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Abstract

We report on 2D collision experiments with 9 thin Delrin disks with variable axisymmetric mass dis-
tributions. The disks floated on an air table, and collided at speeds of about 0.5 to 1.0 m/s with
a flat-walled stationary thick steel plate clamped to the table. The collision angle was varied. The
observed normal restitution was roughly independent of angle, consistent with other studies. The fric-
tional interaction differed from that reported for spheres and thick disks, and from predictions of most
standard rigid-body collision models. For “sliding” 2D collisions, most authors assume the ratio of
tangential to normal impulse equals µ (friction coefficient). The observed impulse ratio was appreciably
lower: roughly µ/2 slightly into the sliding regime, approaching µ only for nearly grazing collisions.
Separate experiments were conducted to estimate µ; check its invariance with force magnitude; and
check that the anomalies observed are not from dependence on velocity magnitude. We speculate that
these slightly anomalous findings are related to the 2D deformation fields in thin disks, and with the
disks being only “impulse-response” rigid and not “force-response” rigid.



1 Introduction

Although the prediction of the outcome of collisions of approximately rigid bodies is of use for many
purposes, there is not much collisional data on which to base or test predictive laws. Stoianovici and
Hurmuzlu (1996) showed that for an apparently simple system, steel rods hitting an anvil, the collisional
interaction is more complex than can be captured with known simple rigid body collision laws. Towards
the end of better understanding basic issues, we set out to test collisions of an even simpler system, one
for which the collisional mass matrix is diagonal (a “central collision”) and were surprised to find that
even for this system some common rigid body collision assumptions are not applicable.

2 Sliding Collisions in 2D

We define here some sliding-related terms for 2D, frictional, single-point collisions: (1) In a sliding
collision, the tangential components of pre- and post-collision relative velocity at the contact point are
both nonzero and in the same direction. (2) In ‘single-point’ collisions, actual contact occurs over a
small region. The contact region at any instant is the region occupied by the material points (on the two
bodies) that are in contact at that instant. (3) At all times during a fully sliding collision, all points in
the contact region have a nonzero relative tangential velocity in the same direction as the pre-collision
relative tangential velocity. (4) A sliding collision that is not fully sliding is partially sliding.

In collisions of real objects it is possible that some portions of the contact region might stop or
reverse their tangential velocity for part of the collision, yet resume sliding in the original direction by
the end of the collision when all transient deformations are dead. Such a collision would naturally be
partially sliding. If the frictional contact is governed by Coulomb friction, then the ratio of tangential
impulse to normal impulse in a sliding collision will be less than µ only if the collision is partially sliding.

Our definition of partial sliding is more macroscopic than that used by some authors. For example,
in Mindlin and Deresiewicz (1953), partial sliding corresponds to some portions of the contact region
sticking while others slip. In our experiments we can only distinguish between collisions where the ratio
of tangential to normal impulse is roughly equal to µ (treating them as fully sliding) from collisions
where that ratio is convincingly less than µ (treating them as partially sliding). We do not know the
details of which parts of the contact surface are or are not sliding.

Predictions for general 3D frictional single-point collisions vary from model to model. However, for
sliding collisions, if there is no inertial coupling between the normal and tangential directions1 (as for
collisions of axisymmetric disks or spheres with rigid walls), practically all authors assume the tangential
impulse transmitted in the collision opposes the tangential velocity and is equal to µ times the normal
impulse. This is equivalent to assuming that central, sliding collisions cannot be partially sliding (this
is one main point of this paper: our data shows that they can). Some more general rigid body collision
models also explicitly or implicitly disallow partially sliding collisions. In Routh’s (1897) model for
example, the ‘contact point’ has a unique tangential relative velocity at all times during the collision;
in 2D, if the tangential relative velocity ever becomes zero during the collision, then it must either
stay zero or reverse direction (by Routh’s model). Thus partial sliding is explicitly disallowed in 2D.
In the models of Whittaker (1944), Kane and Levinson (1985), Smith (1991), and in the treatment
of disk collisions by Brach2(1991), it is assumed that the ratio of impulses in a 2D sliding collision is

1Such collisions are sometimes called “central collisions”.
2Brach’s (1991) approach, in its most general form, suggests that the impulse ratio be treated as a tangential collision

parameter that is not constant over all collisions between a given pair of bodies but that depends on initial conditions,
e.g., the incidence angle. This approach is therefore neither supported nor contradicted by our data. Brach’s claims about
planar collisions with Coulomb friction being either fully sliding or terminated at a ‘rolling’ condition are contradicted by
our data.
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always equal to the friction coefficient (thus partial sliding is implicitly disallowed). In the treatment
of collisions of thick disks by Maw et al. (1981), based on the incremental contact analysis of Mindlin
and Deresiewicz (1953), partial sliding is not disallowed a priori. The solution, however, predicts an
impulse ratio of µ for all sliding collisions (and some that are ‘almost’ sliding). The same occurs for disk
collisions modeled using ad hoc localized compliances along the normal and tangential directions, as in
Stronge (1994a). In the new algebraic rigid body collision model presented in Chatterjee and Ruina
(1998b), it is possible to predict partially sliding disk collisions for suitable choices of the tangential
restitution parameter et. However, that model also does not capture the present data with a single
value of et for any one disk over the range of collision angles.

3 Description of Experiments

We now describe the disks studied and the experiments conducted (for more details, see Chatterjee,
1997).

3.1 Disks

All nine disks were cut from a rod of Delrin stock3 and finished on a lathe to achieve a smooth surface.
The edge of each disk was rounded to ensure ‘point’ contact (see Fig. 1). Three of the disks had holes
in their centers, and four disks had smaller aluminum disks glued to their centers. The disks were
blackened and marked with two white dots: one near the edge and one at the center. The disks with
holes in them had thin circular pieces of paper stuck to their lower faces to help them float on the air
table. Table 1 outlines the properties of each disk. Note that disk pairs (1,2), (4,5) and (6,7) were made
very similar (nearly identical) as a consistency check.

3.2 Procedure

The disks moved on an effectively frictionless4 air table and collided against a steel plate clamped to the
air table. The plate (40.6 cm × 20.3 cm × 1.9 cm), about 130 times more massive than the most massive
disk, is treated as infinitely massive in the analysis.. Pictures of the moving disks were taken using a
strobe lamp and a digital camera5. The strobe rate was held at about 8.8 Hz. This rate provided two to
three images of the disk before and after each collision on one frame. The measurement precision was
about 0.23 mm/pixel determined by number of pixels in digital camera, lens focal length and distance
of camera from table surface (we made no checks of possible lens distortion errors). The launch speed
of the disks was kept roughly consistent by using a simple rubber-band powered launcher, which also
released the disks approximately without initial spin.

3.3 Kinematic Measurements

Digital pictures of each collision were downloaded from the Kodak DCS and kinematic data was retrieved
using the software NIHImage6. For each collision, we used four positions of the disk: two before and
two after the collision. For each position, the x and y coordinates of the two marker points on the disk
were recorded. Each set of coordinates (before, and after) was used to calculate the linear and angular
velocities of the disk, before and after the collision.

3General Properties: low moisture absorption, abrasion resistance, dimensional stability and toughness, easy to machine.
4Based on the constancy of velocity and angular velocity before collision, the frictional effects were not greater than

our measurement inaccuracy.
5Nikon F3 with attached Kodak Professional DCS (Digital Camera System).
6Available via anonymous ftp at zippy.nimh.nih.gov
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3.4 Calculations

The quantities calculated for each collision were (1) the normal and tangential components of the pre-
and post-collision velocities of the contact point, (2) the angle made by the pre-collision contact point
velocity with the plate edge normal, (the ‘incidence angle’ θ), (3) the coefficient of normal restitution
e (ratio of normal separation velocity to normal approach velocity)7,(4) the ‘tangential restitution co-
efficient,’ defined here as the negative of the ratio of post-collision to pre-collision tangential contact
point relative velocity, (5) the collision impulse from the steel plate to the disk, and(6) the ratio of the
tangential to the normal components of the impulse (the ‘impulse ratio’).

3.5 Note on Error Bars

The error bars shown in the figures indicate estimated upper bounds on the errors in the plotted quan-
tities. These bounds were obtained as follows.

For each collision, the measured quantities were the x and y coordinates of 8 points, i.e., 16 scalar
quantities. Each calculated quantity, such as the coefficient of restitution or the angle of incidence,
is thus a scalar function of 16 variables. For a function f(q1, q2, · · · , qn), if the measured quantities
q1, q2, · · · , qn have errors ∆q1, ∆q2, · · · ,∆qn, then the error in the calculated value of f is given to first
order by the expression

∆f ≈
∂f

∂q1
∆q1 + · · ·+

∂f

∂qn
∆qn = ∇f ·∆q.

Now each of the ∆qi would typically be about one pixel or less (the precision of the digital imaging
system). However, we took the error to be about two pixels. From this, we obtain the estimated error
bound

|∆f | ≤
∑∣∣∣∣ ∂f∂qi∆qi

∣∣∣∣ ≤ h ∑∣∣∣∣ ∂f∂qi
∣∣∣∣ ,

where h is twice the data acquisition precision (length/pixel).
In the foregoing analysis, we neglected plate misalignment errors. We assume negligible error in the

plate’s flatness, because the edge was machined flat specifically for the experiment. The surface normal
was estimated by picking off the positions of two previously marked points on the plate edge. These
points were about 880 pixels apart in the digital camera; incorrectly locating them by, say, 2 pixels
corresponds to an error in estimating the normal direction by about .0023 radians (or less). The plate
edge was also located separately for each picture, so the systematic error was probably even smaller.
The horizontal error bars in the plots are several times bigger than 0.0023 even near grazing incidence,
and still larger in other places. So plate misalignment error does not contribute substantially. In any
case, since the plate was used to select axes, if the plate angle was off by a small amount, then the ‘true’
coordinates would change by correspondingly small amounts given by a rotation of axes formula. As
such, the error from incorrectly orienting the plate is equivalent to incorrectly estimating the positions
of various points, by amounts comparable to pixel size.

4 Results

For perfectly axisymmetric disks, all contact points are identical. Based on previous studies of disk
and sphere collisions at moderate velocities (such as Maw et al. (1981) and Foerster et al. (1994)),
we expect nondimensional collision quantities like the normal restitution coefficient e to be roughly
independent of the pre-collision contact point velocity magnitude. Consequently, for a given disk, each

7There are other ‘definitions’ of the coefficient of restitution (see e.g., Smith and Liu (1992)), but the popular ones are
equivalent for central collisions.
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collision is approximately characterized by the incidence angle θ alone. Quantities of interest in collisions
of axisymmetric objects like disks are the normal restitution coefficient e and the ratio of tangential
to normal impulse. Also of interest is the coefficient of tangential restitution, particularly for small
incidence angles. We now present these quantities for the different disks, plotted against the incidence
angle θ.

4.1 Normal Restitution

We found e to be fairly high (typically between about 0.92 and 0.96), roughly independent of θ, and
roughly the same for all 9 disks. This was as expected from the literature on experiments with thick disks
(e.g., Maw et al., 1981) and spheres (e.g., Foerster et al., 1994). The results for disks 1 and 2 are shown
in Fig. 2, and are representative of all 9 disks. The single data point at e ≈ 1.08 is interesting because
it is greater than 1, though perhaps not convincingly so (given our error estimates). We mention that
there is no fundamental reason why e, as defined in this paper, cannot be greater than 1 in frictional
collisions (Smith and Liu (1992) report values as high as 2.3 from FEM simulations, and as high as 1.4
from experiments). See, e.g., Chatterjee and Ruina (1998b) for a discussion about the relation between
e >,=, < 1 and fundamental restrictions on collisional impulses.

4.2 Tangential Restitution

We define the tangential restitution coefficient here as for normal restitution, as the negative of the
ratio of post-collision tangential velocity to pre-collision tangential velocity. This ratio depends on θ,
and is shown for three pairs of disks in Fig. 3. In the figure, positive tangential restitution corresponds
to tangential velocity reversal, which is not allowed by some rigid body collision models such as in
Routh (1897), Whittaker (1944) or Kane and Levinson (1985). Tangential restitution effects, caused by
tangential compliance effects, have previously been observed experimentally (Maw et al., 1981; Foerster
et al., 1994). Observe that, as expected, the tangential restitution is roughly consistent between the
nominally identical disks: between disks 1 and 2, disks 4 and 5, and disks 6 and 7. However, there is less
consistency across disk pairs, and so the different disks have different tangential restitution graphs. For
all disks (including the three remaining ones not shown for reasons of space) and θ > ≈ 0.5, all collisions
were sliding. That all collisions for these disks should be sliding beyond θ ≈ 0.5 is not predicted by any
existing theory that we know of.

4.3 The Impulse Ratio

The observed ratio of tangential to normal impulse is shown in Fig. 4. In each case, it is seen that the
impulse ratio increases steadily with θ, approaching about 0.16 in the limit of grazing incidence. Figure
5 shows the impulse ratio for all 9 disks on the same plot (without error bars for easier visibility). The
degree of consistency between the data for the 9 non-identical disks is worth noting. The data can be
fairly well captured using, say, a bilinear fit, with a corner at slightly under θ = 0.5. As mentioned
above, that is roughly where the transition occurs from tangential velocity reversal to sliding collisions.

In the sliding range, the impulse ratio is not constant but varies by roughly a factor of 2 as θ goes
from 0.5 to π/2. This variation is directly opposed to the usual predictions of standard rigid body
collision models as well as a detailed solution by Maw et al. (1981). For comparison, the predicted
impulse ratios for the cases of Routh’s law (1897), Kane and Levinson’s law (1985) (essentially the same
as Whittaker (1944)), and Smith’s law (1991), using e = 0.92, for a uniform disk, and using a fitted
coefficient of friction ≈ 0.162, are plotted against incidence angle θ in Fig. 5. The experimental data is
represented by a bilinear curve. Note the mismatch of the bilinear fit to our data with the predictions
of the conventional laws. We remark that as per several rigid body collision models, the ‘knee point’
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marking the transition from tangential velocity reversal to sliding, in collisions of disks with rigid walls,
occurs at an incidence angle that depends on the coefficient of friction, normal and tangential restitution
behavior, as well as the radius of gyration. Since the radii of gyration of the disks were different (see
the last column of table 1) while contact conditions were approximately the same, one might expect
these knee points to occur at different incidence angles for these disks (which is apparently not the case;
see Fig. 5). The typically predicted knee point for a uniform disk is far from that observed here (see
Fig. 5).

5 Subsequent Experiments

5.1 Validity of the Coulomb Friction Contact Model

A year after the collision experiments we conducted some experiments to check the validity of the
Coulomb friction model for the frictional interaction between the disks and the steel plate.

The original steel plate was lost, so we used another, similar plate. The coefficient of friction between
the Delrin disks and the second plate was about 0.18. For the second plate, a pair of disks held side
by side next to each other were attached together, constraining them to prevent rotation. Different
steady normal loads were applied on them, and the tangential force needed to maintain sliding was
measured. Within experimental precision, the sliding coefficient was found to be independent of normal
force magnitude over about one order of magnitude. We can thus talk about ‘the’ coefficient of friction,
in that Coulomb friction apparently described the contact interaction quite well, with a single friction
coefficient µ that is not dependent on the magnitude of the normal pressure.

For not-near-grazing collisions impact data does not allow an easy way to measure a friction coeffi-
cient. At other than grazing incidence, not all portions of the contact region may be sliding at any given
instant. If the impulse ratio for near-grazing incidence is taken to be ‘the’ coefficient, then our data
(Fig. 4) for the first plate gives our estimate of about 0.16. Microscopic determination of the shear and
normal tractions acting over the contact region and of where and when points of contact were slipping
would require more sophisticated local measurements than we could make in this limited study. Thus,
more direct measurement of the friction coefficient acting during collision was not possible for these
experiments.

5.2 Possible Velocity Dependence of the Impulse Ratio

In our experiments, the velocity magnitude was roughly constant while the incidence angle θ was varied.
Therefore, the normal component of collision velocity was roughly proportional to cos θ, i.e., a function
of incidence angle. We would have liked to conduct similar experiments where the normal component of
velocity was kept constant over all θ. We were unable to conduct such experiments due to our inability
to launch the disks accurately at arbitrarily specified speeds.

Possible dependence on normal velocity magnitude was investigated by studying a few more collisions
of disk 2 with the new (second) plate. In these collisions, the incidence angle was held roughly constant
while the magnitude of pre-collision velocity was changed (two sets of collisions, one at roughly 0.5 m/s
and the other at roughly 0.9 m/s). Figure 5 shows the results obtained, compared with the previous
measurements for that disk. It is seen that changing the velocity magnitude by a factor of about 1.8
apparently changes the average impulse ratio by only a slight amount (smaller than the inherent scatter
in the data points themselves). The new data points for both velocity magnitudes lie a little higher
than the old data points, by an amount roughly equal to the estimated difference in the coefficients of
friction for the two plates (supporting an estimate of µ ≈ 0.16 for the first plate and our measurement
of µ ≈ 0.18 for the second plate).

5



Moreover, the new data points for both speeds lie below the estimated limiting value for grazing
incidence (i.e., 0.18). Thus, the data points for each speed corroborate the increasing trend in the
impulse ratio seen in the first series of experiments.

We remark that the new data points for the lower speed (0.5 m/s) lie slightly higher, on average,
than those for the higher speed (0.9 m/s). While not conclusive, this observation is consistent with
theory in that for disks of fixed thickness and rounded edges, as the incidence velocity magnitude is
made smaller and smaller, the localized 3D Hertz contact based solution (Maw et al., 1981; Mindlin
and Deresiewicz, 1953) is expected to become accurate: for sufficiently small velocity magnitudes, the
impulse ratio graph is expected to be flat in the sliding regime.

5.3 Significance of Subsequent Experiments

The subsequent experiments described in this section roughly demonstrate two things. First, they show
that a constant µ is reasonable for the contact friction. By the discussion in Section 2, this implies
that except in the limit of grazing incidence, the sliding collisions observed were only partially sliding
collisions and not fully sliding collisions.

Second, and somewhat less conclusively, the velocity variation experiments indicate that dependence
of the impulse ratio graph on pre-collision velocity magnitude is small. This constancy is consistent
with the usual collision modeling assumption that collisional impulses are homogeneous of degree one
in the velocities (impulse is linear with velocity magnitude, for fixed values of collision “parameters”
such as restitution coefficients).

6 On Rigidity in Collisions

The fundamental assumptions of rigid body collision modeling are that the time of interaction is small,
displacements during the collision are small, contact forces are large, and accelerations are large; that
the net interaction can be described by rigid body impulse-momentum relations. Further, for ‘single-
point’ collisions, it is assumed that the size of the contact region is small compared to the overall
dimensions of the colliding objects. These assumptions are reasonably applicable for the disks studied.
However, specific rigid body collision models include extra hypotheses about the collision impulse.
The particular assumptions made vary; so do the predicted results. The contradiction between our
experimental observations and the predictions of most standard rigid body collision models should be
viewed as a demonstration of the weakness of specific assumptions of these particular collision models,
and not inaccuracy of the fundamental assumptions of the rigid body approach.

In a collision between any pair of real objects, contact occurs over a region (possibly small). The
velocity distribution of material points in the contact region need not be uniform. Apparently also,
the common assumption of a constant µ in the contact region is reasonable. If the relative tangential
motion of all portions of the contact region is always in the same vectorial direction (with possible
reversals), and the net tangential impulse is less than µ times the normal impulse, then some portions
of the contact region must have stuck or reversed direction for some part of the collision, even though
the whole contact region might again be moving in the original direction at the end of the collision.

If contact deformations are strongly localized, as in (say) Hertzian contact of spheres or thick slices
thereof, then the whole body moves essentially like a rigid body while the contact region acts like a
small, pseudostatic interaction mechanism. Such objects, where at all instants of time including during
the collision, the small contact region essentially behaves like a point on an ideal rigid body, are force-
response rigid (see Chatterjee, 1997; or Chatterjee and Ruina, 1998a). Since any tangential (possibly
rate-dependent) compliance is of the same order as normal compliance, these objects are expected to
be slipping over the whole contact area throughout the collision for collisions that are sufficiently far
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from normal. For such objects, in 2D sliding collisions, the tangential impulse is expected to be µ times
the normal impulse.

In contrast, if contact deformations are not so strongly localized, so that the motions of points at
small distances from the contact region are not effectively identical to those of a point on a rigid body
during the collision, but the motion of the body before and after the collision looks like that of a rigid
body, and if all displacements during the collision are very small compared to the dimensions of the
body, then the body is only impulse-response rigid (see Chatterjee (1997) or Chatterjee and Ruina
(1998a)). In this case much more complex contact interactions can take place involving vibration and
wave phenomena. Perhaps with such interactions the tangential relative velocity might reverse direction
or stop during a collision (just as the normal component reverses direction multiple times in the data
of Stoianovici and Hurmuzlu, 1996). For such objects, in 2D sliding collisions, it might happen that
the tangential impulse is less than µ times the normal impulse. As discussed in Chatterjee and Ruina
(1998a) thin disks like in our experiments might only be well described as impulse-response rigid, while
thick disks (as in Maw et al. (1981) might be well described as force-response rigid. In particular
consider a slice of thickness H, cut from a sphere of radius R. Then the 3D Hertz-contact compliance
(see Johnson, 1985) due to the rounded edges depends only on R and not on H, but the 2D compliance
(or the ‘thinness’ effect of the disk) is proportional to 1/H. For a given contact force magnitude, if H
is made smaller, the two (3D and 2D compliances) can become comparable.

Note that the data of Foerster et al. (1994) and Maw et al. (1981) clearly showed tangential
restitution, like our disks. Thus, our observations are not new in this regard. However, for the spheres
and (presumably thick) disks studied in these works, it was found that the impulse ratio was equal to
the friction coefficient for sliding collisions, i.e., in those studies, sliding collisions were fully sliding. In
contrast, in our study of thin disks, we have found sliding collisions to be only partially sliding.

7 Conclusions

The fact that even in apparently “sliding” collisions, sliding need not persist throughout the collision,
is relevant to general rigid body collision modeling. Contradiction of specific collision models, however,
does not negate the basic rigid body approach to modeling collisions. We hope that our results will
help to broaden the often restricted ideas about rigid body collisions that are promoted, in part, by
several recent papers devoted to analyses of Routh’s incremental model or variations thereof, examples
of which include Keller (1986), Wang and Mason (1992), Stronge (1994b), Bhatt and Koechling (1995),
Marghitu and Hurmuzlu (1995) and Batlle and Cardona (1997).

The details of the actual mechanical interactions in the disk collisions studied here were not resolvable
at our scale of measurements. These interactions might be better understood through some combination
of experiments with micromeasurements, detailed numerical simulations, and approximate analytical
solutions.
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Table 1: Properties of axisymmetric disks used (dimensions in mm, mass in gm, Icm in gm-cm2)

radius of
Disk radius added disk mass
No. R or hole thickness m I 2I/mR2

Regular 1 49.1 0 6.4 67.8 827 1
2 49.1 0 6.4 67.2 820 1

With 3 49.7 19.7 6.9 59.2 830 1.14
hole 4 49.6 29.4 6.9 45.4 745 1.33

5 49.5 29.4 6.9 46.2 761 1.34

With 6 49.1 30.5 6.5 92.0 902 .81
added 7 49.2 30.5 6.4 91.5 900 .81
disk 8 49.2 25.4 6.3 82.8 837 .83

9 49.1 20.3 6.2 74.6 800 .89

regular disk disk with hole disk with added disk

(1,2) 3, (4,5) (5,6),7,8

Figure 1: Axisymmetric delrin disks, with holes or added disks
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Figure 2: The coefficient of normal restitution for disks 1 and 2
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Figure 3: Tangential restitution for disks 1 and 2, 4 and 5, 6 and 7.

13



Disk 1
Uniform "regular" disks

Disk 2

0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

incidence angle

im
pu

ls
e 

ra
tio

Disk 3

0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

incidence angle

im
pu

ls
e 

ra
tio

Disk with hole

Disk 4
Disk 5

0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

incidence angle

im
pu

ls
e 

ra
tio

matching disks with holes

Disk 6
Disk 7

0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

incidence angle

im
pu

ls
e 

ra
tio

matching disks with added disks

Disk 8

0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

incidence angle

im
pu

ls
e 

ra
tio

disk with added disk Disk 9

0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

incidence angle

im
pu

ls
e 

ra
tio

disk with added disk

Figure 4: The impulse ratio for disks 1 through 9
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Figure 5: The impulse ratio for all nine disks, The impulse ratio predicted by some collision laws,
compared with a bilinear fit to experiment.
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Figure 6: The impulse ratio for disk 2, for two velocities
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