using a simple example, that oars can have arbitrarily close to perfect

efficiency. We then review previous authors’ calculations of rower work and discuss why these calculations

are erroneous. Finally, we suggest how oar efficiency may be improved.

2 Methods

In this section we present our definition of propulsive efficiency and outline how we calculate it using data

gathered from an instrumented single scull and also more indirectly with less data but using a simple rowing

model (Cabrera et al., 2006).

2.1 Definition of Efficiency

We define the energetic efficiency of a rowing oar, ε, as the ratio of energetic benefit to the energy cost. The

calculation is over a single stroke, assumed to be one of many strokes in a periodic sequence. At a chemical

level, energy cost E is due to the work done by the forces the rower exerts on the boat and oars, the energy

needed to overcome joint friction, and various energy costs associated with muscle function (e.g. the cost

of maintaining muscle force, muscle shortening/lengthening, muscle activation, etc.). The energetic benefit,

Db, is the portion of E that goes into overcoming boat drag. This definition is equivalent to the definition

of drag efficiency posed by Pendergast et al. (2003). In this paper, however, we only consider as a cost the

mechanical work done by the forces that the rower applies to the boat and oars (neglecting the work of

raising, lowering, and feathering the oars) and we denote this work by Wr . Thus, we consider propulsive

efficiency, η, and write η as:

η =
benefit

cost
=

boat dissipation

rower work
=

Db

Wr
. (1)
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This definition is equivalent to the definition of Froude efficiency posed by Pendergast et al. (2003). Ulti-

mately, we will calculate η from on-water data. In order to do this, we derive an expression for Wr in terms

of variables for which we have data.

Consider the system consisting of the boat and oars (not including the people) as shown in Fig. 1. Energy

balance (over any period of time) tells us that:

Wext = ∆EK + ∆EP + Wint, (2)

where Wext is the work done on the system by forces external to the system, ∆EK is the change in the system’s

kinetic energy, ∆EP is the change in the system’s gravitational potential energy, and Wint is internal work.

External work (Wext) consists of the work done by the rower (Wr) and the work done by hydrodynamic and

aerodynamic forces on the boat (Wb) and oars (WO)1 . These energy sources/sinks are depicted in Fig. 1.

Internal work (Wint) consists of energy loss due to friction at the oarlock, etc. Note that Wb, WO < 0 and

Wr > 0. We consider the motions of the system over a single stroke and assume that these motions are

periodic. Therefore, we have ∆EK = ∆EP = 0 and the energy balance equation (Eq. (2)) becomes:

Wr + Wb + WO = Wint. (3)

We denote the magnitude of boat and oar dissipation by Db = |Wb| and DO = |WO|, respectively. Then,

solving Eq. (3) for Wr and substituting into the efficiency equation (Eq. (1)) we get:

η =
Db

Wint + Db + DO

=
boat dissipation

total dissipation
. (4)

Equation (4) is a generic expression for propulsive efficiency, allowing for various energy losses and models

of the blade-fluid interaction. For simplicity, we make the following assumptions:

1. pitching and yawing motions of the boat are negligible,

2. the oars have identical kinematics and inertial/geometric properties,

3. air resistance on the oars is negligible,

4. losses due to internal work (bearing friction, etc.) are negligible (Wint = 0),

5. boat drag (Fboat) is proportional to the square of boat velocity (vb),

6. the resultant oar blade force is perpendicular to the blade (as shown in Fig. 2), and

7. the rotational dissipation, from torque on the oar blade multiplied by its angular velocity, is negligible

(equivalently, we assume that for energetic purposes the forces of water on the oar are statically

equivalent to a single force at the center of the oar blade).

1Note, these definitions of internal and external work are unrelated to “internal work” and “external work” as used in some

of the biomechanics literature (e.g. in Cavagna et al. (1963)).
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Using these assumptions, we write the works done by boat and oar drag as:

Wb = −

∫ T

0

Fboatvb dt =

∫ T

0

−C1v
3
b dt, (5)

WO =

∫ T

0

Foar(vO · êθ) dt =

∫ T

0

Foar(ℓθ̇ + vb cos θ) dt, (6)

where T is the stroke period, C1 is the boat drag coefficient, Foar is the sum of the forces on the oar blades,

vO is the velocity of each oar blade, ℓ is the outboard oar length, θ is the oar angle, and θ̇ is the oar angular

velocity (see Fig. 2 for a geometric schematic and free body diagrams of the boat-oars-rower system). Note

that the negative sign in Eq. (5) is due to the fact that boat drag opposes boat velocity. Also note that,

since we neglect air resistance the forces on the oar blades are zero during the recovery phase of the stroke

(when the oars are in the air). Therefore, WO is non-zero only during the drive phase (when the oars are in

the water).

Incorporating Eqs. (5) and (6) into Eq. (4) and using Wint = 0 then gives us:

η =
boat dissipation

boat+oar dissipation
=

Db

Db + DO

, (7)

where

Db = |Wb| =

∣

∣

∣

∣

∣

−

∫ T

0

C1v
3
b dt

∣

∣

∣

∣

∣

, (8)

DO = |WO| =

∣

∣

∣

∣

∫ τ2

τ1

Foar(ℓθ̇ + vb cos θ) dt

∣

∣

∣

∣

, (9)

where τ1 is the time of catch (when the oars go in the water) and τ2 is the time of release (when the oars

come out of the water). We will use Eq. (7) for calculating η.

2.2 Method I: Calculating η From On-water Data

We compute η using data collected from a heavyweight women’s single scull (Cabrera et al., 2006). This

data set includes measurements of the following functions of time: vb, θ (and, thus, θ̇ and θ̈), and Fhandθ

(the summed components of the oar handle forces perpendicular to the oars’ axes). Since we do not have

direct measurements of Foar, we use the following expression for Foar in terms of the measured variables,

found by taking angular momentum balance for the oar about the oarlock:

Foar =
s

ℓ
Fhandθ

+
IG + mOd2

ℓ
θ̈ +

mOd

ℓ
v̇b cos θ, (10)

where s is the inboard oar length, IG is the sum of the oars’ moments of inertia about their centers of mass,

mO is the total oar mass, and d is the distance from the oarlock to the oar’s center of mass. Note that we

have modeled the oars as uniform, rigid rods as in Cabrera et al. (2006). Substituting the above expression

for Foar into Eq. (7) gives us the following expression we use to compute ηd, the efficiency calculated from

the data:

ηd =
Db

Db + DOd

, (11)
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where

DOd
=

∣

∣

∣

∣

∫ τ2

τ1

(

s

ℓ
Fhandθ

+
IG + mOd2

ℓ
θ̈ +

mOd

ℓ
v̇b cos θ

)

(ℓθ̇ + vb cos θ) dt

∣

∣

∣

∣

. (12)

We compute v̇b, θ̇ and θ̈ by fitting the data for vb(t) and θ(t) with cubic splines and differentiating with

respect to time. Alternatively, we could (but do not) use finite differencing or different representations of

vb(t) and θ(t) (e. g., a Fourier series or a high-order polynomial). Cubic splines worked for us.

Since we do not know the times of catch and release, we assume that the catch and release occur so that

the oar blade force is zero just after catch and just before release. Using this assumption, we calculate the

catch and release times, τ1 and τ2, by linearly interpolating Foar(t) (from Eq. (10)) when a change in sign

occurs and finding the time, τ , when Foar(τ) = 0 (see Fig. 3).

The values of the physical constants (C1, s, ℓ, IG, mO, and d) used are the same as those used in Cabrera

et al. (2006) for a single sculler and are shown in Table 1. The constants s, ℓ, and mO are measured with s

and ℓ being modified to account for the distance from the end of the oar handle at which the rower applies

a force and the distance from the tip of the oar blade at which the resultant blade force is assumed to act.

The values of d and IG follow from assuming the oar is a uniform rod. The value of C1 is a function of water

density (ρ), boat wetted area (A∗), and a shape-determined constant (C∗). Since we did not have direct

measurements of A∗ and C∗, we assumed geometric similarity of boats and used a value of C1 obtained from

drag test data for eights (Lazauskas, 1998) to compute C1 for singles (see Cabrera et al. (2006)).

We approximate the integrals in Eq. (11) using the trapezoidal rule. The subintervals are of equal length

(∆t = T/50) except in the evaluation of DO where the first and last subintervals of [τ1, τ2] have slightly

smaller widths. The absolute numerical error associated with the trapezoidal rule is O(∆t)2. The force on

the oar blade, the boat drag force, the times of catch and release, and the inertial properties of the oars

are sufficiently inaccurate that a more accurate method of approximating the integrals is not useful. A

more accurate calculation of η could be made by knowing the kinematics of the oar blade more accurately;

efficiency is determined largely by how much the blade slips.

2.3 Method II: Calculating η Using Our Model

In Cabrera et al. (2006), we presented a simple model of rowing and showed that this model is capable of

accurately predicting documented data (see Fig. 2 for a schematic of the model). In that study, we determined

the set of body position functions (xB/F(t), xS/B(t), xH/S(t)) and fore-aft oarlock position (dL/F) that best fit

the data by minimizing a weighted sum of the squares of the differences between the simulated and measured

variables. We use the results of the best fit simulations from that study, using two different force-velocity

relationships to model the oar-fluid interaction, to compute η.
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2.3.1 Method II.1: Using Model 1 of the Oar Blade Force

Model 1 is that of Pope (1973). Pope assumes that the magnitude of the oar blade force is proportional to

the square of the component of blade velocity in the êθ-direction. Therefore, Pope has

Foar = C2(vO · êθ)
2 = C2(vb cos θ + ℓθ̇)2, (13)

where C2 is the blade drag coefficient. The value of C2 (listed in Table 1) depends on ρ, blade area (A′), and

a shape and depth-determined constant (C′). The value of ρ is assumed to be 1000 kg/m3, A′ was measured,

and C′ is determined using the results of drag tests performed on flat plates by Hoerner (1965).

Using Model 1, we obtain the following expression for efficiency, denoted by η1:

η1 =
Db

Db + DO1

, (14)

where

DO1
=

∣

∣

∣

∣

∫ τ2

τ1

C2(vb cos θ + ℓθ̇)3 dt

∣

∣

∣

∣

. (15)

The integrands of the dissipation terms in Eq. 14 are the work rates, Ẇb and ẆO. Considering these

quantities as ordinary differential equations with initial conditions Wb(0) = 0 J and WO(0) = 0 J, we

compute Wb and WO, the integrals in Eq. 14, using the same 4-stage, Runge-Kutta algorithm we used to

solve the model governing equations as discussed in Cabrera et al. (2006).

For small oar angles (cos θ ≈ 1) and assuming that boat speed and oar slip speed are approximately

constant, the above expression for η1 reduces to:

η1 ≈
1

1 + C2

C1

(

|vO|
vb

)3
. (16)

We do not use the simplified form (Eq. (16)) in our calculations.

2.3.2 Method II.2: Using Model 2 of the Oar Blade Force

Model 2 is based on experiments and numerical simulations performed by Wang et al. (2004) on a robotic

fly wing. The resultant oar blade force is decomposed into lift and drag components, FL and FD, where the

drag force opposes the direction of blade velocity and lift is perpendicular to drag as shown in Fig. 4. (Note

that the lift force does no work.) The magnitudes of the lift and drag forces are assumed to be quadratic in

oar speed, |vO|, as follows:

FL = CL|vO|
2, (17)

FD = CD|vO|
2, (18)

where CL and CD are the lift and drag coefficients, respectively, and are assumed to be functions of the

angle of attack, φ (the angle between the blade velocity relative to the fluid and the êr-direction as shown
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in Fig. 2). The relationships between CL, CD, and φ are shown in the lift-drag polar (the plot of CL versus

CD) in Fig. 4 and are written as follows:

CL = Cmax
L sin 2φ, (19)

CD = Cmax
L (1 − cos 2φ), (20)

where Cmax
L is a constant. We used Cmax

L = C2/2 in the model calculations.

Using Model 2, we obtain the following expression for efficiency, denoted by η2, after some simplification:

η2 =
Db

Db + DO2

, (21)

where

DO2
=

∣

∣

∣

∣

∫ τ2

τ1

2Cmax
L |vO|(ℓθ̇ + vb cos θ)2 dt

∣

∣

∣

∣

. (22)

The integrals in Eq. (21) are calculated using the same procedure used to calculate the integrals in Eq. (14).

3 Results

3.1 Calculations Using Method I: Raw Data

Using the data, we calculate the energy dissipation due to boat drag for a women’s heavyweight single sculler

over a single 1.95 second stroke to be Db = 487 J, the energy dissipation due to oar drag to be |WO| = 96 J,

and a propulsive efficiency of ηd = 0.84. That is, about 84% of the total energy dissipated during a stroke

is due to boat drag and the remaining 16% is due to oar drag. The oar blade force, blade velocity, and oar

dissipation rate are shown by the solid lines in Fig. 5. Note that, presumably because of modelling errors,

there is a brief period at the end of the drive phase when the oar dissipation rate is slightly negative (Fig.

5c,f), implying that energy is being pumped into the system. We neglect this ≈ −1 J in our energy integral.

3.2 Calculations Using Method II.1: Incomplete Data

Here we use compute efficiency from best fits of the rowing model to raw data using Model 1 of the blade

force. Using our nominally chosen value of C2, we calculate Db = 483 J, |WO| = 158 J, and an efficiency

of η1 = 0.75. The predicted blade force, blade velocity, and oar dissipation rate are shown by the dashed

lines in Fig. 5a–c. The predicted boat drag dissipation agrees well with the value of Db = 487 J obtained

from the data calculations above (less than 1% difference). However, the predicted oar dissipation (158 J)

is 65% greater than the dissipation calculated from the data (96 J). As seen in Fig. 5, the blade force is

well-predicted (Fig. 5a) but the blade velocity is not (Fig. 5b), presumably, due to the lack of fit in θ (and,

thus, θ̇ and θ̈).

In Cabrera et al. (2006), we showed that selecting a value of oar drag coefficient C2 that is 2.4 times

as large as the nominal value used above produces a better fit of our model to the data, especially in the
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fit to oar angle. From the best fit simulation using Model 1 and this new value of the oar drag constant

(C∗
2 = 2.4C2), we calculate Db = 493 J, Do = 101 J, and η1 = 0.84 which agree more favorably with the

values obtained from the data (less than 2% difference in boat dissipation and less than 6% difference in oar

dissipation). Plots of the blade force, blade velocity, and oar dissipation rate are shown by dashed-dotted

lines in Fig. 5a–c. We see a better prediction in the blade velocity (Fig. 5b) and, thus, a better prediction

of oar dissipation rate (Fig. 5c).

In Wang (2005), it is noted that in a study of the transient motion of a plate accelerated from rest to

a constant velocity, the maximum lift force is up to 50% greater than the average lift force during steady-

state. This study suggests that a larger value of C2 than the nominally chosen values be used in our model.

Although the study does not account for the even larger value of C2 used above (2.4 times the nominal

value), it is noted that the study does not account for surface effects which tend to increase drag (Hoerner,

1965).

3.3 Calculations Using Method II.2: Incomplete Data

Here we use compute efficiency from best fits of the rowing model to raw data using Model 2 of the blade

force. We calculate Db = 489 J, Do = 118 J, and η2 = 0.81. Plots of the blade force, oar velocity, and

oar dissipation rate are shown by dashed lines in Fig. 5d–f. Again, the predicted boat dissipation (489 J)

agrees well the dissipation calculated from the data (487 J), less than a 1% difference. The predicted oar

dissipation (118 J) is 23% greater than the dissipation calculated from the data, although the difference is

not as marked as the difference seen above when using Model 1 and the nominally chosen value of C2.

Although not shown in Cabrera et al. (2006), we determined that selecting a value of Cmax
L that is 4/3

times as large as the nominal value produced a better fit of our model to the data. From the best fit

simulation using Model 2 and this new value of the maximum lift coefficient (Cmax ∗
L = (4/3)Cmax

L ), we

calculate Db = 492 J, Do = 97 J, and η2 = 0.84. Plots of the blade force, blade velocity, and oar dissipation

rates are shown by dashed-dotted lines in Fig. 5d–f.

See Table 2 for a summary of the above results.

4 Discussion

4.1 Oar vs. Propeller Efficiency

Oar dissipation comes from its slip velocity (motion through the water orthogonal to the blade) multiplied

by the oar force. The useful work of the oar comes from the boat velocity multiplied by the oar force. Thus,

for a given boat speed, oar efficiency is maximized by minimizing the oar slip. Small slip velocities (and,

thus, oar efficiencies arbitrarily close to 1) can be generated for any oar, no matter how crudely shaped,

by moving the blade slowly through the water. Although a consequence of moving the oar slowly is that
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the generated thrust at the blade is very small (and, thus, not a very useful thing to do), it is theoretically

possible to obtain near perfect efficiency without having to create a special blade geometry.

To make this idea definite, imagine riding on a steadily moving 100 meter long barge as shown in Fig.

6. Dip an oar of arbitrary shape into the water near the bow of the barge. Then walk slowly to the stern,

walking a shade faster than the rate at which the barge is moving so that you walk the 100 meter length of

the barge as the barge advances forward 99 meters. Say the force on the oar, and thus the reaction force

of your feet on the barge, is 1 Newton. The oar will slip in the water 1 meter while the barge advances 99

meters. The oar dissipation is 1 Joule, the work you have done on the barge and oar is 100 Joules, and

the useful work (barge displacement times propulsive force) is 99 Joules. The propulsive efficiency of the

oar is thus 99%. Of course, as noted, getting oars of this efficiency to actually move a boat would require

thousands of rowers or gigantic oars, and these in turn would engender other costs. But, fundamentally, oar

efficiency can be driven arbitrarily close to 1 without sophisticated oar design. In our more complex model,

say, this result would be obtained by making the oar drag coefficient arbitrarily large.

Propellers, on the other hand, cannot so easily have such high efficiencies. From blade element theory (see

Dommasch (1953), for example), the forces on a propeller blade are modeled like an airfoil. The resultant

force on each spanwise element of the blade consists of a lift and a drag force. By convention, the lift

force does no work so dissipation is solely due to drag. Therefore, to minimize blade dissipation (and, thus,

maximize efficiency), blade drag must be minimized. Propeller efficiency is inextricably linked to the lift-to-

drag ratio of the blades. At non-infinite Reynolds numbers the lift-to-drag ratio is necesarily removed from

infinity and propeller efficiency cannot approach 1. Typical recreational motor boat propeller efficiencies are

about 50-65% whereas the very best marine propellers have efficiencies of about 70-80% (Krueger, 2005).

Note that for propellers drag is essentially dissipative whereas for oars it is an essential part of the propulsion.

The essential difference between propellers and oars is that propellers are stuck in the water and oars

are not. The fair comparison would be to require oars to have the recovery portion of the stroke entirely

submerged. In this case, of course, we would find that oars were generally not very efficient as the oar

drag during the recovery would be a significant loss. However, in real rowing, as opposed to real propeller

propulsion, we have the recovery phase of the stroke out of the water, in the thin air, and thus incuring small

(negligible in our calculations here) cost for the motion of the blade in the direction of the boat.

4.2 Comparison With Previous Calculations of Efficiency

We now discuss the efficiency calculations of previous authors.

Alexander (1927) defines efficiency using Eq. (1) where he calculates Wr as the work done at the oar

handles and Db includes dissipation due to both hydrodynamic and aerodynamic drag. He calculates Db

using the equation:

Db = Rv̄bτ, (23)
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where τ = 1 min, vb is average boat speed, and R = 0.557v̄2.012
b is the resistance when vb = v̄b. Alexander

does not state the equation he uses to calculate Wr . Instead, he offers an ambiguous description of this

calculation. He calculates Db = 91, 800 ft lb and Wr = 148, 400 ft lb using data gathered for an eight,

resulting in an efficiency of η = 0.619. However, this efficiency calculation is faulty for two reasons. First, in

his calculation of Db, Alexander ignores the variation of boat velocity. He uses

Db = 0.557

(

1

τ

∫ τ

0

vb dt

)3.012

τ, (24)

instead of the proper equation:

Db = 0.557

∫ τ

0

v3.012
b dt. (25)

Second, Alexander does not take into account the work done by the rower at the footstretcher and he only

accounts for the displacement of the oar relative to the boat (not the absolute displacement) in his calculation

of the work done at the oar handles.

Wellicome (1967) defines efficiency as:

η =
Wu

Wr
, (26)

where Wu is “useful work.” The equations he uses for calculating Wu and Wr are as follows:

Wu =

∫ T

0

|Foar|vb cos(θ − α) dt, (27)

Wr =

∫ T

0

|Foar|sθ̇ cosα dt, (28)

where α is the angle between the force on the oar blade and êθ. Using data gathered for an eight, he

calculates η = 0.664 for an eight. Due to his use of a reference frame attached to the boat, Wellicome does

not calculate the work done at the footstretcher when calculating Wr and the velocity of the oar handle he

uses in Eq. (28) is relative to the boat, not the absolute velocity. Thus, Wellicome miscalculates the actual

work.

Celentano et al. (1974) define efficiency as:

η =
Wr

Wr + Do
. (29)

They calculate Wr and Do using the relations:

Wr = F̄oarx
v̄b(τ2 − τ1), (30)

Do = F̄oarx
r, (31)

where r is the blade slip distance. Using a previous author’s measurement of v̄b and r, they calculate

η = 0.7. The boat type for this calculation is not stated. Again, like Alexander and Wellicome, Celentano

et al. make the mistake of calculating rower work in a frame of reference attached to the boat. Furthermore,

they compute the above work quantities as a product of average force and velocity instead of integrating the

time varying product.
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Affeld et al. (1993), Kleshnev (1999), and Atkinson (2004) calculate efficiency using a form equivalent to

that of Alexander’s:

η =
Wr − Do

Wr
. (32)

Affeld et al. and Kleshnev calculate Wr as:

Wr =

∫ T

0

Fhandθ
sθ̇ dt. (33)

They assume that the resultant force on the oar blade is perpendicular to the blade and break up this force

into its lift and drag components (as described above in the Model 2 section). They then calculate Do using

the equation:

Do =

∫ τ2

τ1

FD|vO| dt, (34)

where FD and |vO| are determined from the measured oar handle force, boat velocity, and oar angular

velocity. Kleshnev does not provide an equation for computing Do but it is presumably the same as Eq. (34)

and Atkinson does not provide any equations for computing Wr and Do. Using multiple data sets obtained

from a single, Affeld et al. compute values of η ranging from 0.7 to 0.75. Kleshnev computes η-values of

0.79, 0.82, 0.84, and 0.85 for a single, pair/double, four/quad, and eight, respectively, using data obtained

from these boat types. Atkinson computes η = 0.768 for a single using his rowing model which is able to

well-predict boat velocity. Like other authors, they all fail to consider the work done by the rower on the

footstretcher. Due to their use of a non-Newtonian reference frame they incorrectly calculate Wr using the

oar handle velocity relative to the boat instead of its absolute velocity.

The problem with calculating rower work in the moving boat reference frame is perhaps clarified with

the example of Fig. 7. Let’s imagine a crazy rowing stroke, not one that anyone actually uses, but one

that illustrates the calculation problem. Imagine a rower moving fore and aft in the boat by periodically

extending her legs. If the oars were entirely out of the water the rower would move fore and aft, relative

to a fixed reference frame, while the boat moves fore and aft in the opposite direction (approximately out

of phase if the water dissipation is small). Now imagine that the rower moves her hands fore and aft in a

manner exactly opposite to her leg motion so that the oar is always orthogonal to the boat, and the oar

handle has no fore and aft motion relative to the boat. Furthermore, let the rower raise and lower her hands

so that the oar is only in the water when the boat would, if there were no oar in the water, be moving

backwards. Thus, backwards motions of the boat are more-or-less stopped and the boat moves, on average,

forward. The rower is effectively using the oar to make a ratchet. The boat moves forward, there is boat

drag and dissipation. The rower does work. Yet, in this way of rowing the work calculated, as calculated

by the above authors where the work is calculated by oar handle motion relative to the boat, is zero. That

is, for this rowing stroke the moving-reference frame work calculation would give an efficiency of positive

infinity. Whereas the definition of efficiency we have chosen is thermodynamically necessarily no greater

than 1. If we calculate rower work incorrectly using the methods of Affeld et al. (1993) and Kleshnev (1999)
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in Method I we get a rower work of 488 J per stroke which is 16 % less than our (hopefully better estimate)

here of 583 J.

4.3 How to Improve Oar Efficiency

An obvious conclusion of our calculations here is that oar efficiency can be made greater and greater by

increasing the oar drag coefficient C2. This, in turn, can be increased by increasing the oar blade area.

Although this insight might be useful, it has its limitations in terms of incurred costs. For example, there

is a cost of lowering and raising a large blade, of learning a new coordination, of carrying the extra weight,

of extra air drag, etc. Taking these (neglected here) losses into account, both in terms of their costs and

making a design which minimizes these costs, it remains an open question whether the efficiency of real oars

can be usefully improved by further increasing thier area.

5 Conclusion

We have proposed a new (rational) measure of oar efficiency and, using on-water data and a simple rowing

model, calculated η ≈ 0.84 for a sculling oar, an efficiency higher than that of good nautical propellers. Effi-

ciencies were calculated using two models of the oar blade force and both models were capable of accurately

predicting the boat and oar dissipations. In order to obtain good agreement with oar dissipation calculated

from the data, we used values of the oar drag coefficients that were larger than the nominal ones chosen.

The need for larger drag coefficients may be accounted for by the fact that the transient forces may be larger

than those experienced at steady-state. We have also shown that prior definitions of oar efficiency all suffer

from at least one deficiency, the most common one being that they fail to account for the work done at the

foot stretcher when calculating rower work.
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Table 1: Listed are the values of the variables fixed in the simulations. Note that boat mass is the sum of

the fully rigged boat mass and the mass of the data collection equipment.

Variable Value Description

T 1.94 s stroke period

s∗ 0.89 m actual inboard oar length

s 0.83 m modified inboard oar length (s∗ − 0.06 m)

ℓ∗ 2.02 m actual outboard oar length

ℓ 1.805 m modified outboard oar length

(ℓ∗−(blade length)/2)

mO 2.4 kg oar mass (for 2 oars)

C1 3.16 N/(m/s)2 boat drag coefficient (Fboat = C1v
2
b
)

C2 58.7 N/(m/s)2 oar drag coefficient (Foar = C2(vO · êθ)
2)

d 0.565 m distance from oarlock to oar center of mass

IG 1.70 kg m2 oar moment of inertia (2mO(ℓ∗ + s∗)2/12)
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Table 2: This table summarizes the calculated values of boat and oar dissipation (Wb and WO) and the

resulting propulsive efficiencies (η) using three methods. In Method I, calculations are performed on raw

data. In Method II.1, calculations are performed on incomplete data which are the results from the best fit

of the rowing model to raw data where we use Model 1 of the blade force. In Method II.2, calculations are

the same as those of Method II.1 but using Model 2 of the blade force. In Method I we calculate the blade

force using the measured oar handle force, oar kinematics, and boat velocity. Thus, we do not report a drag

coefficient.

Method Oar Drag Coeff. WO (J) Wb (J) Wr (J) η

I 96 487 583 0.84

II.1 C2 158 483 641 0.75

II.1 2.4C2 101 493 594 0.84

II.2 Cmax
L 118 489 607 0.81

II.2 (4/3)Cmax
L 97 492 589 0.84
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Energy Sources and Sinks

rower

boat

oar

rigging

foot stretcher sliding seat

oar dissipation,

boat dissipation,

W
O< 0

rower work,

Wr > 0 Wb < 0

Rower-Boat-Oars System Boat-Oars System

(a) (b)

Figure 1: (a) A schematic of the rower-boat-oars system. (b) The boat-oars system, showing the energy

sources (rower work) and sinks (boat and oar dissipation) due to forces external to the system.
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Figure 2: A geometric schematic and free body diagrams of the rower-boat-oars system. Descriptions of

variables not mentioned in the text may be found in Cabrera et al. (2006). When calculating efficiency using

both the data and the model, we assume that oar rotation occurs in a plane parallel to the water surface,

the resultant force on the oar blade is in the êθ-direction, and boat drag is in the x-direction. In our model

we also assume a point mass rower and we only consider the fore-aft motions of the rower’s legs, back, and

arms. Furthermore, we neglect the variation in the rower’s shoulder height and center of mass height from

the seat.
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Figure 3: Shown are plots of the blade force (Foar) versus time (t) as determined by Eq. 10 and measured

data for Fhandθ
, vb, and θ. Post processing of the data (as described in Cabrera et al. (2006)) produced 51

data points. The calculated values of Foar based on these data points are plotted as open circles. The filled

circles correspond to the calculated catch and release times, τ1 and τ2. By assumption, τ1 and τ2 are the

times when Foar = 0 N. These times are calculated by linearly interpolating the data when Foar changes sign.

Plots (b) and (c), blowups of the regions in plot (a) when the sign changes occur, show the interpolation

process. When calculating the oar dissipation, we take the oar force to be zero when t ≤ τ1 and t ≥ τ2.
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as well as the lift-drag polar for both models. Drag opposes the oar velocity, vO, while lift is perpendicular

to drag. Since lift is always perpendicular to vO, the lift force does no work. Also shown is the angle of

attack, φ, which is the angle between vO and the êθ-direction.
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Figure 5: Shown here are plots of Foar, v · êθ, and Do versus time for the drive phase of the rowing stroke.

The solid lines correspond to calculations from the data. In the first column of plots (a-c), the dashed lines

are the resulting quantities from the best fit simulation of singles using Model 1 and the value of C2 shown

in Table 1 and the dashed-dotted lines are the resulting quantities from the best fit simulation using Model

1 and a value of C2 that is 2.4 times the nominal value. In the second column of plots (d-f), the dashed lines

are the resulting quantities from the best fit simulation of singles using Model 2 and Cmax
L = 2C2 (where

C2 is the value shown in Table 1) and the dashed-dotted lines are the resulting quantities from the best fit

simulation using Model 2 and a value of Cmax
L that is 4/3 times the nominal value.
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Figure 6: A schematic of the example discussed in the text illustrating how oar efficiency can be made

arbitrarily close to 1. In the example, a rower stands on a barge moving steadily to the right. The rower

sticks an oar in the water and walks from the bow to the stern a shade faster than the rate at which the

barge is moving. When the rower reaches the stern, the boat has moved 99 m to the right and the rower has

moved 1 m to the left as indicated in (a). We assume that the force of the water on the oar blade is F = 1 N.

The rower’s acceleration is small enough that we consider both the rower and oar to be approximately in

equilibrium. Thus, as indicated in (b), the force at the oar handle, the force between the rower’s feet and

the barge, and the oar blade force are F = 1 N.
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Figure 7: A schematic of the example discussed in the text illustrating the incorrectness of calculating rower

work by multiplying oar torque and oar angular displacement. In the example, the rower oscillates relative

to the boat and places the oar in the water when the boat is moving to the left (v < 0 where v is boat

velocity) while keeping the oar perpendicular to the boat’s axis. The net boat displacement, D, is positive

but the work done by the rower is zero as calculated by some previous authors. This leads to an error of

about 16 % when applied to more common coordinations.
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