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This thesis presents collisionless gaits for three different locomotion models, ape

brachiation, biped walking, and rimless wheel rolling. All of the models exist in

environments which allow energy dissipative collisions (which are the only way

for these models to lose energy). However, these collisions can be avoided if the

incoming foot or hand touches the support just as its velocity drops to zero. These

special collisionless gaits are numerically shown to exist for several brachiation

and walking models. These gaits allow the models to traverse a level support

indefinitely, with no energy loss. Some of the motions found for the brachiation

models look remarkable life-like. This resemblance suggests that the models and

the special collisionless gaits have captured an essence the coordination strategy

used by brachiating apes. The collisionless motions of the walking model are not

life-like, but this is the first motion found for a passive device that can indefinitely

traverse a perfectly horizontal support. A homotopy method is presented which

was used to find periodic motions in a series of brachiation models with increasing

numbers of degrees of freedom.
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Chapter 1

Motivation

Our understanding of the coordinated movements of animals is limited. For exam-
ple, it is not known if general principles exist which explain why animals, humans
included, choose certain coordination patterns over others when moving about.
There are many ways that one can study movement, the most often used methods
are direct observation and modeling (either physical or mathematical). Regard-
less of what approach one chooses to use, it is often fruitful to study movement
extremes. Examples of extreme movements in the human world occur frequently
in competitive athletics. Athletes spend large amounts of time, money, effort,
training, and sweat in pursuit of the fastest time, highest jump, most beautiful
execution, etc. In working to achieve those goals, athletes obtain not only stronger
muscles and cardiovascular systems but also spend large amounts of time and effort
improving their skill level. It is well known that “technique” (skill) is as important
as strength and endurance in competitive sport. A current textbook on exercise
physiology [68] gives a reason as to why improvements in technique are useful.

“As you become more skillful at performing an exercise your energy
demands during that exercise are reduced. You become more efficient.”
-Wilmore and Costill [68].

An example of the effects of different technique is given in Wilmore and Cos-
till [68] and summarized below. The study examines the performance of two
marathons runners who have similar aerobic fitness (as measured by V̇O2max, 64
and 65 ml · kg−1 · min−1). Although the two runners were both similarly fit, tests
revealed that one runner used significantly less oxygen than the other when both
are running at the same speed above 200 m/min. This difference in efficiency
gave a large competitive advantage to one of the runners, allowing him to finish
marathons about 13 minutes before the other. The study concluded that the dif-
ference in energy efficiency was due to a difference in skill between the two runners.
This example emphasizes one of the main goals of athletes in endurance sports,
namely, “How can I improve my coordination strategy to become more energy
efficient?”.

1
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Almost every coach and athlete has their own theories as to how one improves
efficiency in their sport. These theories may be true or have aspects which are
valid and helpful, but they have not been proven and are definitely not well-
understood. One of the conclusions of the marathon runner study given above was
that “Unfortunately, we have no explanation for the underlying causes of these
efficiency differences.” [68]

The research presented in this thesis will focus on determining the plausibility
of using the mass and inertia of one’s limbs to reduce one’s energetic cost while
locomoting. Specifically, we will search for coordination strategies that achieve
the theoretical minimum energy expenditure required for locomoting across level
ground, zero energy cost. First, other approaches to these questions must be
addressed as well as some of the assumptions that we and others must make when
trying to answer these questions.

1.1 Experimental approach/ Energy measurements

Experiments are the most direct way to investigate questions of energetic cost in
coordinated movements of animals. Several methods for measuring energy use have
been developed over the course of many years. Some definitions and background are
needed before we discuss these methods, their advantages and disadvantages. What
do we mean by energy in the context of biological organisms? What do animals
spend metabolic energy on? How is energy consumption measured? What are ways
to model energy consumption in mathematical models? The next few sections will
discuss these questions as well as some of the answer’s inherent assumptions.

1.1.1 Energy in biomechanics

On what do animals spend this metabolic energy? Some of that energy is used
to maintain body temperature (assuming that the organism’s body temperature is
not close to the environment’s, poikilotherms). Animals’ whose body temperature
is maintained to be fairly constant are homeotherms and are usually endotherms,
“whose principal source of body heat depends on high rates of metabolism” [38]).
Of course, the animal kingdom cannot be so easily pigeon-holed and many ani-
mals fall somewhere in between, either becoming inactive, torpid, or going into
hibernation or maintaining body temperature by external methods such as sun-
ning themselves. Cell maintenance also requires energy, the breaking down and
conversion of food, the transport of nutrients, waste and oxygen, fighting of infec-
tion and disease by the immune system, etc. All of these energy expenditures are
lumped together into the expression basal rate of metabolism. This expression is
usually applied to mammals and is defined as, “the minimal rate of a thermoreg-
ulating endotherm during rest when it is not digesting a meal and is not exposed
to temperatures that require an increase in metabolism.” [38]. Energy measure-
ments based on the differences between resting and active subtract out the basal
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metabolic rate. Most laboratory measurements made of animal locomotion are
done at thermoneutral temperatures and may or may not subtract out the basal
metabolic rate.

Aside from growing, maintaining body temperature (if appropriate), and re-
producing, locomotion is a major way for animals to expend energy. Depending
on the animal, locomotion could mean crawling, slithering, flapping, swimming,
undulating, burrowing, walking, hopping, galloping, or running. All forms of lo-
comotion require large repetitive muscle contractions, removal of waste products
such as lactic acid and carbon dioxide, conversion of energy stores, and the removal
of heat. For many modes of locomotion, metabolism is the main energy source.
However, like thermoregulation, where behavior (basking or seeking shade) as well
as metabolism can used to achieve a constant body temperature; locomotion can
also utilize the environment to help achieve the task of moving the organism from
place to place. For example, besides the well-known example of birds using thermal
updrafts, they have also been found to utilize wind shears and building wakes to
reduce their energetic costs while flying. This naturally leads one to examine other
mechanisms that animals may use to reduce their energy consumption when mov-
ing about. But first, we examine the various ways in which energy consumption
can be measured.

1.2 Ways to measure energy expenditure

The first law of thermodynamics (that energy is conserved for a closed system)
leads to one of the widest used, simplest, and least intrusive methods for measuring
energy consumption. The energy content of the food that a subject eats can be
measured and recorded over a period of several days. Assuming that the subject
at steady state and is not changing their body composition during the testing
(i.e. metabolizing their stores of fat and glycogen without replacement), then the
energy content of the food they eat will be well correlated to the amount of energy
that they expend in a day of normal activity 1. This method is most appropriate
for use in measuring the energy expenditure during normal daily activities and
would be impossible to use for measuring energy consumption during short bursts
of activity.

Fluctuations in body mass have also been used to estimate the rate of metabolism
in animals. Many animals fast for extended periods of time and changes in the
body mass during that time can be recorded and correlated to energy use. How-
ever, in animals as in people, the body’s response to starvation changes depending
on the length of the fast. Differing amounts of fats, glycogen, and proteins are
used to provide energy during prolonged fasting [46]. Other animals may have dif-
ferent methods for coping with relatively short fasting periods, such as petrels who

1Note however, that this is not quite a closed system since, among other things
like heat loss and water vapor loss, this method disregards the energy lost in
nitrogen-rich urine and in the feces as undigested food.[7]
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metabolize oil stored in their stomachs [38]. The dependency on knowing what
substance is being metabolized makes it difficult to use this method to provide
accurate estimations of metabolic rate.

The rest of the methods listed below are all more indirect measurements of
energy expenditure. In order to understand them we need to briefly review the
process of metabolism. The following is a simplified summary of information given
by Wilmore and Costill [68]. Ingested food is converted to simple starches, fats,
and proteins in the intestines. These are later broken down further and used to
produce adenosine triphosphate (ATP) in the mitochondria of cells. The two main
fuel sources which are used to produce ATP are fats and carbohydrates. Fats con-
tain more energy per mass than carbohydrates. Larger amount of muscular effort
will cause more carbohydrates (as opposed to fats) to be used in the generation of
ATP. ATP can be produced with processes that use oxygen (aerobic) or ones that
do not (anaerobic). Aerobic ATP production is the primary method of produc-
ing energy for endurance activities since it is much more efficient than anaerobic
ATP production. Aerobic ATP production requires oxygen and produces carbon
dioxide. The ratio of O2 required and CO2 produced differs depending on the type
of fuel used (carbohydrate or fat). The process of converting glucose and fats to
ATP is only about 40% efficient. The rest of the energy derived from the food
(60%) is transformed into heat. This short summary of the energy transformation
within the body gives some clues as to how indirect measurements can be used to
estimate the energy expenditure by the body during sustained activity.

1.2.1 Indirect Methods of Energy Measurement

One of the major byproducts of muscle use is heat. When exercising or locomoting
an animal must get rid of this heat to maintain non-lethal body temperatures. Hu-
mans get rid of this heat by conduction and convection if the ambient temperature
is lower than the surface temperature of the skin.2 Humans also get rid of excess
body heat by sweating as the water absorbs heat from the surface of the skin when
evaporating. On the other hand, animals such as birds primarily get rid of excess
body heat by panting, expelling hot moisture-rich air and replacing it with cooler
ambient air [46].

The amount of heat produced by the body during activity can be directly
measured using calorimetry. This method requires placing the test subject into
an insulated room with a way to absorb and measure the heat produced by the
subject. The time constants for this type of procedure are quite large and thus
cannot be used for measuring short periods of intense exercise. This method is not
primarily used for human studies in part due to the expense of constructing and
maintaining such a large calorimeter.

In human studies, the most widely used method for measuring energy expendi-

2Due to the relatively small temperature difference between the body and sur-
roundings, radiation plays a very small role in the dissipation of body heat.
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ture is by the measuring the amount of O2 and CO2 exchanged in the lungs. The
ratios of the two gasses exchanged differ depending on the ratio of fat and carbo-
hydrates being metabolized. The ratio of the two types of fuel and the amount of
fuel metabolized can be estimated using the two quantities being measured. This
method depends on the assumption that the gas exchange in the lungs is the same
as at the cellular level.

Doubly labeled water can be used to measure CO2 production in animals [30].
An animal is injected with heavy water (deuterium) and an isotope of oxygen
18O. The oxygen gets eliminated in two main ways, as water and as CO2. The
heavy hydrogen loss is used to figure out how much water was excreted so that
the amount of CO2 produced can be calculated. This procedure involves taking
two blood samples (before and after the time of interest) and is mostly used for
measuring energy use in the wild or for other situations where they cannot be
confined to a calorimeter.

Another method for measuring energy consumption is to measure the amount
of mechanical work done by the animal. Fundamentally, this is a measure of power
based purely on mechanics. At any point in time each muscle of an animal could
be consuming metabolic energy while doing mechanical work. One could look at
each actuator and calculate the power that it is producing by measuring its stress
and strain rate at all the points in the muscle tissue. The product of stress and
strain rate integrated over the muscles spatial dimensions will result in a value
for the mechanical power produced by the animal at that moment. The power
for all of the muscles can be integrated in time to obtain a measure of the work
done by the muscles of the animal during the desired time period. Note that
negative and positive work are often treated separately in the space integration
when determining the total amount of work done. This differing treatment of
negative a positive work is due to the fact that muscle tissue acts differently when
producing work or absorbing work. Muscles and tendons can not absorb large
amounts of mechanical work, store it, and release it later at no loss. Often, some
energy is expended to absorb the work being done on the muscle. Thus, it is a
mistake to allow work that is done on a muscle to cancel work that it does on
the environment. Therefore, mechanical work is usually defined by modifying the
integral of muscle power by changing the sign of negative work (work done on the
body by the environment) and scaling it by a factor less than one (sometimes 1/3
or 1/4) [74].

Work =

∫ T

0

(
∫

V

(σǫ̇)pos +
1

4
|(σǫ̇)neg| dV

)

dt

It is impossible to carry out power measurements to determine the stress and
strain rate values at many points in an individual muscle. Often, the muscle is
reduced to a one-dimensional telescoping member. With this assumption one can
simplify the power calculation by measuring a scalar force magnitude and linear
displacement rate (P = −T ℓ̇) for each muscle. Again, how one treats negative and
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positive mechanical power when performing a time integration to determine total
energy cost needs to be detailed in the definition of mechanical work.

For a locomoting organism or even for a moving limb, there are too many mus-
cles to instrument3. Sometimes only a few of the major muscles are of concern and
the rest are ignored in the analysis. Often, a further simplification is made where
the torques that the muscles exert around the joints in the body are measured
and the relative angular velocity of the joint are used to calculate a joint power.
Many times these torques are calculated from kinematics (and often force plate
data to reduce errors) using inverse dynamics4. At this level of simplification, the
muscles with their specific insertion and attachment points have been abstracted
away. Note that the level of torque about a joint does not directly correspond
to a specific muscle force due to overactuation and/or the presence of multi-joint
muscles (muscles which span more than a single joint). Usually, this definition of
mechanical work considers only a few joints and the rest are ignored.

Since the rigid-body models examined in this thesis will not have actuators,
they cannot produce or absorb work5. The general lack of actuators simplifies
the power calculation since the non-existent actuators do not apply forces to any
points on the limbs, or in other words, the torques about each unactuated joint is
zero. If one were to use any of the above definitions for mechanical work on such a
system for a given task, one would find that in each case the amount of mechanical
work done to complete the task would be zero.

1.3 Modeling

Each of the methods and definitions outlined above have their advantages and
limitations. One can clearly see that even in direct observation of animals, accu-
rately determining the amount of energy used to achieve the given locomotor task
can be a difficult problem, fraught with assumptions and inaccuracies. However,
determining the effects of different factors is difficult, or even impossible, when the
systems that one is observing are as complex as a biological organism. In order to
discover the dominant features involved in an activity, a simpler system with less
factors is required. Some simplification can be done in carrying out observations
and measurements, such as not conducting metabolic cost studies of burrowing go-
phers with pregnant animals in freezing temperatures. However, there is a limit to
the types of simplifications that one can make in biological studies. This brings us
to another very important and useful way to study locomotion, namely modeling.

3Determining the force at the end of tendon using instrumentation is an ex-
tremely invasive procedure

4Inverse dynamics requires a model of the animal, often a rigid body model in
addition to joint kinematics and a set of mass and geometry parameters.

5Note that actually the walking model in section 5 uses springs which one might
interpret physically as muscles which can absorb and release energy with no loss.



7

Modeling allows one to strip a complex system of the less important processes
which impede the clear understanding of a given behavior. This results in a reduced
system, or model, which hopefully contains only the essential features which affect
the activity of interest. Biomechanical models generally fall into one of two cate-
gories, physical models or mathematical models [2]. Physical models are usually
physical mock-ups of the biological systems such as Dickenson’s larger-than-life
oil-submerged fruitfly wing model [17] or using photoelastic models of bones to
explore stress patterns under loading. These models allow one to carry out ex-
periments and measurements that would not be possible with the actual animal.
Physical models can also be used to verify the results of mathematical models,
such as McGeer’s passive dynamic walkers. These physical models can be helpful
and insightful without being detailed imitations of the actual organism.

Mathematical models of locomotion often consist of sets of ordinary or partial
differential equations. These equations are derived, in part, by applying the known
laws of nature. Simplifying assumptions are an integral part of model construction
and these simplifications are at the root of the power and problems of mathematical
modeling. The essential question becomes, “What is the level of detailed required
in the model to capture the important aspects of the system to gain insight into
the research question?” If one is studying the chemical weathering of granite,
then a chemical or molecular model of the rock might be appropriate. However,
if one is interested in where a piece of rock will be two seconds after it is thrown
up into the air, then a molecular model is inappropriate and needlessly complex.
Overly complicated models, are not only unwieldy, but also impede the attempt
to gain insight into which features of the model dominate its behavior. As the
biomechanist R. McNeil Alexander states, “Very simple models are often the best
for establishing general principles ...” [2]. This research is in the same spirit.
The locomotion models that have been constructed are simple in that they model
only the rudimentary structure of the animal. The model of metabolic cost is also
extremely simple. Although these assumptions are inaccurate by definition, the
uncomplicated nature of the models allow us to make definite statements about the
system’s behavior and to hopefully establish some general principles of locomotion.

1.4 Muscle models

Since animals use muscles to move about, a model for how muscles work needs to
be incorporated into our animal model. Since we are interested in the energetic
costs of coordinated movement, our muscle model must incorporate some model
of metabolism or metabolic cost for performing muscular contractions. Several
people have created models of muscle tissue. Some of the models that one can use
to model muscle tissue are Hill’s model [25], Huxley’s model [27], Zajac’s model
[72], Zahalic’s model [71], and Cheng-Brown-Loeb’s model [13]. The accuracy of
these models in varying situations are not well known, and many of the models
(usually the Hill type models) do not include energy use. The research presented
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here side-steps the complications involved in including a biochemical measure of
metabolic cost. We approximate metabolic cost with a measure of the work being
done by the body on the environment. Since our models use no actuators or
muscles, there can not be any work done by the actuators on the system. Thus,
by our measure of metabolic cost, no metabolic energy can be expended by our
models.

1.5 Other modeling assumptions

This research uses mathematical models to study animal locomotion. In order to
construct a model we need to simplify the biological organism. Our models are
not able to reproduce or grow. They need no nourishment or oxygen to survive.
They have no cardiovascular or nervous systems. Most of the models have no
brains and the others only very simple controllers. We have removed all of the
muscles from our models so that they have no actuation. We will assume that the
large limbs of the animals are perfectly rigid bodies, not capable of deforming or
bending. This allows us to characterize their location in space using six numbers
for position and orientation. We will further constrain the motion of these limbs to
two-dimensions. This means that now only three numbers are needed to describe
the position and orientation of each body. We model the animal’s joints, such as
elbows and knees, as simple pin joints. These constraints allow an even smaller set
of numbers to be used to define the state of the system at any point in time. These
simplifications result in a set of non-linear, coupled, ordinary differential equations.
We formulate the equations in such a manner as to incorporate the constraints so
that we do not end up with a set of differential algebraic equations which is common
in biomechanical models of the type we study here. This allows us to side-step the
numerical difficulties involved when generating numerically approximate solutions
to those equations. Most of the mathematical models that are studied in this thesis,
although highly simplified models of the biological systems, are too complicated
for analytical solutions. Therefore, numerical solutions are used instead.

1.6 Numerical Integration

Numerical solutions are approximations. They do not give the the true mathemati-
cal solution to a set of differential equations. However, the approximate answer can
be arbitrarily close. Note that not all numeric approximations are mathematically
non-rigorous. Interval arithmetic (which puts strict error bounds on a solution, as
opposed to traditional error estimates) has been used by Warwick Tucker to prove
the existence of periodic motions or to prove that the strange attractor in the
Lorentz equations is not a quasiperiodic motion [65]. We do not use interval arith-
metic but instead use floating point numbers and standard numerical integration,
root-finding routines, and convergence-test estimates of error.
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1.7 Previous similar models

The models closest in spirit to the models that we will study in this thesis are the
passive dynamic walking models of Tad McGeer. They were, in part, created to
determine the minimum amount of active control necessary to produce smoothly
forward progressing bipedal walking [34]. These models are capable of gaits that
look remarkably like human walking, require no control, are energy efficient6, and
sometimes are asymptotically stable. The fact that the motions look life-like sug-
gests that some property is shared between the model and humans. This shared
property could be the lack of significant control. Although this conclusion answers
the original question concerning the minimal amount of control necessary for walk-
ing which motivated the creation of the model, it may not be the primary cause
of the similarity between the passive and actual gaits. Humans do not require
a stable passive gait to walk, since we have numerous actuators (muscles) which
can, in principle, stabilize unstable periodic gaits with minute energy expenditure.
Another characteristic of the passive gait is that it is energy efficient. There are
no torques at any of the joints in the model which would have to be created by
muscles doing work. Instead, the passive devices use the small amounts of work
done by gravity to power their gaits as they walk down shallow ramps. This energy
efficiency suggests that the reason for the similarity between the passive and actual
gaits is due to a desire of the animal to reduce its energy expenditure. This is the
central idea that is explored in chapter 2 using various models of ape brachiation.

1.8 How efficient are passive locomotion gaits?

In principle, moving an object across a level support requires no energy input.
Energy is not required to move a weight across a frictionless horizontal surface.
This lower bound was not achieved, previous to this work, for a walking model.

Although there are no torques applied at the joints, in previous passive dynamic
walking models, the device still requires a source of energy to replace the energy
lost in collisions between the feet and the floor. In a knee-jointed walker, there
are also energy dissipative collisions at the knee joint due to a knee-stop which
prevents hyper-extension of the knee. Since the device is moving at a constant
average speed, the magnitude of the work done by gravity on the system is equal
the magnitude of the energy lost in the collisions that occur during a complete
cycle. As the steepness of the ramp is decreased, Garcia et al. found that passive
dynamic gaits use less and less gravitational potential energy per unit distance
to walk [22]. As the ramp slope tends to zero, the amount of energy per unit
distance they use tends to zero, and the step length of the gait also tends to zero
[22]. The collisions that occur in the model above are the only avenue for energy

6Energy efficient means that they use a relatively small amount of energy per
unit mass per unit distance. This raises the questions of: “How small is small?”
and “What is the smallest amount of energy required?”
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dissipation. In addition, actuated models can lose energy from work being done
on the actuators by the system (eccentric muscle contractions). If all energy losses
could be avoided using a specific gait, then a model could traverse a perfectly
horizontal support without power (a perfectly efficient gait).

The most efficient gait, given our measure of energy consumption, would be
one that moves forward without dissipating any energy and thus requiring no net
work to sustain movement. McGeer’s walking models were unable to achieve this.
However McGeer’s passive running model, with a massless sprung foot [33], was
able to run across level ground with no energy input (using a symmetric gait).

How can one eliminate energy losses in a collision? Perfectly elastic collisions
conserve energy but, plastic collisions, in general, do not. The collisions which
occur in these passive locomotion models are modeled as plastic collisions, since
they two objects do not immediately separate after the collision. However, if the
contacting points on either object collide with zero relative velocity, then no energy
is lost in that plastic collision. This research aims to obtain a better understanding
of this type of gait. Is it possible to determine if a model is capable of a collision-
less gait without doing a detailed search of the model’s possible motions? Do these
collision-less motions resemble the motion of the animal it is modeling? How can
one find these motions in a given model? This work examines these questions using
several locomotion models.

1.9 Outline of Remainder of this Thesis

This section gives a brief summary of the remaining chapters of this thesis.
Chapter 2 examines a series of models of ape locomotion. Apes locomote by

brachiating, where they use their hands to grasp the overhead supports. Unlike
walking, where the legs are the supporting limbs, the arms are the supporting limbs
in brachiation. There are two distinct gaits used in brachiation, a continuous-
contact gait where a hand is on a handhold on all times, and a ricochetal gait
which has a ballistic flight phase. We present a series of models that increase
in complexity. For each of the models that we examine, we look for collision-
less periodic motions. Section 2.4 gives some of the results of the point-mass-
model of brachiation by Bertram et al.[5] and also presents a class of ricochetal
gaits which were not addressed in [5]. Section 2.5 presents a rigid body extension
of the point-mass model, and collisionless periodic motions are found for both
continuous contact and ricochetal brachiation. A two link model of an ape is used
in Section 2.6. This is the first completely passive model of a brachiator studied,
since the massless arm used in the point-mass and single-rigid-body model requires
a controller to position the massless arm when grasping a new handhold. The three
link and five link models presented in sections 2.7 and 2.8 respectively, are built
upon the two link model. Collisionless periodic ricochetal motions are found for
both of these models.

Chapter 3 discusses the parameter sets which were used in the brachiation
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models. Mass and geometry parameters that are given by Preushoft and Demes[47]
and Swartz[60] are shown to be almost identical when applied to the two-link model
introduced in section 2.6. We also show that those parameters do not give life-
like collisionless periodic motions. We summarize the data collected by Schultz,
Erikson, and Napier on gibbon limb measurements and develop a new set of mass
and geometry parameters for a gibbon.

Chapter 4 examines an extension to the rimless-wheel, a very simplified model
of bipedal working introduced by McGeer [34] and studied in depth by Coleman
[14]. Again we look for collisionless periodic motions in our extended rimless-wheel
model. This model, although not an accurate representation of people, has some
very interesting dynamic behavior and serves as a connecting model between the
Chatterjee et al. [10] collisionless hopping block model and the collisionless walking
model presented in chapter 5.

Chapter 5 examines a more anthropomorphic model of walking with two legs
and a torso. Although the motion found is not life-like, it is the first perfectly
efficient walking gait with non-vanishing step length.

Chapter 6 outlines several different forms of continuation methods used for
finding periodic motions. Two of these methods were used to help find reason-
able collisionless periodic motions in the brachiation models as they increased in
complexity.

The appendix contains an outline of the numerical procedure used to formulate
the equations of motion.



Chapter 2

Brachiation

This chapter has been submitted as a paper for the Journal of Theoretical Biology
as a joint effort with Andy L. Ruina. This chapter contains more detail than in
the paper.

2.1 Introduction

Brachiation is the hand over hand locomotion used by various primates, especially
long armed apes, to move about using their arms as their supporting limbs. In a
continuous contact brachiating gait, somewhat analogous to upside down walking,
the ape has at least one hand on a handhold at all times. In a ricochetal brachiating
gait there is a flight phase between successive handholds, something like upside
down running.

One approach to understanding such motions is through kinematics: one can
note how the body parts’ positions, velocities, and accelerations vary in time.
Due to the nature and large number of the kinematic variables used to define an
instantaneous body pose and velocity, it is difficult to use time histories of those
variables to understand how they produce a particular movement. It is an arduous
or impossible task to determine the relationship between changes in various curves
and changes in the overall movement. Trying to construct a movement by creating
curves of joint angles versus time is extremely difficult and non-intuitive. There
is no simple formula explaining how to control the joints so as to make the whole
body move in an appropriate manner. Because this control problem can be difficult
in itself, it is easy to miss more basic principles that could be operating. In this
paper we pursue the hypothesis that apes coordinate their motion in a manner that
minimizes their energy expenditure (Alexander [3]), without explicitly attempting
to match natural kinematics a priori.

The approach taken here is most closely linked to the passive-dynamic models
of human walking pioneered by McGeer [34]. He and his successors [14] [69] [15]
have built stable, energy efficient robotic walkers which consist basically of sticks
connected by hinges, with no control. These walking devices have surprisingly life-
like motions, and use only small amounts of gravitational energy, per unit distance,

12
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to walk downhill. These models certainly suggest that a large part of the human
walking control strategy is governed by the natural dynamic motions of the body.
However, these passive-dynamic walkers can only walk at non-zero speeds by using
gravitational energy to replace the energy lost in the collisions between the foot and
the ground. Passive motions which use no energy input to locomote at non-zero
speeds are sought in all of the brachiation models presented in this chapter.

2.2 Previous Brachiation Work

The comparison between ape brachiation and the swing of a pendulum goes back
at least to Tuttle’s work in 1968 [66]. Fleagle, in 1974, made the same comparison
in more detail, but he studied the kinematics of siamangs using film footage of
brachiation [19]. He was the first to use mechanics to aid in understanding contin-
uous contact brachiation and he postulated that siamangs might pump energy into
their motion by lifting their legs at the bottom of the motion (much like a child
on a swing). Since then others have compared continuous contact brachiation to
rigid body pendulums with inertia, most notably Preuschoft and Demes [47] and
Swartz [60]. Preuschoft and Demes found that the comparison between a gibbon
and a pendulum is good for long armed-apes using a slow brachiation gait (what
we call a continuous contact gait). They mentioned the ricochetal gait for a point
mass model and described it roughly using mechanics language but they did not
do a detailed dynamical examination of that gait. Swartz evaluated the mass
and geometry parameters used in the Preuschoft and Demes paper and proposes
what she believes are more realistic parameters for a continuous contact rigid body
pendulum model. She then uses this model to predict swing period and forward
speed. She also predicts realistic ape sizes based on the forces and moments that
the model must resist when moving.

Bertram et al. [5] throughly studied a point-mass model of a gibbon, looking at
the ricochetal gait as well and comparing the model results to data. They propose
that the avoidance of collisions is the determining factor for the coordination of
brachiation by gibbons. The work presented in this chapter begins with the point-
mass model of Bertram et al. [5]. Usherwood and Bertram [67] have also studied
the effect of overshooting a handhold in the point mass model of brachiation and
have concluded that gibbons do tend to overshoot the ideal collisionless path since
the consequence of undershooting the next handhold are prohibitively negative.
Usherwood and Bertram also propose, but did not investigate, a model identical
to the “rigid body with massless arm model”, to help qualitatively explain why a
gibbon’s body is not in line with it’s supporting arm for the whole swing phase of
a ricochetal gait. Yamazaki [70] studied and simulated a five-link 2-dimensional
passive brachiation model in much the same spirit as the work we present here.
His model includes a torsional spring and damper at the hip joint and the knee
joint, but it is unclear if he includes realistic collisions in his model. Since his
model includes no actuators and has dissipative dampers he cannot find periodic
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motions. Thus, he minimizes the errors between the starting and ending states,
and compares the resulting simulated motion with actual gibbon locomotion via a
set of indicies. Looking solely at continuous contact brachiation he concludes that
the the body proportions of gibbons are special in that, as a group, they give more
efficient brachiation motions than if they were significantly modified.

Some research on the control of under-actuated systems (i.e. systems with
fewer actuators than degrees of freedom) have used brachiation as an intriguing
test-bed to study the efficacy of various control algorithms. Fukuda et al. [20] have
designed and built a capable two degree-of-freedom brachiating robot with a single
actuator between the two links. The robot’s adaptive controller allows it to swing
up from the static stable equilibrium position and then brachiate on a horizontal
ladder with irregularly spaced handholds. Spong [58] developed a controller for
“Acrobot” (a theoretically identical two link, two degree-of-freedom system with
a single actuator in between the links) so that it could swing up from the stable
equilibrium position to an inverted position and balance there.

Nishimura and Funaki [43, 44] designed, simulated, and built a serial three-link
under-actuated brachiating robot with two motors, capable of brachiating under
a horizontal support. Odagaki et al. [45] developed two nonlinear controllers for
an identical serial three-link model. Saito et al. [51] has designed and built a
“realistic” three dimensional robot based closely on the body proportions of a
siamang with 12 degrees of freedom and 14 actuators. This robot can swing up
and brachiate continuously around and underneath a circular horizontal ladder of
handholds. Kajima et al. [28] have designed and built “Gorilla Robot II” a 19
link robot with 20 actuators that has successfully brachiated using two distinct
continuous contact gaits (over-hand and side-hand).

Most of the work in robotic brachiation is exclusively concerned with the con-
tinuous contact gait. However, Nakanishi and Fukuda have developed a control
algorithm for their two-link brachiator allowing their simulation to execute a “leap-
ing maneuver” or a single step of ricochetal brachiation [41]. A device capable of
executing a single, or series of, “leaping maneuver(s)” has yet to be built.

This work was originally motivated by an informal wager between Andy Ruina
and Fukuda et al. (private communication at ICRA 97), that their 2-link robot
could have energy-free motions. The approach used here is similar in spirit to
Bertram et al. ’s work [5] but with more degrees of freedom.

2.3 Modeling Approach

We approach the minimum-muscle-work hypothesis by looking for solutions with
exactly zero energy cost; the solutions we seek do not demand any joint torque at
any time. Because all known candidate muscle-use cost estimates are minimized
by zero muscle use, we need not concern ourselves with the form of the objective
(cost, energy-use) functional that we minimize. Note again that the solution search
here is more stringent than that for downhill passive dynamic walking; the motions
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we seek not only do not use muscular work but also do not decrease the system’s
gravitational potential energy either.

All of the models here use one or more perfectly rigid bodies, motion restricted
to two dimensions, frictionless hinges, no air resistance, handholds available every-
where on the “ceiling”, plastic collisions between hand and handhold, and workless
grasp and release of handholds. Most of these modeling assumptions have been
used either implicitly or explicitly in earlier analyses of brachiation.

The plastic collision assumption requires some clarification. When the ape’s
hand comes into contact with a handhold, it grabs on, and the interaction is
modeled as a perfectly plastic collision. Linear and angular momentum conservation
generally demand that mechanical energy be lost in plastic collisions (Where the
energy goes depends on detailed non-rigid-body mechanics that do not effect the
post-collisional rigid-body motions [9]). However, if the colliding points on two
objects have the same velocity when they make contact, then no energy is lost in
that “collision” even though it is a plastic or sticking collision. Two objects can
still make contact with zero instantaneous relative velocity. The relative velocity
just has to be zero at the moment of contact, though it will not be zero before
contact is made (see Figure 2.32).

The assumption about workless grasp and release of handholds also needs more
detailed discussion. It obviously takes muscular effort to dangle underneath a chin-
up bar. Most of one’s body weight is supported by bones and ligaments, but it
takes active muscular effort to hold on to the overhead bar. The hands of apes
are specifically well adapted to grasping [53, 18], and thus we assume that simply
supporting their body weight requires negligible energy expenditure. Since the
wrists of gibbons have an extremely large range of motion, we assume that a
reasonable model of the sustained grasping of the handhold is a pin joint with no
joint friction. Initiating the grasp and release of the handhold requires very little
muscular work, and our model can enforce and release the constraint without any
work being done. The collision that results from suddenly imposing the constraint
can absorb work, but enforcing the constraint is workless.

Because our models have no joint or air friction and no muscles to absorb
energy, plastic collisions are the only possible way for the model to lose energy.
Thus, the solutions we seek don’t even have that loss. We also require that the
solutions be periodic so that one swing of the motion can be repeated forever,
allowing the model to locomote indefinitely.

2.4 Point-Mass Model

The point-mass model of Bertram et al. [5] depicted in Figure 2.1 is capable of
collisionless continuous-contact and collisionless ricochetal gaits. These solutions
can be found by pasting together an arc from the simple pendulum and a parabolic
free flight as shown in [5], and depicted here in Figure 2.2. This model has many
energy-cost-free motions, but in a control sense, they are not strictly passive as the
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Figure 2.1: Point-Mass Model reproduced from Bertram et al. [5]. This
model is capable of collisionless continuous-contact and ricochetal
motions. The torso, legs, and head of the gibbon are all concen-
trated to a single point mass. The arms, being a low proportion
of the overall body weight, are treated as massless.

massless arm is assumed to be controlled to the appropriate position for grasping
each new handhold.

Since, for given initial conditions, the solutions to the differential equations are
unique, one way of parameterizing the solutions is in terms of the initial conditions.
We define the starting configuration to be the straight down vertical position,
θ = 0. Thus, there is only one initial condition to specify, θ̇.

First consider continuous contact gaits. For any initial θ̇0 < 2
√

g/l the pen-
dulum motion will come to a stop at some height at which point a new pendulum
arc with a new handhold can be started. This new arc will obtain the same θ̇0 at
the bottom (θ = 0) of the next arc thus making up one segment of a continuous
contact gait.

For ricochetal motions, there is a family of solutions for each θ̇0 that can be
parameterized by the release angle, θrel, anywhere in the interval 0 < θrel <

cos−1(1 − lθ̇0

2
/2g).

If one allows the point mass model to grab the ceiling at any point, then any
initial angular velocity in the ranges specified above, will result in a collisionless
motion.

In the more complex models below, we will similarly parameterize solutions,
or possible solutions, by the state of the system in a symmetry position and, for
ricochetal motions, also by a hand-release angle.

We found an additional class of motions, depicted in Figure 2.2(c) and 2.3
which gibbons might use to their advantage when brachiating with closely spaced
handholds. The gait of the actual gibbon from the previous definitions in sec-
tion 2.1 would be considered a continuous contact gait (with at least one hand on
a handhold at all times). However this same gait in the point-mass model would
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circular arcs
ceiling

ceiling

(a)

(b)

(c)

parabolic arcs

Figure 2.2: Pasting circular arc and parabolic free-flight solutions together
to obtain collisionless motions. Figures (a) and (b) are from from
Bertram et al. [5]. Figure (c) shows a ricochetal solution for this
model which does not appear in [5] and is descriptive of some
motions seen in gibbon brachiation. Note that θ > π/2 when
release occurs to obtain a motion with a backwards flight phase
as shown in Figure (c).
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Figure 2.3: A cartoon sketch of the arms of a gibbon overlayed on top of the
motion shown in Figure 2.2(c). The class of motions shown in
Figure 2.2(c) consists of those ricochetal gaits of the point mass
model with a backwards moving flight phase. Note that the arm
positions are an interpretation of the results are not included
in the point-mass model itself. The cartoon shows that these
motions, unlike all other classes of motions discussed here, allow
for a finite amount of time with both hands on handholds while
transitioning.

be considered a ricochetal gait. Figure 2.2(c) depicts such a motion in the model.
The actual gibbon using this gait would have both hands on consecutive handholds
during the backwards flight portion of the ricochetal gait.

Usherwood and Bertram [67] have observed this “loop-the-loop” motion when
studying gibbon brachiation. They observe “active flexion of the trailing arm”
in a gibbon executing continuous contact brachiation. They conjecture that this
motion may reduce the energetic losses due to collisions.

There is a practical advantage for this backwards free-flight motion. There
is a very high cost associated with missing a handhold in the real world [67].
The motion depicted above allows a gibbon a large window of opportunity to
grasp the next handhold. The motion shown in Figure 2.2(c) is a completely
passive continuous contact motion where the center of mass of the “gibbon” moves
backwards to avoid collision losses when putting tension on the next handhold.

2.5 Rigid Body Model

We now extend the point mass model by replacing the point mass with a rigid
body. We still use a massless controlled arm so this model is also not strictly
passive, in a control sense. This massless arm is connected to a single rigid body
which represents a lumping together of a gibbon’s torso, legs, and swing arm. This
rigid body, unlike the point-mass body, has a non-zero value for its moment of
inertia about its center of mass. The mass and geometry parameters used for this
model are listed in the caption for Figure 2.4 and are taken from Preushoft and



19

(I    ,m)cm

θ

θ

torso and legs

massless 

shoulder jointl ceiling
1

2

gsupport arm p

Figure 2.4: The single rigid-body model extension of the point-mass model.
The rigid body is modeled as a right circular cylinder represent-
ing the gibbon’s torso and legs. The cylinder is 0.60 meters long
(lbod) with a diameter of 0.25 meters (2rbod) and is attached to
the arm with a frictionless hinge on the top circular plate of the
cylinder. The cylinder’s parameters, along with the fact that
for a cylinder Icm = 1

12
m(3r2

bod + l2bod), result in the following
dimensional parameters: l = 0.55m, m = 5.07kg, p = 0.30m,
Icm ≈ 0.172kg · m2, g = 9.81m/s2. These parameters are for the
cylindrical torso-with-swing-arm of a gibbon given by Preushoft
and Demes[47]. We don’t use Preushoft and Demes [47] support
arm parameters. Instead, since a gibbon’s arms are a small per-
centage of their total body weight, we assume that the supporting
arm is massless.
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Demes [47]. In the swing phase a frictionless hinge at one end of the rigid body
(the shoulder), connects to the massless rigid arm. The hand end of the arm grabs
the ceiling when it makes contact and lets go when one or another grab/release
criteria is met.

For continuous contact motions, the massless arm provides a constraint at all
times; one circular shoulder arc connects to the next. For ricochetal motions,
the arm constraint is released at θ1(t) = θrel at the start of flight and reinstated
when the distance from the shoulder to the ceiling (in the direction normal to the
shoulder velocity) is again equal to the arm length.

We only seek motions which are symmetric about the mid-swing configuration
for the following reason. We are guaranteed (by time reversibility and uniqueness of
solutions to ODEs) that if we can find a symmetric motion, it will be collisionless.
Note that for non-passive systems (unlike all of the models we present), symmetric
motions or even collisionless motions will most likely not conserve energy (since
energy can be absorbed in the actuators- eccentric muscle contractions). Thus we
define θ1 = 0 to be t = 0 at which time we assume that all links are hanging
straight down (or up, see appendix). Solutions are then parameterized by the
values of θ̇1(0) and θ̇2(0).

Unlike the situation for the point-mass model, finding collisionless periodic
solutions for the rigid-body model can be a slight challenge. The existence of these
special solutions is first examined using a counting argument. For the counting
argument, we assume that the mass and geometry properties are given and fixed.

The initial conditions which parameterize our solution space for continuous
contact gaits are θ̇1(0) and θ̇2(0). We pause our numerical integration when θ̇1 = 0
and calculate the state of our system. θ̇1 = 0 is special because at that moment the
massless arm can release and grab the next hand hold with no collision loss. If our
system is again in a symmetric configuration at that moment (tf ), with θ2(tf ) = 0,
then the initial conditions starting this motion are the ones we seek. These initial
conditions give a symmetric periodic collisionless motion. All motions which have
this symmetry are periodic because the equations of motion are time-reversible, so
extending the solution forward in time necessarily leads to a state identical to the
state at t = 0 and the motion can be continued ad infinitum.

Now that we have defined the conditions that we want to meet, we can discuss
the likelihood of meeting those conditions via a simple counting argument. To find
zero-cost periodic continuous-contact solutions we have two parameters to vary and
only one condition to meet, so we expect to find (and do find) a one parameter
family of solutions. That is, for each θ̇1(0) that is not too large we can find a θ̇2(0)
so that θ2 = 0 when θ̇1 reaches zero. We find these solutions by numerical root-
finding on θ2(tf ). Numerical integration of the governing differential equations
with the state evaluated when θ̇1(tf ) = 0 gives us the function whose roots we
seek (i.e. we solve θ2(when θ̇1 = 0) = F (θ̇1(0), θ̇2(0)) = 0 where F is evaluated
using numerical integration). The appendix describes more details of the numerical
integration, event detection, and the root finding.

Actually there are several (an infinite number) of branches of solutions. They
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Figure 2.5: A continuous contact motion of the rigid body model. The ini-
tial conditions which result in this motion are: θ1 = 0 rads,
θ2 = 0 rads, θ̇1 = 9 rads/sec, θ̇2 = -8.94693865402 rads/sec.
These images are equally spaced in time.

can be grouped by how many times θ̇1 has passed through zero before we take
θ̇1 = 0 as the start of a new handhold. A simple continuous-contact solution which
meets the above requirements is shown in Figure 2.5.

The conditions for determining a collisionless ricochetal brachiation gait are
related to, but different from, the conditions given above for a continuous-contact
gait. For our ricochetal solutions, we consider the release angle θrel to be fixed
in our solution search. Again parameterizing solutions by θ̇1(0) and θ̇2(0) (and
starting with θ1(0) = θ2(0) = 0) we integrate forward in time, first using the
double-pendulum equations of motion and then, following release, the free-flight
equations. When the shoulder reaches a relative maximum in height (tf determined
by our Poincaré section: ẏ(tf ) = 0) we then seek a symmetric solution (with
θ2(tf ) = 0). Again we are trying to meet one condition as a function of two
parameters so expect to find a one-parameter family of solutions. And again, it
turns out that there are many branches of solutions, some of which are incredibly
complex. If we also consider θrel to be a free parameter we have a two parameter
family of collisionless ricochetal motions, two of which are shown in Figure 2.6 and
Figure 2.7. Of the infinite number of collision-free motions the simpler ones (fewer
back and forth swings between handholds, no over-the-top swings, no mid-flight
flips) appear to be more gibbon-like when animated. Both of the models examined
which have massless arms require the massless arm to be controlled so that it is
in the correct position to grab onto the next handhold. In order to remove this
control requirement in the next brachiation model (the two-link model), we replace
the massless arm with arms that have mass and inertia.

2.6 Two-Link Model

The two-link-model consists of two rigid bodies hinged together with a pin joint,
a crude approximation of the two arms of a gibbon. The torso, head, and legs are
modeled as a heavy point mass located at the hinge between the two arms. Adding
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Figure 2.6: A ricochetal motion of the single rigid body model with a massless
arm. This motion releases it’s hold on the ceiling when θ1 = 45◦.
The initial conditions for this motion are: θ1 = 0 rads, θ2 = 0 rads,
θ̇1 = 12 rads/sec, θ̇2 = -9.993972628 rads/sec. N.B. These images
are not quite equally spaced in time. We chose to emphasize the
symmetry of the motion by using equally spaced time images to
exactly capture the end and mid points of the contact motion and
a slightly different time step for the free flight motion to capture
its symmetry point.

Figure 2.7: Another ricochetal motion of the single rigid body model. This
motion releases the ceiling when θ1 = 50◦. The initial condi-
tions are: θ1 = 0 rads, θ2 = 0 rads, θ̇1 = 1/10 rads/sec, θ̇2 =
17.45530093 rads/sec. N.B. These images are not equally spaced
in time for the same reason given in the caption of Figure 2.6.
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Figure 2.8: This is a depiction of the two-link model of a brachiator. Note
that the two links have identical parameters as measured from
the central hinge at the “shoulder”. The parameters for this
model are: l = 0.61m, m ≈ 3.083kg, p ≈ 0.0638m,
Icm ≈ 0.0539kg · m2, g = 9.81m/s2. Note that the two links
have identical parameters as measured from the central hinge
at the “shoulder”. The torso has been shrunk to a point mass,
placed at the central hinge between the two arms, and divided
evenly between the two arms for the purpose of calculating the
arm’s parameters. See chapter 3 for more detail on how these
particular parameter values were chosen.

a point mass at the hinge is dynamically identical to a modification of the mass
distributions of the two links. This model is equivalent to the two-link robotic
brachiator of Fukuda et al. [20] after the removal of all their motor torques at the
central hinge.

For this model we will only examine the continuous contact motions, but we
will look at them more thoroughly than the other models.

A continuous-contact gait counting argument now predicts only isolated initial
conditions leading to periodic zero-collision solutions for a given set of physical
parameters. Our numerical searches find many such isolated solutions with varying
complexity. We think there are an infinite number of such solutions because of the
chaotic nature of a double pendulum.

Most of the collisionless periodic motions that is model is able to achieve do not
resemble gibbon-like brachiation (Figures 2.12-2.15). However, the model is capa-
ble of two gibbon-like continuous-contact motions, shown in Figure 2.9 and 2.12.

The single motion described by Figures 2.9, 2.10, and 2.11 begins with both
hands on the ceiling and the whole system motionless. One hand releases its grasp
and the links begin to move under the pull of gravity. Halfway through the motion



24

Figure 2.9: A gibbon-like continuous contact motion of the two-link model.
The initial conditions are: θ1 = 0 rads, θ2 = 0 rads,
θ̇1=1.5505189108055 rads/sec, θ̇2=11.733043896405 rads/sec.
This motion is further described in Figures 2.10 and 2.11. This
motion is the motion labeled “A” in Figure 2.19.
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Figure 2.10: Graph of link angles for the motion depicted in Figure 2.9. Note
that at the end of the swing the swing hand must be in contact
with the ceiling. Both link angles are equal in magnitude at the
end and beginning of the cycle but are opposite in sign.
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Figure 2.11: Graph of angular velocities for each link during the motion de-
picted in Figure 2.9. Note that at the beginning and end of
the motion, the swing hand is at rest since both links have zero
angular velocities at those times. The swing hand being at rest
is the condition for a collisionless motion.
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Figure 2.12: Another gibbon-like continuous contact motion for the two-
link model. This motion’s initial conditions are: θ1=0 rads,
θ2=0 rads, θ̇1=3.560582315550 rads/sec, θ̇2=10.19595757383
rads/sec. This motion is the motion labeled “B” in Figure 2.19.

the links pass through the symmetrical position with one arm straight up and the
other straight down. The motion ends when the swing hand arrives at the ceiling
just as the swing hand’s velocity drops to zero. In this manner the model is able
to conserve energy even in the presence of plastic collisions.

To find these motions we used a brute force approach and systematically
mapped out a section of the system’s initial condition space. Each point on Fig-
ure 2.22 represents an initial condition where the system starts with θ1 = θ2 = 0
(and the two values of θ̇1 and θ̇2 as derived from the values of φ and E/Eref shown
in the plot by the position of the point) and ends with both links simultaneously at
rest some time later(θ̇1 = θ̇2 = 0). We will call these plots where the collisionless
motions are represented by points in a reduced state space, initial condition plots.
We will also refer to a modified initial condition plot which has points represent-
ing the same motions as in the corresponding initial condition plot, but uses the
distance of the swing hand from the ceiling at the moment of zero kinetic energy
in the system during the collisionless motion instead of E/Eref to represent the
collisionless motions. The initial condition plot of Figure 2.22 does not show all of
the motions satisfying the above conditions since one needs to put a limit on the
amount of time one waits for the system to reach the desired end state. Instead of
using integration time, we limit the number of sign reversals of θ̇1. For example,
Figure 2.22 contains the motions which have two reversals in the sign of θ̇1 during
half of the swing (i.e. the first and second sign change of θ̇1 are ignored and the
integration is stopped when θ̇1 = 0 for the third time). This restriction allows us to
examine only the “simpler” periodic collisionless motions. Since Figure 2.22 only
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Figure 2.13: A very slowly forward-progressing motion for the two-link
model. The initial conditions for this motion are: θ1=0 rads,
θ2=0 rads, θ̇1= -0.8161734768013 rads/sec, θ̇2=11.39054426196
rads/sec

Figure 2.14: A more complicated continuous contact motion for the two-link
model. Initial conditions are: θ1 = 0 rads, θ2 = 0 rads, θ̇1 =
-6.533304299333 rads/sec, θ̇2 = 15.24050128207 rads/sec
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Figure 2.15: A non-forward-progressing motion for the two-link model which
satisfies all of the required conditions for a periodicity and lack
of collision of the swing hand with the ceiling.. Initial conditions
for this motion are: θ1=0 rads, θ2=0 rads, θ̇1=-6.535385384989
rads/sec, θ̇2=13.52769090018 rads/sec. This motion is the mo-
tion labeled “C” in Figure 2.19.

t0 t t1 2 ...

(a) (b)

Figure 2.16: Snapshots showing one of the two small amplitude linear normal
modes for a double pendulum

describes a small set of the possible initial conditions which would result in a peri-
odic collisionless motion. Even though Figure 2.22 is incomplete, we can be fairly
confident that we have not missed any of the gibbon-like motions by disregarding
the complicated and high energy motions.

Figure 2.22 shows some of the initial conditions which result in periodic motions
where the kinetic energy of the system drops to zero at some point during the cycle.
The double pendulum is a two degree-of-freedom system which requires four initial
conditions (θ1, θ2, θ̇1, and θ̇2) to specify a state of the system and thus a particular
motion. A symmetry argument can be made, similar to the one made for the rigid-
body model, to reduce the dimension of our search space. We find collisionless
motions by doing a proxy search for symmetric motions. If we can find motions
which have a certain symmetry then by necessity (time reversibility of solutions)
they are also collisionless. For this model we can also show that all collisionless
motions have this symmetry property (see section 2.6.1). The symmetry condition
that we seek is one where the motions must pass through the state (θ1 = θ2 = 0)
and at some time later achieve (θ̇1 = θ̇2 = 0). These motions will be symmetric
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Figure 2.17: A depiction of the double pendulum’s other small amplitude
linear normal mode.

about the θ1 = θ2 = 0 configuration. Note that motions which match the above
two conditions will be collisionless motions for which the swing hand will most
likely not reach handhold but will come to rest at some point below the ceiling.
Since we want to enforce this symmetry condition we start all candidate motions
with both links straight down (i.e. θ1 = θ2 = 0). Thus, we just need to specify two
initial conditions, the two angular velocities of the two links (i.e. θ̇1 and θ̇2). The
combinations of those two variables which result in a collisionless periodic motion
are plotted as points on the initial condition plot. Instead of using the angular
velocities in the plots, we execute a simple change of variables and use instead
φ, a phase angle defined as tan(φ) = θ̇2/θ̇1, and a non-dimensionalized energy E,
where we use Eref = mg(l − p) + mg(l + p) = 2mgl to non-dimensionalize the
system’s energy. Eref is half of the largest difference in potential energy possible
for the system. This alternative set of initial condition variables allows a thorough
exploration of the initial condition space because one of the initial conditions is
bounded, i.e. −π ≤ φ < π and the other one is bounded on one side (at zero) and
we can choose the bound for the other side. Actually, for the continuous-contact
motions we seek, we can put an upper bound on the energy initial condition. Since
we are requiring that the system come to rest when we switch handholds in order
to conserve energy, there will be no solutions with an initial energy larger than
2Eref .

At low energies Figure 2.22 shows that there are only two motions which meet
the above requirements. These motions correspond to the two normal modes of
the linearized system, depicted in Figure 2.16 and 2.17. These two normal modes
do not have enough energy to get the swing hand up to the height of the next
handhold. We need to further require that the end point of the swing arm link
reach ceiling height when the kinetic energy of the system drops to zero. Each of
the motions represented in Figure 2.22 ends up at rest a measurable distance away
from the ceiling elevation. For each of those motions, we can plot φ versus the
distance of the swing hand below the ceiling height. Intersections of the curves in
Figure 2.19, 2.21, and 2.23 with a vertical line at a zero ceiling distance represent a
solution which satisfies the conditions for a periodic collisionless motion. However,
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Figure 2.18: Initial condition plot (see definition in text on page 27) for the
two-link model beginning with θ1 = θ2 = 0 and the designated
values of φ and E/Eref . These motions end when θ̇1 = 0 for
the first time, that is they have no reversals in sign of θ̇1 in the
complete motion.

even in that set of motions, about half come up to the ceiling with the swing
hand at exactly the same vertical and horizontal position as the supporting arm’s
hand. An explanation for the existence of two categories of collisionless motions is
given in appendix 2.6.4. Now, let’s consider the set of motions which do progress
horizontally. Most of those swing around many times before coming to rest at
the next handhold, like the motion shown in Figure2.14. Thus there are only a
few motions (for this model and parameter set) which give gibbon-like brachiation
behavior.

2.6.1 Symmetry

Previously in this chapter we showed how a symmetric motion of the type we
described will necessarily be collisionless. One might think that this reduces the
number of possible collisionless solutions that we will find since we can only find
symmetric ones using our proxy search. This is not true for continuous-contact
motions for this model. Here we show that all collisionless motions must be sym-
metric.

We use proof by contradiction to show that collisionless motions for this model
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Figure 2.19: Modified initial condition plot (see definition in text on page
27) for the two-link model representing the same motions as in
Figure 2.18 Here the horizontal axis of the plot uses the dis-
tance of the swing hand above the ceiling when the system is at
rest (y), instead of using the non-dimensionalized energy. The
motions that are of interest to us are the ones where the swing
hand comes to rest at ceiling height (y = 0). In this plot there
are four such intersections representing four simple periodic col-
lisionless motions. Three of these motions, labeled A, B, and C,
are shown as pictograms in Figures 2.9,2.12,2.15, respectively.
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Figure 2.20: Initial condition plot (see definition in text on page 27) for the
two-link model showing more complicated motions, i.e. ones
that have two sign reversals of θ̇1 during a single swing.
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Figure 2.21: Modified initial condition plot (see definition in text on page
27) for the two-link model representing the same motions as in
Figure 2.20. Note that the solutions that we found that have no
sign reversals of θ̇1 appear on this plot of motions that have two
sign reversals. This is due to the fact that all of these motions
are periodic so one just needs to wait until the motions that
have no sign reversals to swing back and forth in place and then
grab onto the ceiling after it has swung in place twice.
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Figure 2.22: Initial condition plot (see definition in text on page 27) for the
two-link model showing even more complicated collisionless mo-
tions, i.e ones that have four sign reversals of θ̇1 during a single
swing.
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Figure 2.23: Modified initial condition plot (see definition in text on page
27) for the two-link model representing the same motions as in
Figure 2.22. Again, note that this plot has the solutions found
for zero and two sign reversals of θ̇1. Note that one simply needs
to wait longer, due to periodicity, to turn a two reversal motion
into a four reversal motion.

ceiling

(a)

ceiling

(b)

ceiling

(c)

Figure 2.24: (a)Tentative trajectory for system. (b)Trajectory for mirrored
initial conditions. (c)The original trajectory under a time re-
versal.
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must be symmetric. First we assume that we have a non-symmetric collisionless
motion, shown in Figure 2.24(a). The motion of the system when started from the
ending position will be identical to the motion started from the beginning position
just mirrored about the support hand since energy is conserved and the kinetic
energy of the system is zero at the starting and ending configurations. Figure
2.24(b) shows the same motion with the two hands switched or, if one prefers,
the same motion as seen from the other side of the 2-D plane. When we look
again at the original system and reverse time, the trajectory for that system would
look like Fig 2.24(c) due to the time reversibility of the differential equations.
Note though that both of the systems pictured in Figure2.24(b) and 2.24(c) have
the same initial conditions. Since the solutions for initial value problems of well-
behaved (continuous and first-derivative continuous) ordinary differential equations
are unique that means that the two trajectories shown in Figures 2.24(b) & (c)
must be the same trajectory. The only way that they can be the same trajectory
is for the that trajectory to be mirror reflection symmetric about a vertical line
passing through the support-hand.

Another way to see the above argument is to look at the equations of motion
for the two-link system, eqn.(2.1)&(2.2), and make the following substitutions:
θ1 = −θ1 and θ2 = −θ2. The equations of motion both before and after the
substitution are identical.

θ′′1 = −(P 2 sin(2θ2 − θ1) + P 2θ′21 sin(2θ2 − 2θ1)+

(2P 3 + 2R2P )θ′22 sin(θ2 − θ1) +

(2P 3 − 3P 2 + 2PR2 − 4R2) sin(θ1))/ (2.1)

(P 2 cos(2θ2 − 2θ1) − 2R4 +

(−4P 2 + 4P − 4)R2 − 2P 4 + 4P 3 − 3P 2)

θ′′2 = (P 2θ′22 sin(2θ2 − 2θ1)+

(2P 3 − 4P 2 + 4P + 2R2P )θ′21 sin(θ2 − θ1) +

(2P − P 2) sin(θ2 − 2θ1) +

(2P 3 + 3P 2 + 2P + 2R2P ) sin(θ2))/ (2.2)

(P 2 cos(2θ2 − 2θ1) − 2R4 +

(−4P 2 + 4P − 4)R2 − 2P 4 + 4P 3 − 3P 2)

The above equations have been non-dimensionalized with prime(′) denoting
derivatives with respect to the non-dimensionalized time, τ . The non-dimensional
variables are given in the following table:

non-dim’l center of mass location P = p/l

non-dim’l radius of gyration R =
√

Icm/ml2

non-dim’l time τ = t/
√

l/g
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Other valid symmetry positions

Ceiling

We search for motions passing through THIS position

Figure 2.25: The four mirror-image symmetry positions for the mid-swing
configuration during a continuous-contact motion of the two-
link brachiation model.

The solutions for the motions that are of interest must be symmetric about
(θ1 = 0 and θ2 = 0), (θ1 = 0 and θ2 = π), (θ1 = π and θ2 = 0), or (θ1 = π
and θ2 = π). In other words, the motion of interest must be symmetric about a
vertical line going through the support-hand, which was the same conclusion that
was reached with the above argument. The four possible symmetry configurations
are shown in Figure 2.25. We limit our search by using just one of the four
symmetry configurations (i.e. θ1 = 0 and θ2 = 0).

2.6.2 Further restrictions on our search

Collisionless motions of the two-link model require that the swing-hand finish the
motion with zero velocity at ceiling height. We enforce this criteria by stating that
both links should be at zero angular velocity when the swing-hand reaches ceiling
height. This is not the only way for that criteria to be met. There are two sets of
configurations for the system where both links have non-zero angular velocity with
the swing-hand instantaneously at rest. One set of configurations has θ1 = θ2 and
θ̇1 = −θ̇2 6= 0. This is a “pop-through” motion, similar to the motion of a toggle
switch. The other set of configurations has θ2 = θ1 + π and θ̇1 = θ̇2 6= 0. This
configuration has the two links folded back on themselves and moving at the same
angular velocity. These two non-static configurations are ignored and our search
does not seek them out. Instead we search for configurations that have both θ̇1 = 0
and θ̇2 = 0, which result in a zero velocity of the swing-hand. Thus we further
limit our search by ignoring the two non-static ending configurations.

2.6.3 Do periodic motions exist?

Most of section 2.6 is concerned with the characteristics of periodic motions for
the two-link system without giving thought to whether such motions actually exist.
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One argument that can be made for the existence of the periodic motions is based
on the premise that when a single initial condition is changed the motion of the
system will be different. A function is defined with the two initial conditions as
the input and the output being the angular velocity of the support-arm, θ̇1, and
the distance of the swing-hand from the ceiling, a, when the swing-arm reaches
zero velocity, θ̇2 = 0. Thus it can be argued that by changing one of the two initial
conditions it is possible to “move” one of the function’s outputs to make θ̇1 = 0.
By changing both of the function’s inputs it is possible to move both outputs to
make both θ̇1 = 0 and a = 0, resulting in a periodic motion which finishes the
motion with the swing-hand at ceiling height with zero velocity. This gives no
guarantee that one can achieve the desired result. All of the relevant conservation
laws must be upheld. For example, one would be unable to find an initial condition
set which will result in a final state that has a different energy level than the state
at the initial condition. But it seems reasonable that one could obtain a solution
by changing only the two initial conditions of the system.

2.6.4 Remarks on the two-link model results

Although Figure 2.23 shows only a few of the collisionless motions that this model
can achieve, the motions found can be divided equally into two distinct groups. One
group consists of motions in which the swing-hand starts and finishes the motion at
two distinct points a non-zero distance apart, allowing the system to move forward
by letting go of the ceiling with the support-hand and grabbing on with the swing-
hand. The other group consists of the motions in which the system starts and
finishes the with the swing-hand at the same location as the support-hand. An
explanation for why the motions found tend to divide so well into these two groups
comes from the division of the possible initial configurations into two groups. Since
both hands must be touching the ceiling, for a given initial potential energy there
are only two configurations which will satisfy this requirement. Figure 2.26 shows
that for a given energy level one of the possible configurations has both hands in
the same location and the other does not. So for every energy level there are two
groups of initial conditions, one where the two links overlap and the other where
the two links are separated by some angle.

2.6.5 Nonlinear Normal Modes

The periodic motions of the double pendulum are known as nonlinear normal
modes. “What is a nonlinear normal mode?” Normal modes of a linear system
are the basic motions from which, by superposition, the general motions can be
obtained. The double pendulum model at low energies can be well-approximated
as a linear system. However, when the energy of the system becomes larger (which
is necessary for the swing hand to reach ceiling height) the linearization breaks
down and the full nonlinear model must be used. The concept of normal modes as
basis functions for general motion does not apply to a nonlinear system. However,
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ψ
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Figure 2.26: Two possible collisionless ending configurations for a given en-
ergy level with the swing-hand at ceiling height. One class of
configurations has a non-zero relative angle between the two
links (ψ 6= 0) when switching handholds. The other class of
configurations have the links folded back on themselves (ψ = 0).

the nonlinear system is capable of motions which have similar characteristics to
the normal modes of a linear system. Those similar motions are called nonlinear
normal modes. The normal modes of the linearized double pendulum model are
periodic motions where both links have a zero angular velocity at the same instant.
We used Rosenberg’s definition of nonlinear normal modes as a periodic motion
with both links achieving zero angular velocity at the same instant [50].

The number of linear modes is equal to the number of degrees of freedom for
the system, therefore there are to linear normal modes for the two link model. As
the energy of this system increases, the linear approximation becomes less and less
accurate. Based on this, a question arises. What happens to these linear modes:
do they persist or disappear? As can be seen in Figures 2.18 and 2.20, the linear
modes for this system do not disappear as the energy increases, but persist and
are joined by other newly created nonlinear normal modes.

2.6.6 Chaotic Motions

As a side note, the rigid body model and the two-link model are well-known as
a double pendulum model. The double pendulum has been studied extensively
by dynamicists and has become a canonical example of a system which exhibits
chaotic behavior. The wild chaotic motions of a double pendulum are beautiful and
mesmerizing to observe. However, this system is also capable of periodic motions
even at high energy levels, well away from the linear regime of the system.

Since the ape model that we are examining changes handholds, it might not
seem to be so closely related to the double pendulum which has a fixed “handhold”
for all time. Indeed, the ricochetal two-link model is not so closely related to the
double pendulum model. But, the continuous contact model is very similar to the
double pendulum model because the initial conditions which result in collisionless
periodic motion are identical to those which result in a nonlinear normal mode.
For further discussion of nonlinear normal modes please see appendix 2.6.5.
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2.6.7 Discussion: Two-Link Model Results

The two-link brachiation model is capable of many collisionless continuous-contact
solutions. However, only two of these motions resemble gibbon locomotion. The
existence of these collisionless motions is parameter independent. However, the
existence of gibbon-like motions is parameter dependent and this is further dis-
cussed in Chapter 3. This two link model forms the basis for finding the motions
of the three and five link models.

2.7 Three-Link Model

In the previous model the ape’s torso and legs were modeled as a point mass at the
shoulder, here it is extended into a third link with mass and non-zero moment of
inertia.. This three-link model again has two identical arms whose mass and length
parameters are based on Figure 3.8. Not that all of the joints not represented in
the three-link model are locked (i.e. elbows and wrists). The two legs (made up
of thighs, shanks, and feet) are compressed to a single point-mass located at the
bottom of the torso cylinder.

We examine this three-link model for ricochetal motions only. Given the sym-
metry properties we have assumed for these motions (that they must pass through
the state θ1 = θ2 = 0), we must specify three initial conditions θ̇1, θ̇2, and θ̇3 and
a release angle, θrel. When θ1 = θrel, the support hand releases the ceiling and
the brachiator begins the free flight portion of the ricochetal gait. We end our
integration when the vertical velocity of the shoulder reaches zero and examine
the following state variables θ1, θ2, θ3, θ̇1, and θ̇2. We want to find the correct
combination of the three initial angular velocities which will result in a motion
where (1) the two arm positions are mirror images of each other [θ1 = π − θ2], (2)
the two arms are moving with the same angular velocity [θ̇1 = θ̇2], and (3) the body
is in the vertical position [θ3 = 0]. These three criteria, depicted in Figure 2.28, all
need to be met when the vertical velocity of the shoulder goes to zero. If we can
find three initial conditions to match the three final conditions, then by symmetry
we have found the motion we desire. Figure 2.29 shows such a motion.

As the complexity of the model increases, finding periodic solutions becomes
more difficult (root finding procedures fail or lead to odd solutions). So we started
with solutions to the two-link model, replacing the point mass with a rigid body
with center of mass at the shoulder (which does not change the dynamics at all).
Then we repeatedly sought and found solutions with the torso center of mass
progressively moved farther from the shoulder [23, 6]. We then slowly moved
the connection hinge away from the center of mass, finding periodic zero-energy
solutions with each new parameter set.
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Figure 2.27: Three link model. Parameter values: la = 0.61m, pa ≈ 0.2362m,
ma ≈ 0.8325kg, Ia/cm ≈ 0.01997m2kg, lt = 0.27m, pt ≈
0.1625m, mt ≈ 4.5015kg, It/cm ≈ 0.03887m2kg, g = 9.81m/s2
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Figure 2.28: This shows the criteria for collisionless ricochetal motions in the
three link model. The appendix contains an argument as to the
reasons why satisfying these conditions will result in a periodic
collisionless motion for this model. We begin with all the links
lined up in the straight down position. In this position, there
are three initial conditions to specify. We then search for the
values of those three initial conditions which result in the system
having 1) a symmetrical arm position, 2) equal arm angular
velocities, and 3) exactly vertical torso position, at the moment
when the vertical component of the shoulder’s velocity is zero.
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Figure 2.29: A ricochetal motion for the three link model: Initial conditions
for this motion are: θ1 = θ2 = θ3 =0 rads, θ̇1 = 9.991543419533
rad/sec, θ̇2 = 3.500844111575 rad/sec, θ̇3 = -6.919968841782
rad/sec. The model releases the ceiling when θ1=20◦ (so θrel =
20◦). This motion is further described by the plots in Figure
2.30.

2.8 Five-Link Model

Our most complex brachiation simulation is a five-link model. The five links are
made up of two forearms, two upper arms, and a torso. It is exactly equivalent to
unlocking the elbows of the three-link model described previously. We used a novel
continuation method to track the three-link motion found above into the five-link
model in a continuous manner. We assigned an inertia to the amount of bend
in the two elbows and then progressively diminished this inertia from an infinite
value to zero. At infinite relative-rotation inertia, the model is equivalent to the
three-link model. At zero relative-rotation inertia the model is equivalent to the
five-link model. Although we were able to successfully use this method to find a
collisionless periodic motion, it was not gibbon-like (see Figure 6.19 in Chapter
6). The motion we show here was found using intuition and a negative rotational
coupling inertia (see Chapter 6) in jumping from path segment to path segment
and ending in this motion with zero coupling inertia.

The counting argument for the existence of symmetric motions in the five-link
model is very similar to the one given for the three link model. Assuming that
the release angle, θrel, is fixed we have five initial conditions that can be varied to
match five conditions when the vertical component of the shoulder velocity drops
to zero. These five conditions are depicted in Figure 2.35.



45

Ceiling released

All links lined up at this point

L
in

k 
A

n
g

le
 (

ra
d

ia
n

s)

π

θ1

θ2

θ3

Time (number of swings)
 0.4

 0.5

 0.6  0.8  1 0.2 0

 1

 1.5

 2

 2.5

 3

 3.5

 0

−0.5

Figure 2.30: Link angle trajectory for the collisionless periodic ricochetal mo-
tion of the three-link brachiation model depicted in Figure 2.29.
This figure shows a single complete swing starting just as the
new hand grasps the ceiling and ends when the other hand just
starts to grab the ceiling.
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Figure 2.31: Angular velocities of the three links for the motion shown in
Figure 2.29. Note the symmetries present in the contact and
free-flight portions of the complete motion. We searched for a
motion which had these mirror reflection symmetries, which in
turn enforced that the motion would be collisionless. Because of
symmetries we only needed to integrate our equations of motion
for half of the complete cycle, and the input and output of our
root-finding function (see Figure 2.28) are shown in the plot
above.
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Figure 2.32: Velocity components for the hand and shoulder of the three-
link model for the motion shown in Figure 2.29. Note that the
slopes of both the horizontal and vertical component are zero,
ẋhand=ẏhand=0 m/s, when the hand collides with the ceiling.
The kink in the velocity components that occurs when the hand
releases the ceiling is due to the discontinuity in the force applied
by the ceiling on the supporting hand going from some non-zero
magnitude to zero magnitude.
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Figure 2.33: Vertical and horizontal distance of the swing hand from its im-
pending handhold versus time for the three-link model during
the motion shown in Figure 2.29.

2.9 Discussion

We have observed the following:

If a motion seems intuitively plausible and is consistent with ba-
sic momentum and energy considerations, a solution to the dynamics
equations with those motions exists.

This is not a theorem, or even the basis of a candidate theorem. But has
been the rule, rather than the exception for a host of passive-dynamic walking
and brachiating models. The counting arguments buttress the concept; if finding
solutions is equivalent to solving n equations for n or less conditions it is reason-
able to hope to find solutions. But there are, of course, exceptions. In the next
chapter, we will show that not all mass and geometry parameters will give life-like
collisionless solutions.

The claims in this chapter are two-fold, mathematical and relevant for explain-
ing animal motion.

1) We claim here that the governing equations of rigid-body mechanics have
solutions with (mathematically) zero energy cost. One may distrust a numerical
solution to an essentially mathematical question. So in our numerics we have taken
care with convergence, event detection, and root finding and thus we believe that
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Figure 2.34: Five link model. Parameter values: lf = 0.37m,
pf ≈ 0.1477m, mf ≈ 0.3613kg, If/cm ≈ 0.002979m2kg,
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Figure 2.36: Snapshots of a periodic collisionless ricochetal motion of the
five-link model. Note that the beginning is on the left of the
figure with the model halfway through the swing portion of
the gait and the end is on the right of the figure with the
model just finishing the free flight portion of the ricochetal
gait and just grabbing on to the next handhold with the swing
hand at zero velocity (lower plot). Note that here we have
the model (in the upper plot) shown on the right side of the
figure halfway through the free flight portion of the ricochetal
gait. This motion is further described by the plots in Figure
2.37. The state of the system at mid-swing for this motions
is: θ1 = θ2 = θ3 = θ4 = θ5 = 0, θ̇1= 13.696793227 s−1, θ̇2=
-2.4791517485 s−1, θ̇3= 7.9261511913 s−1, θ̇4= -1.7030280005
s−1, θ̇5= -5.6362892519 s−1, with θrel = 22.3◦.
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Figure 2.37: Graph of link angles for a single swing of the ricochetal motion
of the five-link model shown in Figure 2.36.

our solutions correspond to proper mathematical solutions. We have presented
parameters and initial conditions with many digits so others can check this claim
with their own numerics.

2) The zero-energy-cost solutions that solve the governing equations for the
models, particularly the solutions of the 5-link model, are somehow beautiful.They
are also reminiscent of the motions of real gibbons. Thus some version or other of
the following class of vague hypotheses is supported: animals make use of natural
dynamics, animals minimize muscle use, or animals minimize muscular work.
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of the five link model for the same ricochetal motion shown in
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Figure 2.39: Graph of the vertical component of velocity of the shoulder and
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hand for a single swing of the five-link model for the motion
shown in Figure 2.36. Note that both components of the swing
hand’s velocity go to zero at the end of the cycle (when the
swing hand reaches the ceiling, as can be seen in Figure 2.40).
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Chapter 3

Mass and Geometry Parameters
for Brachiation Models

3.1 Introduction

Any rigid-body model requires not only a topological description (what is con-
nected to what) but also a physical description which defines each rigid body’s
important characteristics (mass, length, center of mass location, and moment of
inertia). Determining reasonable values to assign for each of the limb’s parameters
can be difficult. If a complete parameter study is desired, the most reasonable
approach is to non-dimensionalize the parameters to find the smallest number of
parameters which change the behavior of the system. Then, instead of a point to
be chosen in the large dimensional parameter space, one instead must choose a
subspace with a range for each non-dimensional parameter. Choosing a range of
values for each parameter allows us to probe the behavior of the model without a
detailed determination of the system’s parameters. However, if one then wants to
determine if the model gives a good approximation to the actual animal, a compar-
ison must be made between the animal’s parameters and the model’s parameters.
This brings us back to the problem of determining a set of parameters for the
animal.

Length: The length of an animal’s large limbs are usually fairly straightfor-
ward to determine. Measuring the length of a limb that is approximately 0.25
meters in length can be done non-invasively with a relative error on the order of
5–10%. More accurate measurements can be done using a skeleton of the animal
since the actual bone can be measured. However, there is a limit to how accurately
one can measure the length of the limb. This limit has to do with the fact that
modeling the joints as pin or hinge joints is, in detail, wrong. The joints, such as
the knee and elbow even when they are moved solely in a 2D plane do not move
as pin joints when one is measuring things at a sub-millimeter level. Therefore,
attempting to measure the length of a limb to sub-millimeter accuracy is pointless.

Mass, Center of mass, Moment of Inertia: Determining a link’s mass,
center of mass location, and moment of inertia tensor is more difficult than deter-

56
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mining length. There are two main ways to determine these values, direct measure-
ment and volumetric estimation. Direct measurement requires that a dissection be
performed on a cadaver and the limbs weighed, balanced, and other measurements
performed (like pendulum experiments) to determine the limb’s center of mass lo-
cation, and moment of inertia. Volumetric estimation is less intrusive than direct
measurement and basically consists of taking many distance measurements of the
limb in various places and developing a three dimensional mathematical volume
with an assumed density. The total mass, center of mass location, and moment of
inertia of this mathematical solid can then be determined by calculation. Hatze
[24] gives an example of the second method by outlining a procedure for deter-
mining a subject-specific parameter set which requires 242 measurements. These
measurements can then be transformed into a 17-link rigid-body model of a hu-
man. It can be argued that there is much more room for error in determining the
parameters when using volumetric estimation since there are more assumptions in-
volved and one is propagating errors through a series of calculations. However, the
advantage of not having to kill one’s subject is an large advantage of this indirect
method.

For the rest of this chapter, we focus on determining a set of parameters for
our gibbon models. Gibbon brachiation has not been studied as much as hu-
man bipedal walking and thus there is less parameter data available. Fortunately,
many dissections of adult and juvenile gibbons have been performed and the limb
geometry of gibbons has been well documented, most notably by Schultz [53]. Un-
fortunately, many of these records are incomplete from our point of view since
almost none of them include limb mass and moment of inertia data. Thus, for
this research we have been forced to develop a more complete parameter set for an
“average” adult gibbon.

This chapter begins by summarizing the relevant parameter data from several
studies of gibbon anatomy as well as from some computational studies of gibbon
brachiation. We also study the response of two-link model to three different sets
of parameters. A new set of gibbon parameters based on anatomic data and
volumetric estimation is presented at the end of this chapter.

3.2 Mathematical Models

3.2.1 Preushoft and Demes

Preushoft and Demes [47] model continuous-contact brachiation of a gibbon and
siamang using a single rigid body pendulum. They relate the period of oscillation
of this pendulum with the average forward speed of a brachiating gibbon. They
use a volumetric estimation method for obtaining the parameters used in their
model. The support arm is modeled as a right circular cylinder. It is attached
to another cylinder which models the torso, legs, and swing arm of the gibbon.
They give two sets of parameters, one for a “cylindrical” gibbon and the other for
a “cylindrical” siamang. The sizes of the cylinders are based on data from the
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Table 3.1: Parameters for a cylindrical gibbon given by Preushoft and
Demes in [47] (see Figure 3.2(a)).

forelimb: height = 0.55m diameter = 0.06m mass = 0.75kg
body: height = 0.60m diameter = 0.25m mass = 5.07kg

Table 3.2: Parameters for a cylindrical siamang given by Preushoft and
Demes in [47]

forelimb: height = 0.65m diameter = 0.08m mass = 1.34kg
body: height = 0.70m diameter = 0.30m mass = 9.36kg

’lar-group’ gibbons given by Napier and Napier [42] and Schultz [53]. They also
assume that the mass of both forelimbs is 25% of the total mass. This figure is
based on their observations of a juvenile chimpanzee.

For the sake of consistency in all of the simulations presented in this thesis, we
only examined parameters for the gibbon, specifically, the Hylobates lar, instead
of the siamang (a significantly larger animal, as can be seen in 3.2).

Rigid-body model

The rigid-body model (section 2.5) uses the parameters given in Table 3.1 but with
the forelimb mass reduced to zero. Note that the moment of inertia of a cylinder
about its center of mass is given by Icm = 1

12
m(3r2 + l2), where m is the mass of

the cylinder, r is the radius of the cylinder, and l is the length of the cylinder. The
parameters from Preushoft and Demes result in the following parameters for the
rigid-body model of section 2.5 and shown again, for convenience, in Figure 3.1.

larm = 0.55 m
p = 0.30 m
m = 5.07 kg
Icm ≈ 0.1719 kg · m2

As can be seen from the results given in section 2.5 several gibbon-like colli-
sionless periodic motions exist for this model.

Two-link model

The two-link model increased the model complexity of the rigid-body model. The
continuous-contact motions of this model were thoroughly examined. A short
historical account of the parameter set used for this model is given below.

To obtain parameters for the two link model, I did the following. The cylindrical
forearm parameters given by Preushoft and Demes [47] were used for the support
arm and the swing arm (see Figure 3.2). Since the swing arm was included in the
parameters for the body cylinder, I subtract the mass of the swing arm from the
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Figure 3.1: Single rigid body model of section 2.5.

/2larm

/2lbod

armm      =0.75 kg

bodm      =5.07 kg 0.06 m

0.06 m

armm        = 0.75 kg

pointm          = 4.32 kg
0.06 m

armm        = 0.75 kg

(swing arm)
0.25 m

l      =0.60 mbod

(support arm)

(torso, swing arm, & legs)

l      =0.55 marm p

p

l arm

larm

(torso & legs)

Not a hinge joint
Cylinders Welded,

(b)(a)

(support arm)

(pin joint between
cylinders)

Figure 3.2: (a) Parameters for the cylindrical gibbon given by Preushoft and
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derived from the cylindrical gibbon model in (a).
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body cylinder mass. The resulting body mass, minus the swing arm, makes up the
point mass that I add to the central hinge of the two link model.

To incorporate the point mass into the parameters for the model, one could
add the whole point mass to the swing arm, or the support arm, or split it in
half and add half the point mass to the swing arm and half to the support arm.
Although, the parameters will be different depending on what one chooses to do,
the solutions to the equations of motion will be exactly the same. For convenience,
I chose to split the point mass evenly between the two arms. This results in the
following mass and geometry parameters for the two links.

mpoint = mbod − marm

p =
marm

larm

2
+

mpoint

2
0

marm +
mpoint

2

Icm =
1

12
marm(3r2

arm + l2arm) + marm(
larm

2
− p)2 +

mpoint

2
p2

l = 0.55 m
p ≈ 0.070876 m
m = 2.91 kg
Icm ≈ 0.061176 kg · m2

Although, these parameters admits many periodic collisionless motions for this
model, none of them are gibbon-like. Of the two motions at ceiling height, shown
in Figure 3.4, one oscillates in place and the other swings up to and grabs onto
the ceiling with both links above the ceiling. This prompted me to examine the
parameters that I was using, to see how realistic they were.
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Figure 3.4: Periodic motions of the two link model using the parameters from
Preuschoft and Demes [47]. The inserts show the approximate
configuration of the system when the kinetic energy is zero. The
top figure contains periodic motions with no reversals in sign of
θ̇1 in a half cycle. The bottom figure has motions that have one
sign reversal of θ̇1 in a half cycle.



62

Table 3.3: Parameters for a cylindrical gibbon given by Swartz in [60]

forelimb: height = 0.50m diameter = 0.045m mass = 0.75kg
body: height = 0.55m diameter = 0.114m mass = 5.25kg

3.2.2 Swartz

Like Preushoft and Demes [47], Swartz [60], modeled the continuous-contact gait
of gibbon using a single rigid body pendulum. However, she disagreed with the
parameters for the rigid body pendulum that Preushoft and Demes used in [47].
Swartz pointed out that the parameters given in [47] give unrealistic densities of
0.172g/cm3 for the body and 0.483g/cm3 for the forelimb. She states that densities
for nonhuman mammals are comparable to human densities, which are 1.038g/cm3

for the body and 1.001g/cm3 for the forelimb. Note that both of these densities
are close to the density of water (1.0g/cm3), which is understandable given that
our bodies are primarily composed of water. Swartz then proposed a modified set
of parameters based on Schultz’s measurements of hylobatid skeletons and her own
direct radiographic measurements. These values give densities of 0.943g/cm3 and
0.935g/cm3 for the forelimb and body respectively.

Transforming these parameters for the two-link model, using the same method
as before, one obtains the following:

l = 0.50 m
p ≈ 0.0625 m
m = 3.0 kg
Icm ≈ 0.05088 kg · m2

These mass and geometry parameters are very similar to Preushoft and Demes
parameters. This can readily be seen by non-dimensionalizing the equations of
motion. For the two link model, there are really only two parameters (a non-
dimensional center of mass location, and a non-dimensional radius of gyration) that
will result in different periodic solutions. The Preushoft and Demes parameters
result in a non-dimensional center of mass location P = p/l ≈ 0.1289 and a
non-dimensional radius of gyration R = (

√

Icm/m)/l ≈ 0.2636. Swartz’s arm

parameters gives us P = p/l = 0.125 and R = (
√

Icm/m)/l ≈ 0.2605. The fact
that these non-dimensional parameters are so close, they differ by 3% and 1%
respectively, means that the parameters given to the two-link model will result in
almost identical periodic solutions to the equations of motion. This fact is readily
apparent by comparing the periodic motion plots in Figure 3.5 with Figure 3.4.

We now examine a two-link gibbon model which consists of two cylindrical
arms and a point mass body at the central hinge. The mass of the cylinders is
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Figure 3.5: Periodic motions of the two-link model using the parameters from
Swartz [60]. The inserts show the approximate configuration of
the system when the kinetic energy is zero. The top figure con-
tains periodic motions with no reversals in sign of θ̇1 in a half
cycle. The bottom figure has motions that have one sign reversal
of θ̇1 in a half cycle.
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12.5% (1/8) of the total mass gives the following non-dimensional parameters.

marm =
1

8
(mpoint + 2marm)

marm =
mpoint

6

m = marm +
mpoint

2

m =
2mpoint

3

p =
marm

l
2

m

p =
l

8

P =
p

l
= 1/8 = 0.125

If we then assume that the cylinders are very slender, i.e that 3r2/l2 ≪ 1, then
the cylinder can be well approximated by a rod for the calculation of it’s moment
of inertia about the center of mass. The slenderness ratios of the Preushoft and
Demes arm parameters is 3r2/l2 = 0.009 and for the Swartz arm parameters,
3r2/l2 = 0.006.

Icmcylinder
=

1

12
m(3r2 + l2)

Icmrod
=

1

12
ml2

Icm =
1

12
marml2arm +

mpoint

2
p2 + marm(

l

2
− p)2

Icm =
13mpointl

2

288

R =

√

Icm/m

l
=

√

39

576
≈ 0.2602

Although these two sets of parameters (basically the same) admit many col-
lisionless periodic solutions, none of them are gibbon-like. Unfortunately, non-
gibbon-like motion are not the goal. At this point, one might be tempted to change
the model’s parameters until one obtains desirable results. However, this is not an
objective way to conduct research. If the model has many modifiable parameters
then almost any behavior can be obtained. This procedure can be almost exactly
compared to the problem of curve-fitting, or matching mathematical functions to
experimental data. On the other hand, to fully examine a given model, a study of
the effects of changing parameters on its behavior is required. Since there are only
two non-dimensional parameters for the two-link model, it is a tractable model to
do some parameter studies.
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Figure 3.6: Periodic motion plots for the two-link model with single cylinder
arms [total mass = 6kg] (a) with both arms having 1/4th (25%)
of the total mass (b) both arms having 1/3rd (33.3%)of total
mass (c) both arms having 2/5th (40%) of total mass.

One possibly questionable assumption used to develop the parameters for the
two-link model was the assumption by Preushoft and Demes that for a gibbon, the
mass of the arms is 25% of the total mass since that was what they measured for
juvenile chimpanzees. What happens to the behavior of the two-link model if that
parameter is varied? Increasing the mass of the body in relation to that of the
arms resulted in the central curve in Figure 3.4 moving to the left. By doing the
opposite, increasing the arm mass in relation to the body mass, that curve moves
to the right as seen in Figure 3.6

Although Figure 3.6(c) gives two motions that are simple and progress forward
(underneath the ceiling) instead of oscillating in place, the ratio of mass in the
arms compared to the body is almost twice the value given in the literature. The
unrealistic value of the modified parameters (with the arms consisting of slightly
less than half of the total mass) led me to conclude that the original value of the
arm/body mass ratio was not the cause of the two-link model having no gibbon-like
collisionless motions. At this point a more objective, and realistic set of gibbon
parameters was needed. The more complicated brachiation simulations would
require a more detailed set of parameters than what was given by Preushoft and



66

15.5 cm 29 cm 26 cm

Figure 3.7: Preushoft and Demes three segment siamang arm [48].

Demes [47] or Swartz [60]. This led to another Preushoft and Demes paper and a
closer study of the published data on gibbon anatomy.

Preushoft and Demes, in a later paper, [48] model a gibbon’s arm by breaking
it apart into three cylinders (upperarm or Humerus, forearm or Radius,and hand)
of differing lengths and diameters. They were interested in the effect of varying
length and diameter of these cylinders on the muscle forces required to move the
arm. This was done to explain the existence of an upper limit on a gibbon’s arm is
due to muscle strength. Since the are interested in the effect of different parameters
on muscle force, they give a range of values for the cylinders. However, they begin
the calculations with the dimensions of a siamang arm(they give only lengths of the
cylinders)(hand length = 15.5cm; forearm length = 29.0cm; and upper arm length
= 26.0cm). A siamang is significantly larger than a gibbon, so these numbers give
only a clue to the limb segment proportions of a gibbon.

3.3 Anatomical gibbon measurements

This section summarizes some of the relevant published measurements of gibbon
anatomy. Although the data sets are comprehensive in some areas they are also
completely lacking in others, most notably there is no information concerning the
center of mass locations and moments of inertia tensors for the individual limb
segments of the gibbons. It is conceivable but unlikely that center of mass location
data might have been collected (since the measurement on an isolated limb is
fairly straightforward 1) and not reported. However, it is extremely unlikely that
the moment of inertia tensor was measured since this is a rather difficult and
complex experiment requiring a good grasp of rigid body dynamics and several
well thought out rigid-body pendulum experiments. Before the age of ubiquitous
computer use (approx. 1960), this data would have been fairly useless as well, since
mathematical models which would require this level of detail would be intractable

1The isolated limb must simply be balanced by moving the location of line
support underneath it. This must be done a minimum of three times to obtain the
center of mass location in three-dimensions.



67

using solely analytical approaches. However, the data sets do give a good starting
point for the development of our model using a volumetric estimation approach
for determining a reasonable set of parameters for our gibbon models.

3.3.1 Schultz

Schultz [54] published a large amount of data on the limb proportions of gibbons.
The things that he measured ranged from the length of the tibia to the average
number of hairs per square cm on the scalp, back, and chest of a gibbon. The data
given for the limb lengths for an adult Hylobates is summarized below.

(Radius length)/(Humerus length) x 100 = 112.4

(Tibia length/Femur length) x 100 = 88.2

(Humerus+Radius)/(Femur+Tibia) x 100 = 128.5

(Chest circumference)/(Trunk height) x 100 = 148.8

(Chest breadth)/(Chest depth) x 100 = 118.2

(total lower limb length)/(trunk height) x 100 = 146.5

(total upper limb length)/(trunk height) x 100 = 237.8

(total upper limb length)/(total lower limb length) x 100 = 158.8

3.3.2 Erikson

Erikson [18] also performed some measurements of gibbon anatomy. He gives
ratios for lengths of different limbs for Hylobates. These non-ratio numbers are in
proportion to the trunk length which was normalized to 100 units.

(Humerus+Radius)/(Femur+Tibia) = 132

Radius/Humerus = 108

Trunk = 100

Humerus+Radius = 184

Hand length = 243-184 = 59

Femur+Tibia = 139

Foot length = 191-139 = 52

3.3.3 Napier and Napier

Napier and Napier [42] published the following mass and dimension data for Hy-
lobates. They also give relative limb lengths for several species of apes, including
Hylobates, which is shown below.

males females
mass range: 4.300-7.928kg (41 |) 4.110-6.800kg (30 ~)
head and body length range: 40.3-63.5cm (62 |) 40.8-62.2cm (38 ~)

Brachial Index = (Radius length)/(Humerus length) x 100.

Crural Index = (Tibia length)/(Femur length) x 100.
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Intermembral Index=(Humerus+Radius length)/(Femur+Tibia length)x100.

For the Hylobates they give:

Brachial Index = 113 (avg from 66 measurements)[range: 105-124]

Crural Index = 88 (avg from 66 measurements)[range: 78-94]

Intermembral Index = 129 (avg from 55 measurements)[range:121-138]

3.4 A new set of parameters

At this point I stopped by search for gibbon mass and geometry parameters. For
the reasons that I gave above, I did not hope to find measured moment of inertia
data and although the data given above is incomplete, there is enough informa-
tion to devise a reasonable, if not completely rigorous, set of mass an geometry
parameters. The rest of this section gives a detailed listing of the method I used
to determine the parameter set used in the brachiation models.

Although I was able to find several values for the limb length ratios of a gibbon,
it was difficult to find a scaling for those ratios to set the actual lengths of each
limb. Erikson [18] gave some numbers which allowed me to set the lengths of
the upperarm(Humerus) and the forearm(Radius), normalized to trunk length.
Then, along with the crural index (Femur/Tibia) and the data given by Erikson,
I was able to set values for the lengths of the thigh(Femur) and shank(Tibia),
normalized to trunk length. At this point I have Humerus length = 88.5, Radius
length = 95.5, hand length=59, Femur length = 74.5, Tibia Length = 62.25, and
foot length = 52 (all numbers are normalized to the trunk length which is 100
units long). Setting the sum of the Humerus and Radius to 0.50m (the value that
Swartz gives for the support limb length), gave me a conversion (0.002717 m/unit)
from the trunk-length-normalized dimension to meters.

I could not find any values for the diameters of any of the limb segments, only
a (chest diameter)/(trunk height) ratio which was given in Schultz [54]. Using this
diameter, I get a circumference of about 0.4 m which corresponds to a diameter of
about 0.13 m.

I shortened the hand length from the number that Erikson’s ratios gave me
(0.16m) because he states that his length is for the whole hand. When the hand
is grasping the handhold this distance is less since gibbon’s don’t swing with the
fingertips glued to the underside of the support. I felt that (0.11m) would be a
reasonable compromise.

I felt that the density given by Swartz for the limb segments seemed a reasonable
value to use. If I had limb mass data I could use the density to determine the radii
of the various cylindrical segments. However, the only mass data that I found was
for the total mass of the gibbon, although, both Swartz and Preushoft and Demes
do give values for the mass of their cylindrical arm.

At this point I measured a radiographic image of a complete adult female
Brachyteles arm that was given in [18]. The image showed the bones clearly along
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Table 3.4: Approximate values for each of the segments parameters given the
geometry shown in Figure 3.8. Note that for the thighs, shanks,
feet, we merge the two cylinders into a single rigid body. Icm =
m/12(3r2 + l2) is the moment of inertia of the body part about
its center of mass. The center of mass is located in the middle of
each cylindrical body segment.

body part length(m) radius(m) volume(m3) mass(kg) Icm(kg · m2)
hand 0.11 0.01 0.3456 x 10−4 0.03456 0.0357 x 10−3

forearm 0.26 0.02 3.267 x 10−4 0.3267 1.873 x 10−3

upperarm 0.24 0.025 4.712 x 10−4 0.4712 2.334 x 10−3

torso 0.27 0.065 35.84 x 10−4 3.584 25.56 x 10−3

thigh 0.20 0.02 2.513 x 10−4 0.2513 0.8629 x 10−3

2 thighs 0.20 —– —– 0.5027 1.726 x 10−3

shank 0.17 0.0175 1.636 x 10−4 0.1636 0.4064 x 10−3

2 shanks 0.17 —– —– 0.3271 0.8128 x 10−3

foot 0.14 0.01 0.456 x 10−4 0.04398 0.0729 x 10−3

2 feet 0.14 —– —– 0.08796 0.1458 x 10−3

with the soft tissue of the arm. This gave me some approximate radii for the hand,
forearm, and upperarm.

upperarm length = 0.24m

upperarm diameter = 0.05m

forearm length = 0.26m

forearm diameter = 0.04m

1/2 hand length = 0.11m

1/2 hand diameter = 0.02m

The only radii left to determine were those for the thigh, shank, and foot, for
which I simply guessed at, based on the radii of the arm segments and the total
mass of a gibbon.

All of the parameters that I finally arrived at are depicted in Figure 3.8.
The parameters for the two link model are easily derived from the model de-

picted in Fig. 3.8. The hand, forearm, and upper arm cylinders are kept in a
straight line and glued to each other so that no relative motion between links is
possible. The torso, 2 thighs, 2 shanks, and 2 feet cylinders are all compressed
upward toward the shoulder into a point mass located at the shoulder pin joint. If
the point mass at the shoulder is split in half and half is stuck onto the end of one
arm link and the other half stuck to the other arm link then the list below gives
rounded values for the model’s dimensional parameters.

l = 0.61 m
p ≈ 0.0638 m
m ≈ 3.083 kg
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Figure 3.8: Cylindrical Body Segment Gibbon for Visualizing Parameters.
The density used for all cylinders was 1000 kg/m3 [60].



71

Icm ≈ 0.0539 kg · m2

These values give a non-dimensional center of mass location to be P = p/l ≈
0.105 and a non-dimensional radius of gyration to be R =

√
Icm/m

l
≈ 0.2168.

The arm mass is approximately 0.8325 kg and the total mass of the gibbon is
approximately 6.167 kg (close to the average total mass of a Hylobate given by
Napier and Napier [42]). These masses result in an arm to total mass ratio of
about 13.5%, which is very close to the 12.5% given by Preushoft and Demes in
[47].

As can be seen in Figure 3.9, we obtain the simple forward progressing motions
of the two-link-model with these more realistic mass and geometry parameters.
It is almost unfortunate that this two-link model is so sensitive to the mass and
geometry parameters. It is much more comforting to have a model which exhibits
the same behavior for a wide range of system parameters. However, different
parameter values will result in different behavior and given the approximate nature
of our model as a gibbon, it is pleasing to find motions similar to brachiation for
any set of parameters which can be argued as reasonably close to an actual gibbons.
For example, Coleman and Mombaur’s 3D passive walker walks stably, but mass
distribution is completely non-anthropomorphic with the mass located down near
the feet and away laterally from leg.

One last comment about the parameters. They were not obtained by curve-
fitting (i.e. they were not adjusted until the desired behavior was seen in the
model). Instead they were obtained by examining the published anatomical mea-
surements, previously published model parameters, and approximations. Thus,
the predictive nature of these results (that a gibbon’s coordination strategy incor-
porates passive motions to a large extent) is an objective one.

3.5 Three and Five Link Model Parameters

The lower limbs are more difficult to accurately represent in these models because
assumptions must be made as to the posture of the legs and whether to keep the
posture fixed while moving. Most gibbons ricochetally brachiate with their legs
tucked up underneath their body but use different postures for the continuous
contact gait. For the three and five link models we assume the legs are tucked
up under the body and model that by shrinking the thighs, shanks, and feet to a
single point-mass on the bottom of the torso.

3.5.1 Three-Link Model

The parameters for the three-link model are more complicated to derive from the
model shown in Fig 3.8. The difficulty lies in how to contract the many segments
of the torso and legs into a reasonable single rigid body. The posture of the lower
body is different in the two gaits and also moves during the motion. There are
some who believe that the gibbon raises and lowers their legs to “pump” energy
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Figure 3.9: Periodic motions of the two link model using the three cylinder
tapered arm parameters that were based on data in the literature
[54, 18, 42].
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Table 3.5: Approximate value for the rigid bodies used in the three link
brachiation model shown in Figure 2.27. The arm link is con-
structed from the body parts shown in Figure 3.8 by locking the
elbow and wrist joints so that the upperarm, forearm, and hand
is in a straight line. The body link consists of the torso with the
2 thighs, 2 shanks, and 2 feet compressed to a single point mass
and glued to the bottom of the torso cylinder. The center of mass
locations are given as distances from the central shoulder hinge.

rigid body length(m) center of mass(m) mass(kg) Icm(kg · m2)
arm 0.61 0.2362 0.8325 0.01997
torso and legs 0.27 0.1625 4.5015 0.03887

into the movement [19]. Active pumping of the lower limbs will have an effect on
the dynamics of the system. Thus reducing the legs and torso to a single rigid
body appears to be a cruder approximation than reducing each arm to a single
rigid body. For the present work we approximate the lower body by keeping the
torso as a cylinder and compressing both thighs, both shanks, and both feet into a
point mass which is glued to the bottom of the torso cylinder. We could have also
keep the legs as cylinders and locked the hip joints, knee joints, and ankle joints
in the tucked up position but we did not choose that option.

3.5.2 Five-Link Model

The parameters for the five link model are a simple extension of those used in the
three link model. In the five link model the arm links both have an “elbow” pin
joint between the upperarm and the forearm. The forearm and the hand are still
locked together with no relative rotation allowed between those links.

3.6 Discussion

The set of mass and geometry parameters used in a model of an animal can have
a large impact on the types of passive motions that it can execute. McGeer found
that anthropomorphic parameters gave some of the “best” periodic motions for
his knee-jointed walking model [36]. This also seems to be the case for the passive
models of brachiation, at least for the two-link model doing continuous-contact
brachiation. There is certainly much that could be done to improve the accuracy
of the set of parameters that was given in this chapter. Not only could more
measurements be made to reduce the amount of approximations and guesses in-
volved in determining the parameters, but the whole cylindrical approximation
assumption could be replaced with simple rigid bodies with their actual moments
of inertia. The constant density assumption could also be improved since the den-
sity of muscle, bone, and other body tissues are different. However, given there
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Table 3.6: Approximate value for the rigid bodies used in the five link brachi-
ation model shown in Figure 2.34. The forearm link is constructed
from the body parts shown in Figure 3.8 by locking the wrist joint
so that the forearm and hand is in a straight line. The body link
consists of the torso with the 2 thighs, 2 shanks, and 2 feet com-
pressed to a single point mass and glued to the bottom of the
torso cylinder. The center of mass locations for the torso and
upperarms are given as distances from the central shoulder hinge
along the given rigid body. The center of mass location for the
forearm is measured from the elbow joint.

rigid body length(m) center of mass(m) mass(kg) Icm(kg · m2)
forearm 0.37 0.1477 0.3613 0.002979
upperarm 0.24 0.12 0.4712 0.002336
torso 0.27 0.1625 4.5015 0.03887

are so many things which we did not include in our model, such as restricting it
to two-dimensional motion, neglecting air resistance, etc. it is quite unlikely that
the model would benefit from additional accuracy in model parameters. This set
of parameters simply gives rough idea of the mass and geometry properties of a
gibbon.



Chapter 4

Extended Rimless Wheel Model

4.1 Introduction

A rimless wheel is a single rigid-body having equally spaced radial spokes, which
moves in a two-dimensional environment. Imagine a wooden wagon wheel with
the wood and metal rim around the circumference removed and leaving a central
hub with the wooden spokes protruding from it. How does such an object move
about? This question was asked by McGeer ([34], [35], [36] and he in turn refers
to Margaria’s work [32]) and later thoroughly answered by Coleman [14] where
he examined all of the possible rolling and tipping motions that such an object
can have when interacting with a floor without slip. In Coleman’s work, as in
the work presented in this chapter, collisions were modeled as perfectly plastic.
This model was studied originally to provide a link between the simple passive
dynamic walking models and a rolling disk. The rimless wheel, like the passive
walkers, has sticking collisions between the ends of the spokes and the ground.
The rimless wheel is also capable of stable downhill locomotion. As one increases
the number of spokes in the rimless wheel it approaches a continuous circular disk.
Although the rimless wheel can only locomote indefinitely down a ramp due to the
collisional energy loss, the continuous disk is able to roll forever at constant speed
across a level floor (assuming no slip occurs between the disk and the ground). In
this chapter we will extend the 2D rimless wheel model to include a second rigid-
body which is coupled to the rimless wheel via a torsional spring. We call this
model the extended rimless-wheel model. The motivation for studying this model
is to draw a closer connection between the collisionless walking model presented
in chapter 5 and Chatterjee et al. ’s one-dimensional hopping block model [8].
The walking model consists of three rigid-bodies with two torsional springs and
is able to locomote across level ground indefinitely by avoiding collisions between
the feet and the ground. Chatterjee et al. ’s hopping block model consists of two
point masses connected by a spring and is capable of incessant vertical hopping by
avoiding collisions between the lower mass and the ground by velocity matching.
The hopping block model is essentially a one-dimensional model and is therefore
not capable of locomotion in a 2D environment. If it were allowed to move in
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Figure 4.1: Rimless wheel model. This model is an extension of the 2D rim-
less wheel model that appears in Coleman’s PhD thesis [14]. The
addition of the reaction wheel and torsional spring allow this
model to move across a horizontal support without collisions.

two dimensions then the model would now have 4 degrees of freedom instead of
the original 2 degrees of freedom. It quite probable that this 2D hopping block
system could be able to locomote in a collisionless manner but we instead chose
to construct and examine the extended rimless-wheel which has only two degrees
of freedom and is much closer in spirit and design to the three-link collisionless
walking model. As we shall see, this two degree-of-freedom extended rimless-wheel
model is also very close in spirit and behavior to Chatterjee et al. ’s hopping block
model.

Figure 4.1 gives a representation of the extended rimless-wheel model. The
rimless wheel model, like the other models presented in this thesis, can only lose
energy via the plastic collisions that occur between the new stance “leg” and the
ground. Avoiding these collisions is key in conserving the model’s energy. This
chapter will show that the extended rimless-wheel model can traverse a horizontal
support with the same lack of energy dissipation as a rolling disk.

Both the rimless-wheel model presented here and the hopping block model of
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Chatterjee et al. [8] have only two bodies which are connected via a spring. As
we shall see, one can consider the extended rimless-wheel model as a rotational
analog to the hopping block model. We will examine two classes of motions using
our extended rimless-wheel model. One class will consist of motions where the
support constraint is instantaneously transferred to the new supporting leg when
it contacts the floor (only one leg is in contact with the ground a any time).
The other class of motions have a double-stance phase where two legs can be in
simultaneous contact with the ground for a finite amount of time. We will see that
these two classes will both have collisionless motions with different characteristics.

4.2 Symmetry and counting arguments

As in the brachiation models discussed in chapter 2, we search for motions with
a certain symmetry which enforces that those motions will by collisionless. In
this model, the symmetry property is slightly different than in the brachiation or
walking models. The reason for the difference is that the rimless wheel rotates by a
finite amount with each step. Thus the symmetrical motion that we seek must also
contain this discrete indexing of the rimless-wheel’s rotation. Figure 4.2 depicts a
set of conditions that, if met, will result in a collisionless periodic motion. At the
beginning of the motion, we have only one state that we can specify, the angular
velocity of the reaction wheel (φ̇). The map is then evaluated when θ = π/2 and
the output from the map is the value of φ. Thus our mapping, IR1 → IR1 is quite
simple.

Note that the conditions require that the system start with the spring relaxed.
This is a necessary condition because if one starts with φ 6= θ and finds a motion
that satisfies the ending conditions of the map, then the motion, although colli-
sionless, will not be periodic since the torque that is applied to the rimless wheel
at the end of the step from the torsional spring will be opposite in sign than it was
at the beginning of the step.

4.3 Collisionless Periodic Motions

Figure 4.3 shows several snapshots of a periodic collisionless motion equally spaced
in time. The figure shows the symmetry of the motion with the symmetrical posi-
tion halfway through the step marked with a “*”. One undesirable feature of this
motion is that at the moment weight-shift occurs, the old stance foot immediately
passes through the floor before it lifts up and the rimless wheel reverses its rotation.
This feature of the motion makes it extremely difficult to physically construct a
device which would have such a motion since it would require a rather sophisti-
cated mechanism to allow the swing foot to pass below its previously constrained
height when the constraint changes feet.

One might conjecture that other collisionless periodic motions might exist for
this model where the incommoding foot does not approach the ground from below
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Figure 4.2: Conditions for a symmetrical, collisionless, periodic motion for
the rimless-wheel-model. The system begins with two feet on
the ground, the rimless wheel at rest(θ̇ = 0), and no potential
energy stored in the spring(φ = 0). The state of the system
halfway through a single step consists of the stance foot being
perpendicular to the ground(θ = π/2) and the spring in a relaxed
state (φ = θ).
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Figure 4.3: A pictogram of a collisionless periodic motion that satisfies the
symmetry conditions given in Figure 4.2. Note that the swing
foot passes through the ground at the beginning and end of the
motion.
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Figure 4.4: A pictogram of a collisionless periodic motion that satisfies the
symmetry conditions given in Figure 4.2. Note the larger ground
penetration present in this motion with only 3 legs on the rimless
wheel. This motion is further described by the plots given in
Figures 4.5-4.7.
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Figure 4.5: Plot of the angles for the two bodies (3 leg rimless wheel) in
the motion depicted in Figure 4.4. The parameters for this mo-
tion are: numblegs=3, lleg=1.0m , mleg=1.0kg, Ileg/cm=1.0m2kg,
mtorso=0.1kg, Itorso/cm=1.0m2kg, K=3.0Nm/rad, g=9.81m/sec.
The initial conditions for this motion(after doing convergence
tests) are: θ(0) = 5π

6
rads, φ(0) = θ(0), θ̇(0) = 0 rads/sec,

φ̇(0) =-10.177410583917 rads/sec
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Figure 4.6: Plot of the angular velocities of the the two bodies (for the 3
leg rimless wheel model) in the collisionless motion depicted in
Figure 4.4. Note that the rimless-wheel begins and ends the step
with zero angular velocity, which is the condition for avoiding
collisions with the ground.
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Figure 4.7: Plot of the incoming foot’s height above the ground for the mo-
tion depicted in Figure 4.4(3 leg rimless wheel). Note the large
amount of ground penetration by the incoming foot, as well as
the fact that the foot makes contact with the ground from below
the floor.
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Figure 4.8: Free body diagrams of the rimless-wheel-model. A free body
diagram of the whole model appears on the left. On the right is
a free body diagram of just the reaction wheel, with the rimless
wheel cut away.

and thus allow physical models to be constructed. Unfortunately, for this model
this is not the case. This can most easily be shown by examining the system’s
equations of motion. The non-dimensional equations of motion for the system can
be derived from angular momentum balance applied to the free body diagrams
shown in Figure 4.8.

The non-dimensional equations of motion are:

−cos(θ) + κ(φ − θ) = (Rl
2 + 1)θ′′

−κ(φ − θ) = Rt
2φ′′ (4.1)

where κ is a non-dimensional spring constant defined as κ = k/((ml + mt)gl).
Rl and Rt are non-dimensional radii of gyration of the rimless-wheel(leg) and the
reaction-whee(torso) respectively and are defined as Rl =

√

Il/cm/((ml + mt)l2)

and Rt =
√

It/cm/((ml + mt)l2). All derivatives noted as (′) = d()/dτ are deriva-

tives taken with respect to a non-dimensional time,τ where τ = t/
√

(l/g).
As can be seen from the equations of motion given in equation 4.1, if the

motion begins with both feet on the ground (which implies that π/2 < θ(0) < π),
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the rimless wheel at rest(θ̇(0) = 0), and the spring relaxed(φ(0) = θ), then θ̈(0) > 0
since (κ ≥ 0, Rl ≥ 0 and cos(θ(0)) < 0). A positive θ̈(0) means that given the
starting configurations with which we must begin, there is no possible initial value
of φ̇ that will not result in the new swing foot immediately passing through the floor
when the constraint on the feet is instantaneously switched. The only way to make
θ̈(0) negative is to begin with the torsional spring loaded (i.e. with φ(0) 6= θ(0))
as can be seen from equation 4.2.

φ − θ <
cos(θ)

κ
(4.2)

However, starting with the spring in a loaded configuration violates the partic-
ular symmetry that is being sought since such a motion will end with the spring
wound up the same amount as when it started but in the wrong direction. Thus,
this model is not capable of physically-realizable collisionless periodic motions
where the ground support instantaneously changes feet at the moment of colli-
sion.

4.4 Extended double stance

The motions that were sought previously, where the support foot changes instan-
taneously are a different class of motions than is possible in the hopping block
model of Chatterjee et al. [8]. The model in [8] only has a single “foot” and thus
there cannot be an instantaneous change of foot support. The rimless-wheel-model
that is presented here is capable of extended contact motions where both feet are
simultaneously in contact with the ground for a finite period of time.

There are some subtle issues concerning ground contact which must be dis-
cussed before we can go further with this extended double-stance model. What is
the nature of a floor constraint and what are the conditions for releasing the foot
contact constraint?

The foot contact release issue concerns the non-intuitive motion that results
from removing a pivot constraint when the normal (to the ground) or vertical
component of the ground reaction force drops to zero. In many models of physical
systems the point on the system where the constraint is removed may immediately
pass through the ground. This was discussed by McGeer in [37] and will also be
discussed in the collisionless walking-model chapter (chapter 5). In the extended
rimless-wheel model, this issue does not arise since the two contact points are on
the same rigid body. The friction force on the trailing foot can be neglected since
it does not enter into the equations of motion.

Previously, when we used an instantaneous support transfer, we ignored and
did not discuss an important property of a floor constraint, that it is a one-way
support. Unlike the gibbon models in chapter 2 who could grab onto the ceiling
support and provide reaction forces in any direction, the feet of the rimless-wheel
model do not grab onto the floor. This means that the floor is able to provide
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extended double stance assuming a frictionless contact between
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Table 4.1: General criteria to be met at the end of a step for a collisionless
motion. Note that condition 3 is automatically met for this model
if condition 2 is met since the body which makes contact with the
ground has only one degree of freedom.

1) vertical position of foot at floor level.
2) vertical component of the foot’s velocity is zero.
3) horizontal component of the foot’s velocity is zero.
4) vertical component of the foot’s acceleration is zero.
5) vertical component of the foot’s jerk is negative.

a force on the foot to keep it from passing through it but is not able pull down
on a foot and keep it from lifting off of it. Previously, we were only concerned
with the incoming foot arriving with a zero velocity (some of the extra conditions
stated below were assumed to be met by the instantaneous support). These extra
conditions are given by Chatterjee et al. in [8]. In short, we would like the foot
to start above the floor, reach the floor elevation with zero velocity, and then (if
the floor constraint was not enforced) pass through the floor. If a foot arrives
at the floor with zero velocity, it will lift off from the floor if there is a positive
vertical component of the foot’s linear acceleration. This also means that since we
want to approach the floor from above, we need the vertical component of the foot’s
acceleration to be zero1 at the same point that the its elevation and velocity is zero.
Since we want the foot to pass though the floor if there were no floor constraint,
the sign of the vertical component of foot’s jerk2 needs to be negative. If the foot’s
jerk has a positive vertical component and its height, velocity and acceleration
are all zero, then the foot would lift off the floor instead of maintaining contact.
Table 4.1 gives the criteria that must be met for a motion to be collisionless in the
general case.

These five conditions can be written as:

yfoot = 0, ẏfoot = 0, ẋfoot = 0, ÿfoot = 0,
...
y foot < 0,

Diagrams of the vertical position of the incoming foot versus time for various cases
without enforcing the floor constraint are shown in Figure 4.10. These diagrams
are based on ones which appear in Chatterjee et al. [8].

Since the rimless wheel is a single rigid body in 2D with two position constraints
(stance foot’s horizontal and vertical position is fixed) it has only a single degree
of freedom. Thus the vertical component of incoming foot’s position, velocity,

1If the vertical component of the foot’s acceleration were positive, then we would
lift off from the floor again. If it were negative then we would be approaching the
floor from below. Therefore, we need the curve of the vertical component of the
foot’s velocity to have an inflection point at the point of zero vertical velocity.

2Jerk is defined as the rate of change of acceleration with respect to time
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Figure 4.10: Sketches of the vertical position of the incoming foot versus time
for various cases. All cases concern the value of the vertical
component acceleration and jerk of the foot when the vertical
position and velocity of the foot is zero. These diagrams are
based on the ones which appear in Chatterjee et al. [8].

acceleration, and jerk given in equations 4.6 are all tied to the rimless wheel’s
angular position, velocity, acceleration, and jerk.

rp/o = (d cos β)̂i + (d sin β)̂j (4.3)

β = θ − π − ψ

2

ψ =
2π

number of legs

d = 2l(sin
ψ

2
))

ṙp/o = (−dθ̇ sin β)̂i + (dθ̇ cos β)̂j (4.4)

r̈p/oj = (−dθ̈ sin β − dθ̇2 cos β)̂i + (dθ̈ cos β − dθ̇2 sin β)̂j (4.5)
...
r p/oj = (−d

...
θ sin β − 3dθ̈θ̇ cos β + dθ̇3sinβ)̂i

+(d
...
θ cos β − 3dθ̈θ̇ sin β − dθ̇3cosβ)̂j (4.6)

For the extended rimless-wheel model, the five conditions given in equation 4.4 get
reduced to the four conditions shown in equation 4.7.

However, if we instead look for a symmetric motion of a specific type we can
reduce the number of necessary criteria from four to one. This is possible because
the lifting motion of a foot played backward in time are exactly the conditions we
seek. The symmetric motion we want starts with two legs on the ground and the
spring wound up some amount and ends halfway through the cycle with the stance
leg being vertical (θ = π/2) just as the spring reaches its relaxed state (φ = θ).
The fixed points of this one dimensional map results in collisionless motions which
meet all of the four criteria listed above.

(

β = 0 ⇒ θ =
π − ψ

2

)

, θ̇ = 0, θ̈ = 0,
...
θ < 0 (4.7)
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*

Figure 4.11: Snapshots of a collisionless periodic motion for the rimless-
wheel-model with an extended double stance phase. This pa-
rameters used in this model for the motion are: number of legs =
4, lleg = 1.0m, mleg = 0.1kg, Ileg/cm = 3.0kgm2, mtorso = 0.1kg,
Itorso/cm = 1.0kgm2, K = 1.0Nm/rad. This initial conditions

for this motion are: θ = 3π/4rads, φ = θ, θ̇ = 0rads/sec,
φ̇ = −2.64770369207.

4.5 Discussion

Although a single rimless-wheel is unable to traverse a perfectly horizontal support
indefinitely unless the number of spokes is infinite, the extended rimless-wheel can
do so. The interaction between the oscillations of the reaction-wheel and the
rimless-wheel can combine in such a manner as to allow the rimless wheel to
achieve a symmetric motion. We have shown that by achieving this symmetric
motion which requires only a single condition, one necessarily achieves the four
conditions required for collisionless periodic motions. This seemingly gratuitous
stroke of luck is due simply to the fact that the way the model must leave the double
stance configuration is exactly the way in which we desire for it to enter into the
next double-stance configuration. In other words, the four conditions that we have
specified are, for this model, non-independent conditions. The collisionless motions
which have an double-stance phase, nicely echo the results of the Chatterjee et
al. ’s hopping block results. Lastly, the simplicity of this model make it extremely
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Figure 4.12: Height above the ground of the incoming foot. Note that the
foot arrives at a zero distance with a zero slope, which means
that it’s vertical velocity is zero when it touches the floor.
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Figure 4.13: Plot of the angles of the rimless-wheel and reaction-wheel for
the collisionless periodic motion depicted in Figure 4.11. Note
the constant value of θ during the double-stance phase at the
beginning of the step. Also note that θ and φ − θ are symmet-
ric about the mid-double-stance and mid-single-stance points.
(This plot is actually for the step that happened just before the
one shown in Figure 4.11 as can be seen by the reference leg
and line.)
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Figure 4.14: Plot of the angular velocities of the two bodies in the motion
shown in Figure 4.11. Note that the rimless-wheel starts and
ends the motion with zero angular velocity and that the angu-
lar velocity curves are symmetric about same two mid-stance
positions.
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Figure 4.15: Angular acceleration of the two bodies for the collisionless mo-
tion shown in Figure 4.11. Again, the curves are symmetric
about each of the two mid-stance positions. Note that the an-
gular acceleration of the rimless-wheel is zero at the end of the
step. Also, one can clearly see that the slope of the angular
acceleration of the rimless-wheel curve is negative at the end of
the step.
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appropriate for the construction of a device which is capable of achieving these
collisionless motions. Note, that some sort of external stability mechanism must
be created for the physical device to function, but this controller has to only control
a single variable at a point in the map. It may also be possible for this model to
roll stably down a shallow ramp. This conjecture comes from an extrapolation
of the one-sided stability properties of the hopping block model of Chatterjee et
al. [8].

The collisionless motions shown in this chapter cannot be stable since any error
from the given trajectory will result in a collisional energy loss. Once the system
loses energy it cannot be gained back since there is no mechanism for pumping
energy into the system. If one cannot achieve the same system energy as before,
the motion can not be periodic. Thus the collisionless motions cannot be stable.
This, however, does not rule out the possibility of adding a simple controller and
actuator to a physical extended rimless-wheel model.



Chapter 5

Walking

This chapter consists of a paper by the author and Andy L. Ruina

that is in review for Physical Review E. The last part of the chapter
on the Chebyshev mechanism was not included in the paper due to

the length restrictions of the journal.

5.1 Abstract

We have found periodic collisionless motions for a rigid-body walking model.
Unlike previous bipedal designs, this model can walk on level ground at non-
infinitesimal speed with zero energy input. The model avoids collisional losses by
using internal oscillations of the upper body, relative to the legs. This avoidance of
foot-strike collision losses by means of synchronized internal oscillations may help
in the design of energy-efficient robots and explain aspects of animal locomotion
efficiency.

5.2 Introduction

Locomotion over level ground does not, fundamentally, have a lower bound for
energetic cost, since the key relevant force, from gravity, is orthogonal to the
net displacement. For example, no energy is required to move a weight across
a frictionless horizontal surface. Nature and engineers have designed low friction
hinges, and air-friction losses are small for walking. If one neglects minor losses
from joint and air friction, is it possible to design a system that can walk with no
energy input?

The dominant energy sinks in walking are in the actuators when they absorb
rather than perform work (eccentric muscle contractions) and through collisions
when a foot hits the ground. At such a collision, energy is lost by a combination of
mechanisms (heat at the collision point, dissipation in muscles and soft tissues, etc.)
the details of which do not affect mechanics predictions, so long as the rigid-body
modeling is accurate both before and after the collision [9]. Our model will have

94
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no actuators, so energy cannot be lost by work being done on the actuators. Thus,
finding a zero-energy-cost walking machine is equivalent to finding a collision-free
walking machine. The following are various ways to seek zero-energy-cost walking.

Kinematic mechanisms. Over 150 years ago Chebyshev designed many
mechanisms that guided their endpoints on nearly straight line paths for a por-
tion of their trajectories [12]1. Using four copies of an approximate-straight-
line-mechanism (Fig. 5.1), Chebyshev achieved almost perfectly smooth walking.
Chebyshev’s aim was a near straight trajectory for the carriage, not zero dissipa-
tion. Therefore, a very small collision remains in his design. With a slight cost in
levelness of carriage motion, the mechanism could be redesigned to achieve a foot
impact velocity of zero. Opening the rules of play further to include more general
mechanisms, say with cams or chains, designing a ‘kinematic’ walker with no foot
impact is trivial. Such kinematic (or one-degree-of-freedom) designs do not achieve
our present goals of finding an essentially dynamic design with zero dissipation.
We desire to increase our understanding of the mechanics of machines that have,
like walking people and animals, more than one degree of freedom.

Compliant contact. To avoid collisions, one could consider using massless
springs on the bottom of the feet. These springs could be compliant in a tele-
scoping manner along the leg or compliant in both spatial directions (2D). If a
telescoping leg spring is used, the foot velocity, at contact, must be parallel to the
leg orientation for no impact to occur, a class of solutions we chose not to pursue.
If a spring which is compliant in both directions is used, then one runs into the
problem (similar to the ground contact issue addressed in the appendix) of having
energy stored in the elastic element when the vertical component of the ground
reaction force drops to zero. Thus using springs on the bottom of the feet does
not easily lead to an energy-free and passive motion.

Passive-dynamic walkers. Some useful yet simple models for studying
bipedal walking are unactuated rigid-body models, first studied quantitatively by
Tad McGeer [34]. Garcia et al. found that some designs can work on arbitrarily
small slopes and that, for these slopes, the power(P) used scales as P ∝ v4 where,
v is the average forward velocity down a ramp [22, 21]. Thus these machines can
have an arbitrarily small specific cost of transport, ct = energy cost per unit dis-
tance traveled per unit weight, but only with the forward speed simultaneously
also going to zero. Chatterjee et al. proved that it is not possible for a McGeer-
type passive dynamic walker with no upper body to walk with a non-zero speed
at a zero slope angle (i.e. across horizontal ground) [10].

Singular-limit of Passive Walking. The essential key to vanishing ct is
vanishing step length. Finite-speed energy-cost-tending-to-zero walking machines
can be built by adding an interleg spring with stiffness tending to infinity and thus
with step frequency tending to ∞ while step length goes to zero. This does not
satisfy our goal, since we seek a model with exactly (rather than in-the-limit) zero

1The author thanks Dmitry A. Fedin and Dmitriy Leykekhman for their help
in translating many sections of this book



96

D

A

E

CB

A B C

D
E

Figure 5.1: Our mockup of the 15-link Chebyshev mechanism of [12]. It is a
4-bar mechanism copied four times. The body or carriage is fixed
to AB. One pair of feet is fixed to E. One or the other pair of feet
is moving on a nearly-level approximately straight line relative to
the body at all times. Chebyshev built a “wheel”-barrow using
this mechanism.
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energy cost for finite speed walking.
The model. Chatterjee et al. conjectured that a more general passive device

could be capable of walking with a non-infinitesimal speed on level ground [10].
Here we verify their prediction by finding solutions for their proposed model which
does in fact walk across level ground without collisions and thus with no energy
loss.

5.3 Model

The model we use is depicted in Fig. 5.2 [10]. It has two identical leg links and
a body link connected to each other via a common hinge joint. Each leg is also
connected to the torso by a torsional spring which is relaxed when the machine
stands fully upright. Thus, if both legs are at rest and touching the ground (at
any angle φ), the upper body has an equilibrium position (stable or not stable,
depending on parameter values) in the “inverted” vertical position. We assume
that our model has perfectly rigid bodies, motion restricted to two dimensions,
frictionless hinges, no air resistance, inelastic ground collisions, and infinite friction
at ground contacts. An interleg spring could be added to the model, but we did
not need that generality to find the desired solutions. Given the above model we,
as opposed to all other passive dynamic walking research to date (e.g., [1, 29, 69,
34, 22, 62]), seek walking motions on level ground.

The equations of motion for this system consist of three second order, non-
linear, coupled, ordinary differential equations. When a foot strikes the ground,
angular momentum conservation determines the magnitudes of the discontinuities
in each link’s angular velocity. To obtain the equations of motion, we use angular
momentum balance of: the free leg about the hip, the torso about the hip, and the
whole system about the ground contact point (see Fig. 5.2). These are equivalent
to writing Lagrange equations using θ1, θ2, and θ3 as generalized coordinates.

The equations of motion can be rearranged in the form: [M ]θ̈ = v, where [M ]
is a 3x3 matrix that depends on the state, θ̈ is a vector of angular accelerations,
v is a vector with gravity terms and terms quadratic in the angular rates. These
equations are then formed and integrated numerically. Normally, we would also
need to precisely detect the time of impacts between the swing foot and the ground
to calculate the links’ angular velocities after the collision. However, we do not
need to form the collision transition equations explicitly since we are looking for
motions which avoid these collisions entirely by having the foot touch the ground
at zero velocity.

In previous passive dynamic studies [34, 35, 33, 36, 61, 10, 22, 62], there is
not an extended double stance, that is, no non-infinitesimal period of time when
both feet of the walker are touching the ground. Although our model is capable
of motions with extended double stance, we only looked for solutions where the
previous stance leg immediately lifts off of the ground when the swing leg touches
the ground. See the appendix for further discussion of this issue.
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Figure 5.2: Three link walking model with hip springs. Modified from [10]
①torso, ②stance leg, ③swing leg, ④swing leg hip spring, ⑤stance
leg hip spring, ⑥stance foot, ⑦swing foot, ⑧ground. Non-
geometric parameters are: I/cmt

=moment of Inertia of the torso
about its center of mass, mt=mass of the torso, I/cml

=moment
of Inertia of the leg about its center of mass, ml=mass of each
leg, K= torsional spring constant. Modified from [10].



99

5.4 Counting/Symmetry Arguments

Taking the equations of motion and collision-transition equations as defining a
map, a periodic motion is equivalent to finding fixed points of that map. We
seek motions of the model on level ground which are periodic and thus (by energy
balance) collisionless; the swing foot must touch the ground with zero velocity, like
the hopping motions in [8]. Are there continuous families of solutions or do we
need to modify some of the walker’s mass or geometric parameters to find a single
solution? To answer this question, we begin by refining, in four steps, a counting
argument based on a Poincaré section.

We define our section to be the point in the walking cycle just after the swing
leg strikes the ground. The input variables of the map are then, φ, θ3, θ̇1, θ̇2, and
θ̇3 at that time. We ignore foot scuffing in the middle of the stride, as in [34, 22],
(see appendix for discussion). When both feet are on the ground again, after
we do the collision transition, we can describe the state of the system with five
numbers, three angular velocities of each link, and two angular positions. In this
case our map is IR5 → IR5. Because the number of equations equals the number
of unknowns, it would not be degenerate to find isolated periodic solutions.

However, since we desire periodic motions that are collisionless, our counting
argument changes. We must end in a collisionless state, which requires that θ̇1 =
θ̇2 = 0 (ignoring the singular configuration of “splits” φ = 180 ◦). Our motion must
be periodic, so if we end the step with both legs at rest, we must also begin with
both legs stationary. The input to our map is now φ, θ3, and θ̇3. Since we have no
collision at the end of the step we require that the following conditions be met to
attain our goal: φf = φi, θf

3 = θi
3, θ̇

f
1 = 0, θ̇f

2 = 0, θ̇f
3 = θ̇i

3, Where the superscript
i refers to the input (initial) value to the map and f to the output (final) value
from the map. So our map is IR3 → IR5. All five conditions might only be met
by altering not only the three initial conditions, but at least two additional model
parameters. For any fixed parameters, a solution is extremely unlikely to exist.

Our system has a time reversal mirror image symmetry which alters the above
counting arguments. If we now seek solutions which share this symmetry, our goal
changes to become a task of finding an initial condition which results in all three
links lining up vertically as shown in Fig. 5.3a. Our map now takes us from the
initial state with both legs at rest touching ground (input:φ, θ3, and θ̇3) to the point
where the stance leg is perpendicular to the ground (condition:θ1 = 0) (output:θ2

and θ3). Thus our new mapping is IR3 → IR2 so we should expect a one parameter
family of solutions. Fig. 5.3 shows how this modified goal relates to the original
goal of finding collisionless periodic motions. Fig. 5.3a show a possible solution to
our modified goal. Fig. 5.3b shows the spatially reflected time reversed solution of
Fig. 5.3a. Fig. 5.3b will automatically satisfy the equations of motion. The ending
state (positions and velocities) of the model in Fig. 5.3a is the starting state of the
motion in Fig. 5.3b. Thus we could seamlessly paste together the motions in Fig.
5.3a,b to obtain a collisionless motion which obeys the laws of physics. However,
this pasted together solution although collisionless, is not, in general, periodic since
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a)

b)
*

*

reflected reversed time

time

Figure 5.3: Solution for one step that is symmetric about midstance “*” and
collisionless but does not extend to a periodic orbit because initial
and final conditions are different. a) First half of the motion from
double stance to mid-stance. b) Second half of the motion which
is a spatial reflection and temporal reversal of (a).

the torso’s angular position at the end of the step is not the same as it was in the
beginning of the solution.

Finally, we restrict ourselves to sets of initial conditions with the torso perpen-
dicular to the ground. Now our map input is (φ, θ̇3) and the output when θ1 = 0
is (θ2, θ3). The map is IR2 → IR2 and it would be non-degenerate to find isolated
solutions for a fixed set of walker parameters. To find such solutions, we use a
multidimensional numerical root finding algorithm, Newton’s method, on this two
dimensional map.

5.5 Results/Discussion

Fig. 5.4 shows a periodic collisionless motion. As conjectured from the argument
given above, we found this motion by only varying initial conditions and not model
parameters. See the appendix for a discussion of foot clearance issues at the
beginning of a step.

An unexpected aspect of the solution in Fig. 5.4 is the large number of upper
body oscillations per step. We searched for collisionless motions with fewer upper
body oscillations, but found that they all violated our restriction that the swing
foot should not immediately pass through the ground when weight shift occurs.
We found that if the angular velocity of the upper body was larger at weight shift,
then the swing foot would lift off the ground. The increased velocity of the upper
body, given the parameters that we were using, necessitated that the upper body
oscillate with a higher frequency.

Although the motions we found are symmetric, we cannot rule out that pairs of
non-symmetric motions may exist for this model. In addition, periodic collisionless
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Figure 5.4: A periodic collisionless walking motion using the parameters and
initial conditions listed below. The snapshots shown in this figure
are spaced evenly in time. The “*” label denotes the mid stride
point in the motion about which the whole stride is symmetric.
This solution uses in mks units: ll = 0.5,ml = 0.2, pl = ll/2 =
0.25, I/cml

= mll
2
l /12 = 0.0041666̄, lt = 0.3,mt = 0.14, pt =

lt/2 = 0.15, I/cmt
= mtl

2
t /12 = 0.00105, K = 1.5, and with the

initial conditions, the result of the numerical search (after con-
vergence tests), φ = 1.380366043 and θ̇3 = −31.37031936. The
near-coincidence of θ̇1 and θ̇2 at the configuration symmetry point
(t = 0.5) is just, they are not equal.
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motions which have a period of extended double stance also seem possible.
Maloiy et al. conjecture that some African women might have developed a

technique to achieve a higher than normal efficiency in walking when carrying a
load [31]. Perhaps these women coordinate the motions of their load to reduce their
collision losses with the ground, thereby reducing their metabolic effort. We have
demonstrated the possibility of using internal oscillations as a means of reducing
collisional dissipation in forward walking, which can aid in future bipedal robot
design and may explain aspects of animal and human coordination patterns while
walking.

5.6 Ground Contact Issues

5.6.1 Double Stance.

An obvious parameter to separate double stance from single stance is the verti-
cal component of ground reaction force(Ry) on the stance foot. Generally, the
horizontal component of the ground reaction force will not be zero at the same
moment that the vertical component is zero. Like McGeer in [37], we found that
removing the ground constraint for the stance leg when Ry = 0, resulted in the
foot accelerating down through the floor, rather than up. This non-intuitive result
occurs because for a point on a mechanism, as opposed to an isolated point mass,
jumps in force are not generally parallel to the jump in acceleration at the point
of force application (in effect the foot has an anisotropic mass e.g. [11]). Our
mapping starts as the foot begins its separation from the ground, so an algebraic
calculation of the acceleration of the foot can determine if it immediately passes
through the floor. We excluded such ground-penetrating-at-lift-off solutions.

5.6.2 Scuffing.

Straight legged walkers in 2D will scuff their feet when walking. “Scuffing” refers
to the swing foot passing through the ground when the relative angle between the
legs is small. In other passive dynamics research scuffing is ignored, by viewing it
as a different decoupled problem (solved by various means: walking on spaced tiles,
retracting ankles, or bending knees which minorly affect the leg-swing dynamics).

5.7 Chebyshev Mechanism Details

The walking mechanism that Chebyshev designed is a single degree of freedom
device, with a rather complicated kinematic description. The device is a conglom-
eration of four sets of the simpler four bar-linkage shown (in various positions) in
the insets of Figure 5.1. Chebyshev determined values for two link lengths, in the
isolated four bar mechanism, that would minimize vertical deviations in the end
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point trajectory for a portion of its path. After coupling four of these linkages to-
gether to obtain the walking device, the kinematics of the end point relative to the
ground have changed since the base point is now moving relative to the ground.
This device has many symmetries, one of which is that the two sets of linkage
systems (one for each leg-pair) move 180 degrees out of phase with each other.
One might think that this symmetry alone would cause the foot to contact the
ground with zero velocity, since in the linkage, it appears that the start and finish
of the straight line portion of the path is also 180 degrees out of phase. Figure
5.6 shows the position of the end point of the moving foot (with the other leg-pair
motionless) for a complete 2π rotation of the central crank (i.e. two consecutive
steps). Note that although the foot would go through the ground, we can examine
its approach to the floor and see that there is a slight collision when the moving
foot makes contact with the ground. This can be seen in the slightly non-zero
slope of the vertical position plot when it crosses zero. This small collision would
occur if we assume that the central crank arms are moving at a constant angular
velocity. If we exercise control over the angular velocity, we could make contact
with the floor at zero velocity. This would require that the controller bring the
angular velocity of the crank arm to zero at the moment that contact is made (i.e.
if dy/dθ 6= 0 but dθ/dt = 0 then dy/dθ · dθ/dt = 0). I am not sure if it would
be possible to choose a suitable set of initial conditions and/or mass and inertia
parameters to obtain zero angular velocity of the crankarm when contact is made
between the swing foot and the ground.

If the lengths of the links were slightly modified to eliminate this small collision,
then this device, once set in motion, would continue to walk without dissipation.
This would be true, for any mass distribution of the links and regardless of the
initial conditions used.
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Figure 5.5: Configuration of the Chebyshev walking mechanism where the
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One pair of legs maintains ground contact and the other pair lifts
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Chapter 6

Continuation Methods

6.1 Introduction

Finding periodic motions in dynamical systems is a common problem whose solu-
tion becomes more difficult as the system’s degrees of freedom increase. Numeri-
cally finding periodic motions in these systems is usually done using an iterative
solution algorithm. The search for periodic motions can be transformed into a root
finding problem using a map, first done for passive walking models by Hurmuzlu
[26]. Most often, the iterative algorithm used to solve the root finding problem is
some variant of Newton’s method. For convergence to occur quickly or even at all,
these methods depend upon having a “reasonable” initial guess that is “close” to
an actual root. Some methods for obtaining a “reasonable” guess are: intuition,
brute force, and continuation. Familiarity with the system my allow one to make
very good guesses, guided by experience and/or intuition, for the locations of the
desired roots. Intuition is wonderful, but it can also be unreliable and may fail
for many reasons. Intuition is also not suited for comprehensively finding all the
roots that exist in a given problem formulation, or perhaps more importantly, the
unexpected roots.

Thoroughness is the major advantage of brute force methods. These approaches
begin with a gridded portion of the input variable space. Those grid points are
then starting guesses for the root-finding algorithm. One can also use a geometrical
approach to bound solutions between surfaces [4], but this approach mixes together
true roots with surface discontinuities which straddle the zero function value hyper-
surface. The spacing of the grid is important. A too coarse spacing may result in
missed solutions. Of course, a too dense spacing may result in prohibitively long
program execution times. As the dimension of the input variable space increases,
the number of calculations for a given grid spacing increases as the power of the
number of dimensions. Thus as the number of dimensions in the problem increases
one must search smaller and smaller regions of input space, or use a coarser and
coarser grid spacing to maintain reasonable computing times.

Continuation methods are also used for finding periodic solutions to differen-
tial equations [55]. The advantage of continuation methods lies in their ability to

106



107

transform a difficult problem into a more tractable one. Starting with the solution
to the easier problem, this solution is then followed into the original more difficult
problem by changing the continuation parameter. How one chooses to introduce
this continuation parameter is often where one’s skill in using continuation meth-
ods becomes critical. By design, a continuation is done in one-dimension, i.e. the
object of interest (in this case periodic motions) is tracked as we change a single
parameter. However, the number of additional degrees of freedom linked to that
one parameter can be greater than or equal to one. One can start with a system
that is so simple, that the periodic motion can be found by inspection. Almost
any amount of complexity can be introduced by a single continuation parameter.
Alternatively, one can concatenate several different continuations beginning the
subsequent continuation step with the final system obtained by the previous con-
tinuation step. The brachiation models used just such a series of continuations to
work toward the final five link brachiation model via a series of continuation steps.

Once a beginning system and ending system has been determined, there are
an infinite number of ways to introduce the continuation parameter allowing one
to move from one system to the other [55, 73]. Adding the parameter in a fairly
random manner to the equations of motion can be done as long as a solution
can be found for the starting value of the parameter, and we end up with the
desired system at the ending value of the parameter. However, this method can
easily introduce difficulties since one does not know if the modified equations admit
periodic solutions for all intermediate values of the parameter, especially if there are
other conditions to be met (i.e. maybe the equations may need to be conservative
for a solution to exist). Also, when the differential equations are relatively simple,
then one can try many different ways of introducing the continuation parameter
at the equation level. Unfortunately, the equations of motion for linked systems of
several links are too complex to write down explicitly, even with the use of computer
algebra packages1. With these complex systems, parameter introduction at the
equation level becomes prohibitively difficult and the parameter must be added at
the model level. We will examine four different ways to introduce a continuation
parameter to an existing model which are all constructed using traditional parts
from a mechanic’s toolbox (masses, springs, dashpots). Of course, one does not
need to use linear elements. One could easily substitute a non-linear spring for a
linear one with no extra work in forming the model. This choice will most likely
affect the paths connecting desired motions between the two models. The question
still remains as to how one can design a coupling element which will lead from the
existing solutions that one has for a simpler model to the desired motions in the
more complex model. At this point, we are not even sure if a path exists from the
simple to the complex model, much less how to have it end at the right point in
the complex model. The work in the chapter is limited to examining the use of
simple coupling elements to introduce the continuation parameter.

1e.g. Macsyma (Maxima), Maple, Mathematica, . . .
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6.2 Periodic orbit existence

We will not discuss existence of periodic orbits in the systems that we will examine
in this chapter, but instead will assume that periodic orbits do exist. Instead, the
focus for this chapter on the paths which do or do not connect periodic motions
in two different but related systems. However, we can be reassured, at least for
the linear systems that we examine in this section, that periodic solutions do
exist. This is due to the purely imaginary roots of the characteristic equations
resulting in all solutions being linear combinations of the normal mode solutions.
For more complicated non-linear systems, it is sometimes possible to use either
the implicit function theorem or the Brouwer fixed point theorem to show that
periodic solutions exist. But, we will simply assume that periodic solutions exist
and then try to find them; focusing on the nature of the paths connecting those
solutions.

6.3 Path existence

Introducing a continuation parameter to move from one system to another can be
done for almost any system. However, one is not guaranteed that a path exists
moving from a given periodic motion in one system to a periodic motion in the other
system. The proof that the path does not end abruptly, bifurcate, infinitely spiral
to a point, or consist of just isolated points involves the implicit function theorem.
The basic outline of the path existence theorem requires that one have an implicit
formulation for the roots, H(x, α) = 0. Here H : R

n+1 → R
n denotes the root

finding function as formulated in the appendix, with α denoting the continuation
parameter, and x the initial conditions which result in a periodic motion. Using
the implicit function theorem, one can state that a single differentiable path will
exist if H is continuously differentiable and the Jacobian H ′(y) is full rank for every
y ∈ H−1. For the linked dynamical systems that are of interest in this research,
we cannot write down the solutions to the differential equations, so we have no
hope of forming H(x, α) = 0 much less determining if it’s Jacobian is continuously
differentiable. We could form it numerically as we follow a path to find bifurcation
points or ending points. However, for this research we will end our discussion of
path existence and simply assume that a path exists.

Knowing that a path exists is one thing, but determining where it will lead
to is another. To guarantee that a path will go from one model to another there
are some other arguments that must be made beyond showing that the path does
not simple end somewhere in the middle. A well-behaved path could still double
back on itself and connect to a different periodic motion in the beginning model.
Another problem could be that the path blows up (x → ∞) before reaching the
ending model at α = 1. These two problems are sketched schematically in Figure
6.1. If only a single periodic orbit exists for α = 0, then the path cannot double
back and connect to a second periodic orbit in the original model since only one



109

α =1α=0

x

Figure 6.1: Problems that can occur even with the existence of only continu-
ously differentiable path in the continuation. The single contin-
uation parameter is α and x is a variable which represents the
periodic motions. The dots at α = 0 and α = 1 respectively cor-
respond to periodic motions in the simpler and complex model.

exists there and connecting back to the same periodic orbit would violate our earlier
determination that the path was continuously differentiable. To guard against a
solution blowing up, one must show that solutions to H(x, α) = 0 are bounded
for 0 ≤ α ≤ 1. Although we have now defined the major problems that can
occur when using a continuation method, we will not attempt to use the criteria
given to show the existence of any of these problems in our models. Instead will
keep the criteria in mind when we explain the numeric results when we apply our
continuation methods to our models.

Having outlined what is involved in determining if a path exists connecting a
periodic motion from a simple model to a periodic motion in the more complex
model, we can see how these criteria would be applied to the specific cases of
interest, linked rigid-body models. Since our differential equations can be very
complicated (i.e. too lengthy to even write down explicitly) and are non-linear,
it is impossible to find an analytic solution to them. This is the largest difficulty
posed by the problem when taking a analytic approach to solving it. If we ignore
that difficulty and assume that for a given problem we have an explicit solution
(x(t)) to the differential equations, we would then need to proceed in the following
manner. First, we would need to form our requirements for a periodic collisionless
motion for a given Poincaré section (in this work we chose to find a symmetric
motion which, by construction, would be a periodic collisionless motion). For
example, for the two link brachia-tor’s continuous contact motions (see chapter
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2 starting each motion with θ1 = θ2 = 0, we required two conditions to be met
when θ̇1(t

∗) = 0 (our Poincaré section) (1) θ̇2(t
∗) = 0 and (2) yhand(t∗) = 0. Note

that the equation determining the Poincaré section (θ̇1(t
∗) = 0) also requires and

additional integer value to be assigned (the number of times we cross the surface of
intersection before we evaluate the map, i.e. we want our two conditions to be met
when θ̇1 = 0 for the second time since the starting state). Using the conditions for
periodic motions, the analytic solution to the ODEs, and the equation defining the
Poincaré map, we would then solve that set of nonlinear equations for the periodic
solutions, which in our example would be, θ̇1(0), θ̇2(0), and t∗(the time when we
evaluate our map). It is apparent that even if one has an explicit expression for the
solution to the non-linear ODEs, determining the initial conditions which result
in a periodic motion is still non-trivial. Since we do not have the solutions to the
ODEs we carry out each of the above steps using numerical approximations.

There are several way to execute a continuation numerically. One aspect has
to do with numerically approximating the solution to the set of ODEs. Since the
the results of the approximate solution for the base upon which the continuation
is done, the numerical issues involved it the approximation do play a role in the
results given by the continuation method. However, for the sake of clarity, we will
view the whole numerical integration procedure as a black box in order to briefly
explain the numerical continuation procedures.

6.4 Adding degrees of freedom

The continuation methods in this chapter are all designed to add degrees of freedom
to an existing simpler model. Adding degrees of freedom (DOF’s) to a rigid-body
model is usually considered a discrete processes, but by using a specially designed
continuation method, we have made it a smooth process. The four methods pre-
sented in this chapter allow one or more degrees of freedom to be added to a model
in a continuous manner. These four methods divide naturally into two categories,
those which tend to initially couple the dynamics of the additional degree(s) of
freedom to the existing model (spring, damper, and inertia/mass coupling), and
those whose additional degree(s)-of-freedom dynamics are initially uncoupled from
the existing model (connection of a new link at its center of mass).

The coupling methods all share the common idea of viewing kinematic con-
straint as the limiting case of a coupling parameter going to a zero or infinite
value. The methods then relax the rotational constraint of welded joints, becom-
ing hinge joints in a continuous constraint-dissolving process. Spring and damper
coupling, although intuitive, lead to stiff differential equations and their associated
numerical accuracy problems which we will discuss in more detail in section 6.6.5.

A simple two-link continuous-contact brachiation model is used to demonstrate
each the coupling methods. This example also demonstrates that using damping
coupling for conservative systems will not result in periodic solutions for the in-
termediate values of the continuation parameter. Lastly, we demonstrate the in-
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ertia/mass coupling method for a more complicated 5 link brachiation model and
show the resulting periodic motion. The last example shows that one’s definition
of a surface of section used in the model can cause the continuation path to end
prematurely.

Since we are usually not interested in the solutions for intermediate values of the
continuation parameter, these methods fall into the general category of homotopy.
We will discuss when the methods that we examine can be used to obtain periodic
solutions for intermediate values of the continuation parameter, and when they
can not for our sample brachiation model as well as for a general passive linked
model.

6.5 Previous Work

Using continuation methods to find periodic motions is common practice [55, 73].
But usually this is done within a given fixed dimension of state space for all values
of the continuation parameter. One good example of this is given by Rand and
Ramani [49] where a nonholonomic constraint by fins on a submerged supercav-
itating underwater projectile is gradually enforced via a scaled constraint force
which ranges from 0 (no constraint) to 1 (pure no-slip nonholonomic constraint).
The class of continuation methods that we present here are unique in that they are
designed to increase the order of the differential equations that are being solved,
taking us from a passive linked system with fewer links into one with more links.
The idea of using continuation to move from a lower dimensional system to a higher
dimensional one is also not new. Meyer [39] used a continuation method to move
from the restricted three-body problem to the reduced three-body problem.

The idea of continuously relaxing a constraint to move smoothly from one
system to another is not a new idea. One example of this comes from classical
beam theory, where one can move from a beam supported by built-in supports to
pin supports [63]. In this example, the built-in support is modeled as a leaf spring
of very high stiffness and this spring constant is smoothly decreased down to zero
stiffness, resulting in a pin joint support. Although, this particular examples does
not increase the dimension of the system being examined, it is a very good example
of the spring coupling examined in section 6.6.1. The use of stiff springs as a proxy
for a rigid constraint is not new, but we believe that the idea of using damping
and mass/inertia coupling are new. Borzova and Hurmuzlu [6] have, independently,
used the uncoupled method presented here, to add a torso to a passive walking
model.

6.6 Method descriptions and possible problems

Here, we describe each previously mentioned continuation method in more detail
and discuss the existence of singularities in a simple representative example using
a rigid body pendulum. The existence of singularities for certain values of the
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continuation parameter may invalidate the use of that method to track periodic
motions depending on where those singularities are located. For the simple ex-
amples presented in this section, we start with a single rigid body pendulum and
transform it into a double pendulum using the continuation method being exam-
ined. The non-linear equations of motion are then linearized about the straight
down equilibrium point (θ1 = θ2 = θ̇1 = θ̇2 = 0). The linear equations are then
examined for singularities. Each link in the double pendulum is a homogeneous
line with mass=m, length=l, center of mass location at l/2 from either end, mo-
ment of inertia about the center of mass (Icm) = (1/12)ml2, and spring constant
= (1/ǫ)mgl. We use m, l, and

√

(l/g) to non-dimensionalize the equations.

6.6.1 Spring Coupling

This method uses a stiff spring as a proxy for a welded joint. To add a degree of
freedom to an existing model: break a link in the existing system into two pieces,
join those two pieces at the break with a frictionless hinge, place a torsional spring
of infinite stiffness at the joint where the ends of the spring are connected to each
link, and then relax the stiffness of that spring while tracking the original periodic
motion. If the torsional spring has infinite stiffness, the two links are then as rigidly
connected as two halves of a single rigid link. If the torsional spring stiffness drops
to zero then the two links are free to rotate relative to each other and are only
constrained in their relative position by the pin joint.

As an example system to explore singularities in this method, we take a rigid
body pendulum and transform it into a double pendulum. This system, after
the break, is depicted in Figure 6.2. We obtain the equivalent single rigid body
system when k = ∞. Our desired system is obtained when k = 0. This system is
conservative for all values of ǫ which is a necessary requirement for the existence
of periodic solutions. The linearized non-dimensional equations of motion are:

(

θ′′1
θ′′2

)

=
1

7ǫ

[

−18ǫ − 30 9ǫ + 30
27ǫ + 66 −24ǫ − 66

](

θ1

θ2

)

(6.1)

The frequencies of oscillation for the two normal modes of this system are:

−ω2
1 = −6

√

(7ǫ2 + 42ǫ + 64) + 21ǫ + 48

7ǫ
(6.2)

−ω2
2 =

6
√

(7ǫ2 + 42ǫ + 64) − 21ǫ − 48

7ǫ
(6.3)

(6.4)

The frequencies of oscillation as the spring stiffness approaches infinity or
as ǫ → 0 are: ω1 = ∞ and ω2 =

√

(3/4). As we expect, the frequencies
of the two linear normal modes as the stiffness approaches zero or ǫ → ∞ are
limǫ→∞ − ω2

1 = (−6
√

7− 21)/7 and limǫ→∞ − ω2
2 = (6

√
7− 21)/7. We have found

the main problem with this method. As soon as the spring constant drops from
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θ1

θ2

Figure 6.2: Rigid body pendulum split into two separate bodies and con-
nected via a hinge and a torsional spring. This is the intermedi-
ate system for the spring coupling method of adding a degree of
freedom.
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infinity to a large finite value, the equations of motion for the system become stiff
and it becomes difficult to obtain a reasonably accurate numerical approximation
to their solution. However, implicit integration routines such as the Backwards
differentiation formulas of 6th order and less can give very good results for stiff
equations. These results of this class of integration routines for these problems will
be discuss in section 6.6.5.

6.6.2 Damper Coupling

When breaking a link in two one could also couple the two links via a dashpot with
a large damping coefficient. The dashpot would provide a torque, resisting relative
motion, on each link in proportion to the links’ relative angular velocity. Also,
the dashpot would, like the spring, tend to move the two links together as one for
large values of the damping coefficient. This method is advantageous because we
do not have the problem of very high frequency oscillations that the stiff spring
has. However, a dashpot will dissipate energy, so energy must be injected into the
system in order for periodic orbits to exist. For energy conservative motions like
the collisionless motions found in the brachiation and walking models discussed
in chapters 2 and 5 respectively, this method will not result in periodic motions
for intermediate values of the continuation parameter. For extreme values of the
damping coefficient (0 and ∞) the system will conserve energy. It might be possible
to modify the system to couple some sort or energy injection system to the value
of the continuation parameter (i.e. letting it move down a ramp). Although, this
approach may work, it seems unnecessarily cumbersome for the goal that it achieves
(periodic motions for all intermediate values of ǫ). The coupling of the continuation
parameter with an energy injection system is not required for a system which is
already dissipative and has energy injection, such as passive walkers walking down
a ramp.

However, if we disregard our wish for periodic motions as solutions to the map
equations for intermediate values of the continuation parameter, we can use this
method as a homotopy. In this way, we accept that solutions to the map equations
will not, in general, be symmetric or periodic except for extreme values of the
continuation parameter. Note that all solutions will still satisfy our homotopy
function.

For very large values of the damping coefficient, we again have a time scale
issue in our solutions. Because of the large damping coefficient relative motion
between the two bodies will damp out extremely fast, but the whole system’s
motion (connected to the support) has no damping and will tend to move at a
slower time scale. As we shall see in section 6.6.5, having two widely varying time
scales in our solutions is normally a symptom of a set of stiff differential equations.
In this case, we shall see that large damping coefficients do not cause us the normal
difficulties normally encountered when dealing with stiff ODEs.
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Figure 6.3: Mechanical differential used to couple the motion of the two link
segments via a large rotary inertia. The large wheel is the cou-
pling inertia and the two input shafts are connected to the two
links via some rotational connection (e.g. speedometer cables,
pulleys leading to a mutual axis, . . . ). The inertia is kinemati-
cally coupled to the motion of the two links. If θ̇1 = θ̇2 then the
differential mechanism causes the inertia to be stationary.

6.6.3 Inertial Coupling

Here, we examine a method for coupling the motion of the two split links with
an inertia that tends to resist relative motion of the two links. A mechanical
differential is the physical interpretation of such a term in the equations of motion.
The coupling inertia is attached to what would normally be the “input” shaft of
the automobile differential and the two “output” shafts which would normally go
to the tires, are now attached to each of the two half links. Figure 6.3 depicts
the the basic parts of a differential with labels as to which shafts are connected to
which half links.

If the inertia which couples the two half links is large then the amount of relative
motion between the two links will tend to persist. If the relative motion is zero
then the inertia will tend to cause the two links to move as a single link.
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The mass of the coupling inertia can be made arbitrarily low by use of a trans-
mission or large radius. If the mechanism needs to be place on the moving device,
the center of mass of the large inertia can be placed at the center of mass of a link,
uncoupling the large inertia’s dynamics from the rest of the system. The mass
of the large inertia can be made arbitrarily small by the use of a transmission or
large radius. In some cases the mechanism can be stationary by using speedometer
cables to couple the the rotary motion of the links to the input shafts, or by using
pulleys to bring the motion of the links to a common non-translating shaft.

Unlike spring coupling, this method does not introduce high frequency os-
cillations when the continuation parameter is slightly perturbed from its initial
value (∞). The differential mechanism applies a torque on each link that is
equal and in opposite directions. The magnitude of the torque applied is equal
to Icoupling(θ̈2 − θ̈1)/4, where Icoupling is the moment of inertia of the coupling
inertia about its center of mass in the direction of its axis of rotation, where
Icoupling = Icm/ǫ. The non-dimensional linearized equations of motion are:

(

θ′′1
θ′′2

)

=
1

56ǫ + 16

[

−144ǫ − 9 72ǫ − 3
216ǫ − 9 −192ǫ − 3

] (

θ1

θ2

)

(6.5)

The frequencies of oscillation for the two normal modes of this system are:

−ω2
1 = −3

√

(448ǫ2 − 40ǫ + 1) + 84ǫ + 3

28ǫ + 8
(6.6)

−ω2
2 =

3
√

(448ǫ2 − 40ǫ + 1) − 84ǫ − 3

28ǫ + 8
(6.7)

(6.8)

As can be seen from the above equations, the frequencies of the two normal
modes remain bounded as the moment of inertia of the rotary inertia approaches
infinity (as ǫ → 0). Specifically limǫ→0ω1 =

√

3/4 and limǫ→0ω2 = 0. Again,
this method is useful since the perturbation does not introduce high frequency
oscillations. Note that the frequencies of oscillation for ǫ → 0 should not be the
same as for the previous system with ǫ = 0 since the two systems are different.

As we expect, the frequencies of the two linear normal modes as the rotary
inertia approaches zero inertia or ǫ → ∞ are the same as in the previous method we
reached the end of the continuation procedure with ǫ = 1/2. The two frequencies
for this system at the end of the procedure are: limǫ→∞ − ω2

1 = (−6
√

7 − 21)/7
and limǫ→∞ − ω2

2 = (6
√

7 − 21)/7.
If for a given motion, the integral of the torque on the inertia is not zero then

the two links which originally started at zero relative velocity will end up with
a nonzero relative angular velocity. This will not result in a periodic motion.
However, in general this will not be the case unless there is a periodic motion
which has a particular torque history on the link for half the motion and the exact
same torque history of opposite sign on the inertia for the other half of the motion.
But the collisionless periodic motions have exactly this symmetry, so the method
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Figure 6.4: Rigid body pendulum with additional link added at it’s center of

mass.

should work perfectly, and it does. This method could be modified to work for
systems which do not have this symmetry. The hinge point could be moved to a
point where the integral of the torque on the rotary inertia is zero. Although, one
does not know a priori where that point will be, it could be found as part of the
numerical root finding procedure.

For realistic values of the continuation parameter (i.e. positive values of cou-
pling inertia) the differential equations will not be stiff and we do not have to
concern ourselves with special methods for integrating them with high (near ∞)
or low (near 0) values of coupling inertia. Note that for negative values of coupling
inertia, we will have stiff equations for some intermediate values. Again, implicit
integration routines will help in these cases, please see the section on stiffness in
this chapter for a further discussion (section 6.6.5).

6.6.4 Adding a link at its center of mass

We now examine a method for adding a link without affecting the solutions and
without introducing high frequency oscillations when the parameter is varied.

As an example system to apply this method, let’s take a rigid body pendulum
and add to it a link at the end of the first link. This system, after the addition, is
depicted in Figure 6.4.

We obtain the equivalent single rigid body system when ǫ = 0. Our desired
system is obtained when ǫ = 1/2. This system is conservative for any value of
ǫ, which is a necessary requirement for the existence of periodic solutions as Lets
now examine what happens as we change ǫ. We again linearize the equations
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Figure 6.5: Diagram showing the procedure for moving the pivot point from
the center of mass of the added link to the desired location.

of motion about the straight down equilibrium point (θ1 = θ2 = θ̇1 = θ̇2 = 0).
In this example, each link has mass=m, length=l, and moment of inertia about
the center of mass = 1/12ml2. The equations are non-dimensionalized, where (′)
denotes differentiation with respect to non-dimensional time (τ = t

√

g/l). Note
that Borzova and Hurmuzlu [6], independent of this work, found periodic motions
of a walking mechanism by adding a torso using a similar procedure as described
in the section.

(

θ′′1
θ′′2

)

=
1

3ǫ2 + 1

[

(108ǫ2 − 9)/8 9ǫ2

27ǫ/2 −12ǫ

] (

θ1

θ2

)

(6.9)

The eigenvalues of the above matrix are both negative for the range of ǫ that
we are interested in. Thus the frequencies of oscillation for the two normal modes
of this system are:

−ω2
1 = −3

√

(1296ǫ4 + 1152ǫ3 + 1240ǫ2 − 192ǫ + 9) + 108ǫ2 + 96ǫ + 9

48ǫ2 + 16
(6.10)

−ω2
2 =

3
√

(1296ǫ4 + 1152ǫ3 + 1240ǫ2 − 192ǫ + 9) − 108ǫ2 − 96ǫ − 9

48ǫ2 + 16
(6.11)

As can be seen from the above equations, the frequencies of the two normal
modes remain bounded at ǫ = 0. Specifically ω1 = 3/

√
8 and ω2 = 0. This is

the result that we desire. This perturbation to the equations of motion do not
introduce high frequency oscillations.

As we expect, the frequencies of the two linear normal modes at ǫ = 1/2
and we have the double pendulum system, we have. −ω2

1 = (−6
√

7 − 21)/7 and
−ω2

2 = (6
√

7 − 21)/7.

6.6.5 Stiffness

Some values of the continuation parameter will result in stiff equations. In differen-
tial equations, stiffness is an imprecise term. Cleve Moler, chairman and co-founder
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of MathWorks2 gave the following description: “A stiff problem is not unstable,
or ill-conditioned, or even difficult to solve; it justs takes classic Runge-Kutta or
Adams methods an impossibly long time to achieve reasonable accuracy”[40]. Tre-
fethen, in [64], gives some general criteria that one can use to determine of a set of
differential equations are stiff or not. A strict mathematical definition of stiffness
does not yet exist. Trefethen in [64] states that a stiff ODE usually exhibits the
following three symptoms:

1) The problem contains widely varying time scales.
2) Stability is more of a constraint on [step size] than accuracy.
3) Explicit methods don’t work.

In 1952, Curtiss and Hirschfelder [16] first identified and named the concept
of stiff equations and also gave a method for solving them (backwards euler, a
first order implicit backwards-differentiation method). The behavior of implicit
integration routines is quite surprising to someone who has only experimented
with integration routines with bounded stability regions. Sand and Østerby have
compiled stability region plots for many integration methods of varying order in
[52]. Not all implicit methods have unbounded stability regions. For example,
the implicit linear multistep methods of Adams-Moulton (3rd order and above)
have bounded stability regions. The family of implicit Backward Differentiation
Formula methods of 6th order and less have unbounded stability regions, making
them very useful for the numerical integration of stiff equations. Methods which
have stability regions which include the entire left half plane are known as A-stable
methods [64]. All A-stable methods must be implicit but not all implicit methods
are A-stable [59].

As with bounded-stability methods, a method with an unbounded-stability re-
gion generally converges to the actual solution with decreasing stepsize. However,
since no integration method has a stability region which covers the entire com-
plex plane, there are usually some step-size values which will result in unbounded
solutions.

Figures 6.7 and 6.8 show the results of the simplest explicit3 and implicit4

methods applied to the simple linear two mass, two spring model depicted in
Figure 6.6.

When the stiffness is infinite, and we obtain the simpler reduced degree of
freedom model, we begin with a low frequency motion. This low frequency motion
is what we’d like to find when we change the coupling spring stiffness to a finite
but very large value, which gives a set of very stiff differential equations). If, in
the physical system, our state is not exactly on this slowly oscillating motion, we
will excite very high frequency oscillations around that slowing varying solution.

2publisher of the popular commercial software MATLAB
3Euler’s method
4Backward Euler’s method
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Figure 6.6: Simple two mass, two spring linear model with m=1 and k=1.

Approximate numeric solutions for X1(t), with step sizes that
have been chosen to be too large so as to give very non-accurate
solutions, are given in figures 6.7 and 6.8 for the following initial
conditions: X1(0) = 0.9, X2(0) = 1.1, Ẋ1 = 0, Ẋ2 = 0. The
reason for giving highly non-accurate solutions is discussed in
the text.

As the equations increase in stiffness, approaching the starting system which
has a system of ODEs with “infinite” stiffness, the integration step size required
to get an accurate solution must continually decrease and the time needed to form
an accurate approximate solution must increase. There is a limit to the accuracy
that can be obtained using numerical integration. One cannot continually obtain
more and more accuracy using smaller and smaller step sizes. At some point, no
matter what the order of the integration routine one is using, cumulative numerical
roundoff error begins to dominate, and the amount of error will begin to rise again
for smaller step sizes. Non-accurate, unstable, explicit methods are not helpful in
finding the solutions that we seek. Note that this is true regardless of the stiffness
of the differential equations that one in integrating. However, this problem become
very noticeable for stiff equations since one must use very small step sizes to obtain
a reasonable, if not accurate, solution. If the true mathematical solution which
satisfies both the differential equations and initial conditions has high frequency
oscillations, then an integration step-size that is smaller than the scale of those
oscillations is required for an accurate solution. It might be possible that, for
the same differential equations, there may exist a set of initial conditions whose
resulting motion does not have these high frequency motions. The small amount of
error which will exist for any numerical approximation, will excite those oscillations
if one is using a explicit method. Implicit methods will not excite those oscillations,
and this is the main advantage of these methods. To examine the behavior of these
two types of methods on a concrete example, we apply the simplest explicit and
implicit methods to a simple two mass-spring system and discuss their results.
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Figure 6.7: An inaccurate numerical solution of the linear two mass-spring
system with stiff coupling spring, as shown in Figure 6.6. The
”solution” was obtained by numerically integrating using the ex-
plicit Euler’s method with a constant integration step size of
0.0005. Smaller step sizes delay the growth of the large ampli-
tude, high frequency oscillations and give a more accurate solu-
tion for the given initial conditions. Since the eigenvalues of the
matrix defining the ODEs are purely imaginary and the stability
region for Euler’s method does not include any portion of the
imaginary axis, no step step size exists for this method which
will result in a bounded numerical solution.
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Figure 6.8: Inaccurate numerical solution for the two mass model with stiff
coupling spring shown in Figure 6.6. This ”solution” was ob-
tained by numerical integration using the implicit backward
Euler’s method with a constant integration step size of 0.001.
Smaller step sizes will increase the duration of the initial oscilla-
tions, converging closer and closer to the real solution. Since the
eigenvalues of the matrix defining the ODEs are purely imag-
inary and the stability region for Euler’s method includes the
entire imaginary axis, the numeric solution will remain bounded
for any choice step-size no matter how large.
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For both of the numerical experiments, we begin with initial conditions which
are not on the desired periodic motion. If we started with initial conditions which
were exactly on the desired periodic motion, the errors which are inherent in nu-
merical integration would cause the state of the system to be slightly off in the
next time step. Thus we will always have to deal with some numerical error in the
current state. Unstable methods will cause this error to grow. An argument can
be made to reduce this error by simply decreasing the integration step size for the
integration process, or to use a higher order integration method. This will work,
but only to a point. As the coupling spring gets stiffer and stiffer (and the ODEs
get stiffer and stiffer) the stability problems will get worse and worse no matter
what step size or order we use for the explicit method.

The implicit methods reduce the magnitude of the high frequency motion and
find the slowly moving solution that exists in the system. As the equations get
stiffer and stiffer, the rate at which the implicit methods squash the high frequency
motion increase. This behavior is what makes the implicit integration methods
so ideally suited for finding the low frequency periodic motions in stiff sets of
differential equations. Thus, implicit integration routines with unbounded stability
regions (such as backwards euler or the family of backward differentiation formula
of order 6 or less) or implicit Runge-Kutta methods are very appropriate for use
for the region of parameter values where the equations are stiff [64, 56, 57].

Having now discussed stiff ODEs and how to effectively deal with them, we
can discuss whether large values of the damper coupling result in stiff ODEs. The
eigenvalues for the linear two mass/spring/dashpot system are all complex with
negative real parts. This means that any oscillation will eventually decay to the
equilibrium position (zero). For large positive values of the damping coefficient,
the eigenvalues of the solutions will remain in the left half plane. Thus, any explicit
integration routine whose stability region includes the left half plane can be used
and will give stable results. Larger and larger damping coefficients will push the
eigenvalues further away from the origin, so even routines like fourth order Runge-
Kutta, which includes a small portion of the left half plane near the origin, can be
used without stability problems.

Although stiff equations which may arise for some values of the continuation
parameters pose difficulties with accurate numerical integration, implicit integra-
tion routines can be used to circumvent these problems. The implicit routines are
ideally suited for our searches since they pick out the slowly varying solutions that
we seek in the set of stiff ODEs.

6.7 Linear Analogues

It is interesting to modify the procedures given above to a linear, instead of rota-
tional, system. Again, we focus solely on a representative two degree-of-freedom
linear system. The stiff spring and highly damped damper methods readily sug-
gest a linear analogue consisting of two masses connected to each other with a stiff
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Figure 6.9: (a) Diagram of a system that is a linear analogue of the procedure
given in section 6.6.4, where a degree of freedom is added whose
motion is initially uncoupled from the initial system.

spring or highly damped damper and one of the masses connected to the support
via a spring of nominal stiffness.

The procedure discussed in section 6.6.4, where we add a new degree of freedom
whose motion is initially uncoupled from the dynamics of the rest of the system,
has a linear analogue which is depicted in Figure 6.9.

The procedure discussed in section 6.6.3, where the two split links are coupled
via an inertia, has a linear analogue which is depicted in Figure 6.10.

It should be noted that the equations of motion for these linear analogue sys-
tems are not the same as the equations of motion for the linearized two link system.
In some cases a mass spring system can be constructed where the two masses and
three springs have non-negative values. In other cases this is not possible with
modifications to the linear analog.

6.8 Simple Non-linear Numerical Examples

Here, we describe the results we obtained by applying the inertia and damping
coupling methods to a simple brachiation model. We only examined continuous
contact brachiation with this model. We began with a very simple single link with
“hands” on either end which are capable of grabbing onto and releasing handholds
on the ceiling. We then found a continuous contact brachiation motion for this
model which is collisionless and periodic. For this simple one link model, it is
immediately obvious that if one begins the model at rest with both hands on the
ceiling, then releasing one hand will result in the desired motion. Using this model
and motion, we then split this single link into two separate links(arms) and coupled
them via an inertia or dashpot. With a starting value of ∞ for the coupling inertia
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Figure 6.10: Diagram of a system that is a linear analog of the procedure
given in section 6.6.3 where an inertia is used to add a degree
of freedom.



126

g

(I    ,m)cm

(I    ,m)cm

swing arm

1

2

swing hand

ceiling

support arm
support
hand θ

θ

p

p

l

Figure 6.11: The two link model for which we would like to obtain periodic
collisionless motions. The dimensional parameters for the two
links are the rounded numeric values for the two-link brachiator
discussed in chapter 2: l = 0.61m, p = 0.0638m, m = 3.083kg,
Icm = 0.0539kg · m2, g = 9.81m/s2

or damping coefficient, the system is equivalent to the single link before splitting
the link. The collisionless periodic motion for infinite coupling, has a relative angle
between the two links, φ, is equal to π throughout the whole motion. For all of the
coupling methods applied to the two link brachiating system, numerical integration
along with a brute force algorithm was used to create the continuation diagrams.
This is, of course, impractical or impossible for systems with many degrees of
freedom. However, for this simple case, having the complete diagram allows one
to see paths being created, disappearing, etc.

6.8.1 Positive Inertial Coupling

We define the coupling inertia as follows:

Icoupling = Iarm(1 − ε)/ε

We begin with an infinite value of the coupling inertia, ε = 0, which effectively
locks the two links together. We then find the special value of φ in the starting
position (with both hands on the ceiling, and both links at rest) which results in
a collisionless periodic motion. We track the special value of φ as we increase ε
until the coupling inertia is zero, ε = 1.

Since it is impossible to execute these numeric calculations with an infinite
value of Icoupling, we begin our continuation with a very large but finite value of
Icoupling. The periodic motion of the system with this non-infinite coupling value
will be similar to the motion with the infinite value of Icoupling, since there is no
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Figure 6.12: Continuation from one link to two link brachiator using a pos-
itive value for the coupling inertia. Note that there is a direct
connection between the collisionless motion of the single link
and a collisionless motion of the frictionless-central-joint two-
link system. The other two curves were obtained from by hav-
ing previously done a brute force search for this system. All
points on these curves represent collisionless periodic motions
which have no reversals in sign of θ̇1 for a half cycle of motion.

singularity at that point, as evidenced by the analytical frequency calculations
shown in section 6.6.3.

Figure 6.12 shows that one can track the single link periodic motion to the two
link system. However, this motion of the two-link system has an initial value of
φ > π, which means that the central hinge begins the collisionless periodic motion
above the ceiling. Although, this is not the motion that we had hoped for, since it
is not very ape-like, it is nonetheless a motion which meets our non-collision and
periodicity requirements.

The other lower curve on this plot shows that there are two motions for the
non-coupled two link system which start with the central hinge below the ceiling.
Using this method of inertia coupling, we have shown that they are connected to
each other via a continuous path. One might conjecture that we were lucky in
the first case, that the single link motion was connected to an uncoupled two-link
motion and did not turn back on itself and connect to another single link motion.
For a generic system with more than one satisfactory single link motion, this could
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well have been the case. However, for this system, there is only one value of φ
in 0 ≤ φ ≤ 2π which meets our non-collision and periodicity requirements. Since
there is only one point on the graph in Figure 6.12 for ε = 0 there is nothing else
for the curve emanating from that point to connect to on that side of the graph,
so it cannot double back.

That curve could have just ended, like the top curve shown in Figure 6.12. The
reason for the abrupt ending of this curve has to do with the system reaching the
maximum energy level for periodic collisionless motions with both hands on the
ceiling at the beginning and ending of the motion. The domain of φ is 0 < φ < 2π.
φ = 0 corresponds to the minimum possible energy level of the two link system
with both hands simultaneously in contact with the ceiling. φ = 2π corresponds
to the maximum possible energy level of the two link system with both hands
simultaneously in contact with the ceiling. Both of the extreme energy levels are
equilibrium positions for this system.

6.8.2 Negative Inertial Coupling

In this section, we give the results for a brute force search using a negative inertia
to couple the two links of the brachiation model. As was expected, and shown in
Figure 6.13, we find that for some values of ε (∼ 0.15 < ε <∼ 0.2) the approximate
solution of the the two link coupled brachiator become so error ridden that any
spurious root-finding results cannot be trusted. This makes the negative-inertia
method useless for continuously tracking collisionless periodic motions to higher
degree of freedom models.

6.8.3 Damper Coupling

In the previous section we show the results of using damping to couple the two
links to each other. A rotary damper is placed at the central hinge of the two link
brachiation model. The damping coefficient is defined as:

b = 1.0(1 − ε)/ε

The torque acting on the second link from the first link via the rotary damper is:

τ = −b(θ̇2 − θ̇1)

Unlike the inertia method, for which there is a fully periodic collisionless motion for
each intermediate value of ε, this method only has periodic motions at the extreme
values of ε = 1, 0. The inertia method, can store energy in the rotary inertia on
one half of the swing and then return it to the two link system during the second
half of the swing. The damping method dissipates energy and thus cannot result
in periodic motions except at the extreme values of the damping coefficient. Since,
we are only interested in solutions at the extreme values of the homotopy variable,
damping can be used to continuously add a degree of freedom.
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Figure 6.13: Continuation plot using a negative value of inertia for the cou-
pling inertia. As expected from the analytical work presented
earlier for negative inertial coupling, we run into numerical dif-
ficulties around a specific value of εprobably due to a singular
mass matrix in the equations of motion.
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Figure 6.14: This is a plot of the symmetric motions which first cross the
surface of section (θ1 = 0) using damping coupling. Note that
these curves seem topologically similar to the curves obtained
using inertial coupling shown in Figure 6.12.
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Figure 6.15: This is a plot of the symmetric motions which first cross the
surface of section (θ1 = 0) using spring coupling. Note that the
scattered points at small values of ε represent the explosion of
periodic collisionless solutions with many fast oscillations of the
relative angle between the two links during a single swing. When
the coupling spring becomes stiffer, there is time to complete
numerous oscillations in the relative angle between the two links
in the time that it takes for both of them to swing up to the
next handhold. ε.

6.8.4 Spring Coupling

Here, we explore the effects of spring coupling between the two links of the brachi-
ation model. Note that we expect to run into numerical difficulties for a range of
values around ε = 0. We were able to track the symmetric motion which emanates
from the single rigid body model with no explosion of numerical error, but the
other points scattered above and below φ = π which are shown for 0 < ε <∼ 0.4
are a result of numerical error.

One thing to note about the solution curves shown in Figure 6.15 are that there
are many curves which appear for large values of the coupling spring constant
(ε ≈ 0). These solutions represent periodic solutions with large numbers of small
oscillations around a larger slow oscillation. As the coupling stiffness increases,
one can pack more and more of these fast oscillations into one periodic motion.
However, at infinite coupling stiffness, all of the motions with fast oscillations
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disappear and we are left with the single motion which only had the simple slowly
oscillating solution.

6.8.5 2nd Surface of Section

Inertial coupling and damping coupling both cause the two links to move together
for ε = 0. Therefor, one might think that the positive inertia coupling and the
damping coupling methods will result in topologically similar continuation plots.
Although this is true for the first crossing of the surface of section, it is not true
in general. This can be seen in Figure 6.16 showing a particular curve for two
different coupling methods which end in the same point.

6.9 More Complicated Numerical Example

In this section, we show the results of using one of the methods described in
a previous section on a system with more complexity than the two link models
previously described. Both the model and gait are different than in the above
models. We begin with a three link model and wish to add elbows to each arm
which will result in a five link model. We are concerned with ricochetal, instead
of continuous contact, gaits for this 3-5 link model. We define a ricochetal gait as
a gait with a ballistic flight phase with no contact being made between the model
and the support [23].

We start with a symmetric motion for the three link model. Then we track that
motion as we change the coupling inertia from ε = 0 to ε = 1. A zero coupling
inertia (ε = 1) is equivalent to frictionless pin joints at the elbows. We use the
parameters for the 5 link brachiation model shown in chapter 2. We have defined
our initial configuration as the minimum potential energy position of all the links
with the supporting hand grasping the ceiling (θ1 = θ2 = θ3 = θ4 = θ5 = 0). Thus
we only need five initial angular velocities to define a complete initial state of the
system. Figure 6.18 gives the initial angular velocities which result in a symmetric,
and thus collisionless and periodic, motion. Although there are probably multiple
ricochetal gaits for the 3 link model with this release angle, the path does not
double back on itself and connect to one of them. Instead the path connects to
the 5 link model.

Because of the way in which we have limited our search space (no sign reversals
in θ̇1 for a half cycle), it is very possible that the curves could simply end, like
the curves shown in Figure 6.20 The limitation criteria involves the definition of
the map section. In our case, our function begins with all links in the minimum
potential energy configuration. We then change the equations of motion (release of
the ceiling) at the first event (when the supporting forearm reaches a defined angle
(θ1 = 22.3◦). We then integrate the new equations of motion until the vertical
component of the shoulder’s velocity drops to zero (the second event).

If either event-function (ceiling release or map evaluation output) can have
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Figure 6.16: This is a plot of some of the values of phi which result in θ2 = 0
at the second crossing of the surface of section θ1 = 0 using two
different continuation parameters. Although figures 6.12 and
6.14 are topologically equivalent, this figure shows that the two
methods do not result in topologically equivalent homotopies
when using a larger number of swings. The plot on top uses
positive inertial coupling and the plot on the bottom uses posi-
tive damping coupling. Although both curves end at the same
motion for the uncoupled two link system, the curves themselves
are very different.
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Figure 6.18: A set of points on each of the 5 curves, for a given value of ε, are
the initial conditions for a periodic collisionless motion. Note
that there is a connection via the inertial coupling from the 3
link ricochetal gait to the 5 link ricochetal gait. The motions of
the two different models are depicted in Figure 6.19.



136

Figure 6.19: Symmetric (periodic and collisionless) motions for both the 3
link and 5 link ricochetal brachiation models. Note the parame-
ters of the two models are consistent with one another, and the
release angle is the same for both models 22.3◦.



137

ε

θ
1

θ
2

θ
3

θ
4

θ
5θ

−15

−10

−5

 0

 5

 10

 15

 20

 0.99  0.992  0.994  0.996  0.998  1

Figure 6.20: Periodic Collisionless motions emanating from the “gibbon-like”
motion of the 5 link model given in chapter 2. Note that as we
track this motion, the path simply ends. This is due to the non-
monotonic nature of the first event criteria (the ceiling release
criteria).
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multiple crossings of the surface of section, then a decision must be made as to
how many crossings we will allow before evaluating the function. For Figure 6.18 &
6.20, we chose to evaluate the function on the first crossing of our surface of section
to obtain fairly simple symmetric motions, but we could just have well chosen a
larger number of crossings. The problem with defining the surface of section via
a possibly non-monotonic function (i.e. a state variable θ1) is that as we change
the continuation parameter, the motion that we track can begin to just barely
cross the surface of section, and then eventually completely miss the surface of
section where it used to cross. This results in a discontinuity in the map function.
Since we are searching for symmetric motions, we cannot modify the surface of
section for the second event so that it does not depend on state variables and we
are thus stuck with the possibility of abruptly ending curves in our continuation
plots. However, for the first event, the ceiling release criteria, we can arbitrarily
choose the event function so that it does not depend on a non-monotonic function.
We modified the event function to be simply dependent on time (a monotonically
increasing function) and redrew the continuation plot corresponding to Figure 6.20
and found that there was no abrupt end in the path.

Figure 6.21 shows shows one of the curves given in Figure 6.20 and labels the
first point at which the path was lost, which was recovered, and then the point
where the path was lost a second time and from which it is impossible to recover.
The curve below the first transition event corresponds to the first crossing of the
surface of section (see the (a&b) cartoons of θ1 in Figure 6.23). Then the motion
that we were tracking ceases to correspond to the first crossing of the surface of
section and instead corresponds to the third crossing (see cartoon (c) in Figure
6.23). We then continue tracking the motion using the third crossing of the first
event function. However, eventually, the motion that we are tracking ceases to
cross the surface of section anymore (see cartoon (d) in Figure 6.23).

6.10 Conclusions

We have shown that one does not need to depend on intuition or brute force
methods in order to find periodic motion in higher degree of freedom models.
Instead, one use a series of models which increase in complexity to to add degrees
of freedom to a model in a continuous manner. This can be done in several ways.
The choice of the method will have an impact on the motion that one will end up
with. Different choices will, in general, connect different motions to each other.
There are no guarantees that these methods will result in a higher degree of freedom
device since it is possible that the paths might curve around to a different motion
with ε = 0 again. It is also possible that the curve might end with 0 < ε < 1 due
to many reasons, two of which are described in the paper.

Two of the coupling methods (inertia, and spring) result in motions which
are conservative for intermediate values of ε. However, the spring coupling has the
difficulty of resulting in stiff equations for small values of ε. Damper coupling is not
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Figure 6.21: Periodic Collisionless motions as we change the coupling inertia
from ∞ to zero.

conservative for intermediate values of ε, but is useful nonetheless as a homotopy
method where one is only concerned with the motions at ε = 0 and ε = 1.

It is hoped that these methods may prove useful to others who wish to find
periodic motions in systems with many degrees of freedom.
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Figure 6.22: Schematic drawings of the first event function as we change the
continuation parameter. These drawings show the underlying
mechanism as to why the continuation path simply ends in Fig-
ure 6.20.
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Appendix A

Simulation Details

When simulating the models which appear in this thesis some care must be taken
when formulating the equations of motion and also in numerically approximating
their solutions. The equations of motion for the system must first be determined.
Explicitly writing the equations of motion using computer algebra packages is pro-
hibitively difficult in all but the relatively simple models (ones with less than three
serially connected links). In the algebraic derivation of equations of motion, one
can stop right before the last step and obtain a simpler form of the equations of
motion. To make the above description more concrete, consider the two dimen-
sional rigid body system depicted in Figure 2.8. We then isolate each body and
draw a free body diagram for each link. Writing linear and angular momentum
balance for each link give us equations A.1 and A.2.

m
∑

i=1

f = mäcmi
(A.1)

n
∑

i=1

τ/cmi
= Ḣ/cmi

(A.2)

Since the Linear Momentum Balance equations are linear in the forces one can
isolate the constraint forces from everything else. Setting up the system to solve
for the unknown constraint forces gives

[M(θ1...n)] fconstraint = g(fapplied, θ1...n, θ̇1...n, θ̈1...n) (A.3)

If [M(θ1...n)] is nonsingular, which it will be for correctly written equations of
motion, the constraint forces can be solved for. Solving for the unknown constraint
forces, assuming the θ̈1...n are known in the linear momentum balance equation,
gives

fconstraints = f1(θ1...n, θ̇1...n, θ̈1...n,fapplied) (A.4)

If one now plugs the expressions that we have for the constraint forces into the
angular momentum balance equations A.2 we get

f2(θ1...n, fconstraints, fapplied) = f3(θ1...n, θ̇1...n, θ̈1...n) (A.5)
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The equations of motion for a rigid body system are also linear in the angular
accelerations of the bodies. Setting up those equations so that we can solve for the
unknown angular accelerations gives

[

M(θ1...n, θ̇1...n)
]

θ̈ = f4(θ1...n, θ̇1...n, fapplied) (A.6)

If
[

M(θ1...n, θ̇1...n)
]

is nonsingular, which it will be for correctly written equa-

tions of motion, the angular accelerations of the bodies can be solved for, giving
the equations of motion for the system.

In practice explicitly solving for the equations of motion involves a lot of al-
gebra. The involved algebra is primarily from the expressions of the accelerations
of the center of mass of each link. As we add more links to the end of a chain of
links the expressions for the positions of the center of mass of the last link in the
chain depends trigonometrically on the angular position of each of the preceeding
links. This position expression is then differentiated twice to obtain the absolute
acceleration of the center of mass. It is this twice differentiated expression whose
number of terms explodes exponentially in the number of links. Using computer
algebra packages such as Macsyma, Mathematica, or Maple, help in reducing the
number of mistakes that one would make by hand. However, since the number of
terms in the equations explode so quickly as we add more links to the end of the
chain the computer algebra packages become unable to cope with the problem and
a more practical method is required.

One stop-gap measure which can help in reducing the size of the expressions
is to stop the analytic work just before the last stage when we explicitly solved
for the equations of motion. This helps in that we don’t have to invert a low
dimensional nxn matrix analytically which has rather large expressions for each
entry in the matrix. Instead, at each step in the the numerical integration when
we need the value for the angular accelerations, we calculate a numerical value
for each entry in the nxn matrix using our expressions for the entries. We also
calculate the right hand side of equation A.6, an n-dimensional column vector.
Solving this system numerically each time the equations of motion are needed is a
way to circumvent the prohibitive analytical inversion of the matrix. This method
will work for slightly more complicated systems than the previous method would
allow. However, as more links are added to the system, even the size of the entries
in the matrix become too large for the computer algebra packages to handle.

If we were to continue this conversion from analytic to numeric we could go to
the extreme case where we form all of the primary vectors numerically and then
form the equations of motion from those numeric vectors. If we do this we run
into the problem of how to isolate the unknown constraint forces and the unknown
angular accelerations. To isolate the unknowns numerically we form the equations
of motion by forming a function and calling it multiple times. The function’s
input arguments that we form consist of the state vector, the unknown angular
accelerations, and the unknown constraint forces. Writing this function in matrix
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vector form gives
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(A.7)

Rewriting and compressing the matrix vector form now gives

fcn = [M ] u + f (A.8)

We then form the equations of motion by first calling this function with the
current state vector and zeros for the unknown values of the angular accelerations
and constraint forces. This would give the values for f To form the unknown [M ]
matrix, the function can be called m + n times with the current state vector and
with one of the unknown contraint forces, or unknown angular accelerations equal
to one and the rest of those unknown equal to zero. For instance to get the first
row of [M ], M1 we call the function with

u =















1
0
0
...
0















(A.9)

M1 can then be obtained using

M1 = fcn − f (A.10)

This process can then be repeated to obtain all of the numeric entries of [M ].
Once all of the entries in in [M ] have been obtained we can solve the following
system for the vector of unknown constraint forces and angular accelerations,u at
this time step.

[M ] u = −f (A.11)

This gives the angular acclerations that are required to integrate the equations
of motion forward to the next time step. This is then repeated at each time step.
In this manner, the addition of links does not exponentially increase the size of
the analytic expressions that we need to form in order to integrate the equations
of motion. This is the method that was used to simulate the systems with more
than 3 degrees of freedom in this thesis.
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