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ABSTRACT The 3 × 3 local mass matrix fully characterizes a pair of
colliding “rigid” bodies for many purposes. We prove here that arbitrary 3
× 3, symmetric positive definite matrices have physical realizations as local
mass matrices for collisions of two bodies with finite dimensions and inertia.
General collision models thus must be able to handle all such matrices.

1 Introduction

If two rigid bodies (labeled 1 and 2) collide at a point C, the impulse P
exerted by body 1 on body 2 is related to the net change in Vc, the velocity
of the contact point on body 2 relative to the contact point on body 1, by

P = M ·∆Vc (0.1)

where M is a well known tensor, here called the “local mass tensor” [1, 6].
M can be interpreted as the anisotropic inertia experienced by a force
pushing apart the contact points on the two bodies. If equal and opposite
forces F and -F act on the two bodies at C, then the contact points’
relative acceleration ac satisfies (neglecting the effects of external forces
and centripetal acceleration terms)

F = M · ac (0.2)

For two unconstrained rigid bodies M is a symmetric positive definite
(SPD) second order tensor given by

M−1 =
2∑
i=1

(
1

mi
I + ST (rC/cmi)J

−1
i S(rC/cmi)

)
(0.3)
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FIGURE 0.1. The region in impulse space accessible to generic “rea-
sonable” collision. Also shown is the region accessible to some algebraic
collision laws.

where I is the identity tensor, mi is the mass of body i, Ji is the moment
of inertia tensor of body i about its center of mass (c.m.), rC/cmi is the
position vector of the contact point C with respect to the c.m. of body i,
and the superscript T denotes transpose. S(r) is the cross product tensor
of r satisfying S(r) · v = r × v, for all v. For calculations, we use the 3 ×
3 matrix of components, [M], called the local mass matrix.

M fully characterizes the net dynamic interaction between the contact-
ing rigid bodies. So, collision laws need only consider the family of all
possible M, and not the family of all pairs of possible contacting bodies or
mechanisms. The set of all possible “reasonable” collisional impulses can
be determined from M and the approach velocity of the about-to-contact
points [1, 2]. These reasonable impulses are in a region of impulse space
bounded by a non-interpenetration plane, a friction cone, and an energy-
conserving ellipsoid, shown shaded light gray in the 2-D schematic Fig. 0.1.
The coordinates are chosen with the 1 direction normal to the common
contact-surface normal.

A geometric comparison is also presented in Fig. 0.1 between the range
of possible predictions from Routh’s law [4] (heavy dashed line), from Kane
and Levinson’s law [3] (heavy straight line), from Smith’s law [6] (heavy
curve) and a law proposed recently [2] (dark gray region). The geometric
approach conveniently displays several features of the collision laws under
study, such as the possibility of energy “creation” by Kane and Levinson’s
law, the impossibility here of a sliding collision as per Routh’s law, etc.

Since all rigid body collision laws use M as part of their input (possibly
implicitly) it is useful to know the set of all possible M (equivalently, all
possible ellipsoids in impulse space, with some restrictions on their position
[1, 2]) that need be considered as valid inputs for candidate collision laws.

As an analogy, consider the set of all possible rigid body moment of
inertia tensors. These are SPD, but also have an additional restriction on
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FIGURE 0.2. Physical realization of arbitrary mass matrices

the three eigenvalues: none of them is bigger than the sum of the other two.
Are there any such restrictions on M?

2 Physical Realizability

Claim: Any 3 × 3, SPD matrix has a physical realization as [M] for two
unconstrained rigid bodies of finite size, mass, and moments of inertia.

Proof: In general the contact tangent plane is independent of mass dis-
tribution and can have any orientation depending on the local shape of
the colliding objects, near the contact point. Thus, we only need to demon-
strate the realizability of arbitrary diagonal [M] with non-negative elements
(eigenvalues) (λ1, λ2, λ3). Let λ1 ≤ λ3.

Consider the 2-body system in Fig. 0.2. Body 1 has a mass distribution
that is equivalent to six point masses as shown. Body 2 has a mass distri-
bution equivalent to three point masses as shown. The rigid, massless rods
are of equal length. We will show the existence of masses (Ma, Mb, Mc, m)
that yield the eigenvalues (λ1, λ2, λ3).

Observe that as Mc →∞, we obtain a constrained system: body 1 has a
ball and socket joint at point mass Mc (on body 1), while body 2 is hinged
about the axis through the point masses Mc (on body 2). Now, by Eq. 0.2,
M will have the required eigenvalues if

Ma = λ1 , Mb = λ2 , and Ma + 2m = λ3 , and m = (λ3 − λ1)/2 . (0.4)

Thus with infinite masses, or with hinges, arbitrary M are obtainable.
For finite Mc, the mass matrix in the coordinate system shown in Fig.

0.2 (found using Eq. 0.3) is diagonal. Its eigenvalues (M11,M22,M33) are
functions of Ma, Mb, Mc and m (not reproduced here). We define ε :=
1/Mc, and find (using computer algebra) that for small ε,

M11 = Ma −
11

4
M2
a ε+O(ε2) , (0.5)



M22 = Mb −M
2
b ε+O(ε2) , (0.6)

M33 = Ma + 2m−

(
3

4
M2
a + 4Mam+ 6m2

)
ε+O(ε2) . (0.7)

Setting ε = 0 gives Eq. 0.4 as expected.
From Eqs. 0.5 through 0.7, the matrix of partial derivatives of (M11,

M22, M33) with respect to (Ma,Mb,m) evaluated at ε = 0 is invertible. By
the implicit function theorem (see e.g., [5]), if 0 < λ1 ≤ λ3 and 0 < λ2,
then there is a finite Mc0 such that for Mc > Mc0 there are nonnegative,
finite Ma(Mc),Mb(Mc), m(Mc) for which [M] has the specified eigenvalues
(λ1, λ2, λ3). The demonstration presented here just shows one family of
pairs of finite-inertia bodies associated with any possible positive definite
M. In practice, the minimum value ofMc0 may not be very large compared
to the other masses.

3 Relevance to Collision Modeling

The physical realizability of arbitrary [M] shows the completeness of the
geometric view of single-point rigid body collisions. That is, in drawing Fig.
0.1, we are assured in advance that a pair of bodies can be found to match
any such figure. We can examine the nature of collision laws in relation
to arbitrary impulse-space ellipsoids with the foreknowledge that all such
ellipsoids correspond to some pair of realizable colliding rigid bodies.
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