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Abstract

We have found periodic life-like brachiating motions of a rigid-body ape model that
use no muscle or gravitational energy to move steadily forward. The most compli-
cated of these models has 5 links (a body and two arms each with 2 links) and 7
degrees of freedom in flight. The defining feature of all our periodic solutions is that
all collisions are at zero relative velocity. These motions are found using numerical
integration and root-finding that is sufficiently precise so as to imply that the solu-
tions found correspond to mathematical solutions with exactly zero energy cost. The
only actuation and control in the model is for maintaining contact with and releasing
handholds which requires no mechanical work. The similarity of these energy-free
simulations to the motions of apes suggests that muscle-use minimization at least
partially characterizes the coordination strategies of brachiating apes.
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1 Introduction

Brachiation is the hand over hand swinging locomotion used by various pri-
mates, especially long armed apes. A continuous contact brachiating gait is
somewhat like upside down walking in that the ape has at least one hand on a
handhold at all times. A ricochetal gait is something like upside down running
in that there is a flight phase between successive handholds,
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One approach to understanding animal motions is through kinematics, noting
how the body parts’ positions, velocities, and accelerations vary in time. Thus,
in making an ape model, one might control these angles either with real-time
control or matching the joint angles and angular rates at particular points
in the motion. In contrast to these approaches, we pursue the hypothesis
that apes coordinate their motion in a manner that minimizes their muscular
work (Alexander, 2001),(Borelli, 1743, Proposition 166); our model makes no
explicit a priori attempt to control the kinematics.

The models here are similar to the passive-dynamic models of human walking
pioneered by McGeer (1990). McGeer and his successors have designed stable,
energy efficient robotic walkers which consist, basically, of sticks connected by
hinges, with no control. These walking machines have surprisingly life-like mo-
tions while using only small amounts of gravitational energy to walk downhill
(Collins et al., 2001). The natural appearance of these passive-dynamic mod-
els” motions suggest that a large part of the human walking control strategy
is governed by muscle-use minimization. These passive-dynamic walkers can
only walk at non-vanishing speeds by using gravitational energy to make up
for energy lost at the collision of the foot with the ground. However, here we
take the energy minimizations approach to the extreme and seek locomotion
with zero energy cost. For the brachiation models presented here, the passive
motions use no muscular work or gravitational potential energy.

2 Previous Brachiation Work

The comparison between ape brachiation and the swing of a pendulum goes
back to at least to Tuttle (1968). Fleagle (1974)’s film-based kinematics studies
led him to postulate that siamangs pump energy into their pendular motions
by lifting their legs at the bottom of the motion (much like a child on a swing).
Preuschoft and Demes (1984) found that a rigid-object (as opposed to point
mass) pendulum well-mimics the motions of relatively long armed-apes in slow
continuous-contact brachiation. They mention, but forgo a detailed dynamical
analysis of, the appropriateness of a point-mass model for the ricochetal gait.
Swartz (1989) used more realistic mass and geometry parameters to evaluate
the speed of, and grasping forces used for, a continuous contact gait.

Bertram et al. (1999) thoroughly studied a point-mass collision-free model of
both continuous contact and ricochetal brachiation and showed various qual-
itative agreements with gibbon brachiation kinematics and force data. They
concluded that collision avoidance might be a major determinant of brachia-
tion strategies (This model is discussed in the point-mass-model section be-
low). On the other hand, Usherwood and Bertram (2003) noted that gibbons
actually overshoot their minimal trajectories slightly, thus apparently inten-



tionally having some small collisional losses. They conjectured that gibbons
slightly overshoot the ideal collisionless path because the consequences of un-
dershooting (falling) are prohibitively negative. Usherwood and Bertram also
proposed, but did not investigate, a model identical to the “rigid body with
massless arm model”, in this paper, to help qualitatively explain why a gib-
bon’s body is not in line with its supporting arm for the whole swing phase
of a ricochetal gait.

Research on the control of under-actuated systems (systems with fewer ac-
tuators than degrees of freedom) has used brachiation as a test-bed to check
the efficacy of various control algorithms. Fukuda et al. (1991) have designed,
simulated, and built a two degree of freedom brachiating robot with a single
actuator between the two links. The robot’s adaptive controller allows it to
swing up from the static stable equilibrium position and then brachiate on
a horizontal ladder with irregularly spaced handholds. Yamafuji et al. (1992)
have also designed and built a two-link brachiator controlled by a single ac-
tuator at the central link. They use a proportional-derivative controller to
implement a prescribed reference trajectory for the two links. Spong (1994)
developed a controller for “Acrobot” (a conceptually similar two dimensional,
two degrees-of-freedom system with a single actuator in between the links) that
could swing up from the stable equilibrium position to an inverted position
and balance there. Nishimura and Funaki (1996, 1998) designed, simulated,
and built a serial three-link under-actuated brachiating robot with two mo-
tors, capable of brachiating under a horizontal support. Odagaki et al. (1997)
developed two controllers for an identical serial three-link model. Saito and
Fukuda (1997) have designed and built a “realistic” three dimensional robot
based closely on the body proportions of a siamang with 12 degrees of freedom
and 14 actuators. This robot can swing up and brachiate continuously around
and underneath a circular horizontal ladder of handholds. Kajima et al. (2003)
have designed and built “Gorilla Robot II” a 19 link robot with 20 actuators
that has successfully brachiated using two distinct continuous contact gaits
(over-hand and side-hand). Most of the work in robotic brachiation is exclu-
sively concerned with the continuous contact gait. However, Nakanishi and
Fukuda have developed a control algorithm for their two-link brachiator al-
lowing their simulation to execute a “leaping maneuver”, e.g. a single step of
ricochetal brachiation (Nakanishi et al., 2000).

There is a slight disconnect between the simple single-link passive swinging
models, e.g. (Bertram et al., 1999), and these latter actuated multi-degree-of-
freedom models, e.g. (Saito and Fukuda, 1997): the former models emphasize
basic theory, the latter focus on the implementations of control concepts on
more complex systems. The work presented here is an attempt to partially
bridge that gap. The work was originally motivated by an informal wager
with Fukuda et al. (private communication at ICRA 97), that their 2-link
robot could have energy-free motions. The approach used here is similar in



spirit to Bertram et al. (1999) but with more degrees of freedom.

3 Modeling Approach

We approach the minimum-muscle-work hypothesis by looking for solutions
with exactly zero energy cost; the solutions we seek do not demand any joint
torque at any time. Because all known candidate muscle-use cost estimates are
minimized by zero muscle use, we need not concern ourselves with the form of
the objective (cost, energy-use) functional that we minimize. That is, all Hill-
type or Huxley-type muscle laws have zero metabolic cost with zero muscle
tension. Note again that the solution search here is more stringent than that
for downhill passive dynamic walking which has collisional losses; the motions
we seek here not only do not use muscle work but do not use up gravitational
potential energy either.

All of the models here use one or more perfectly rigid bodies, motion restricted
to two dimensions, frictionless hinges, no air resistance, no springs, handholds
available everywhere on the “ceiling”, and plastic collisions between hand and
handhold. Most of these modeling assumptions have been used either implicitly
or explicitly in earlier analyses of brachiation.

The plastic collision assumption requires some clarification. When the ape’s
hand comes into contact with a handhold it grabs on and the interaction is
modeled as a perfectly plastic collision (coefficient of restitution, e = 0). Lin-
ear and angular momentum conservation generally demand that mechanical
energy be lost in plastic collisions; where the energy goes depends on detailed
non-rigid-body mechanics that do not effect the post-collisional rigid-body mo-
tions e.g. (Chatterjee and Ruina, Dec 1998). However, if the colliding points
on two objects have the same velocity when they make plastic contact, then
no energy is lost in that “collision” even though it is a plastic or sticking
collision. Two things can make contact with zero approach velocity if their
approach velocity tends to zero as contact becomes imminent (e.g. see Fig.
11). Because our models have no joint or air friction and no negative muscle
work, plastic collisions are the only possible way for the system to lose energy
and the solutions we seek don’t even have that loss.

The holding and release of the handholds is, in principle, energy-free since the
act of holding and releasing the handhold does not change the system’s energy.
The hands of gibbons and other long-armed apes are particularly suited to this
task and almost resemble hooks. Although, for actual gibbons, holding on to a
handhold surely has some metabolic cost, but we neglect this cost. The energy-
free motions we find, although energetically “passive”, are not strictly passive
because a control action is needed for initiating and releasing the handholds.
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Fig. 1. Point-mass model of a gibbon, from Bertram et al. (1999). This model
is capable of collisionless continuous-contact and ricochetal motions (Fig. 2). The
torso, legs, and head of the gibbon are all concentrated into a single point mass
located at the end of the supporting arm. The arms, being a low proportion of the
overall body weight, are treated as massless.

Furthermore, for the first two models below, massless arms swing into place
with an energy-free control (non-passive) action.

4 Point-Mass Model

The point-mass-model (Fig. 1) from Bertram et al. (1999) is capable of col-
lisionless continuous-contact and collisionless ricochetal gaits (Bertram et al.,
1999). The mass swings from a massless arm which grabs and releases from a
ceiling. Collisionless solutions to the model equations can be found by pasting
together a concave-up circular arc from the simple pendulum and a concave-
down parabolic free-flight (Fig. 2). This model has many energy-cost-free mo-
tions. One way of parameterizing these solutions is in terms of the initial

condition (A(0)) at the straight down vertical starting position 6(0) = 0.

First consider continuous contact gaits. For any initial #(0) < 2\/g/l the
pendulum motion will come to a stop at some height at which point a new
pendulum arc with a new handhold can be started. This new arc will obtain
the same A(0) at the bottom (# = 0) of the next arc thus making up one “step”
of a continuous contact gait.

For ricochetal motions, there is a family of solutions for each #(0) that can be
parameterized by the release angle, 6., assuming there is enough energy to

attain that angle (e.g. 0 < 6, < arccos(1 — l¢9('0)2/29)).

In the more complex models below, we will similarly parameterize candidate
solutions by the state of the system in a symmetry position and, for ricochetal
motions, also by a hand-release condition.
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Fig. 2. Solutions of the point-mass model of Fig. 1. Pasting circular swing and
parabolic free-flight solutions together will obtain collisionless motions. Solutions
(a) and (b) are from Bertram et al. (1999). Figure (c) shows a ricochetal solution for
this model which is descriptive of some motions seen in actual gibbon brachiation.
Note that 6, > 7/2 for motions with a backwards flight phase.
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Fig. 3. The single rigid-body model extension of the point-mass model: a rigid body
suspended from a massless arm. A right circular cylinder was used to model the
single rigid-body which represents the gibbon’s combined torso and legs. Parameters
are chosen from Preuschoft and Demes (1984) (see appendix B).

5 Rigid-Body Model

We proceed with a sequence of successively more complex models. First we
replace the point mass (above) with a rigid body (Fig. 3). The model consists



of a single rigid body (torso, legs, and swing arm) with a non-zero value
for its moment of inertia about its center of mass. The mass and geometry
parameters used for this model are listed in the caption for Fig. 3 and are
taken from Preuschoft and Demes (1984) and discussed in appendix B. In the
swing phase a frictionless hinge at one end of the rigid body (the shoulder),
connects to the massless rigid arm. In the flight phase, we still use a massless
controlled arm. The hand end of the arm grabs the ceiling when it makes
contact and lets go when one or another grab/release criteria is met.

For continuous contact motions, the massless arms provide a constraint at all
times; one circular shoulder arc connects to the next. For ricochetal motions,
the arm constraint is released at 6 (t) = 6, at the start of flight and reinstated
when the distance from the shoulder to the ceiling (in the direction normal to
the shoulder velocity) is again equal to the arm length.

Because we have never found asymmetric periodic-collisionless-solutions (for
any locomotion model) we only seek solutions that are symmetric about the
mid-swing configuration. Thus, we define our initial configuration (at ¢ = 0)
to have all the links hanging vertical (either straight down or up, as explained
further in appendix C.1). Candidate solutions are parameterized by 6, and 6,
at the assumed symmetric initial condition (6, is also part of the parameter-
ization for ricochetal gaits).

We want those values of ;(0) and 65(0) which result in a collisionless periodic
motion. Taking an initial guess at those two values and integrating forward
in time, we cease integration when 6, =0 (when the support arm is instanta-
neously at rest). If, at this moment, the orientation of the body is vertical (i.e.
0y = 0), then the two initial angular velocities are the ones that we desire. This
fragment of motion is part of a periodic and collisionless motion because the
equations of motion are time-reversible. The motion is periodic since if we be-
gin with those two special values of angular velocity and integrate backwards
in time (running time backwards necessarily reverses the signs of the angular
velocity), we will obtain the reflected end state when 0, = 0. Combining the
original and reflected pieces gives a complete swing. Since our complete swing
begins and ends with 6; = 0, this periodic motion is also collisionless because
the time-reversal of the release action (the collision) involves no velocity dis-
continuities (i.e. since releasing a handhold has no collision, reversing that
motion in time results in a collisionless grabbing onto a handhold).

Unlike the situation for the point-mass model, finding these solutions, if they
exist, can be a slight challenge. A counting argument suggests the the plausi-
bility of finding solutions. We assume that the mass and geometry properties
are given and fixed. To find zero-cost periodic continuous-contact solutions
we have two parameters to vary (61(0), 6(0)) and only one condition to meet
(f; = 0 when 6; = 0), so we expect to find (and do find) a one parameter



family of solutions (2 — 1 = 1) (see Table 9). That is, for each 6;(0) that
is not too large we can find a 92(0) so that #; = 0 when 6; reaches zero.
Numerical integration of the governing differential equations with the state
evaluated when 6; = 0 gives us the function whose roots we seek (i.e. we solve
fy(when 6; = 0) = F(61(0),60,(0)) = 0 where F is evaluated using numeri-
cal integration). Appendix A describes the details of the numerical methods.
There are many families of solutions having various numbers of swings before
the check for §; = 0. A simple solution is shown in Fig. 4a.

For ricochetal solutions, we parameterize candidate solutions by 6;(0), 92(0),
and 6,.. Using some initial conditions, we integrate forward in time, first
using the double-pendulum equations of motion and then, following release,
the free-flight equations. When the shoulder reaches a relative maximum in
height (Yshoutder = 0) we then seek a symmetric solution (with 65 = 0). Since
we can vary three initial conditions and are trying to satisfy one condition,
we expect to find a two-parameter family of solutions. And, again, it turns
out that there are many branches of solutions, some incredibly complex. Two
of the collisionless ricochetal motions found are shown in Fig. 4(b,c). Of the
many collision-free motions the simpler ones (fewer back and forth swings
between handholds, no over-the-top swings, no mid-flight flips) appear to be
more gibbon-like when animated.

6 Two-Link Model

The two-link-model consists of two rigid bodies hinged together with a pin
joint, a crude approximation of the two arms of a gibbon. The torso, head,
and legs are modeled as a heavy point mass located at the hinge between
the two arms. Adding a point mass at the hinge is dynamically identical to a
modification of the mass distributions of the two links. This model accurately
represents the two-link robotic brachiator of Fukuda et al. (1991) after the
removal of all their motor torques at the central hinge.

A counting argument for the continuous-contact gaits(see appendix C.2) now
predicts only isolated initial conditions leading to periodic zero-collision so-
lutions for a given set of physical parameters. Our numerical searches find
many such isolated solutions with varying complexity; we suspect there are
an infinite number of these solutions because of the chaotic nature of a double
pendulum.

A gibbon-like continuous contact motion is depicted in Fig. 6, and begins
with both hands on the ceiling and the whole system motionless. Another
gibbon-like continuous-contact motion is depicted in Fig. 7. A somewhat wild
non-gibbon-like solution is shown in Fig. 8.
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Fig. 4. (a)A continuous-contact motion of the rigid body model. (b)A ricochetal
motion of the single rigid body model with a massless arm. Note that the body leads
with its feet when approaching the next handhold. (¢) Another ricochetal motion.
Note that the body leads with its head when approaching the next handhold. The
images in (a) are equally spaced in time. The images in (b) and (c) use different time
spacings for the swing phase and flight phase so the symmetry, catch, and release
p081t10ns would be clear. The initial conditions used are: a) 6;=02=0, 91 =951,
0y = -8.94693865402 s~1. b) 01=05=0, 0; = 12 571, 6 = -9.993972628 s~'. This
motion releases it’s hold on the ceiling when 6; = 77/4. c¢) The initial conditions
for (c) are: 61=05 = 0, 0, = 1/10 s74 0y = 17.45530093 s~1. This motion releases
the ceiling when 6; = 57/18. The large number of digits given is to indicate the
accuracy of the numerics and so that the results can be checked.
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Fig. 5. This is a depiction of the two-link model of a brachiator. The parameters
for this model are given in appendix B. Note that the two links have identical pa-
rameters as measured from the central hinge at the “shoulder”. The torso has been
shrunk to a point mass, placed at the central hinge between the two arms, and
divided evenly between the two arms for the purpose of calculating the arm’s pa-
rameters, hence the location of the center of mass is close to the shoulder (p/l =~ 0.1).
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Fig. 6. A gibbon-like continuous contact motion of the two-link model. The initial
conditions are: #; = 0, 6 = 0, 6; = 1.5505189108055s 1, f = 11.733043896405s "
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Fig. 7. Another gibbon-like continuous contact motion for the same two-link
model. This motion’s initial conditions are: 61=0, #=0, 61 = 3.560582315550s 1,
6y = 10.19595757383s !

For ricochetal gaits with a fixed release angle we also expect only isolated
solutions, and many of them. If we allow the release angle to be adjusted we
expect many single parameter families of solutions (see 9), only the simplest
of which resemble gibbon-like brachiation.

7 Three-Link Model

In the previous model the ape body (torso) was represented by a point mass
at the shoulder, here it is extended into a third finite link. This three-link
model again has two identical arms (see appendix B for parameters).

10
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Fig. 8. A more complicated continuous contact motion. Initial conditions are: 01=0,
02=0, 6; = —6.533304299333s~ 1, 6, = 15.24050128207s !

By symmetry and counting arguments similar to those for the previous models
we expect isolated continuous contact solutions and a continuous family of
ricochetal solutions parameterized by the release angle 6,.; of the swing arm
(see 9).

For this more complex model, it is somewhat more difficult to find the desired
energy-free motions (root finding procedures fail or lead to odd solutions). So
we started with a solution to the two-link model, replacing the point mass
with a rigid body with center of mass at the shoulder (which does not change
the dynamics at all). Then we repeatedly sought and found solutions with the
torso center of mass moved progressively farther from the shoulder (Borzova
and Hurmuzlu, 2004) (see appendix A for more details). We then slowly moved
the connection hinge away from the center of mass, finding periodic zero-
energy solutions with each new parameter set.

We also use this model to illustrate the nature of dissipation-free collisions.
Fig. 11 shows the hand positions relative to the next handhold. When the
hand reaches the ceiling the slopes of both the horizontal and vertical position
curves are zero, indicating that the instantaneous velocity of the hand is zero.

Fig.10 shows one ricochetal periodic collisionless motion for this model.

8 Five-Link Model

Our most complex brachiation simulation is a five-link model. The five links
are made up of two forearms, two upper arms, and a torso. This is equivalent

11
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Fig. 9. Three-link model consisting of two arms and a body. Parameter values are
given in appendix B.

Fig. 10. A Ricochetal Motion for the three-link model: Initial conditions for this
motion are: 0;=0, 6,=0, §3=0, 6; = 9.991543419533s7 %, O, = 3.500844111575s 2,
03 = —6.919968841782s 1. The model releases the ceiling when 61 = 0, = 20°.
This motion is further described by the plot in Figure 11.

to unlocking the elbows of the three-link model.

The parameters used are described in appendix B. The root finding method
used to find the motion in Fig. 14 is described in appendix A.

The counting argument that suggests the existence of symmetric motions in
the five-link model is similar to the one given for the three link model. Starting
at the symmetric hanging position, we have 6 parameters to vary (5 initial
angular rates and the angle of the supporting link at release, 6,.;). Evaluating
the state at a candidate mid-flight condition (when the vertical component of
the shoulder velocity is zero) there are 5 symmetry conditions to check (o = a,
B=08d&=d =7, and 65 = 0) (see Fig. 13). Thus we expect to find a one
parameter family of solutions (6 — 5 = 1) (see Table 9).

12
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Fig. 11. Vertical and horizontal distance of the swing hand from its impending
handhold versus time for the motion in Fig. 10. Note that the slopes of both the
horizontal and vertical component are zero, &hand=Yrand=0 m/s, when the hand
collides with the ceiling.

For 0,, = 22.3° we found two different collisionless periodic solutions,
one of which was gibbon-like. See appendix A for a description of the
root-finding method. A video of the gibbon-like solution can be seen at:
http://ruina.tam.cornell.edu/research.

9 Discussion

The simple brachiation models discussed in this paper attain forward locomo-
tion at zero energy cost and those motions are reminiscent of actual gibbon
brachiation.

We have constructed several counting arguments which suggest the existence
of the symmetric motions for which we searched. These counting arguments
are not rigorous existence proofs but instead are useful for explaining our
results and for predicting results for models that were not tested.

All of the collisionless motions that we showed were symmetric. We searched
for symmetric motions which, if found, were guaranteed to be collisionless. For
the special case of the two-link model, we proved that all of the collisionless
motions must be symmetric (see appendix C.2). However, we do not know if
all collisionless motions of all symmetric models are symmeteric.

The passive-dynamic walking models studied by McGeer (1990) and others
can have periodic motions which are asymptotically stable. Energy flows into
the model through gravity as the model walks down the ramp, and energy is

13



Fig. 12. Five-link model consisting of two forearms, two upperarms, and a body.
Parameter values are given in appendix B.

0.=0 | | symmetry checked at
yghoulder = 0

Fig. 13. Criteria for collisionless ricochetal motions for the five link model. The
position on the left shows the input state for the map used to find the motion.
The position on the right shows the output from the map which would result in a
periodic collisionless motion.

14
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Fig. 14. Snapshots of a periodic collisionless ricochetal motion of the five-link model.
Note that the motion begins on the left side of the figures with the models halfway
through the swing portion of the gait and ends on the right side of the figures
with a) the model halfway through the free flight portion of the ricochetal gait
and b) the model just finishing the free flight portion and just grabbing on to
the next handhold. The state of the system at mid-swing for this motions is:
0h =0 =035 =0,=10;=0 01= 13.696793227 5! fo= -2.4791517485 s~ f3=

7.9261511913 s~ 4= -1.7030280005 s~ f5= -5.6362892519 s~! with 6, = 22.3°.

lost in collisions at the feet and knees. Just because energy flows in and out of
the system does not, in general, imply stability, but for some walking models
things work out so that some of the periodic motions are asymptotically stable.

In contrast, the collisionless periodic motions that we have given in this paper
are not asymptotically stable. If one perturbs the motion slightly, then the
total amount of energy in the system will either increase or decrease. There
is no way for any of the models to add energy to the system so perturbations
that decrease the system energy can not be corrected and therefore the original
periodic motion cannot be regained. If the perturbation increases the systems
energy then it may be possible for a plastic collision between the swing hand
and the ceiling to decrease the system’s total energy, returning the system to
the correct amount for the periodic motion. Of course, simply returning the
system’s energy to the correct amount is not all that is necessary for regaining
the periodic motion since there are an infinite number of non-periodic motions
with the same total system energy. Thus, the best that one could hope for, in
term of stability, for these collisionless periodic motions are that they are one-
sided stable, like the hopping motions of Chatterjee et al. (2002). The motions
could also be unstable. However, it remains for future work to examine the
stability of the collisionless brachiation motions.

A limited mass and length parameter study was done for the two-link brachi-
ation model. Not shown in this paper are solutions found with different pa-
rameters than those described in the appendix. Not all of the parameters sets
that we tested with this model admitted gibbon-like collisionless motions (see

15



Continuous Contact Ricochetal
Point Mass free variables: | 6 (1) 0, 01 (2)
conditions: n/a (0) n/a (0)
solutions: 1—0 =1 par. family | 2 — 0 = 2 par. family
Rigid Body free variables: 0y, 05 (2) 01, O3, 0,0 (3)
section: (at 0, = 0) (at Yshoulder = 0)
conditions: 6, =0 (1) 6, =0 (1)
solutions: 2—1=1 par. family | 3 — 1 = 2 par. family
Two Link  free variables: | 61, 03 (2) 01, 02, Ore; (3)
section: (at 0, = 0) (at Yshoulder = 0)
conditions: 92 =0, 9_1 =m— 0o,
Oy =m— 061 (2) 01 =62 (2)
solutions: 2—-2=0= isolated | 3—2 =1 par. family*
Three Link free variables: | 61, 6o, 65 (3) 01, 09, O3, O, (4)
section: (at 0, = 0) (at Yshoulder = 0)
conditions: 0y = 0, 01 =m — 0,
f3 =0, 01 = 0y,
92:7'('*91(3) 93:0(2)
solutions: 3—3=0= isolated* | 4 — 3 = 1 par. family
Five Link free variables: 91, 92, 93, 94, 95 (5) 91, 92, 93, 94, 95, arel (6)
section: (at 05 = 0) (at Yshoulder = 0)
conditions: 01 =7 — Oy, 01 =7 — Oy,
92:7'('—93, 92:7'['—(93,
6 — b b — 0,
A b, — i,
yhand =0 (5) 95 =0 (5)
solutions: 5—5=0= isolated* | 6 — 5 = 1 par. family
Table 1

Counting arguments for predicting the existence of symmetric solutions for several
brachiation models. We assume symmetric motions for all models. For each model
the free variables in the integration for a given set of mass and length parameters
are listed with the total number of them in parentheses. the “section” is the state
at which symmetry is checked. The “conditions” are the restrictions, at the section,
that determine symmetry. The predicted dimension of the solution space is deter-
mined by subtracting the number of conditions from the number of free variables.
The free parameters are given with 6; = 0. The solutions families that are marked
(“*”) were not simulated and the counting argument is given as a prediction. Note
that once the model has dispensed with the massless arm (top two cases), a pattern
can be seen with isolated continuous contact solutions and single parameter families
of ricochetal solutions.

Gomes (2005)). It would be more comforting to have a model which exhibits
the same behavior for a wide range of system parameters. However, given the
approximate nature of our model as a gibbon, it is pleasing to find motions
similar to brachiation for parameters which can be argued as reasonably close
to actual gibbons. For example, Coleman (1998) 3D passive walker walks sta-
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bly, but its mass distribution is completely non-anthropomorphic with the
center of mass of each leg located down near the feet and laterally away from
leg.

In a more general sense, these gibbon models support the following claim.

If a motion seems intuitively plausible and is consistent with basic momen-
tum and energy considerations, a solution to the dynamics equations with
that motion exists.

In this research by “motion” we mean a periodic solutions that is somewhat
life-like in appearance. This is not a theorem, or even the basis of a candidate
theorem. But has been the rule, rather than the exception for a host of passive-
dynamic walking and brachiating models, and we expect this observation to
hold for fully actuated models as well. The counting arguments buttress the
concept; if finding solutions is equivalent to solving n equations for n or less
conditions it is reasonable to hope to find solutions. But there are, of course
exceptions. Not all mass and geometry parameters admit life-like collisionless
motions.

The claims in this paper are two-fold, mathematical and relevant for explaining
animal motion.

1) Our mathematical claim is that the governing equations of rigid-body me-
chanics have gibbon-like solutions with (mathematically) zero energy cost. One
may distrust a numerical answer to an essentially mathematical question. So in
our numerics we have taken care with convergence, event detection, and root
finding and thus we believe that our solutions correspond to proper mathe-
matical solutions. We have presented parameters and initial conditions with
many digits so others can check this claim with their own numerics.

2) The motions found are also reminiscent of the motions of real gibbons. The
zero-energy-cost solutions that solve the governing equations for the models,
particularly the solutions of the 5-link model, are somehow beautiful (as seen
in the video at http://ruina.tam.cornell.edu/research). Thus some version or
other of the following class of vague hypotheses is supported: animals make
use of natural dynamics, animals minimize muscle use, or animals minimize
muscular work.
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A Numerical Methods

The equations of motion for the three and five link models were too lengthy to
generate explicitly. In our implementation, the set of state derivatives were nu-
merically calculated at each step of the integration. The method of assembling
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the equations of motion is described in (Gomes, 2005).

We numerically integrated our equations of motion using an explicit, constant
step-size, fourth-order, Runge-Kutta integration routine. We used a change-of-
variables method, developed by Henon (1982), to find the exact time of events
(e.g. when the ceiling release angle was reached, when the vertical component
of the shoulder’s velocity equals zero, or when the angular velocity of one of
the links equals zero).

Using the map constructed above, we conduct a search in the initial condition
space for roots. This search was done using a Newton-Raphson root-finding
algorithm. For this rootfinding method to converge, an initial guess (for the
initial conditions) must be sufficiently close to the actual root. For simple
models, like the rigid-body model, intuition in making those guesses was suf-
ficient. For the two-link model, we chose to investigate the range of possible
solutions, including ones that we would not initially guess were there. To sat-
isfy our desire for thoroughness, we chose a brute force method to search the
two-dimensional initial condition space consisting of two variables, an energy
and initial phase angle, ¢ = atan2(91, 92) We limited our search space to lower
energies and 0 < ¢ < 7. This bounded initial condition space was then grid-
ded and the rootfinding was conducted using each point on the grid. All of
the initial conditions listed in the paper reflect convergence tests that estimate
the shown number of significant figures.

For the three and five link models, we started our search using roots found for a
simpler model. For the three link model, we began with one of the collisionless
continuous-contact motions of the two link model. We then allowed it to release
the ceiling to find a ricochetal motion. To move from the two link model to the
three link model and maintain the desired two-link model motion, we needed
to add a degree of freedom in a smooth manner. We did this by changing
the point mass located at the shoulder which represents the torso and legs
into a rigid body. By attaching this rigid body by a frictionless hinge at its
center of mass to the system, we have uncoupled its rotational dynamics from
the rest of the system. Then moved the connection point, in a series of steps,
from the center of mass to the end of the torso link. Repeated rootfinding
during this process allowed us to track the motion to the three-link model. The
motion for the five-link model was found by a similar process. Here, instead of
adding a link, we broke two of the arm links in half. This was done by slowly
unlocking the elbow joints. We assigned an inertia to the amount of bend in
the two elbows and then progressively diminished this inertia from an infinite
value to zero. At infinite relative-rotation inertia, the model is equivalent to
the three-link model. At zero relative-rotation inertia the model is equivalent
to the five-link model. The value of this inertia was then lowered to zero
resulting in no rotational coupling at the joints. Although, we at first believed
that we had successfully tracked the motion, upon closer examination, we
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found that the path curved abruptly and our solutions jumped off of the path
onto another path that led to the gibbon-like motion shown. We later, more
carefully, followed the original path to find that it ends in a non gibbon-like
motion of the five-link system, shown in Gomes (2005).

B Parameters

All of the parameters in the models we considered are based on values from the
literature with some modifications (Preuschoft and Demes, 1984; Swartz, 1989;
Schultz, May 1933; Erikson, 1962; Schultz, September 1933). Those values are,
in turn, derived from gibbon cadaver studies and then approximated to be
cylinders in order to calculate their masses and moments of inertia. There is
some debate in the literature on what parameters to use; for example, Swartz
(1989) disagrees with the parameters given by in Preuschoft and Demes (1984)
for a single rigid body model in continuous contact brachiation. Fig. B.1 shows
a pictogram of the parameters of the gibbon that we used in the simulations.

Since we could find no complete set of mass and geometry parameters for
an “average gibbon” in the existing literature on gibbon biomechanics, we
mixed much of the existing data (Schultz (May 1933); Swartz (1989); Schultz
(September 1933); Napier and Napier (1967); Preuschoft and Demes (1984))
together, made some measurements from Erikson’s x-ray images Erikson
(1962), and some educated guesses to come up with the numbers given in
Figure B.1. For all of the models with a torso modeled as a rigid body, we
compressed the legs and feet into a point mass placed at the bottom of the
torso link.

B.1 Rigid-Body model parameters

[ = 0.55m, m = 5.07kg, p = 0.30m, g = 9.81m/s?. The body cylinder is 0.60
meters long (lpoq) with a diameter of 0.25 meters (2r,,4) and is attached to
the arm with a frictionless hinge on the top circular plate of the cylinder. The
cylinder’s moment of inertia about its center of mass is calculated as follows:
L = 15m(3rdy + 12,y) ~ 0.172kg - m?. Unless indicated, the numbers are
exactly those used in the simulation (i.e. the moment of inertia is a derived
quantity, calculated in the simulation using the exact values of m, ry,q, and
lboa given above). We don’t use Preuschoft and Demes (1984) support arm
parameters. Instead, since a gibbon’s arms are a small percentage of their
total body weight, we assume that the supporting arm is massless.
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foot

Fig. B.1. Cylindrical Body Segment Gibbon for Visualizing Parameters. The density
used for all cylinders was 1000 kg/m?>.

B.2  Two-Link parameters

The parameters for the two link model are easily derived from the model
depicted in Fig. B.1. The hand, forearm, and upper arm cylinders are kept
in a straight line and glued to each other so that no relative motion between
links is possible. The torso, 2 thighs, 2 shanks, and 2 feet cylinders are all
compressed upward toward the shoulder into a point mass located at the
shoulder pin joint. If the point mass at the shoulder is split in half and half is
stuck onto the end of one arm link and the other half stuck to the other arm
link then model has the following dimensional parameters: [ = 0.610 000 000
000 000 m, m = 3.083 276 839 957 533 kg, p = 6.376 870 661 657 008 x 102
m, I, = 5.386 568 898 408 416 x 1072 m%kg, g = 9.810 000 000 000 000 m/s>.
Note that three of the above values (m, p, I.,,,) are derived quantities, and are
calculated based on the exact cylindrical values (given in Fig. B.1) using the

22



body part length(m) radius(m) volume(m?) mass(kg) Iem (kg - m?)

(exact) (exact) (approximate) (approximate) (approximate)
hand 0.11 0.01 0.3456 x 10~*  0.03456 0.0357 x 1073
forearm 0.26 0.02 3.267 x 107*  0.3267 1.873 x 1073
upperarm (.24 0.025 4.712 x 107 0.4712 2.334 x 1073
torso 0.27 0.065 35.84 x 107*  3.584 25.56 x 1073
thigh 0.20 0.02 2.513 x 1074 0.2513 0.8629 x 103
2 thighs 0.20 — —  0.5027 1.726 x 1073
shank 0.17 0.0175 1.636 x 107*  0.1636 0.4064 x 1073
2 shanks  0.17 — —  0.3271 0.8128 x 1073
foot 0.14 0.01 0.456 x 10~*  0.04398 0.0729 x 1073
2 feet 0.14 — — 0.08796 0.1458 x 1073

Table B.1

Approximate model parameter values for each of the cylindrical body segments
shown in Figure B.1. Note that for the thighs, shanks, feet, we merge the two
cylinders into a single rigid body. I, = m/12(3r? +12) is the moment of inertia of
the body part about its center of mass. The center of mass is located in the middle
of each cylindrical body segment.

parallel axis theorem. The large number of significant figures is given so that
one can more easily check our results; since we give our periodic motions with
a high degree of accuracy, one needs parameter values with similar accuracy to
replicate the simulations. The parameter values are also given as a reference
so that the intermediate calculation of the simulation parameters can also be
checked.

The arm mass is approximately 0.833 kg and the total mass of the gibbon is
approximately 6.17 kg (close to the average total mass of a Hylobate given by
Napier and Napier Napier and Napier (1967)). These masses result in an arm
to total mass ratio of about 13.5%, which is very close to the 12.5% given by
Preushoft and Demes in Preuschoft and Demes (1984).

B.3  Three-Link Model

The lower limbs are more difficult to accurately represent in these models
because assumptions must be made as to the posture of the legs and whether
to keep the posture fixed while moving. Most gibbons ricochetally brachiate
with their legs tucked up underneath their body but use different postures
for the continuous contact gait. There are some who believe that the gibbon
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raises and lowers their legs to “pump” energy into the movement Fleagle
(1974). Active pumping of the lower limbs will have an effect on the dynamics
of the system. Thus reducing the legs and torso to a single rigid body appears
to be a cruder approximation than reducing each arm to a single rigid body.

For the present work we assume the legs are tucked up under the body and
model that assumption by shrinking both thighs, both shanks, and both feet
into a point mass on the bottom of the torso. We could have also keep the
legs as cylinders and locked the hip joints, knee joints, and ankle joints in the
tucked up position but we did not choose that option.

The arm link is constructed from the body parts shown in Figure B.1 by
locking the elbow and wrist joints so that the upperarm, forearm, and hand
is in a straight line. The body link consists of the torso with the 2 thighs, 2
shanks, and 2 feet compressed to a single point mass and glued to the bottom of
the torso cylinder. The center of mass locations are given as distances from the
central shoulder hinge. This results in the following dimensional parameters
used in the three link model. p, = 2.361 698 113 207 547 x 10~ 'm, Lojem =
1.996 877 403 975 391 x10~2m?kg, I, = 6.100 000 000 000 000 x 10~ m, m, =
8.325 220 532 012 952 x10~'kg, p, = 1.625 228 997 644 596 x10~'m, I/, =
3.887 260 478 522 196 x10~2m?*kg, I, = 2.700 000 000 000 000 x10~'m, m; =
4.501 509 573 512 475 kg, g = 9.810 000 000 000 000 m/s>.

B./  Fwe-Link Model

The parameters for the five link model are a simple extension of those used
in the three link model. In the five link model the arm links both have an
“elbow” pin joint between the upperarm and the forearm. The forearm and
the hand are still locked together with no relative rotation allowed between
those links.

The forearm link is constructed from the body parts shown in Figure B.1 by
locking the wrist joint so that the forearm and hand is in a straight line. The
body link consists of the torso with the 2 thighs, 2 shanks, and 2 feet com-
pressed to a single point mass and glued to the bottom of the torso cylinder.
The center of mass locations for the torso and upperarms are given as dis-
tances from the central shoulder hinge along the given rigid body. The center
of mass location for the forearm is measured from the elbow joint. m; = 3.612
831 551 628 263 x10~ kg, I, = 3.700 000 000 000 000 x 10~ m, p; = 1.476 956
521 739 130 x10~ m, If/em = 2.978 536 710 015 953 x10~*m?kg, m, = 4.712
388 980 384 690 x10~'kg, I, = 2.400 000 000 000 000 x10~'m, p, = 1.200
000 000 000 000 x10~'m, Iy/em = 2.335 577 788 403 162 x10~*m?kg, m,; =
4.501 509 573 512 475 kg, I; = 2.700 000 000 000 000 x10~'m, p; = 1.625 228
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Other valid symmetry positions
0 Ceiling

We only search for motions passing through THIS position

Fig. C.1. Possible central symmetry positions

997 644 596 x10~'m, I;/em = 3.887 260 478 522 196 x10~?m?*kg, g = 9.810
000 000 000 000 m/s%.

C Two-Link Model Details

C.1 Restrictions on the search space

The collisionless periodic motions of the two-link model we sought require
that the “swing hand” have zero velocity at ceiling height. We enforce this
criteria by requiring that both links should be at zero angular velocity when
the swing hand reaches ceiling height. This is not the only way for the zero
velocity criterion to be met. There are two sets of configurations for the system
where both links have non-zero angular velocity yet have a “swing hand” that
is instantaneously at rest. One set of configurations has ¢; = 0, = 7/2 and
91 = —92. The other set of configurations has #; = 6; + m and 91 = 92.
All other configurations require that both 6; = 0 and 6, = 0 for the “swing
hand” velocity to be equal to zero. We have ignored those solutions which
have non-zero angular velocity when the swing hand is at ceiling height.

The symmetry argument given in appendix C.2 shows that all of the motions
that we seek must have mirror image symmetries about a vertical line pass-
ing through the swing handhold. For the two-link model we have four such
candidate positions, depicted in Fig. C.1.
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Fig. C.2. (a)Tentative trajectory for system. (b)Trajectory for mirrored initial con-
ditions. (¢)The original trajectory under a time reversal. Since (b) and (¢) must be
identical, the non-symmetric solution shown is not possible.

C.2  Symmetry of solutions

We use proof by contradiction to show that collisionless motions for the two-
link model must be symmetric. First we assume that we have a non-symmetric
collisionless motion (moving right to left, shown in Figure C.2(a)), where the
end configuration matches the start configuration. Because the solutions to
the differential equations are unique, and given the spatial symmetry of the
parameters in our model, the trajectory shown in C.2(b) must also be a solu-
tion to the differential equations. Another way to see see that this must be a
solution, is that it is simply the same solution shown in (a) but observed from
the other side of the 2-D plane. If we again take the motion shown in (a) and
reverse time, the trajectory for that system would look like Fig. C.2(c) due
to the time reversibility of the differential equations (a solution where time
has been reversed is also a solution to this set of differential equations). Note
though that both of the systems pictured in Fig.C.2(b) and C.2(c) have the
same initial conditions. Again, since the solutions for initial value problems
of well-behaved (continuous and first-derivative continuous) ordinary differen-
tial equations are unique that means that the two trajectories shown in Fig.s
C.2(b) & (c) must be the same trajectory. The only way that they can be the
same trajectory is for the that trajectory to be mirror reflection symmetric
about a vertical line passing through the support-hand.

Another way to see the above argument is to look at the equations of motion for
the two-link system, eqn.(C.1)&(C.2), and make the following substitutions:
0, = —0, and Ay = —0,. The equations of motion both before and after the
substitution are identical.

0] = —(P*sin(20, — 0,) + P*0/? sin(20, — 20,)+
(2P3 + 2R*P)05 sin(fy — 01) +
(2P* — 3P? + 2PR* — 4R*)sin(6,))/ (C.1)
(P?cos(205 — 20,) — 2R* +
(—4P? + 4P — 4)R* — 2P* + 4P? — 3P?)
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0y = (P05 sin(20y — 20,)+
(2P® —4P% + 4P + 2R*P)0?sin(0y — 0,) +
(2P — P*)sin(6y — 26;) +
(2P +3P* + 2P + 2R?P)sin())/ (C.2)
(P? cos(205 — 260,) — 2R* +
(—4P? + 4P — 4)R* — 2P + 4P* — 3P?)

The above equations have been non-dimensionalized with prime(’) denot-

ing derivatives with respect to the non-dimensionalized time, 7. The non-
dimensional variables are given in the following table:

non-dimensional center of mass location P = p/I

non-dimensional radius of gyration R = \/1¢n,/mi?
non-dimensional time T=1/\/l/g

The solutions for the motions that are of interest must be symmetric about
one or the other of these four configurations (see Fig. C.1): (6, = 0,05 = 0),
(0 = 0,00 = ), (6 = w02 = 0), (0 = 7,0y = 7). In other words, the
motion of interest must be symmetric about a vertical line going through the
“pivot hand,” which was the same conclusion that was reached with the above
argument. Note that this is the only model for which we proved that solutions
must be symmetric.

C.3 Remarks on the two-link model results

Many collisionless motions were found for the two-link model since a brute
force method was used Gomes (2005). The collisionless motions found tend
to be divided into two distinct groups. One group consists of the motions in
which the system starts and finishes the motion with the “swing hand” at
the same location as the “pivot hand.” These motions have no net forward
displacement. The other, more interesting, group consists of motions in which
the “swing hand” starts and finishes the motion at two distinct points a non-
zero distance apart, allowing the system to move forward by letting go of the
ceiling with the “pivot hand” and grabbing on with the “swing hand.” One
possible explanation for why the motions found tend to divide so well into
these two groups comes from the division of the possible initial configurations
into two groups. Since both “hands” must be touching the ceiling, for a given
initial potential energy there are only two configurations which will satisfy
this requirement (¢; = m — 63, 6; = 65 + 7). Fig. C.3 shows that for a given
energy level one of the possible configurations has both “hands” in the same
location and the other does not. So for every energy level there are two groups
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ceiling

Fig. C.3. Possible initial configurations

of initial conditions, one where the two links overlap and the other where the
two links are separated by some angle.

Another way to see why we get two sets of solutions would be to form our
map equation to start with both hands on the ceiling and take our Poincare
map section to be the point where #; = 0. Then we would see that our initial
conditions could be broken up into two one-parameter families. One set would
be parameterized by the non-zero relative angle between the two links(¢)
where (0 < ¢ < 27). The other set would have a zero relative angle between
the two links, and be parametrized by the angle between the links and gravity
(0 < 6, < 2m).
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