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Abstract

We present two geometric descriptions of the net frictional force and moment between
a rigid body and a planar surface on which it slides. The limit surface, from classical
plasticity theory, is the surface in load space which bounds the set of all possible frictional
forces and moments that can be sustained by the frictional interface. Zhukovskii's moment
function (N. E. Zhukovskii, Collected Works, Vol. 1, Gostekhizdat, Moscow, 1948, pp.
339-354) is the net frictional moment about the body’s instantaneous center of rotation
as a function of its location. Both of these descriptions implicitly contain the full relation
between slip motion and frictional load. While Zhukovskii’s moment function applies
only to ordinary isotropic Coulomb friction, the limit surface applies to a wider class of
friction laws that includes, for example, contact mediated by massless rigid wheels. Both
the limit surface and the moment function can be used to deduce results concerning
the motion of sliding rigid bodies.

1. Introduction

In order to plan effectively and control the motion of an object in contact
with the ground and/or another object, it is helpful to understand the nature
of the frictional contact forces between them. However, much about the
mechanics of frictional contact is still poorly understood. The micro-mechanics
responsible for the energy dissipation in slip include a variety of mechanisms
(e.g. adhesion, plastic deformation, fracture) that conspire in a complex way
to cause what we describe macroscopically as friction, e.g. in ref. 1. Even
if one is not interested in the micro-mechanical causes, appropriate empirical
macroscopic descriptions for friction are not settled. Descriptions with
dependences of friction on normal force or stress, on normal separation
distance, on slip displacement, on slip velocity, on time of stationary contact,
on slip history, and on self-induced vibrations are reviewed by Oden and
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Martins [2] and somewhat less extensively by Ruina [3]. Finally, after a
possibly appropriate friction law has been chosen, there still remain issues
pertaining to the behavior of sliding objects.

A restricted set of mechanics problems relates to the slip of a single
rigid body with Coulomb—Amontons—DaVinci friction, the most commonly
applied dry-friction law. In the context of robotic motion planning, rigid
body motion with such simple friction has been studied by Erdmann [4],
Mason and Salisbury [5], and Peshkin and Sanderson [6—8]. Erdmann’s work
[4] emphasizes cases where normal contact forces are coupled to the motion.
The others have looked at the quasi-static motion of an object being pushed
by a controlled finger or edge on a surface with possibly indeterminate
normal contact. That these problems are mechanically interesting follows
from the rigid body being finite in spatial extent. The various (or continuum
of) load bearing points of contact, each of which contributes to the net
frictional force and moment, can at any instant have different slip velocities
and corresponding friction forces.

Towards the eventual goal of better understanding the motion of a rigid
body in frictional contact with its supporting plane, we study here the nature
of the resultant of the frictional contact forces when the support forces are
given. Specifically we consider the sum of the frictional forces antl moments
for the following problem:

(1) A rigid body slides on a planar surface. Only the interactions of this
body with the surface are studied and not the interactions with any other
pushing or restraining objects.

(2) The contact normal force (or pressure) distribution is assumed to
be known.

(3) At each point of contact, the frictional force depends only on the
(known) normal contact force and on the slider’s orientation and direction
of slipping (relative to its support plane), not on the magnitude of the slipping
rate, the net slip displacement or the slip history.

(4) At each point of contact the dependence of the friction force on
direction is consistent with a maximum-power inequality (to be discussed).
The maximum-power inequality generalizes isotropic Coulomb friction to
include, for example, anisotropic contact mediated by a massless wheel, a
wheel with bearing friction, a wheel with a ratchet, etc.

(5) Friction dissipation is positive.

Assuming (1)—(5) above, the force and moment required to overcome
friction for a given motion can usually be found by simply adding the frictional
forces at each of the contact points. The inverse problem of finding the
motion associated with a given total force and moment is somewhat more
difficult. But this problem can be solved geometrically by use of a limit
surface exactly of the type used in classical plasticity [9]. The limit surface
fully characterizes the friction of a slider of the type we consider. With the
additional restriction of isotropic friction at every point, friction for a rigid
body is also fully characterized by the moment function of Zhukovskii [10].
Our central goal here is to introduce these geometric descriptions of the
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net frictional force and torque on a rigid body. A second paper [11] deals
with the dynamics of free slip.

The plan of the remainder of this paper is first to review briefly the
relations between friction and plasticity. We then describe the motion of,
and the net frictional load on, a planar rigid body. Next, the nature of friction
at a single point is discussed. The maximum-power inequality is introduced
with which a convex limit curve describes the forces arising during slip of
a point of contact. The limit curves for Coulomb friction (a circle), for an
ideal wheel (a straight line), and for some less ideal wheels are given as
examples. The load—motion inequality for the overall body is then derived
and the resulting concept of a limit surface is introduced and illustrated
with two somewhat artificial examples (a body with two points of Coulombic
support, and a ring of ratcheted wheels). The moment function is then
presented. We conclude with a discussion of some facts and results related
to limit surfaces and to the moment function.

A condensed form of this paper was presented in ref. 12. More details
and references are presented in ref, 13.

2. Friction and plasticity

Rate-independent friction is related to plasticity in several ways. Friction
is variously used as (a) an analogy for, (b) an example of, (¢} a counter-
example to, and (d) something to be explained by, plasticity; see ref.14. (a)
Frictional slip is analogous to plastic deformation in that both involve (more
or less) rate-independent forces. The analogy can be made more precise
when particular friction and plasticity laws are considered. (b) If one thinks
of slip as an extremely localized version of continuum deformation, then
“frictional slip” is an example of inelastic (plastic) deformation. For the
case of isotropic friction, and a finite number of support points between the
slider and the supporting surface, our problem is precisely equivalent to the
failure of a frictionless (or loose) lap joint between plates held by rigid-
plastic rivets or bolts, a problem discussed previously, e.g. by McGuire [15].
Similarly (as pointed out by an anonymous reviewer) there is a correspondence
between the problems analyzed here (those that use isotropic friction) with
torsion and shear of a very short prismatic bar (or bars) made of ideally
plastic material. Further, the normality principles we use throughout are
directly quoted from classical plasticity theory, so for our purposes friction
is an example of plasticity. (¢) On the other hand, if the normal load is
included as a variable, common friction laws violate the maximum plastic
work postulate which is often assumed in plasticity, so that friction is a
counter-example to most descriptions of plasticity in this regard. However,
by allowing a ‘‘non-associated”’ flow rule, Curnier [16] is able to describe
friction, with the normal degree of freedom included, in a formalism like
that used for classical plasticity (our paper seems to depend fully on the
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maximum-work postulate and thus cannot use Curnier’s non-associated flow
rules). (d) It is commonly held (e.g. ref. 1) that plastic deformation of the
adjoining solids during slip is part of the micro-mechanics of frictional

dissipation.

3. Motion of a rigid slider

Since we shall be using rate-independent friction laws and always assume
that the normal forces are known a priori, we can determine the friction
forces at contact points from the directions of the velocity field v at these
points. These are determined by the instantaneous motion for the rigid planar
slider of Fig. 1, as described by one of the following.

(1) The unit motion vector ¢, or “yersor’” in the language of Zmitrowicz
[17], parallel to the motion vector @. (Note: we use the word vector to
describe any list of two or three scalars. We use the geometry of the cartesian
space they define when performing vector operations.) That is g¢= (2 9y
q.1=@/|Q|, where the motion vector @=[V,, V,, w] has components which
are the translation velocity of a reference point O on the sliger, and the
angular velocity of the glider. To simplify notation, we assume that the
components of @ are non-dimensionalized by a characteristic length (say
the radius of gyration of the rigid body) and some characteristic time. For
definiteness the z and y axis at O may be considered fixed to the slider
(both here and below).

(2) The instantaneotis motion of the slider may be defined by the location
r. of the center of rotation C about which the body’s motion is instantaneously
a pure rotation. The motion is then described by the location of a point on
one of two planes, one for clockwise rotation, and one for counterclockwise
rotation, or by a point on the circle at infinity for pure translations. For

Planar Supporting Surface

Fig. 1. Rigid slider on a planar surface. The instantaneous center of rotation C is marked, as
are the reference point O and the coordinate system used for describing motion and loads
(both, for accuracy, considered fixed to the slider).
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consistency, coordinate values for r. should be expressed in terms of the
same characteristic length as used for the non-dimensionalization of @
The above two definitions are simply related since the location of .the
center of rotation is given by r.=wXV/w? with coordinates
(e, ¥e]=[—aq,/qu, Q./q.] (w should be interpreted either as a scalar or as
a v'ector orthogonal to the x—y plane, as appropriate). One may note, as is
venﬁed.by use of similar triangles, that g and C are related by the projzaction
shown in Fig. 2. The unit motion vector q is on the unit sphere, and the
center of rotation is the intersection of the extension of g wit}; a plane

tang p-
ent to the to or b() ttom Of tlle Sphere W lth its origin O at ﬂ (] pOlIlt

4. The net frictional load

The net frictional load is defined as P=[F,, F,, M] where F, and F,
are’ the net forces that the planar slider exerts on t11,1e support sur?ace ang
M is the net moment about a z axis passing through O (P is the negative
of thaF which would represent the frictional load on a free-body diagram of
the slider). When inertia is negligible, P is the total external load which
must be applied to the slider to overcome frictional resistance. The components
t(;);' 1; aredﬁitssum.ed tq have been non-dimensionalized by the same length used
weigﬁ? mlcrrtlﬁzs:l)ixéil;ze the velocity, and by any convenient force, say the

I.’ c-an be expressed by integrals over the entire contact region A, of
the frictional traction (stress) f=[ f,., f,,] that the slider causes on the sup;gort

planes of possible
conters of
rotation, C

tP:;gt.hi. ;;};?eiizﬁm;\ betwfeen th;: unit motion vector ¢ and the center of rotation C is described
n shown from the unit motion sphere to the tan, i

‘ gent planes at top (for clockwise

rotation) or bottom (for counterclockwise rotation). Note the orientations of 'd(\e axes
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plane at each contact point a with position coordinates [z, y,) relative to

O:
Fx=ffax dA Fy=ffay da sz(x&fay_yafu) dA (D
A A A

We will also make use of the moment M, of the frictional forces abogt a
vertical axis passing through the center of rotation C at r.=[X., Ycl, given

by:
Mc = f{(‘ra - xc)fay - (ya - yc)fa’t} dA=M+ chy - ych (2)
A

where it should be recognized that force terms in eqns. @D) and' (2) depend
on the motion. If peint supports are involved, the integrands in eqns. )
and (2) above contain delta functions, or equivalently, are rep'laced by discrete
sums. The sums (1) and (2) and their relation to the motion ¢q (o‘r C) are
the central subject of this presentation. We use discrete sums or integrals
as is convenient or appropriate.

5. Isotropic friction

The simplest friction law to which this paper applies, isotropic frict.ion,
is also the most often used (by far). During slip the friction force' (or traction)
at a point is in the direction of motion, and its magnitude | A1 1§ a constant
independent of the direction of motion. During stick the magmtqde of thg
friction force is less than or equal to this constant. Qur central interest 1s
in this product of the friction coefficient and the normal florce rather than

. S : tely.
either the normal force or the friction coefficient separa o .
An equivalent, and at first sight somewhat awkward, description of this
o . . . ts:
same friction law is the following pair of stalte.men

(1) There is a circle centered at the origin of [f, f,] space. sz call
this circle the limit curve (LC) for isotropic friction at the given point of
contact. ) o

(2) The maximum-power inequality, equivalent to the classical principle
of maximum plastic work, is always satisfied:

UF—rHv=0 3

where f and v are the actual friction force and .relative slip V$19c1ty at t.he
point of contact, f and f* are on or inside the limit curve, and f .1s othermlsle
arbitrary. The situation is shown in Fig. 3 for contac_t at a 1_)omt a onut e
sliding body. The usefulness of the maximum-pov.velf mequal.lty‘ (as we Fas
its name) comes from its validity for all £* on or inside the l.1m%t curve.r 01;
a given v (possibly 0) the corresponding f is that f, on 01: inside thei imi
curve, which maximizes the power over all possible f’f‘, smce Sfu ?f v for
all £*. Note that f is not unique if v = 0, and that applying inequality {3) to

313

fy Circlo of radius fy
Direction of Vg ; Direction of vg forms the LC ata

Contact Point a

i
Origin of Force Space
- ata

@ ° ®)

Fig. 3. (a) Coulomb friction at a point with position r,. The friction force is f, and the slip

velocity v,f,* is any friction force on or inside the LC, which is a circle (b) for isotropic
Coulomb friction.

a circular LC with a variety of possible f*s restricts f to be parallel to v
(when v #0).

The maximum-power inequality is a description of material behavior.
The reader is cautioned against trying to relate it to common notions of

minimum potential energy or positive entropy production. For another inter-
pretation see ref. 18.

6. Anisotropic friction satisfying normality

The tool which we use in establishing the properties of the frictional
limit surface (to be defined below) is the maximum-power inequality (3) for
each sliding contact point; the isotropy of friction is not essential. So it is
safe, and perhaps useful for some applications, to allow any friction law
that is described by the statements:

(1) A closed curve in force space is specified.

(2) The maximum-power inequality (3) is satisfied by all f and v. (As
discussed further below, one should not blindly assume that all rate-inde-
pendent friction laws actually satisfy inequality (3).)

The reasoning we present based on statements (1) and (2) above is
borrowed directly from classical plasticity theory, e.g. ref. 9, and is partially
repeated here for readers not familiar with that subject. Statement (2) above
requires that the specified closed curve of (1) be convex, and positive
dissipation requires that it enclose the origin. A possible (if artificial-looking)
limit curve is shown in Fig. 4 where the existence of a flat region and a
vertex should be noted.

Consequences of the maximum-power inequality and the limit curve
description are: (a) if fis inside the limit curve then v = 0; (b) v is perpendicular
to the limit curve in places where the curve has a well-defined normal, thus
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Vertex on Limit Curve
Direction of velocity v
for forca

Straight Segmant on
the Limit Curve

Fig. 4. Generic LC. Friction forces that can occur during sliding for an imagined anisotropic
material. The curve is convex and encloses the origin. Where it is smooth, velocity is normal
to the curve. Where it is flat, a range of friction forces is possible for the given velocity.
Where it is kinked (at the vertex), a range of velocity directions is possible with the given
friction force. y;

the friction law is said to “satisfy normality’; (¢) the slip direction v/|v| is
non-unique if a given friction force is at a vertex on the limit curve (all
normals to an imagined rounded vertex are possible); and (d) the friction
force is non-unique if a given slip velocity v is normal to a flat region on
the limit curve (all forces on the flat region are possible). These facts follow
from simple geometric reasoning and use of inequality (3). For example,
(b) above follows from demanding the truth of inequality (8) for two values
of £* on the limit curve, arbitrarily close to f, one on each side of f. All of
the properties (a)-(d) are worth noting: analogous corners and flat regions
may appear on the limit surface for a slider even when the LC at every
point of contact is a circle.

6.1. Wheels as anisotropic friction

Contact mediated by a wheel provides a useful and consistent example
of anisotropic friction satisfying statements (1) and (2) [19-21]. One may
want to model an object, say a car or a cart, using anisotropic contact
friction, rather than adding the motion of the wheel as an additional degree
of freedom.

6.2. Ideal wheel or skate

Figure 5(a) shows a microscopic, massless, rigid wheel attached by a
frictionless bearing to the slider and with ordinary isotropic friction at its
contact with the ground. We consider the wheel as a micromechanism for
the transmission of force from the rigid slider to the support plane. A simple
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Axlg of Wheel

Supporting Surface

@
Ideal el fy '/ Limit Curve
. A W T Ayh A A Ay SEn
Whesel Axle /v * v * v v v v ' * V\ =
(®) 0:I|ng
Rolling 1{
Wheel:::z;earing Lf ? f f ? * T ?
Skidding
() | /
Ratcheted Wheel fy
: Rolling
%HHTHAH L
(d) Skidding

frllgct ; fn agazoxziiosg?}?ifh wheel cmbedded in the slider. It is massless and makes ordinary
wi e ground. The set of forces it can transmit to the i

' . ' ground, along with

the motion of the slider to which they correspond is shown by (b) the LC for conta’ct meﬁiated

by an ideal wheel with no bearin, icti
g friction. (¢) The LC i i icti
The LC for a wheel with a ratcheted axle. © for a wheel with bearing friction. ()

modgl of an icg skate has the same idealization. The LC for the set of
possible transmitted forces is highly degenerate, as seen in Fig. 5(b). It
encloses no area and has nothing but flat regions and vertices. During rolling
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the side forece is indeterminate (anything on the limit curve), and during side
slip (where the force is unique) a whole range of velocity directions is:

possible.

6.3. Wheel with frictional axle (rusty wheel)

If bearing friction at the axle of the wheel exerts less torque about the
axle than can be overcome by the frictional strength at the base of the
wheel, then the LC is given by the convex curve shown in Fig. 5(c) [19,
21]. The straight segments on the LC correspond to pure forward and
backward rolling of the wheel and the circular ares correspond to skidding.
If the bearing friction is sufficiently large, the wheel locks and the limit curve

reduces to a circle.

6.4. Wheel with ratchet

If the axle has a ratchet so that the wheel is allowed to roll freely in
only one direction and it locks in the other direction, then the LC is the
closed semicircle of Fig. 5(d). The straight segment passing through the
origin corresponds to rolling of the wheel in the preferred direction, and
the semicircle corresponds to skidding when the wheel is locked by the
ratchet. ,

6.5. Wheel of wheels, etc.

An ideal wheel with contact at its rim mediated by a continuum of
orthogonal ideal wheels, equivalent to a frictionless ball bearing, does not
resist motion in any direction and hence has the most degenerate possible
limit curve, a point. If either the large wheel or all of the small wheels at
the rim are supplied with ratchets the limit curve is half of the line segment
of Fig. 5(b). Other combinations of wheels of wheels with and without ratchets
and bearing friction lead to a variety of limit curves. Ilon’s [22] clever
“Tlonator” wheel, which has been used as a drive wheel in some robotics
experiments, is a wheel of wheels.

6.6. Other normal friction laws

Ziemba [23] postulates a law of anisotropic friction that obeys the
maximum-power inequality and has an elliptical LC. Moszynski [19] also
presents some other anisotropic friction laws that obey the maximum-power
inequality (3).

7. Non-normal friction laws

Our formalism requires the strong restriction that friction laws satisfy
the maximum-power inequality (3) (normality). Since it is easy to imagine
friction laws which violate inequality (3), we pause to consider these laws
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7.1. Crooked castor with frictional axle

At some level of macroscopic phenomenology, the mechanism described
below generates a non-normal version of Coulomb friction where the ‘‘relaxed”
friction force has a magnitude independent of slip direction, but is not parallel
to the slip. Figure 6(b) shows the resulting relaxed circular LC and non-
normal slip velocity.

Contact between a slider and the supporting surface is mediated by the
small (massless and perfectly rigid) castor wheel shown in Fig. 6(c). The
wheel is connected by means of a massless rigid structure (in a plane parallel
to the slider), “L" shaped in our illustration. One end of the “L" pivots
freely at its attachment to the slider, and the wheel is mounted at the other
end. The wheel, which rolls and slides on the support plane, has some bearing
friction. The instantaneous force—velocity relation for the castor wheel itself
obeys convexity- and normality (Figs. 5(c), 6(d)). In plan view, the “L” is
atwo-force member so the transmitted force is always along the line connecting
the wheel center to the pivoting attachment. Thus, the instantaneous
force—velocity relation for the whole mechanism (as sensed at the attachment
to the slider) is similar to that of an ideal wheel (Fig. 5(b)) whose axle is
parallel to the line connecting the pivot to the wheel's center.

The instantaneous force-velocity relation for the mechanism satisfies
the maximum-power inequality (3), but for any given slip velocity of the
castor pivot point (i.e. slider slip velocity), the castor swings in, and after
a few castor lengths, relaxes to a state where the wheel is aligned with v.
The castor wheel drags on the relatively moving support plane much as a
light kite flies in the wind, with the string force and relative wind velocity
not parallel. One may now think of the castor arm as being negligibly small
(in much the same way as one may agree to neglect the mass of a wheel
or the transients associated with the deformation of a rubber wheel’s contact
patch, etc.). So the castor’s reorientation may be regarded as instantaneous
and one can consider the castor as always equilibrated to its steady state
orientation, shown in Fig. 6(d). Considering only these relaxed steady state
conditions, the foree—velocity relation does not obey normality. The relaxed
limit curve and related velocities are shown in Fig. 6(b).

7.2. Castor with angle-dependent friction

Another non-normal (in the set of relaxed configurations) friction relation
comes from an ordinary in-line castor (axle of the wheel is perpendicular
to the castor arm), weakly supported so the top of the wheel rubs on the
slider while the bottom rolls on the support plane. Assume the friction
between the wheel and the support plane is high and that between the wheel
and slider is low but dependent on the point on the slider where the wheel
rubs. Instantaneously this device mediates a friction law which is equivalent
to a point of isotropic frictional contact where the wheel rubs the slider and
hence satisfies normality. But if relaxation transients are again neglected,
its behavior leads to a law of the type described above as naive anisotropy

(Fig. 6(a).
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The set of all P* is the set of all possible sums of the possible contributions
from each of the contact points. The boundary of this set is the limit surface.
It is a closed convex surface in load space that encloses the origin. The
limit surface for the object, with inequality (8), fully describes the relation
between friction loads P and motions g. So the net friction load exerted by
a rigid planar slider, subject to the assumptions named previously, is fully
characterized by (i) a closed convex surface in load space that encloses the
origin (which may be regarded either as a purely macroscopic description
of the slider, or as a description constructed from the microscopic contact
distribution); and (ii) the load—motion inequality (5), P—P*)q>0. As with
the limit curves: (a) if P is not on the limit surface then qg=0, (b) q is
normal to the limit surface where it is smooth, (c) there is a non-uniqueness
in the slip versor g for a given friction load P if it is at a vertex (both point
and edge vertices) on the limit surface (all normals to an imagined rounded
vertex are possible), and (d) there is a non-uniqueness in the friction load
P for given motion ¢ if ¢ is normal to a flat region on the limit surface (all
loads on the flat region are possible). Note that a convex developable surface,
like the side of a cylinder, is flat in one direction.

8.1. Limit surface for a single contact point Y,

A slider’s limit surface is easily constructed if the two-dimensional force-
space limit curves for each point of contact are replaced by appropriate
limit surfaces in three-dimensional load space.

The limit surface for a single point of contact (labeled as contact €) at
position r (relative to O) bounds the set of all possible frictional loads
generated by that point. The force f; on or inside the limit curve is associated
with load P; by eqns. (1) (no integration or summation necessary). So the
set of all £; on or inside the LC corresponds to a set P;, the point’s limit
surface.

These formulae may be interpreted geometrically as follows. Add a third
axis perpendicular to the f,~f, plane to represent moments. The limit surface
is found by projecting the limit curve (with origin O) vertically onto a plane
tilted about r with slope |r|. Standing at the origin one is looking up the
tilt if r is directly to one’s right. The projected curve and its in-the-tilted-
plane interior make up the point’s limit surface. It is singular in that it
encloses no volume, and is everywhere either 2 flat region or a vertex.

For example a point of isotropic friction located at O yields a penny-
shaped limit surface in the F,—F, plane centered at the origin: its friction
force generates no moment. A point of isotropic friction at r=[0, 1] gives
rise to an elliptical disk, centered at the origin in P space with its major
axis direction being [1, 0, —1] and minor axis direction {0, 1, 0]. This is
because the 2 component of load, i.e. the moment of the frictional force,
is zero when sliding in the y direction and maximum when sliding in the x
direction. The projection of this limit surface onto the F,~F, plane is just
the circular disk of the first example.

a . P

() ® fay
Fig. 7. Sample rigid object: a bar sup,
(a), the contact frictional forces in (b).
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8.2. Convolution and Minkowsky sum
Once the individual contribution
: s are expressed in P
can .be written as P=3P; and the set of all ;
possible sums EP;. The limit surface,
sum of the individual limit surfaces.

i V?;s;h;r v.&;ay <I)1f? generating the limit surface is by the convolution of the
mit surfaces. An individual limit surface is ch i
it fixed, the origin of another indivi imi rfac (e, keorrer
. , ividual limit surface (while keepi i
orientation fixed) is slid on the bounda i irface. anet the
ry of the fixed limit surf:
envelope of the volume thus swe i cconivon e
ve pt out, obtained. Then i
origins of the remaining individual limit surfaces are ol ovtenrone

' slid with fixed orientatio

(S)lxlf;efra zl;ei:n&e;gptehobtaltnedbfrom the previous convolution. The overall lir:ii
e outer bounda i

Sorface Is ry of the region swept out after al] the

: pace the sum (1)
' possible P is the set of all
then, is the boundary of the Minkowsky

9. Example limit surfaces

9.1. Sliding dumbell

Figure 7 shows a symmetric bar i
) . ' A S . supported at its ends by two identi
g}n:;is t;f 1s(;>tr(¥1)1lcf fl’lCthl’l with strength w/2. It has a dimen;onless svlzlgclﬁ
and a hali-length of unity. The individual limi
. eng nity. it surfaces for th
support points are elliptical laminae centered on the origin and tilted oppoiilfg;

Y oy
1

ported at its ends. The net frictional load is shown in
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i j tically to a circle of radius /2 on
the y axis. They both project vertical . :
:It:: U;(t—y plgne The limit surface for this object (Flg.1 1.8(210) E:hth:ollji(c)lu:v%g{
’ lution of the two ellipses e
of the volume swept by the convo : e Sollc oep
i is dragged over all points on th
when the center of one ellipse is ag 2l Dot o AN it
ipse, their orientations remaining fixed). he ! ;
g\il;gcznﬁih the [F,, F,] plane is a circle of radius . The intersection of

flat
eliiptical M
face

Section on [M,Fy] plane
is @ circle of
radius p

T~
-~

Point
verfex
Fl

is g square

(a)

M

|

vertex corresponding

to pure moment \\»

q

stable eigen-direction P

ZSection on [M, F,] plane

Section on [F,,F,]
plane is a circle of
radius

locus of allq for a pure
/ moment load vector

direction of ¢ =[qy 0.9 |
corresponding to P

toad vector P =[F,,0,M]

J—
———

locus of all q for
apure force load
vector

vertex corresponding
to pure force

(b}

\j

Fig. 8. (a) The limit surface for the bar of Fig. 7. The set of all possible .frictional lo'aduseg:;:ai
slli% (i)) The section of the limit surface of (a) on the [F, M] plane. Va‘.fl?usnl-'lgi;l;l(lllt‘;lgn" esses
are -illustrat.ed with respect to the flat sides and the sharp corners. An “eige

P is parallel to g is shown.
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the limit surface with the [M, F,1 plane is also a circle, and the intersection
with the [M, F,] plane is a square as shown in Fig. 8(b). An eigen-direction,
important for dynamics considerations {11, 13], where P is parallel to q,is
indicated.

The limit surface has four point vertices where it intersects the F, and
the M axes. It has four flat regions showing as elliptical facets whose normals
are in the [M, F,] plane, These represent extreme normal displacements of
the ellipse being dragged (during convolution), and they blend smoothly with
the non-flat parts of the limit surface. Excepting the four point vertices, the
limit surface is everywhere smooth, with a well-defined normal q.

The vertices on the limit surface correspond to non-uniqueness of the
slip motion, in particular when either a pure force in the x direction or a
pure moment is applied. If a force is applied in the z direction, for example,
the object may translate or translate with a small amount of rotation. The
flat elliptical facets correspond to a whole set of friction loads all of which
have the same normal (unit motion vector q). In particular, they correspond
to rotation about one of the support points. When the bar rotates about a
support point, that point is not sliding and its friction load can be anything
on or inside its individual limit surface, hence the non-unigqueness in the net
frictional load P.

Excepting the flat facets, the limit surface of Fig. 8 can be parameterized
by representing the frictional loads [F., Fy, M] as functions of the instantaneous
center of rotation location [x., Y.], or the motion vector [q,, qy q,] (with
a2 +q2+a.2=1). Specifically [13]

_ wy.+1) uly.—1)
Tl e+ 1P T 2Bt (y. - 1R
- _M#g:+q,) (@ —q.)
2{1+2¢,9.}'* = 2{1-2q,q. 1"
P KT, _ W,
v 2@+ e+ P2 2{n 2+ (y,— DI
_ “q, . Mgy
2{1+2q,9.}"* * 2{1-2q,q. "
_ my.+1) _ #y.—1)
207+ W + 1P 202+ (y,— DR
(g +4q.) mQ-—q.)

C2(1+2g,0 )7 201~ 2q,q.1? (6)

9.2. Circle of tangential ratcheted wheels

We now consider the intentionally contrived slider formed of a rigid
ring with a continuous distribution of wheels at its perimeter. Each of these
wheels is tangential to the ring (their axles are radial) and is ratcheted so
that the ring can rotate clockwise freely. The ring, with the LCs for some
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§  LCtor ratcheted wheel

wheels inside ¢ roll;
others are locked

distribution of elemental
friction forces

Uniformly supported ring with
radial ratcheted wheels

(@) )

! Section of Limit Surface
for Ring of Ratcheted Wheels

H
@«
§ °7]
=
<
<
o |
(=]
b4 T T T F\ T
0.0 0.2 ‘ 04 0.6 08
Force
(®)

Fig. 9. (a) A ring sliding via a continuum of ratcheted w_heels whufll}h frivelllieelx;kl))vg ﬂ(:l(:(():ll;“;lsg
f. t'c;n of the ring. A counterclockwise rotation .about C is shown. ) e O e T e

m‘ a l' i ¢ and are locked (slide only) outside +¢. (b) The axisymmetr] urface

Zl)l;i :hl:sl:xi\eg :f 9(a) is shown by its generating curve. Note the flat bottom and the vertex

the lower right corner.
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of its wheels, is shown in Fig. 9(a). Small arrows show the friction force
for counter clockwise rotation of this object about point C. Wheels between
¢ and —¢ both roll and skid, and hence develop a pure skidding force.
Others are locked by their ratchets, and develop a force in the direction of
slip. The limit surface for this ring is axisymmetric, since the object is
axisymmetric, and can be represented by a cross-section, shown in Fig. 9(b).
The details of the integration used to obtain this figure are given in ref. 13,

The flat bottom facet of this limit surface corresponds to zero net moment
and the indeterminacy of the sideways reactions of the wheels when the ring
is rotating clockwise about its center. The edge (vertex) at the bottom outside
allows clockwise rotations about centers of rotation on a given radial line
segment inside the ring, since they all lead to the same frictional load (a
pure force perpendicular to the line segment). Pure translation engenders
a2 moment about the center (because only some wheels are rolling).

10. Construction of lHmit surfaces

Given the normal pressure distribution and the friction law everywhere
on the contacting surfaces, different approaches may be used to obtain a
slider’s limit surface.

(1) Direct summation (or integration) of the friction forces and their
moments for each possible motion of the slider. As demonstrated earlier,
this is equivalent to finding the outer boundary of the set of all possible
sums of forces from the individual contact points without enforcing com-
patibility of the motions of the individual contact points.

(2) More geometrically, one may generate the slider’s limit surface as
the outer envelope of the convolution of the limit surfaces of the individual
points of contact. This method is particularly suitable for sliders with point
supports and, as pointed out earlier, was used to generate the picture of
the limit surface for the sliding dumbell shown in Fig. 8(a). The convolution
is simplified by noting that for a given point P on the lLimit surface with
normal ¢ all of the contributing P;s on the individual limit surfaces are those
with normal g (i.e. those that are greatest in the g direction).

(3) For isotropic friction, the limit surface can be found from evaluation
and differentiation of the moment function as prescribed in eqn. (7) below.
The eqns. (8) barameterizing the limit surface for the sliding dumbell were
obtained in this manner.

10.1. Contact distribution Jrom o given limit surface

We think that the inverse problem of finding a slider which generates
a given convex limit surface is not solvable, in general. That is, if one restricts
the friction law to any of the laws we have explicitly considered (e.g. isotropic
friction, wheels), there exist convex, origin-enclosing surfaces that are not
associated with any pressure distribution. In those cases where a solution
does exist, we do not know of a simple algorithm for finding it.
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On the other hand, we suspect that limit surfaces whose shape (though
not position) is unchanged by reflection through the origin, i.e.
P(-q)=P(q)+const. can be generated from a distribution of ratcheted
wheels of wheels. For example, Goyal [13] generates a spherical limit surface
with an axisymmetric pressure distribution of ideal wheels, each of which
could be replaced by a pair of ratcheted wheels of wheels.

11. Moment function for isotropic friction

We have rediscovered another simple geometric representation of the
friction load for the special case of isotropic friction, presented by Zhukovskii
[10]. For rotation about a point C with position [z, ¥.] the friction moment
M, can be calculated by the sum in egn. (2). The value of M, as a function
of [x,, ¥.] is the moment function. It is single-valued and well defined, since
the only non-uniqueness in the sums (2) is due to the force of the non-
sliding center of rotation which does not contribute to M..

The moment function can be visualized as follows. For every point of
support the moment function is a round cone that opens upvgards, with its
vertex at the point of support on the [%., ¥.] plane (the plane of instantaneous
centers of rotation), and its slope proportional to the friction force at that
point (since M, is the friction force times distance from the point). The
moment function is the vertical sum of these cones over all points of contact.

A straightforward calculation shows that the moment function contains
all the information about the slider’s contact. In particular, differentiation
of eqns. (1) (using isotropic friction when evaluating f(gq)) shows that

M, o
3y, y %,

where r.=[%., y.] is the position of the center of rotation relative to the
reference point O (say the center of mass or pressure) and the cross product
is scalar-valued. The moment function for the bar with two isotropic points
of support is shown in Fig. 10. Its gradient is not well defined for the two
corners at the bottom, so the differentiation above is not sensible and the
friction load is not well defined. This corresponds to the center of rotation
coinciding with a support point. This non-uniqueness in [F,, F,] at vertex
points on the moment function is the same as that represented by flat facets
on the limit surface.

The moment function has a constant value and zero gradient for all
points on the y. axis between the support points, so those centers of rotation
correspond to motions with zero force and constant moment. Similarly, on
the y. axis outside of the bar M.=r.X F, M=0 and again a set of centers
of rotation is found with a fixed load. These straight lines on the moment
function correspond to vertices on the corresponding limit surface.

F, M=M,—r.XF M
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Fig. 10. The moment function for the bar of Fig. 7. The moment function is the vertical sum

of LT 'OI'1Z0; ottom is rounded
two identical cor es each cen ered at a contact boint he horiz ntal b i
but the two corners (C()“eSDOIldlllg to cone aplces) are sharp

12. Discussion

12.1. Points of interest on the slider

The Sélstxer;ay fidentify(té;;tain points of possible interest on any sliding object
of mass ) of the planar object is th i i .
distribution. The center of i troid of the Somss
1. The pressure (CP) is the centroid of the co
‘;;;;ismicle d:tnb:ltxon between the sliding object and the supporting sur?:,acltcat
all externally applied loads being in the i ,
' . . plane of the slider (except
gravity), and with either negligible i thex
oD is o north cith glig acceleration or CM on the plane, then
load ’Ii‘he center of twist (CT) is that center of rotation for which the generalized
e (;r a.t pure mor_ne.nt. Zhukovskii [10] calls the CT the pole of friction
e thelsn:: ;};e mlplmum)of the moment function (where its gradient an(i
rce i1s zero) and is not necessarily uni
: _ _ que when there
go;x;trs e(;f aﬁ:g:e Slﬁ)pol’t and all support is on a line. On the dumbeH of Fai;e
, €, all points on the bar are CTs. For isotronj icti -
lies within the convex hull of is o 101, Bog o the CT
the support distribution [10]. B is i
hecessarily true for anisotropic frictio  yments pok
' . n. For example, if the symmetric b
. i al‘
;)lt;) ilgt}? 1; sup}.)orte_:d symmetrically at its ends with ideal wheels which roll
betwge en(-ihea:w c:)u:zctlcl)ln,l lt.hen all points in the strip-shaped region contained
aralle
o 1 are o ines drawn at the ends of the bar (and perpendicular
e 211:; cen}r?iq c.>f the frictional forces during pure translation is calied
oy %roﬁlo I:;t;;).nt.(CF)t }£5,02Ffi]. Assuming isotropic but possibly non-
iction, the is unique, and it lies within the
. . s " con
?vl}llli ;g t(l)l: I?il;ppg)rt d;;trlbutlon. No unique CF exists for the ring of ratche‘trgzi{
- & — there is a different point for eve t lati i i
For uniform isotropic friction i 5 (for exammple opion
iform i and in-plane loads (for exampl
pressure distributions considered by Zhukowvskii [10]),( CP equali eC;‘H Xclie




328

ditionally, if the pressure distribution has certain symmetries, then all the
above points (CM, CP, CT, CF) coincide.

12.2. Properties of the limit surface

Some general features of limit surfaces may be noted, mostly for sliders
with isotropic friction; for further explanation see ref. 13.

(1) With isotropic friction, flat regions appear on the limit surface if
and only if it has points of finite support (infinite stress). Each point of
isotropic support on the slider leads to two parallel elliptical facets on its
limit surface as in, for example, Fig. 8. Since flat facets can make up a
reasonable fraction of the possible frictional loads, the propensity of objects
to rotate about points of finite support is in some sense partially explained
(further explanation related to the dynamics of slip is discussed in ref. 11).
With anisotropic friction, where the LCs may have vertices and flat segments,
the limit surface may have facets even when contact is distributed, as with
the ring of wheels in Fig. 9.

(2) With isotropic friction, vertices appear on the limit surface if and
only if all support points lie on one straight line segment. The consequent
non-uniqueness in the motion corresponds to the friction load being the
same for all rotations about an extension of one side of the segment, as
depicted in Figs. 7 and 8. With anisotropic friction, vertices may appear
even with non-collinear contact, as in Fig. 9.

(3) Choosing a different reference point O distorts the limit surface by
a simple vertical shear. By placing O at the CT, the limit surface is horizontal
(has vertical normal) at the z (moment) axis.

(4) For isotropic friction, the intersection of the limit surface with the
a2~y plane is a circle. If the reference point O is chosen at the CF the normal
to the limit surface on this circle is horizontal, corresponding to translation
(without rotation) in the direction of the friction force.

(5) The limit surface of a slider shares the symmetry of its distribution
of friction laws, assuming that the support plane is homogeneous and isotropic.
An axisymmetric object has an axisymmetric limit surface. Shvedenko’s claim
[27] that all objects with isotropic friction have isotropic moment functions
is incorrect (eqn. 1.6 in the proof of theorem 1 therein is wrong) as Fig.

10 here illustrates.

12.3. Maximum load in a given direction

Using the moment function Zhukovskii [10] proved the following theorems
for isotropic friction: (1) the frictional force is maximized over all possible
motions by pure translation, and (2) the net moment measured relative to
the CT is maximized over all possible centers of rotation by rotation about
the CT.

In fact, the load—motion inequality (5), with proper verbal ornamentation,
is almost a direct statement of a more general result, valid for all the friction
laws we consider. It follows directly from the load—motion inequality 5)
that the component of generalized load in any direction n is maximized by

329

Lr;lot;(;ni Iin dtha:hditiection. That is for given n, Pn is maximized over all P
side the limit surface by setting
. q equal to n. For exampl

moment relative to any point is maximi i Sraui

: \ ized by rotation .about that poi
:}ﬂcgritgg )maxm\um I:noment on the limit surface (drawn with this pogi(;mag

) occurs where the limit surface normal is

t : along the M axis i

is a direct consequence of the convexity and normality of the limit s’uxv?f}:cceh

Similarly, the component i
of force in any gij i i i imi
translation in that direction. Y gven direction is maximized by

13. Conclusions

T s .
Zhukol;:kligrsmr:n iunll'i;a;ieffro? cl)asswal plasticity (and, for isotropic friction
unction) provides compact i ipti ,
the overall relation between fricti otion of 5 seoms of
rictional load and moti idi igi
body whose slip is governed b ' i Tresmg rigid
: . Y a “normal” friction law. Th
with their associated pro i i i : rower e
: perties, provide a direct geometrs ,
question: what is the motion associa i _g etional Toad? Thes
ted with a given fricti

duesti . . : ictional load? The
exameI use;l to x{lsgallze or explain many features of rigid body slip fo¥
ple when frictional load is or is not a single-valued function of’ the

motion, and vice versa. Dynamics resuits usi L
in Part 2 of this paper [11]. wiis using the limit surface are presented
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