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BICYCLE STEERING DYNAMICS AND SELF-STABILITY:
A SUMMARY REPORT ON WORK IN PROGRESS

[Preliminary Draft, 12/15/87]

by Jim M. Papadopoulos
Cornell Bicycle Research Project

[*** Please note that this is just a draft, and may contain serious errors. Square brackets
such as these denote unfinished sections, or questions which need to be cleared up, **¥]

ABSTRACT

Moving bicycles often balance themselves (and recover from disturbances) without rider assistance, a
feature that bicycle designers might want to take into account.

However, while the property of self-stability has been studied often (for an ideal bicycle), not all of these
investigations appear to be correct; and most authors have tended to solve complicated equations numerically

uate stability in specific cases, without providing guidelines on how to estimate or improve stability.

The goal of this research was not to perform more realistic (i.e. detailed) analyses or simulations;
but rather to develop a good grasp of the effects of important design features. We hoped to understand
linear self-stability of an ideal bicycle in the same way that one understands small oscillations of an ideal
mass-spring-damper system.

Towards this end, we have developed a simple notation and a short derivation of the linearised equations
of motion, and can express self-stability conditions in terms of a few algebraic inequalities relating a bicycle’s
design parameters. However, the sought-for understanding has been only slightly achieved. Some special
unorthodox bicycle designs are discussed to demonstrate the scope of the methods.
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L INTRODUCTION

Though modern bicycles steer and balance remarkably well, how and why they do this is still something
of a mystery. Common knowledge of this matter is incomplete at best, and perhaps also inconsistent.
Similar-appearing bicycles can have various ‘feels’, for example that of ‘twitchiness’. Old problems such as
self-excited shimmy, and new ones such as crosswind-sensitivity of front disk wheels, have not really been
solved. Standard rules of thumb appear not to work well for radically different designs.
The principal concerns which moved us to undertake this study include:

— Lack of clear confirmed ezplanations for bicycle steering phenomena (self-stability, feel, shimmy )

— Lack of design guidelines for achieving (or preventing) particular behaviour
— Uncertainty about complex analyses in the literature

To address these matters, we felt an important first step would be to derive, confirm, and explore the
governing equations for a reasonably complex idealised bicycle. This would permit us to see effects of any
given trail, head angle, weight distribution, etc.; and to build intuition by studying the properties of a variety
of ‘simplified’ bicycles. It seemed very important to try to understand this idealised bicycle well: if it is a
good model, this will help produce the answers we are seeking; and if the model turns out to be partly or
wholly inapplicable, good understanding will help pinpoint its shortcomings, and give a start in developing
and analysing a more realistic model. ,

We studied the motion of an ideal moving bicycle which is only slightly perturbed from upright straight-
ahead rolling. The bicycle has rigid knife-edge wheels; a rigid rear-frame including rigidly attached immobile
rider; and a rigid steerable ‘front-frame’ (fork+stem+bars), on which the rider may or may not exert a
steering torque. Rolling resistance, bearing resistance, and aerodynamic forces are all neglected, so no power
is needed for steady forward motion, and the rider is assumed not to be pedalling.

In exploring this model, which encompasses arbitrary frame geometry and mass distributions, we aimed
to develop equations of motion, which could be used to predict such things as lean angles, steer torque,
and lateral forces on wheels, in any given maneuver. We planned to compare our equations against many
published derivations, so that other users of the literature would waste less time. Most importantly, we
hoped to understand self-stability of an uncontrolled bicycle: simple experiments and published analyses
show that bicycles can be self-stable in a limited speed range, but with little explanation of why this should
be so, or how it may be achieved by design. Such understanding might not resolve many bicycle handling
problems, but it seems like an important first step (bicycles which are very unstable probably take extra
skill and effort to ride; bicycles which are adequately stable may free the rider to attend to other things).

We believe this work will make it easier to study related problems: augmented bicycle models (with tire
‘slip’ angles and scrub torques, frame elasticity, aerodynamic forces, rider lean, acceleration/braking); rider
perceptions, preferences, and control strategies; and so forth.

Following is a summary of our results to date in following this plan. It includes an explanation of how we
have used the equations of motion to evaluate stability, and reviews our progress to date in understanding the
stability of bicycles (and other simple balancing devices). The equations themselves are described and derived
(non-rigorously) in APPENDIX A. In APPENDIX B it is briefly suggested how tire models, aerodynamic
forces, rider control actions, etc. may be added to the equations. APPENDIX C contains some general
results from studying the formulas which determine stability.

This report draws heavily on Comparisons and Stability Analysis of Linearized Equations of Motion for
@ Basic Bicycle Model, the 1987 M.Sc. Thesis of R. Scott Hand, Department of Theoretical and Applied
Mechanics, Cornell University. Hand describes notation in detail, derives the equations of motion very
carefully, and compares them to many others in the literature. In this preliminary report I have not attempted
to cite many others who have worked on the topics discussed here: a separate comprehensive review is
tentatively planned. : .



II. OVERVIEW OF EQUATIONS OF MOTION

From APPENDIX A we may take the two equations of motion governing rear-assembly rightwards
lean-angle y, and front-assembly leftwards steer angle v (dots denote time derivatives):

MixX + KyxX + Myy ¥ + Coytp + Kyy® =0 (the lean equation),
and ) )
MyxX + CyxX + KyyX + Myyt + Cyy¥ + Kyt =My (the steer equation).

The M, C, K coefficients are defined in detail in APPENDIX A; they are all constants at any given bicycle
velocity V. My is the steering moment exerted by the rider; and if we had allowed spring-mounted training
wheels (say) to help support the rear assembly against leaning, the lean equation would have to have the
supporting moment M x on the right hand side.

APPENDIX B contains a list of ways these equations of motion may be applied.

Before using these equations of motion, it is important to pause and consider what they may be good
for.

Is the derivation correct? We believe it is. First, each term makes sense physically. Also, as mentioned
in APPENDIX A, we get the same results from a more rigorous Lagrangian development. Finally, we have a
high level of confidence because of comparisons to derivations in the literature which employ other approaches.
Our equations are entirely consistent with those of Whipple (1899, with typographical corrections), Carvallo
(1901), Sommerfeld & Klein (1904), Dohring (1955), Neimark & Fufaev (1967, with corrected potential
energy), R. Sharp ( 1971, with a minor algebraic correction), and Weir (1972, his Dissertation, not his
paper). (Many other authors’ equations disagree with these and each others’. An important
comparison yet to be made is with the equations of Roland (1973) and Rice (1976).)

Are gll the significant physical phenomena included? Unfortunately, probably not. For example, the
points where the wheels contact the ground are not simple rigid-body contacts — their ‘scrubbing’ and
‘side-slipping’ behaviour is more complex:

— I have had the experience of replacing worn tires with new ones, and immediately thereafter feeling
much less stable in high-speed turns.

— The equations of motion of an ideal rolling disk predict unceasing oscillation, whereas one can easily
observe that a real disk or isolated bicycle wheel straightens up and stops oscillating. [If the disk
equations are supplemented with a scrubbing torque (due to twisting about a vertical axis), these
oscillations die away.]

In fact, motorcycle-tire behaviour figures heavily in motorcycle modelling (though this may have to do with
their lower pressures, and the greater masses and speeds involved). Further, frame or wheel elasticity may
be important:

— Some real bicycles shimmy, at a frequency which appears close to that of torsional oscillation of a
stationary bicycle, i.e. lateral oscillation of the head tube when the seat and the wheel-contacts are held
fixed.

Factors such as these are undoubtedly important for some aspects of bicycle behaviour, but we may hope
not for all— observations or experiments are needed to determine the limits of applicability of our equations.
Even if the equations are found to be largely irrelevant for typical bicycles, perhaps the methods of developing
and studying them may be applied usefully to subsequent versions.

Assuming for the present that they are adequate to describe some aspects of bicycle behaviour, what do
these equations say about bicycle design? The real difficulty here is that we don’t have many well-defined
design requirements. (For example, no-one has said “a good bicycle must have a particular variation of
lean angle with time, x(t), when a given torque My, is briefly applied to the handlebars”, or “in a given
maneuver, the lateral force acting on the front wheel must not exceed a certain structurally safe value”.)
One of the simpler topics to look at, which appears at least somewhat relevant to what a rider might feel
and like (or dislike) is self-stability. We are concentrating on this until better questions are formulated.

Our idea is that the more unstable a bicycle is, the more skill and concentration it will require of the
rider, and the less forgiving of momentary inattention it will be. On the other hand, a bicycle which assists
in the balancing task should free the rider to focus on traffic conditions, or on pedalling hard.
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The precise problem we are studying is uncontrolled (no-hands, rigid-rider) motion: when does a bicycle
balance itself? In that case we must set My= 0 (i.e. no steering moment), and simultaneously solve the
above system of two equations to describe the motion resulting from any disturbance.

LII. DETERMINATION OF NO-HANDS STABILITY (SELF-STABILITY)

By stability, we mean just one thing: that the moving bicycle will automatically return to an upright
configuration after any moderate disturbance, or after the handlebars are released in a steady turn. Such
behaviour has been observed experimentally by many people including ourselves, and has been predicted by
a large number of theoretical analyses (including those mentioned above).

In contrast, a bicycle which is unstable may be expected either to weave back and forth to a greater
and greater extent, or to lean increasingly to one side or other. The loss of balance may take place either
slowly (thus permitting rider intervention) or quickly.

Note that a stable bicycle need not be slow-responding or require large handlebar torques. To understand
this, consider a balsa-wood pendulum hanging from a pivot: this is unquestionably stable according to the
above definition, yet it may quickly and easily be displaced.

To solve for the no-hands motion of a bicycle we can eliminate one variable (either x or %) from the
above second-order differential equations of lean and steer, which leaves a single fourth order eqation for the

other variable. This equation is the same whichever variable is kept, so we simply present it as a differential
operator:

a? d? d d? d d? d
Myx 35+ Kxx Myy 75+ Cvo -+ Kyy | - Myx Z5+Cux 3;+ Ky Mgz +Cug+Eyy | =0

or

dt a3 a2 d
where the coefficients B,C, D, E are polynomial functions of the velocity (which at any given speed are
simply constants like A); see APPENDIX C. These coefficients are each rather complex combinations of
bicycle parameters.

To study stability, we have considered several options:

— Solve for the motion of a given bicycle using a computer, and see whether it falls down. The trouble
with this approach is that there are so many quantities needed to specify a bicycle — ten or twenty
design parameters — that to explore non-standard designs thoroughly (say five or ten values of each
parameter) might require millions or even trillions of computer runs. Even if it were practical to perform
these, the results would be difficult to absorb.

— Solve the equations analytically, i.e. in terms of sines, cosines, and exponentials. Unfortunately this is
extremely difficult, and the results are so messy that one can not see general truths — numbers describing
a specific bicycle and specific initial motion must be substituted, leading to the same situation as above.

— Realize that we don’t really care about the particular motion arising from a particular disturbance, but
rather whether all leaning and steering motions eventually damp out or not. This property of solutions
to the equations of motion can be found out from the eigenvalues alone, that is from the roots of the
fourth-order characteristic polynomial:

As4+Bss+Csz+Ds+E=0.

If all the roots (eigenvalues) have negative real parts, then all possible solutions will involve decaying
exponentials, and x and ¢ will always return to zero. The trouble is that even the roots alone are hard
to find, unless we use a computer on specific numerical cases. So this is still not really promising.

— Recall that one needn’t solve for the eigenvalues to know whether their real parts are all negative: the
Routh-Hurwitz tests may be applied to the characteristic polynomial, and if it passes we are assured
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that the bicycle is stable. Conversely, if the polynomial fails any of the tests, the bicycle must be
unstable. The tests are:

AB,C,D,E>0
and

C—-A (%) - E(—g) >0 (for brevity, this quantity will be called RH).

A,B,C,D,E and RH are all simple enough (compared to formulas for the eigenvalues) that one may
hope to recognise the-effects of various parameters without extensive numerical studies.

This last approach is the one we have adopted. Perhaps what distinguishes our work from other correct

_analyses is that we have persisted in trying to simplify and use these tests to understand what makes a bicycle

stable. However, while we have made some headway, the algebraic complexity of the general expressions has
kept the rate of progress slow.

IV. SPECIAL CASES, AND COMPUTER EVALUATION

The above-mentioned Routh-Hurwitz tests appeared to be the only method which could evaluate sta-
bility in terms of simple functions of the bicycle parameters. The potential value of such formulas is that
one could in principle, by looking at the formulas, see how bicycles must or must not be built to achieve
stability, and what could be done to any given design to improve its stability. Sufficiently clear formulas can
provide a kind of understanding which tables of numbers or pages of plots cannot.

A little progress has been made along these lines (see APPENDIX C), and more is expected, but the
stability formulas are complicated enough that such progress has been slow. So we have also made use
of two other strategies: One is to study simplified configurations which lead to less complicated formulas,
and attempt to build up an ‘intuition’. The other is to use a computer to evaluate the stability formulas
numerically for any particular design, and also to explore the effects on stability of changing each parameter
one-at-a-time. Below are briefly summarised some of the results and conclusions.

SPECIAL CASES

Note: in some of these cases, a bicycle which is not (self-)stable because E < 0 may still be balanced very
easily by a rider (see APPENDIX C).

— A bicycle (+rider) with standard dimensions and mass-distribution can never be (self-)stable if the
gyroscopic effects of the front and rear wheels are somehow canceled. (D can be written in the form
d1V 4+ d3V3, but in this case d3 vanishes, so D has the sign of dy which is normally negative.) But this
is not to say that all bikes must have gyroscopic effects to be stable.

~— A ‘primitive’ bicycle with a vertical steering axis, symmetry of the front assembly about the steering
axis, and an arbitrary distribution of mass on the rear assembly (see Fig.1a), is slightly unstable: E = 0,
and RH < 0 unless the rear assembly has enough high-up mass in front of the steering axis (as when
the rider is leaned forward, and the front wheel bears most of his weight; Fig.1b). In the case that
we checked, the computer showed that it can be stabilised by making the trail slightly positive, or by
moving the front-assembly center of mass ahead of the steering axis (while leaving the front c.m. inertia
tensor with a vertical principal axis). By combining these effects, the bicycle may be stabilised even
when the trail is somewhat negative, as long as the front—assembly center of mass is sufficiently far
forward of the steering axis (Fig.1c). The gyroscopic effect of the front wheel is essential to the stability
of this vehicle, because in its absence C' and D will always be negative. On the other hand, too large a
gyroscopic influence from the rear wheel will keep RH negative.

— An isolated rolling wheel (see Fig.2a for the equivalent bicycle) is not quite stable, because it never
uprights itself from a steady turn, and it never stops oscillating to either side of its average lean angle.*

* An actual isolated wheel does straighten up and does stop oscillating, presumably because of scrubbing
friction with the road. But this phenomenon can not be used to explain the stability of the friction—free
bicycles considered here.
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However, a wheel with a downwards tilted bar attached [at or just below the axle] (Fig.2b) does stop
oscillating above a certain speed, perhaps because a leaning acceleration tends to leave behind the top
of the bar, thus causing a steer acceleration to the side of the lean. [The addition of arbitrary mass to
the rear frame - appears simply to change this speed somewhat.] [The vehicle can be induced to
straighten up out of a turn by moving its mass center slightly ahead of the steering axis or giving it a
slight positive trail, as above. (What about forward-tilted steering axis?)] For this design gyroscopic
effects are crucial to stability, because in their absence D will be negative.

— Perhaps motivated by the example of a furniture caster, many authors have suggested the importance
of trail to stability, however with little solid evidence.** So we looked at the stability of a bike with a
massless front assembly, no gyroscopic effects (as if it is sliding on skates), and some steering-axis tilt
and trail (Fig.3a). Surprisingly for us, such a configuration can be stable for a huge speed range. The
trail must be positive, but it is best if it is small. [Causes instability if large?] Also the point labeled I/
in the figure should be slightly behind the front contact point Py, which means that the steering axis
must tilt backwards just a slight amount depending on the trail. Finally, the mass of the rider must
be stretched out along a forwards-leaning line (which, however, must not lean as far as the line from

— The lean equation shows that a bicycle can be stabilised if the steer angle is controlled to be proportional
to the lean:

¥ = —kox .

Skateboard wheels actually steer according to this rule, so some results of their stability analysis (see
Appendix B) will be mentioned briefly. [Not written.]

— Tricycles don’t have the same balancing problems as two-wheeled vehicles, but they are still reputed to
be hard to control, especially on a crowned road. We may analyse their behaviour by assuming that a
bicycle has an adequate supporting moment M x holding it upright (x = 0), and using the steer equation
to evaluate stability of no-hands riding or the torque required in a steady turn (see Appendix B). [Not
written.] '

Scott Hand deserves the credit for demonstrating that stability is possible for both a gyro-free bicycle and
a negative-trail bicycle.

COMPUTER EVALUATION

When a bicycle’s design is complex enough it is convenient to use a computer, to evaluate the Routh—
Hurwitz stability quantities 4, B,C, D, E and RH for any velocity, or even to calculate the entire stable
speed range. This use of a computer has the same drawbacks as the numerical techniques mentioned
above in DETERMINATION OF N O-HANDS STABILITY, namely that one can never prove general truths
numerically, and that many trials are required to establish ‘trends’. Also, the other numerical techniques
give more information, such as the motion involved in instability. However the method we have adopted
does appear to have advantages in ease of programming and speed of computation.

Our rudimentary programs for an IBM PC are of three types:

(a) Defining the parameters of the bicycle, and constructing the velocity-polynomials of the siz Routh-

Hurwitz stability tests.

** Trail (or rather mechanical trail, the perpendicular distance behind the steering axis of the front contact
point) does strongly affect the handlebar torque required in a given maneuver, partly because in a rapid
steering motion it will make the rear assembly yaw more, but mostly because any ground-contact force
component which is perpendicular to the wheel exerts a turning moment (with mechanical trail as the lever-
arm) which is partly resisted by the rider’s hands. Moderate such moments are probably important, as
feedback for steering, or to allow the rider to control the bicycle by forces rather than displacements (control
of the steering angle would have to be precise at high speeds, and such control would prevent the bicycle
from contributing to the balancing task). However large moments would make steering a real effort.
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The idea here was to create a sequence of simple programs, which each would produce an output file to
be used as input by the next level. The first program might take a file Fy containing wheel sizes and
masses, rider size and mass and body orientation, seat position, handlebar-bag mass, head angle and
fork rake, etc.; and produce another file F3 of the complete set of 17 independent parameters used in
our analyses to define a bicycle. The next program would take F, and calculate Fgo, the coefficients
of the various powers of velocity in the Routh—-Hurwitz stability tests (see APPENDIX C).

This structure would allow the user to specify either the bicycle’s physical design, or the more abstract
defining-parameters; and a default Fi-file containing typical values would help the user to avoid mis-
takes when unfamiliar with the orders of magnitude involved. It would of course be possible to produce
further files F3, F, etc. containing intermediate built-up quantities such as the lean and steer equation
coefficients. This could be quite informative as to the quantities which most strongly influence subse-
quent calculations; but it might be difficult to alter their values without violating fundamental physical
restrictions (mass is positive, etc.) most easily checked at the F, level, or without making construction
difficult (check at the F; level).

(b) Using the polynomials of Fco, find the sign of each stability quantity over a range of speeds — or,
simply solve for the velocity range (if any) in which all are positive, and note which define the limiting
velocities.

With program types (a) and (b), one can either experiment with bicycle designs to see which are more stable,
or one can use them as subroutines in another program, e.g.:

(¢) Iteration 10 & more stable design.
Starting with an initial file at the F} level or the F3 level, use the programs of (a) and (b) to evaluate
the stable speed range. Next, make a small change to each of the input values in turn, run (a) and (b),
and note by how much the stable speed range is either widened or narrowed in each case (to do this
for all the parameters takes only a few seconds). Based on these results, choose a more stable design
which is slightly altered from the initial case, and repeat the process. When this approach works, it will
produce a succession of increasingly stable designs. '

We have initial versions of programs which work along these lines [(c) has barely been used], which could
perhaps be released for experimental purposes.

V. STEADY-STATE EFFECTS OF DISTURBANGCES AND MISALIGNMENT

[Perhaps this section should be condensed or deleted — at any rate it needs revision.]

Qualitative Introduction

A bicycle which is stable at a given speed will still be stable when subjected to a moderate disturbing
force or misalignment; however its steady equilibrium configuration will then generally involve some amount
- of leaning and turning. Some insight into a bicycle’s response to steady forces or misalignment may prove
useful. ,

One important concept can be illustrated by a rider travelling along a straight road. If wind blows to the
right, the rider must lean left, into the wind, in order to balance while still riding straight. This behaviour
of leaning into the wind corresponds to the fact that a leaned bicycle wants to lean further. On the other
hand, if the bicycle is held up by spring-mounted training wheels rather than balanced by steering, then the
wind would make the rider lean to the right: a supported bicycle wants to return to the upright orientation
when leaned. The difference is between a maximum energy configuration in the first case (usually unstable
but now dynamically stabilised); and a stable minimum energy configuration in the second case.

The steering of a stable bicycle has a similar property, as mentioned in APPENDIX C. That is, if the
the handlebars are steered while the bicycle is maintained in a balanced condition (at rest, or in motion at
the lean angle necessary to balance in the resulting turn), a stable bicycle wants to steer further.* This
means that to balance a moderate imposed steering torque, the handlebar must turn opposite to it, i.e. fight

* Presumably, this is so that a bicycle steered in a steady turn, when released, will steer even sharper,
and upright itself; at any rate, when E > 0 (which is required for stability) a bicycle has this steer torque.
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against il. [In some sense, a stable bicycle is at a maximum of ‘energy’ (slow proportional loading) with
respect to both steer and lean, not the more common minimum of stable static equilibrium.]

Qualitative Effects of Misalignment

A stable bicycle which is misaligned (with offset or tilted wheels), or imbalanced (mass or force offset
from the center-planes of the rear or front assemblies), will not naturally travel upright and straight-ahead.
Some interesting issues include the steering torque and lean angle needed to ride it in a straight line; and
the equilibrium curve it takes up if the rider exerts no steering moment.

To understand the straight-line case is relatively simple: (a) turn the handlebars until the wheel traces
are parallel; (b) tilt the bicycle until the overall center of mass is above the line joining the wheel contacts;
(c) evaluate the steer moment needed to balance the vertical forces of the ground contact and the front
assembly weight, if these do not pass directly through the steering axis.

Example: if the front wheel is angled or offset so it contacts the ground to the right of the rear-assembly
center plane, then the bicycle is not perfectly balanced when vertical, and must be leaned slightly to the right.
(For a standard bicycle, the effect of this small lean on the steering moment is small.) Since the steering axis
is tilted backwards and the trail is positive, the vertical ground force tends to turn the handiebars to the
left, so the rider must apply a steering moment tending to turn them to the right. Alternately, when riding
no-hands the rider should incline his or her body to the left side of the bicycle frame, which adds rightward
steering moment by tilting the frame to the right, and accomplishes the same end.

It is not so easy to say what stable curve the bicycle will maintain if the handlebars are released, because
of the gyroscopic effects of the wheels which are constantly changing their heading. But if these effects may
be ignored in comparison to centrifugal effects (as is the case for standard bicycles with a normal amount of
trail), the following reasoning seems to work: (a) balance the stationary bicycle as above, for straight riding;
(b) whatever direction the handlebars want to turn, slowly turn them in the QPPOSITE direction, while
keeping the bicycle balanced, until no handlebar torque is required (i.e. the bicycle reaches its maximum
gravitational energy); (c) since the wheels do not have parallel traces, the bicycle will follow a turn when
moving, and thus will have to lean (but in the absence of gyroscopic torques, will keep exactly the same
steer angle). So in the example above, the bicycle will turn to the right.

Effect of Steer Torque

These ideas may be discussed more concretely by using the steady (non-derivative) terms in the equations
of motion. These relate the rightwards lean angle x of the rear assembly, and the leftwards steer angle 1,

to the lean moment M) tending to tip the rear assembly rightward, and the steer moment My tending to
turn the handlebars leftward, by the K-coefficients:

KyxXx + Kyy =My,

Kyxx + Kyytp =My

Here Kyy and Ky, are constants, while Ky and Ky both typically depend on velocity.
If we consider a bicycle travelling at a given speed which is in perfect lean equilibrium, (i.e. My = 0),
then the lean equation tells us that for every choice of steer angle there is an appropriate lean angle Ypai:

—Hxy
K. v

Xbal =
B XX

Ky is always a large negative constant. Ky is typically positive at very low speeds, but at normal speeds
it is always negative (unless the bicycle has a high-speed backwards-spinning flywheel), and proportional to
- the velocity squared. If Xbal 1s used in the steer equation, we find ’

Ky Kyy — Ky K Det(K
Mypm= FoxKow = KoxKnw) | {( )y |
KXX B XX

where Mq is the steering moment required to traverse a steady equilibrium turn with steer angle ¢. This,
not Kyy, is the steady-turn “steering stiffness” felt by the rider. Now the determinant of the K matrix is
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Just E, the constant term from the characteristic polynomial, and this must be positive for the bicycle to be
self-stable,* so we may conclude that Mybal and ¥ have opposite signs in a stable bicycle. That is, the rider
must restrain the handlebars, which try to accentuate any turn. (Because of gyroscopic effects, Det(K) for
a conventional bicycle typically becomes negative between 10-20 mph. The handlebars then try to center
themselves when held in a steady turn, and the uncontrolled bicycle is no longer stable.)

If a constant (say, right-steering) moment My is simply applied**, and the bicycle is stable at that
particular speed, eventually it will end up steered to the left! The bicycle initially steers to the right (this
can be shown by looking at only the second-derivative terms in the equations of motion), which [always?]
creates a leftwards lean and causes the front wheel to steer to the left to maintain balance, so the front wheel
finally ends up at the leftwards steering angle appropriate to balance the rightwards My.

By carefully choosing bicycle parameters, it is possible to arrange for Det(K) to be constant at all
speeds, in which case the equilibrium steer angle for a given steer moment will be independent of speed, and
the lean angle will be proportional to V2. Alternately, it is possible to develop a non-standard bicycle design
for which Det(K) will be strictly proportional to V2, so that the steer angle for a given steer moment will
be smaller at higher speeds, and the resulting lean angle will be independent of speed.

Notice that a new stable condition is not reached by simply controlling the variation of (which changed
in a complicated way to get the bicycle into the turn), nor is it even possible to fix its final value (holding
the steering angle fixed prevents the bicycle from making small steering corrections to balance itself, so
it becomes absolutely unstable). However, prescribing a steering torque leaves the front assembly free to
move and stabilise the bicycle. This suggests that radio-controlled steering of a riderless bicycle may be
accomplished quite easily: simply allow a stable bicycle to perform the balancing task, and use the radio
control to produce small imbalances or steering torques which will cause the bicycle to enter steady turns
in the desired directions. (For example, by sliding one end of a taut rubber band along the handlebars to
the right while the other end is attached to the seat, a right-steering moment will be produced, causing
the bicycle to turn left. Surprisingly, it appears that if the sliding took place at the appropriate rate, the
rubber band would always assist it, so that negligible servo power would be needed.) Stabilising a bicycle
by appropriately controlling the steer angle is a more difficult task.

Effect of Lean Torque

When no steering torque is applied to the handlebar, the effect of M, (which may come from rider
upper-body lean, or bicycle misalignment, or from a side force acting at some point on the rear assembly
above the rear-wheel contact) may be discussed in a similar way. A stable bicycle will balance itself at some
angle of lean and some angle of steer, but will a moment tending to tip the bicycle to the right cause a lean
to the left, or to the right? Will the bicycle steer left or right, or go straight? Using the equations of motion
as above, we may find

_ Ky __ Koy -
X= Bet(B) X ¥ = ~Berriy M-

In contrast to the steering’s behaviour of turning opposite to /\7(,,,, in theory either sign is possible for x*,
and its magnitude will usually depend on speed. A standard bicycle at normal speeds has Kyy > 0, so
a rightwards tipping moment causes rightward leaning and steering. Therefore, when riding no-hands, the
rider’s body should be leaned to the right side of the bicycle in order to produce a steady rightwards curve.
Since Ky, is constant, 4 will depend on speed unless Det(K) is also made constant.

One option which would display leaning behaviour more in line with steering behaviour is to ask that
the bicycle continue to travel straight, i.e. ¥ =0, by choosing Ky, = 0. Since Det(K) = KyxKyy in this

* Typically not important when the bicycle is rider-controlled, but essential when it is uncontrolled.
** A simple method of providing a right-steering moment is to wrap a string clockwise around the steering

axis, and tension it with a taut rubber band attached to the bicycle seat. ‘
* If subjected to a rightwards-tipping force, a bicycle travelling straight would have to lean to the left.

However, if it is turning right, the lean may also be to the right, just not to the extent of a balanced bike in
the same turn.



case, it is essential that Kyy < 0 (i.e. the steering axis is tilted forward!); and it can be seen that
-y
XX
Since x is negative and speed-independent, the bicycle then always leans opposite to Mx by an amount
independent of the speed.

If the bicycle is designed in this fashion (so that lean moment produces no steady turning), we can then
see that when a moment is applied the bicycle first leans in the sense of the moment; then it evidently steers
towards the side of the lean so much that it reverses the lean; and finally a lean is developed which balances
the applied moment. This interesting design, however, removes the rider’s ability to steer the bicycle by
leaning his upper body!

[What is My for a bicycle going straight with nonzero My? My/M, = Kyy/Kyy , so a traditional
bike with Ky, >0 will try (initially) to steer to the left if A1 x 18 tending to tip it to the right.]

Effect of Sidewind (e.g. with disk wheels)

If the wind blows on a bicycle moving stably without rider control, it will generally end up following a
steady curve into or away from the wind; which would be preferable? One reasonable goal might be for the
bicycle to end up travelling straight, and leaned into the wind. Alternately, since the transient process of
adjusting to the wind may well change the heading of the bicycle, it may be best to select a path curvature
aimed at cancelling this heading change, so that the rider has longer to respond.

Assume that a sidewind has the effect of a lateral force acting at some point on the front assembly, plus
another acting at some point on the rear assembly. These wind forces will create some values of M, and
My in the equations. The lean moment My arises from the height of the forces above the ground, which
both tend to tip the bicycle away from the wind. The steer moment My comes from both the front and the
rear forces, and is best understood in terms of front and rear ‘fixed lines’ — lines which do not move when an
upright stationary bicycle is steered (i-e. handlebars are turned) without leaning* (Fig.4). The ‘fixed line’
for the rear is just the vertical line above the rear contact P.: when the handlebars are turned the upright
rear assembly pivots slightly about that line, so a side force on that line will tend to tip the bicycle but not
steer it. (A force on the rear assembly ahead of the ‘fixed line’ will cause the handlebars to turn, typically
away from the force.) The “fixed line’ for the front assembly is the line from the front contact Py to P (the
point at which the steering axis intersects the rear ‘fixed line’). A side force on the front assembly which
acts somewhere on that line will tend to tip the bicycle but not steer it. A force ahead of the ‘fixed line’ will
tend to make the bicycle steer away from the force. With a front disk wheel, it seems likely that the side
force on the front will contribute most of My.

One design option is to add a trailing aerodynamic surface to the front assembly, to make the front force
act just behind the front ‘“fixed line’ (assuming the rear force acts in front of the rear “fixed line’), so there
is no net steer moment My. Then the effect of the wind reduces to a pure leaning moment, as discussed in
the previous section. :

More generally, if the wind causes both (My)w and (My)w, and we want a steady response with
¥ = 0, we must choose

Kyx _ My)w

Kxx  (My)w
(by adjusting either the bicycle design or the relative magnitudes and application points of the wind forces).
The left hand side is independent of speed, and ideally so is the right. Knowing that we want the bicycle
to lean into the wind, we might arrange to steer the bicycle away from the wind initially, so the equilibrium
lean will be achieved more rapidly. This corresponds to making

‘Z;_W - (M¢)WMxx - (MX)WM\IJx
Xw  (My)w Myy — (My)w Myy
* Masses placed on the front and rear “fixed lines’ leave the full steer equation absolutely unchanged, and

hence should have little effect on bicycle handling if small enough or low enough to leave the lean equation
nearly unchanged.
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sufficiently negative.

[If crosswind forces prove to be too great (as might be the case for a fully—enclosed bicycle travelling
at high speeds), perhaps aerodynamic compensation may be used to advantage. For example, an ‘angle of
attack’ vane could perhaps adjust trailing flaps to make the lift coefficient vanish at the given angle of attack.
Or, some surfaces might be permitted to swing around relative to the direction of travel, in order to cancel
the angle of attack.

Might a fully enclosed bicycle benefit from coupling the wind forces to the steering?]

Towing a Bicycle

Towing forces might be considered a kind of disturbance. A few qualitative suggestions only will be
made, pending a more complete analysis.

One aspect of towing is simpy that of affecting the direction. A brief ‘tug’ on a string from one side
of a bicycle will generally produce a change in direction, which may or may not be towards the ‘tugger’,
depending on where the string is attached.

A more automatic control process might be to exert a restoring force proportional to the bicycle’s
deviation from a desired path, as a fairly steady ‘disturbance’ which will tend to turn the bicycle towards the
path. Based on earlier discussion, if we can produce a steering moment M, tending to turn the handlebars
away from the desired path, then the bicycle will eventually steer towards it. An elastic string fastened to
the front assembly behind the ‘fixed line’ is able to produce such a moment. However we cannot conveniently
attach the string at ground level, so its force will also produce a tipping moment M,. On a conventional
bicycle this tipping moment also contributes to steering in the appropriate direction. [Isn’t there some reason
it’s bad to attach the string to the rear assembly — what happened in Scott’s experiments? Also, what
about an inextensible string controlling displacement, not force?]

When a bicycle is pulled forward by a steady towing force, a full analysis is needed. However, quali-
tatively it appears that if the towing force is again applied to the front assembly, behind the ‘fixed line’, it
will help stabilise the bicycle by making E more positive; and it will also provide the function of keeping the
bicycle aligned with the towing vehicle. (Such towing of a stable bicycle has been demonstrated successfully).
In order to keep the steering moment small when the towing force is great, it may be worthwhile to attach

the string to a flexible support, so that the offset from the ‘fixed line’ (i.e. the moment-arm) is reduced when
the towing force is large.
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APPENDIX A
BICYCLE EQUATIONS OF MOTION

Note: to be able to follow the main aspects of this derivation; the reader should be Jamiliar with concepts
Jrom intermediate-level dynamics, such as moments and products of inertia, angular velocity vectors, etc.

In order to describe the bicycle, its motion, and the forces acting on it, various quantities are defined in
Figs. A1-A5.* (Figures may be found at the end of this Appendix.) Many related parameters, though useful,
have been omitted to shorten this summary. It turns out, for the small lean and steer angles considered here,
that the point where each wheel touches the ground does not move significantly around the circumference

to represent the bicycle by the skeleton frame of Fig. A2,

This skeleton frame will be used to describe the accelerations of mass centers and the forces of ground
contacts and gravity, but we also need certain mass distribution properties of the bicycle (Figs.A3-A5).
Dynamically, it turns out that the ideal bicycle we are studying can be treated as just two rigid bodies,
joined together at the steering axis. That is, for rotational accelerations ¥, 4, ¢ (see Fig.A2) the torques
may be found from the moment-of-inertia, tensors of the front and rear assemblies with the wheels considered
non-rotating. The actual rotations of the wheels produce gyroscopic effects, which may be incorporated by
assuming that there is a quantity of angular momentum H, “attached” to the rear assembly, and a quantity
Hy “attached” to the front assembly. These are considered positive when the bicycle rolls forward.

Of course, to find T of Fig.A4, and F/, F” of Fig.A5, it is necessary to have center-of-mass inertia tensors
for front and rear rigid bodies, plus the Yz co-ordinates of front and rear mass centers (y is along the ground,
and z is perpendicular to it in the plane of the frame).

Actually, the full inertia tensors F’ " of Fig.A5 are not needed. What are actually required are:

— the polar moment of inertia about the steering axis, (that is the torque about the steering axis required
for unit angular acceleration about that axis, written (F/ - X) - X = Fy) = myd?+ Fyysin® A—Fyrsin 20+
Frzcos? ))

— the torque about the steer axis required for unit angular acceleration about the y axis, and vice versa
(written (F'-X).j = Fly = —myhsd — Fypsin X + Fyzcos \)

— the torque about the steer axis required for unit angular acceleration about the z axis, and vice versa
(written (F”-X) .k = F{ = my(cw +1;)d — Fpysin A + Fig cos A).

Here, FF is the center-of-mass inertia tensor of the front assembly.

DYNAMICS EQUATIONS

Assuming both wheels touch the ground, the configuration of the bicycle, and the position of every
mass-point on it, are completely determined by: Y and X (position of rear contact P;); 6 (heading) and x
(lean) of the rear assembly; 1 (steer of the front assembly relative to the rear assembly); and the amount
of rotation of both wheels. (See Fig.A6.) It turns out that for the case considered (small deviations from
upright coasting along the Y axis of a level plane), that the forward velocity is essentially constant (like a
constant-speed motorcycle), and essentially equal to dY/dt. Thus ¥ = Vi, and the wheels each rotate at a
nearly constant rate (each rotation corresponding to a definite interval in Y).

Our concern is with the lateral motion of the bicycle (such as leaning); so we take V and H., H; as
constants and investigate only those motions which involve lateral (X) displacements of mass-points from
the YZ plane. The variables which concern us are X, 8, x, 9, which all will be considered very small, in
order to simplify the analysis.

* Seventeen parameters are used to define the bicycle mechanically: The front and rear assemblies each
need 7 quantities: their mass, three center-of-mass inertia tensor components, two center-of-mass co-ordinates
relative to the wheel contact point, and the ratio of spin angular velocity to forward speed. In addition to
these 14, we need the head angle, and the distances from the steering axis to each contact.
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Fig.A2: Skeleton Frame
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Fig.A3: Rigid Body Model
A is a unit vector along the steering axis
H., H; are angular momenta attached to rear and front assemblies
(which are treated as rigid bodies, i.e. without separately turning wheels)
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V

Fig.A4: Mass Distribution for Total Bicycle + Rider System

For the whole bike + rider system treated as one rigid body (steering locked):

m; is total mass

Yz are axes fixed to rear assembly at P, T,;a'\f T:}?

i,k are position of overall c.m. in Yz axes

Hy = H, + H; is total spin angular momentum of wheels < T‘é‘}
T is moment of inertia tensor for whole bike relative to P, (calculated in yz axes)

In terms of the center-of-mass inertia tensor Rg at m,

Ty
for the rear assembly, and the center-
of-mass inertia tensor F at my for the front assembly, we have T, = m,h2 + Ryy+ mfhf. + Fy,

Tz = me I 4 Ry + my(cy +1;)? + Fy and Ty = —mohol, + Ryz — myhy(co + ) + Fgz.
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are axes parallel to yz at P’
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is moment of inertia tensor of the front assembly evaluated in ¥/ Z'.
(the steering is assumed to be set straight ahead)
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Fig.A6: Picture of skeleton frame in general configuration
X is displacement of P, from Y-axis
X is lean to right of rear assembly
6 is heading of rear wheel ,
¥ is steer to left of front assembly relative to rear assembly
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To find the equations of motion we adopt the point of view that the bicycle is on ice as far as lateral
wheel motion is concerned, but that there are some as yet unkown side forces (Fx,, Fxj) acting at the front
and rear contacts. We will find the equations of motion for the four lateral degrees of freedom (X, 4, x, ¥)
under the influence of these horizontal contact forces (temporarily assumed known), the vertical contact
forces, the downwards force of gravity acting on the various masses, and the steering torque (see Fig.AT).
Then we will use the conditions that front and rear contact points are each constrained to move in the
direction of wheel heading (that is the wheels have zero slip angles), to eliminate  and X. Finally, we will
reduce the equations to two not involving the unknown forces, and two which do involve them. This will
leave us with two equations in the variables X, ¥ (and the steering moment) which may be solved to find
the motion, and two more equations into which we could insert the now-known X, ¥ to find Fx,, Fx;.

In the following equations we are looking at the forces or moments required to accelerate all the mass
particles on the bike; and are setting these equal to the forces or moments of gravity and of the ground (both
horizontal and vertical), and the steering moment applied by the rider to the front assembly (and negatively
to the rear assembly). '

We are performing an approximate linearised analysis, in which sines and cosines of small angles are
approximated, and products of small quantities are neglected. (In this summary the linearising approxima-
tions are justified only casually if at all, but the results agree with more careful and rigorous linearisations
performed by ourselves and others.) A linearised analysis can be considered “exact” if the motions are small
enough; the only question is how small this is. For many systems, the linearised analysis is qualitatively and
even quantitatively accurate for surprisingly large motions. .

The approach which has been followed below for each variable is to put on the left hand side (LHS) the
conjugate force or moment required when accelerating the various mass-points on the bike in an arbitrary
motion. One way to think about this is to put forces —ma at each point of the bike, and find the appropriate
reaction force or moment.* (For example, if a bicycle is being accelerated to the right by an acceleration
X, a force myX is considered to act at the center of mass, in the —X direction, If one were holding the
bike upright by a moment at P,, the magnitude of that moment would be m;h: X .) Since we are trying to
develop linear equations, we can legitimately consider the effects of each variable by itself while holding the
others to zero — i.e., there are no interaction effects.

(1) _FOR THE WHOLE BIKE: the total X-force required to effect the lateral acceleration of
all mass points in a general motion = the sum of applied X-forces.

mtX +mti-1¢)'(' - mtl-te - mfd'(/) = er +.r)(f

LHS:
— the lateral acceleration of m, due to lateral acceleration of the rear contact, no lean or yaw
— the X acceleration of m; due to yawing (only) of the whole bike
— the X acceleration of m; due to lean (only) of the whole bike
— the X acceleration of m; due to steering only

RHS: sum of forces in X-direction

(2a) FOR THE WHOLE BIKE: the total x-moment (about the heading line of the rear as-
sembly), required when accelerating mass-points laterally in a general motion, = sum of y
moments of external forces about the same line.

MiheX + Tyy X + Tyaf + Fay — Hib — Hy cos M = gmehyx — gmydip — c;(m;g-c-;-—)i/)

* According to Ruina, this approach is exactly equivalent to using conservation of linear X-momentum
for the whole bike in (1); conservation of moment of momentum for the whole bike about forward and
vertical axes whose origin instantaneously coincides with the rear contact in (2a) and (2b); and conservation
of moment of momentum of the front assembly about a line coinciding with the steering axis in (3).
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= gmihex — g,

where for convenience we have defined v = (m;d + m;, -}f;c 7).

LHS:

— the y (or x) moment required to accelerate the center of mass of the whole bike laterally

— the y-moment required for angular acceleration (X, 0) of the whole bicycle about the rear contact point

— the y-moment required for angular acceleration of the front assembly about the steering axis X (remember
that the contacts can slip sideways, and that X, x, 8 are being held fixed

— the gyroscopic moment (from wheel spin angular momenta H,, H;) required for yawing of the whole
bike about a vertical axis )

— the gyroscopic y-moment required for the precession about the vertical (¢ cos A) of the front wheel

RHS:

— the moment of gravity force acting at the c.m. of the total bicycle which is leaned only (Fig.A8a)

— the moment of gravity force acting at the center of mass of the front assembly, for a non-leaning bicycle
(Fig.A8b)

— the moment of vertical front contact force (m;gl; /c,,) which is offset due to steer only (Fig.A8b)

— the steer moment M, does not contribute because — My also acts on the bicycle. The forces F. xrs Fxy

do not contribute because they are in the ground plane and so have no moments about the rear-assembly
heading line.

(2b) FOR. THE WHOLE BIKE: the total -moment (about the z-axis through the rear contact
Pr, which for small angles is equivalent to a vertical axis) required when accelerating mass-points
laterally in a general motion = sum of moments of external forces about the same line.

~mel X + Ty % + Toal + FYLd + Hix — Hy sin M = ~cy Fx;

LHS:
— the z (or #) moment required to accelerate the center of mass of the whole bike
— the z-moment required for angular acceleration (X, 6) of the whole bicycle about the rear contact point
— the z-moment required for angular acceleration of the front assembly about the steering axis X
~— the gyroscopic moment required for tipping of the whole bike about the heading line of the rear assembly

— the gyroscopic z-moment required for the precession about the horizontal (— sin ) of the steered front
wheel

RHS: moment of Fx; about the 2 axis.

-

(3) FOR. THE FRONT ASSEMBLY ONLY: the total Y-moment about the steering axis A
required for a general bicycle motion = sum of external moments about the same axis.

~mydX + Fl X+ Fyt0 + Fj\ + Hy(x cos A +§sin )
=My +c; Fxyp — g(myd + mtz'j“”-cf)x + gsin AM(myd + m,;r"”—cf)tﬁ
=My +c; Fxy — gvx + g(sin Mvp |
(where v is defined in (2a) above).
LHS:
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— 1-moment required to support lateral acceleration of the front assembly

— Moments about A axis required when the front assembly is given angular acceleration about the x ()
axis and 4 (2) axis. Because inertia tensors about any point are symmetric matrices, the moment about
one axis required for angular acceleration about another is the same as the moment about the second
required for angular accleration about the first.

— the moment about the steering axis required for angular acceleration of the front assembly about that
axis (the coefficient is the polar moment of inertia) )

— the moment about the steering axis required for precession (x cos A+ 8 sin A) about an axis in the plane
of the bicycle which is perpendicular to the steering axis.

RHS:

— the steering moment My, and the moment about the steering axis of the horizontal force, are easy to
see. (Fig.A9a)

— when the bicycle is leaned only, the vertical reaction force at the front contact and the vertical gravi-
tational force on m; both have components proportional to x which are perpendicular to the plane of
the bike. These forces act on lever arms ¢ ¢ and d. (Fig.A9b)

— when the bicycle is steered only, these two forces are displaced from the plane of the bicycle, and no
longer pass through the steering axis. Resolve them initially into components perpendicular and parallel
to the steering axis; then when they are displaced, it is easy to see that only the components initially
perpendicular to the steering axis (which are multiplied by sin A) exert moments, with lever arms equal
to their lateral displacements yd and ey, (Fig.A9c)

REDUCED FQUATIONS OF MOTION

Equations 1,2a,2b,3 are true whatever horizontal forces Fxr, Fxys act at the wheel contacts, and in
particular they are true if the forces are just right to prevent the wheels from side-slipping relative to their
instantaneous headings.

For the rear wheel, zero side slip is expressed by the equation X = —V4. (See Fig.A10a.) For the
front contact, an analogous relation is needed in terms of the X -co-ordinate and heading of the front wheel:
Xy = ~V@;. To write this in terms of the variables describing the motion, we need X =X —cybl 4y
for the X-co-ordinate of the front contact Py (Fig.A10b), and 6; = 6 + ¢ cos A for the heading of the front
wheel (Fig.A10c). (cos A comes in because a small rotation of the front wheel about the steering axis can be
considered a sum of small rotations about horizontal and vertical axes — and only the latter changes the
front wheel’s heading.) oL )

With these relations, we can express such quantities as , § and X in terms of and % and 9. By
subtracting the rear-wheel constraint from the front-wheel constraint, we obtain

—cuwf + c;rﬁ = Vicos,
which may be solved for 4 to give

cos A

b= Ly pvi22y
Cw Cw
This may be differentiated once to give 6:
§=Lfpyesdy,
Cy w

Finally, the rear constraint relation may be differentiated once, and § may be replaced:

2COS A
Cw

)’éz—vé=-v2—f¢-v ¥

15



vertical forces on -Pron’(
ﬂiSaw\Y))y of leaned bike -

stde view

/(mf 3)51'»1)

<)

(g é ) sink

.SMQ view oF 'Fr"t'} assemb))/)
Uy';‘akf but poss}b/y steered,
Ver'h.cal ‘f‘bfcu are e 5olv€J

alor\9 and VM_'ECM{I.CU‘U‘ 1o

5*601):\0 oxis

Fear view "f leaned
bike — vevtical *Fﬂrces

have Corv\p""‘e"‘,-S ‘L L
Hame (wk((,h act 21
le,ve,r arwy A, C{:)

l—“ (m?g);;k)\ = Y
d - d

c c

‘ f
Ffrgd)sin—T

View m/ona sfeev-x:'\o ax/s
from above. The a’f’ﬂtds
Per)aemdl‘cula.r +DH~4 s Cew'mo
oxis exext @ moment whey

oHfseh becasse of Y.

Fig.A9: Moments acting on the front assembly about the steering axis (none transmitted by

the steering bearing):

(a) Steer moment My, and horizontal force Fx; at front contact P;

(b) Moment of vertical forces when bicycle is leaned only

(¢) Moment of vertical forces when bicycle is steered only (which arise if A = 0)

[ 5.1



rear wheel:

— Sy

| | |
X vy | o
@ y _t’e/ Aé;i = ~fan@  or X= -V
\ (gor Smal/ @)

\
X , _ o
SIYNIGrly for X¥ ) 6{: at front confad
b X K ]
J ;.X;_
XA o Al
L Gy R
bor blkc i fh '(’V:o / ' For brke wifh @=O/
ng X~ Cw6 XF:::)(f'C;SV dve b0

m[{»jqj o‘F front contact

Combined XF =X -cub 1. Y

' ‘ _ L}"Cos) oo ' -
c ——— '
© “ﬁ%ﬁw\wod Heaiing ob ronk uheal
0 deym)s' on heAJl;u; of resr
whee) Plus steer 0{“ ‘P*rnwf )
relatie | o year,

O = 8 Yeos \
F"O'NO e | Hostrotion of Y‘OHI;\’ tonshraint due b vear wheel

() Jiming Xg i teems of X gy
©) Deliy Qg On Yerms of @y

5, %



After substituting these relations into Eqgs. 1,2,3, to eliminate 6,6 and X , we have four equations but
apparently only two variables. However, demanding that the horizontal contact forces should prevent the
wheel sideslip means that these forces are no longer freely selectable, but must be exactly the right magnitude
- at every instant. In essence, they are the two remaining variables.

Since we are concerned at present only with the motion, the most convenient thing is to rearrange the
equations so that the unkown forces do not appear in two of them; these two will allow us to solve for the
unknowns y, .

Equation (2a) (with X and ¢ eliminated) is already in that form; because it dealt with moments about
a line in the ground it will be called the lean equation. For the other equation we simply eliminate Fx ¢ from
(2b) and (3), and leave My, on the right hand side; this is called the steer equation. (Evidently equation (1)
is not needed, unless we wish to find F Xr.)

We write these two equations in the form:

My X + Mx,/ﬂ,z; + CX¢¢. + Kyxx + Kyyt = 0, the lean equation*
(note that there is no Cy,x term); and
Myy% + My + CyxX + Cyyth + Kyxx + Kyytp =My , the steer equation.

The coefficients to the lean equation are

My =Tyy
/ i
Myy =F3y + =T,
w
CX’J’ e (Hj cOos A <+ c—f'Ht>+V (Tyz COS‘/\ - Eim,'iz_t)
Cuw Cw Cw
Kyy =~ gmihy
cos A 2€OS X
Kyy=gv—-—HV—" -V mahy
Cuw Cw

and the coefficients to the steer equation are:
¢
Mil’X =F),\y + _f—T.W
Cw
cs i
Myy =F5 + 2-=F}, + 4 T;,
Cw c

Cyx =Hjpcosh + .cth

Cyy =V(CZS/\F£: + Ef—(cos)\Tu +V)) \

w Cy Cy

Kyy =gv
sin A cos A + V2C°S)‘,,

Kyy =—gvsind+ VH,;

Cw Cw

Note that most coefficients are functions of velocity. In fact the angular momentum H; for the front wheel

typically could be written as Hy = V(J t/as), where a; is front wheel radius and J y is front wheel polar

moment of inertia; and similarly for the rear. However there is also the possibility of adding independent

high-speed gyros to the bicycle, in which case H + and/or H, might be constant, or a negative multiple of
speed, etc.

When developed in this form, the equations display a degree of symmetry.

* If we had allowed flexible training wheels (say) to help support the rear assembly against leaning, the
lean equation would have to have the supporting moment M, on the right hand side.
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APPENDIX B
APPLYING AND EXTENDING THE EQUATIONS OF MOTION
[Not yet completed.]

From APPENDIX A the equations of bicycle motion, which govern rear-assembly lean-angle y and steer
angle 1, are:

Myx% + Kyyx + Myyd + Coy ¥ + Kyy =M,  (the lean equation),

and
M,px).(' + C¢X).( + .K¢XX + M¢¢1/) + C.J,.Mﬁ + I(q,,/,'(b =M¢ (the steer equation).

My is the steering moment exerted by the rider (or by some device attached to the rear assembly), and the
tipping (or supporting) moment My, is normally zero.

By solving, or studying the stability of, these equations, a variety of topics may be studied. Here, several
are described very briefly, to give the reader an idea of the equations’ potential usefulness.

Steering Moment Given as Function of Motion _

If the steering moment My is given as a function of bicycle motion (for example, by a ‘balance —
controller’ which applies a steering moment depending on the bicycle’s lean), this may be incorporated in
the analysis by modifying the steer equation. Then the lean equation and the modified steer equation can
be used simultaneously to determine the behaviour of x and 1. This approach can be used to evaluate
balancing strategies or controller designs.

Some potentially interesting ways of improving bicycle stability include low-mass passive components
such as steer dampers and springs, or a fast front-assembly gyro. With careful design, these devices could
be made to adapt their properties to the bicycle’s velocity, potentially improving handling at all speeds.

Steer Angle Given as Function of Motion

On the other hand, we may want to study the effect of controlling the steer angle as a function of bicycle
lean. If 4 is given in terms of X, the lean equation must be used to solve for X. If desired, the solution may
be inserted into the steer equation to find the resulting steer moment.

No-Hands Stability

After setting the steering moment to zero, we may use both equations simultaneously to study no-hands
motion and stability (the primary focus of this report).

Steer Moment Given as Function of Time

The heading of a stable bicycle may be affected (and thus in some sense controlled) by applying steering
moments. The steering produced by instantaneous or ramped application of a steer moment can be deduced
by solving the equations of motion with the given My, (1) on the right-hand-side, under the assumption that

¥, ¥, X, X = 0 initially. Similarly, if the wind tends to tip the bicycle, the time-dependent tipping moment
M, (t) must be used in the lean equation.

Skateboards

Skateboards have axles designed so that the wheels steer by an amount proportional to the lean angle.
Since both the front and the rear wheels of a skateboard steer, to apply the bicycle analysis it i$ necessary to
define an imaginary ‘non-steering rear-wheel contact point’, Pi™, as the correct origin for defining moments
of inertia, etc. If the front and rear axles steer exactly opposite amounts, Pi™ is half-way between the front
and rear contact points (any trail is ignored for simplicity). More generally, for a given lean angle imagine
that there is a series of wheels along the length of the skateboard, whose steer angles vary linearly between
the actual values at the front and back. Then Pim is at the imaginary wheel whose steer angle is zero (this
might be off the skateboard altogether). Then the wheelbase (i.e. the distance to the front contact) and
other important quantities are calculated with respect to Pi™, not with respect to the actual rear contact.
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Once the appropriate equation coefficients have been provided, the analysis is performed on the lean
equation after setting the steer angle ¥ proportional to the lean angle x (cf. “Steer Angle Given”, above).

Tricycles

We can study the behaviour of tricycles by ignoring the lean equation (which should have the supporting
moment M, on the right hand side), and employing the steer equation with x = 0. If (1) is given, this
equation delivers the steering torque My required; and if we set My= 0, it determines hands-off stability,
and allows us to find ¥(t) if desired. Once () is either specified or found, the lean equation gives the
supporting moment M, supplied by the rear wheels.

This tricycle analysis can also be used to investigate whether a shopping cart will tend to travel straight,
when rolling freely either forwards or backwards.

Lateral Forces on Wheels

Bicycle wheels, especially in the traditional large size, are rather weak laterally — side loads cause high
spoke stresses and may even lead to collapse. The equations of motion (including those in APPENDIX A)
can be used to find these forces in any given motion; perhaps the most interesting case is when the rider
varies the steer angle rapidly, or applies a large steer torque. [There is reason to believe that very large
front—-wheel side forces sometimes occur, perhaps due to the ¥V cos A/c,, contribution to 6.]

In this case we first solve for the motion as above so that both x(t) and ¥(t) are known. Then we
use equations (1) and (2b) to solve for the horizontal forces F xr and Fxy, in terms of ¥ and ¢ and their
derivatives. The lateral force at each wheel is not just the horizontal force, but because of lean also includes
a component of the vertical force. So at the rear the lateral force is Fxr -—rx(grmt-g-‘"c—:’*-)—,» -and at the front it

is Fxp—(x — xbsin/\)(gmt;’—-“”- .

* k %k k ok kK ok ok ok k k k %

The above topics can be treated in a straightforward way with essentially no modifications to the
equations of motion. To study subjects such as the following requires more thought, and often a significant
alteration of the equations (here discussed with reference to equations (1), (2a), (2b), (3) of APPENDIX A).
The greatest complication arises when new degrees of freedom are introduced: additional independent ways
mass can move in the problem.

Most of these problems have been treated by one or more investigators, but we are not yet in a position
to evaluate much of that work. '

Finite Fore and Aft Forces

This concerns the effects of finite forces acting mostly in the forward or backwards direction. In a
small steering and leaning motion, these may slightly shift their direction or point of application in such a
way as to enter the lean and steer equations. The forces under consideration include: braking or driving
forces (applied to front and/or rear wheel contacts); and forces due to aerodynamic drag, towing, or gravity
on a hill; these forces may balance each other, or cause acceleration / deceleration. Such phenomena can
evidently be impcttant for motorcycles, which have been known to behave well while accelerating, but to
oscillate violently when decelerating.

It is easy to work out such things as the drive force or net acceleration, but harder to understand their
contributions to the equations of motion, which depend at least on (1) the altered vertical force at the
front contact, and (2) the approximate lateral forces and yaw or roll moments applied to the front and rear
assemblies for small steering and leaning motions.

Steady motion down a hill of angle o with the brakes on may be one of the easier cases to analyse. The
equations are altered for four reasons: (a)‘downwards’ gravity is modified to g cos o; (b) horizontal mgsin o
forces act on front and rear masses in the Y direction; (c) the front ‘vertical’ contact force is increased; (d)
the front and/or rear wheels have braking forces. The right-hand sides of equations (1),(2a),(2b),(3) must
be modified in the following way:

(1) X-components of the braking forces act on each wheel that is not parallel to the Y-axis.
(2a) g is modified to g cosa in the first two terms. The front-contact ‘vertical’ force in the third term is

modified. The horizontal force m;g sin a exerts a tipping force proportional to 4.
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(2b) The front braking force exerts a moment about the rear contact proportional to ¥. mgsina forces at
front and rear mass centers exert moments due to 8 (rear) and 6, (front).
(3) In each gravity term, m 7d has g cos a, and the other part has the modified front contact force. mygsina
exerts a steering moment due to the heading 8 + 1 cos A of the front wheel.
Acceleration and deceleration appear much more difficult to study. It seems appropriate to make the ap-
proximation that instability “at a given speed” is sufficient information, even though the velocity, and hence
the equation coefficients, are changing continuously (such ‘parametric variation’ can sometimes completely
change the stability picture). Even so, it is not easy to work out the necessary modifications to the left-hand
sides of the four equations.

Aerodynamic ‘Lift’ Forces in Still Air .

When a ‘flat’ object moves relative to the air, often the largest aerodynamic forces are ‘lift’ forces
perpendicular to its relative motion (a horizontal force is still called lift). There is some concern that a
covered (disk) wheel or covered bicycle might generate such forces in small steering motions, which would
destroy stability. The idea is perhaps that if the front wheel turns a little, the lift forces will cause it to turn
even more (and also apply a tipping moment to the bicycle).

In still air, the effect of lift forces is perhaps not as bad as imagined. Any point on a body supported
by a single rolling wheel moves exactly in the direction the wheel is pointed, except for lateral motions due
to tipping and yawing (and tire ‘slip’ angle; see below). The angle of attack is proportional to the tipping
and yawing rates, and the lift force resists the tipping and yawing — more or less like a viscous damper.
In a typical bicycle motion the front and rear assemblies each have tipping and yawing rates (recall that a
steady turn causes yawing), leading to net moments and forces* which are conveniently referred to the front
and rear contacts.

While we have not worked out whether these effects destroy self-stability, at least it seems likely that any
instability arising from this still-air ‘viscous damping’ will occur slowly, and may not be too important for a
rider-controlled bicycle. However sidewinds — steady, or especially sudden — will produce large disturbing
forces. (This liability is probably not offset by a streamlined bicycle’s potential for ‘sailing’, i.e. extracting
energy from a crosswind!) Small wheels have a clear advantage here: less side force, lower tiping moment.

Tire Phenomena
[Not completed; mostly need to condense a larger essay which is already drafted. Outline:

— Explain how tire deformation under maneuvering forces gives rise to ‘sideslip’, ‘camber thrust’, etc.
(raising the pressure reduces the effect).

— Argue that bicycle tire behaviour may be well modelled by a series of springy fingers. (Note: a tire’s
vertical stiffness apparently is not affected by its ‘fatness’,

— Cite derived results (any confirmation?) for tire side force and scrub torque as linear functions of
(steady) slip angle, lean, and path curvature. Display dependence of coefficients on tire pressure, wheel
radius, and load carried.

— Point out difficulty of including lateral tire flexibility, since for consistency’s sake it should add several
kinds of ‘unsteadiness’ to the steady tire equations. However lateral wheel flexibility may legitimately
be added, since it is usually considerably greater than tire flexibility.

— Istire ‘sideslip’ an important factor in bicycle dynamics? Analytical estimates of tire ‘sideslip’ behaviour,
and of the forces which cause it, suggest that tire deformation phenomena may be much more important
for motorcycles in their typical riding conditions than for bicycles in theirs (and also that sideslip may
be insignificant in steady turns, because the force of the ground is nearly in the plane of the wheel).
On the other hand, wheel (and bicycle) flexibility appears to be an important factor in bicycle shimmy.
The question is whether tire behaviour is important in bicycle shimmy conditions.

— Brief instructions for incorporating tire behaviour and wheel flexibility in the equations of motion — and
the order of equation which results from each chojce. For best understanding, perhaps it is preferable
to retain simplicity by modelling the front tire only.]

* [Forces and moments arising from yawing motions appear to be impossible to measure on a steady basis

in a traditional wind tunnel: either the tunnel should be curved, or the object should be whirled at the end
of an arm in still air.]
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Rider Body Articulation
[Not yet written. Riders may both bend and shift sideways at the waist; are both important separately?
Number of equations; sketch how to derive them.]

Frame Flezibility

[Not yet written. “Torsional’ bicycle flexibility may be important for the study of shimmy — in contrast
to wheel flex, it involves the gyroscopic effects of wheel tilt. How to derive equations. Possibility of developing
simplified equations which represent high-frequency oscillations alone?]
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APPENDIX C
GENERAL STABILITY OBSERVATIONS FROM EQUATIONS

VELOCITY DEPENDENCE OF COEFFICIENTS

The coefficients A~E (see Determination of No-Hands Stability in the text) are functions of the velocity
V, with the forms

A=ay, B=bV, C=co+cV? D=d\V+dsV3 E = g + ey V2

where the magnitudes and signs of ao...e; depend on the parameters of the bicycle (plus rider). aq is
positive for any conceivable design, while for a conventional design, by, cs, ds, e are positive, and ¢, d, eq
are negative (these signs will not always hold). In the conventional case the velocity must be large enough to
make C and D positive (in fact somewhat greater, to make C' > AD/B + EB/D), yet when it is too great
E will be negative. So if a design is stable at one speed it need not be at another (e.g. at rest). In general,
self-stability occurs in a single range of speeds if at all;* for an approximate model of a conventional bicycle
this range is from about 12 mph to about 16 mph.

LIMITS OF STABLE VELOCITY RANGE
It turns out that for any design, IF there is a range of stable speeds, the limiting speeds occur when

o=4(3)+5(3)

E=0.

The first equation is actually the condition for the existence of purely imaginary eigenvalues,** while the
second is the condition for a zero eigenvalue.

In the first case, which typically is the low-speed limit, the bicycle executes a weaving motion which
never dies away. At a slightly slower speed the weave grows with each oscillation, while at a slightly faster
speed the weave amplitude decreases with each oscillation.

In the second case (which can provide at most one of the limiting velocities, typically the high-speed
one) the bicycle tends to remain in any turn. Slightly slower, and it slowly straightens up; slightly faster,
and it slowly falls over without any weaving. It can be shown that —F is proportional to the steering
moment exerted by the rider when the bicycle is balanced in any steady turn. For a stable bike, therefore,
the handlebars must be restrained (gently) from turning further — very different from a car! The wheel tries
to turn into the lean, so when the handlebar is released the front contact point is steered back under the
bicycle. On the other hand, if the steering is trying to straighten out (£ < 0, as could be arranged with a
steer-centering spring), then when the handlebars are released the steering returns towards straight ahead,
and the bicycle falls over.

As noted below in “STUDY OF COEFFICIENTS”, even when E is somewhat negative most bicycles
and motorcycles can easily be stabilised by subtle rider steering or leaning behaviour. So while an uncontrolled
bicycle absolutely requires E > 0 Jor stability, one might consider ignoring the sign of E for a controlled
bicycle (as long as the magnitude of E/D is sufficiently small — see (2) below).

and usually (if not always) when

APPROXIMATE SOLUTIONS FOR LARGE VELOCITIES

* Theoretically it appears that two stable speed ranges might be possible. We have never observed this,
and would like to prove that it can’t happen.

** Actually, imaginary eigenvalues may also occur if B and D go to zero while thir ratio remains finite,
as for example when velocity goes to zero. An exceptional limiting case would occur if ag, b1,co,d1,e0 > 0
and ¢ > 4agep, in which case the velocity would go to zero (and the bicycle would lose stability) without
violating the first criterion. Fortunately, it is impossible for ¢y and eg both to be positive (unless the bicycle
has constant-speed gyroscopes attached), otherwise the bicycle at rest would oscillate without falling!
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For our fourth-degree polynomial we may recognise some special velocity magnitudes (use absolute
values where appropriate):

(1) First, there are the velocities above which the lower-power contributions to C, D, E may be ignored:
V >> Ve, Vp, Vg, where V& = (co/ca), V3 = (d1/ds), V& = (eo/e2). The three quotients are each
proportional to gravity g times some measure of bicycle size.

(2) Second, there is the velocity V;, above which a small real eigenvalue is given approximately by s,, a2
—E/D, that is when E/D << D/C, 3/D/B, 3/ D/A. For large velocities E/D will generally be propor-
tional to V=1, while the other terms will be proportional to V, so that V2 >> (czez/d2), (e2by/d3)1/2,
(e3a0/d3)"/3. These quantities are also proportional to g and size. (The approximation also holds near
VE if eo and ez have opposite signs, though if Vp >> Vg it may fail for some range of greater velocities.)
This eigenvalue s,,, which produces slow falling if positive, may be relatively unimportant, as it typically
reaches only a small (and hence easily controllable) positive value, and then decreases like V1.

(3) When V >> Vg, Vp, Vg, Vir, then the other three eigenvalues will be found approximately from the
cubic equation

ao(—‘s;)s + b1(%)2 +02(-:7)1 +da=0.

ao, by, c2,d3 do not involve gravity, so we may say this equation describes the behaviour resulting when
gravity forces are of negligible importance compared to inertial forces. This equation implies that if V'
is large enough to make it valid, then the remaining three eigenvalues are all proportional to V. Thus
oscillations, uprighting etc. will each take place over a fixed distance, which of course is traversed more
quickly at higher speeds.* (Another way to see this is to note that the operator s/V actually represents
d/dY, so the equation may be written entirely in terms of distance Y.) In this velocity range, stability
requires ag, by, ¢2, d3 to be positive, and ¢y > ao(d3/b;) — an indication that it may be good to keep ag
small.

In special cases where some of these coefficients are particularly large or small, further approximations
may be possible.

SCALING RULES (similar to rules for a rolling disk)

Mass Scaling: If all the mass densities of all the parts is doubled, the equations are absolutely unaffected.
Thus a motorcycle plus rider is perhaps like a heavy bicycle with a young child riding it.

Speed and Length Scaling: If the dimension of gvery part on the bicycle (including the rider) is multiplied
by a given factor, the stability will be the same as long as the speed is correctly scaled:

2
ﬁ— = constant,

where L is a typical length such as wheelbase or c.m. height. A larger size is thus like a smaller V —
at a given speed, an otherwise standard bicycle which is too large will weave, and one which is too small
will ‘capsize’ (i.e. lean increasingly to one side without weaving). If Vi, is a bicycle’s lowest stable speed,
Vi2in/9L is a sort of ‘index of merit’ for bicycle design — the smaller the better. However as there is no rule
for defining L, slight differences are only meaningful if bicycle shape varies little.

Note that a lengthened bicycle such as a tandem is similar to a lowered bicycle.

Time Scaling: When similar bicycles of different sizes have the appropriate velocities defined above, their
stability or instability will be similar. (That is, the two fourth-order polynomials will have proportional
solutions.) However, everything will happen slower with the larger bicycle: the observed period of any
oscillation when the speed is correctly scaled is L/Vor ¥/L/g.

Force Scaling: The horizontal ground-contact forces will scale like (FL/M V?) = f(gL/V?), which ap-

proaches a constant at sufficiently high velocities (i.e., when gravity may be ignored and an oscillation
takes place over a fixed distance).

* Ruina points out that velocity-independent motion is to be expected of systems whose state of motion

may somehow be characterised by a single velocity, when this is sufficiently large that inertial forces somehow
become dominant.
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STUDY OF COEFFICIENTS

It may be worth noting that the spin angular momentum of the wheels does not appear in A or B but
onlyin C,D, E. :

Using the fact that the kinetic energy of the bicycle “on ice” is never negative, it can be shown that
it is physically impossible for 4 to be negative. However, 4 can be made very small if the “mechanical
trail” — the perpendicular distance of the front contact from the steering axis — is not too large: A is
then proportional to the moment of inertia about the steering axis of the wheel+fork+handlebar. If A4 is
sufficiently small, there will be a large real eigenvalue si ~ —~B/A, which must be negative for stability. The
conditions for this approximation to be valid are that A/B << B/C, ¥/BJD, ¥/BJE.

It is obvious that ; must be made positive, or the bicycle will never be self-stable. However, we have
not made a study of how this limits bicycle design. For a fairly standard bike, the sign of B may be found
by ‘kicking’ the front contact sideways — the front wheel should steer toward the ‘kicker’ (this will normally
happen for positive c;, d).

co can be made positive if F, F/(y, Fy, and m; are small, but it is usually negative. ¢ has not been
studied (though it is easy to make it positive if these quantities are small).

d3 is nearly always positive. It is proportional to Cyy, and hence vanishes if there are no gyroscopic
effects. ,

To the best of my knowledge, E is the only coefficient which has so far been studied much (by Carvallo,
by Rice, by Weir, and — perhaps in greater detail — by ourselves); this is ironic, since the above claims
about the small real eigenvalue, and also Whipple’s analysis, suggest that instability due to typical negative
E is very easily controlled by the rider.* Motorcycles at highway speed, and bicycles at racing speed, are
apparently both unstable in this sense.

eo can be found from experiments in which the bicycle at rest or moving very slowly is steered while
kept perfectly balanced, and the (non-frictional part of the) steering torque is measured as a function of the
steer angle. For a bicycle with a massless Jront assembly (wheel, fork, and handlebar), g is the product of
“Jones’ Parameter” (which for an infinite-wheelbase bicycle is just the mechanical trail ¢;), times a more
complex geometric quantity which is positive only if

sina> Lk
Cw Nt

(Here, A is the head angle measured as a tilt back from vertical, ¢, is the wheelbase, and I;, k; are the
horizontal and vertical distance of the overall center of mass relative to the rear contact.) That is, for g to
be positive the mechanical trail must not be too great for the head angle.

e2V2, which is typically negative, contains spin angular momentum as a factor, and so vanishes for a
non-gyroscopic bicycle. It can also be made to vanish by adjusting the geometry.

For a general bicycle it is possible to adjust the parameters so that ey is positive even though ¢y < 0,
as long as A < 0. It is also possible to make e2 and eg positive together, so that E is never negative. Then
(in Sharp’s terminology) the capsize mode is always stable. [Actually, capsize is conceivable even if £ > 0 if
some other eigenvalues are unstable — does this case ever occur?]

* It is easy to make £ < 0 with a steer-centering spring of stiffness k, which is simply added to Kyy.
(This increases C by kTyy, and decreases E by kgm, hs.) It would be interesting to learn what values of k a
rider will either notice, dislike, or find prevents no-hands riding. [A torsional spring of about 30 ft-1bf/rad
makes no-hands riding nearly impossible, and makes large steer angles unpleasant to achieve, but straight-
line hands-on riding at moderate speeds seems acceptable.] It appears possible to make E more positive by
making k negative (i.e. a de-centering spring). Ideally the magnitude of k would be proportional to rider
weight; one way to achieve this is for the front fork to move up and down relative to the head tube as it is
turned.
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