 BIOYCLE STABLITY: A MATHEMATICL

‘ J@“Miﬁi!ﬁtmaﬁ-‘m e




L
&
it
i
i
|
i
}
b
|
3
i




Bicycle Stability: A Mathematical
and Numerical Analysis

by Mark L. Psiaki

Submitted in partial fulfillment of
the requirements for a Bachelor of
Arts degree in physics from
Princeton University.,

April 27, 1979

B
»

Adviser: Prof. ¥7,C. Shoemaker

Second reader: Prof. C. Callan




MURPHY 'S LAW:

If anything can go wrong, it will.

Corollary:

Everything takes longer than you think.
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INTRODUCTION

Classical mechanics has been well understood i

for guite some time, yet there remain many unsolved .

physical systems for which this oldest branch of
physics would provide a totally adeguate description.
- In many cases such problems have proven far too com-
plicated in terms of number of degree of freedom and/or
form of the equations of motion. An analytic solution
is just not feasible. #With the present availability
~of sophisticated computing devices, howaver, at
least some of these physical systems may be studied
using a numerical approach.

The steady motion of a bicycle is one such pro-
blem. There havebeen a number of attempts at the
problem using a purely analytic approach such as the

me appearing in Advanced Dynamics by Timoshenko and

Young.l These studies have been far too simplistic,
i.e. the angular momentum of the wheels is not taken
into account or the geometry is not és complex as
that of actual machines. Some of the more recent
studies have managed to go much further. Robert XN.
Collins did a particularly detailed study of the
steady motion of a riderless two-wheeled vehicle
traveling in a straight line. His only assumptions

were rigidity of the frame, fork and wheels, infinitely




think disks for wheels, and zero slippage of the
tires.2 D.V. Singh went on to add tire slippage to
his model a year later and did a cgmparison with ac-
tual machines.3

An interesting experimental study was conductzd
by David E.H. Jones. He actually built various odd
bicycle configurations including one with a counter-
rotating extra front wheel to nullify the effect cof
angular momentum. While not éctually developing a
comprehensive theory of his own, he did demonstrate
the "ridability" of many supposedly unstable confi-
gurations.4

The two mest recent mathematical works mentioned
used a vector analysis approach to obtain equations
of motion. To facilitate this, they made some of
theilr linearizing assumptions at the start. Because
the following analysis will not deal with dissipative
forces of any nature, it can make use of a Lagrange
undetermined multipliers derivation of the equationsof
motion. This method will vyield the fully general
equations for a bicycle. These can then be linearized
around any steady turn as well as along a straight
line as in the previous analyses. Due to the diffi-
culty of the problem, the rider inputs will not be

considered here. This rules out any verification of

the results of Jones' study.




In the interest of developing 2 more tractable
model, a number of assumptions have been made. Waile
at least some of the following suppositions could have
been replaced by approximations to make the model more
realistic, the resulting analysis would have been far
too complex for the scope of this project and far
less elegant than what was done. Also, for most of
the cases to be studied, the deviations from reality
will not be very significant. The following describe
the idealizations of this model:

1. The system has no dissipative forces whatso-
ever: no friction of the bearings in the
steering column or the wheels, no tire drag,
no air resistance, and specifically, no slip-
page of the tires on the ground,

2. There is no driving force. The bicycle coasts.

3. The wheels are infinitely thin disks in
that each intsersects the ground at a single
point, not at a contact area cof deformed
tire.

4. The svystem consists of four rigid bodies:
the frame, the fork and the two wheels.

The frame and the fork each have right-left
symmetry so that each has an inertia ten-
sor with only four indspendent elements. The

wheels as disks have only two independent
elements cf thelr respective inertia tensors.
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here is no rider input infthat the front wheel
fork system is free to rotate with respect to
the frame-rear wheel system about the steering
axis. Also, there is no shift of rider posi-
tion with respect to the frame. The rider is
treated as part of the frame.




With these assumptions the position of the: bike
with respect to an inertial coordinate system fixed
on the ground can be ccmpletely specified in terms of
seven degrees of freedom. It is then possible to
express the kinetic energy, the potential energy and
the constraints of no slippage of the tires in terms
of these seven degrees of freedom, their time deri-
vatives, and the parameters of the picyle.

GLOSSARY OF NOTATION

Tern Explanation

r radius of each of the wheels

, perpendicular distance from the steering
axis to the center of the rear wheel

d; perpendicular distance from the center cf
the front wheel to the steering axis

Jl distance along the steering axis between
the perpendiculars to each wheel

(x,v,z) coordinate system fixed on the frame. Its

origin is at the intersection of the steering
axis with the perpe ndicular to the rear
wvheel, The X axis is perpendicular to

the plane of the frame. The y axis is

in the plane of symmetry and perpendicular

to the steering axis. The g axis is
parallel to the steering axis.

m,n, h coefficients defining the plane of the
grourd in the (x,v, ) coordinate systen
Y the angle of rotation of the front wheel

fork system with respect to the rear wheel-
frame system about the steering axis

ngle between the plane of the rear

e a z
wheel and the:plane o0of the ground




Term Lxplanation ?
X ?’2) the inertial coordinate system fixed cn 7
P the ground
(.X,I) the point of ccntact between the rear
wheel and the ground as measured in the
(X,7, E) system
(J{;‘]&J the point cf contact between the front
wheel and the ground as measured in the i
(X,V, &) system ]
v the angle between the X axis and the

line tangent to the rear wheel in tnie i
plane of the ground

g the angel of rotation of the front wheel il
with respect to the fork
Sp the angle of rotation of the rear wheel i
with respect to the frame ;
i
Yy the angel between the steering axis and
the tangent to the rzar wheel in the
ground plane o]
i
.1 geometric quantity depending on ¥ and *}
i
A geometric guantity depending on ¥ and € i
i
. . H]
Y he y coordinate of the point of contact i

cf the front wheel as measured in the bike !
fixed system i

i the distance between the point of contact !
of the rear wheel and the point of contact ?
of the front wheel

A the angle between the line tangent to the i
rear wheel in the ground plane and the line %
tangent to the front wheel in the ground
plane :

. il

o the angle between the line tangent tc the

rear wheel and the line connecting the two ‘ i
points of contact

P the angle between the linz2 connecting the
center of the front wheel with its point Tl
of contact and the line of the steering axis |

generalized expression fcr a d
edom with the following corresp
ween the Qe and the previously
reaes of freedonm

r

!

the
fre
bet
deg




FP’

Fop

¥ — q
¢ — {2
$o—>
R > {4
X «— 5
L o— ¢

Yo— ¢t
the partial derivative of M with respect
i
the partial derivative of L with respect

the partial derivative of © with respect
to Qi

the partial derivative of @ with respect
to q¢

the perpendicular distance from the steering
axis to the center of mass of the rear
wheel-frame systen

the perpendicular distance from the
steering axis to the center of mass of
the front wheel-fork system

the B coordinate of the center of mass
of the frame-rear wheel system

coordinate of the center of mass
of the front wheel-fork system

(2,,.5’3;,5)2_‘)the coordinates of the center of mass of

Ab)Bba Cb

the & th body expressed in the ground
fixed system, (X, 7V, 2) Wote: for the
remainder of the analysis b=/ refers
to the rear wheel-frame system and pra
refers to the front wheel-fork system

the ¢ *h coordinate of the center of mass
of the b th body expressed in the (x, y,2)
system

terms involved in the expression for the
center of mass of the & th body in the
ground fixed system

@)




Explanation

partial derivatives of As ) By ana G
with respect to the ¢i decree of freedom

L L%

the partial derivative of Ayl with respect
toqs 5

the partial derivative of Bbi with respect
to ¢} 6

mass of the & th system
inertia tensor of the frame
inertia tensor of the fork

the front wheel

i

inertia tensor o

Hh

inertia tensor of the rear wheel

modified inertia tensor of the & th sys
the angular velocity of the 4 th bod
¥
1S

for the frame and b= Q for the for
its ¢ th body-fixed axis

~

partial derivative of Ws with respect to
he time derivative of the j th degree

of freedom, ¢

coefficients in the gquadratic expression
of the total kinetic energy

the partial derivative of Bl with respect
to x

the total potential energy
tire total kinetic energy
he ground speed of the geometric point

of contact of the rear wheel with the
ground

the ground speed of the geometric point
of contact of the front wheel with the
ground

the partial derivative of Y with respect
te i"




P
i
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Taxrm Eiplanation
}[. the prartial derivative of X wvitnh respect
¢ to ¢i
Y. the partial derivative of XY vitn respect
.
¢ to ¢
e the partial derivative of @ with respect
to
! .
e the partial derivative of &g with respect
to Qe
le;s the partial derivative of V" with respect
to ¢
'*q; the partial derivative ofiy?with respect
to &3
%ei; the partial derivative of & with respect
to Qi
& the Lagrangian, equal to T-V
R the generalized force of constraint of no
slippage corresponding to the coordinate Qu
773, UiSu coefficients in the final three general
equaticns of motion
ijn coefficients in- the final two linearized

eguations of motion

3}

e

GEOMETRY -

N

t

In this model, the bike is contrained to have
both wheels tangent to the ground. In the (X, ¥,%)
coordinate system the ground is defined by the plane

Figure 1):

2T mx +ny ~}'I

The peoint of contac

h

o

o

the rear wheel is a solution

to the following system of aquations:

P

z mx +ny -h

z
X= O ‘1 o
ri= )(‘l + (‘I +J.)a' + ;_r") equations

defining the
rear wheel




This system reduced to one guadratic eguation

’
and the requirement that the wheel intersect the
ground in just one point is =squivalent to requiring

the quadratic to have a double root. The resultant

equaticn of constraint is:

2 a
0= (d-nhW = (n2e)(hedd-r?)
or  h= =nd, +rojae
Although there are tuwo solutions for h here, the

one corresponding to the ground being above the wheel

is ruled out.

™

From analytic geometry, the cosine of the angle,

th
ct
o
(0]
H
(I
j9]
H

between the plane o wheel, X = 0 and the

’

ground plane is:

m
we & --Jmaq-n"o-l
or mz=_Jme] ot B

Because of the sign convention cheosen here, the time

O]

derivative of € will be in the direction opposite to
that of the forward motion of the bicvcle (Figure 1.),
and €© = %% w7111 correspond to the bike being upright.
Ncw, using the equation constraining the front wheel

to be tangent to tlie ground, one can solve for N in

The point of contact of the front wheel is a

solution to the following set of eguations:

2= mx + ny ~}\
(2) Xz -y at‘*\y’ equations
Q Aafining the
ris (“”IB“"‘"») 0[7-43¢“7+)a ;;ﬁ?lnl‘;eell

r(z s &)
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Again requiring that the resultant guadratic have a
double root, one gets:
0= n‘[(d,ﬁ»\"hatﬁ' +ran¥)? 4(43“(,4“‘7*)" - r“(,&“?ﬁwtzé 4))]
on [0y +d, a1 ¥) L, ancH)
b [Vt &0 ranh) s dland¥ P22 ¥ k6 20ul ¥]]
PR JET [y ¥t 6 s rasc¥) (o dasc¥) 4 2 i ¥ ot 6]
s gt [ Aer et o srant) dyanc¥]

Yhile a closed form solution of this equation exists,
nunerical methods provs to bhe far more practical. 1In
any case, this is as far as the derivation need be
pursued at this pcocint. It should be noted that there
are two solutions to this equation. The correct one
corresponds tc the plane of the grouﬁd being below the
front wheel. From analytic geometry one sees that N is
the cotangent of the angle, Y
axis, X*0and Y=0 ,and the line tangent to the rear
wheel in the ground plane, 7 Ay - h and xz=0Q. TFor ¥=0
ande‘{'one then has n = -d'/(d‘ +d’) .

The seven degrees of freedom of the bicycle are then:

n

Yy , the angle of stecer: € , the incline of tha

rear wheel and frame with respect to the ground: ¢

4

the direction of the tangent to the rear wheel measured

=

in the ground plane: X and Y the cartesian

4

coordinates of the point of contact of the rear whael




-ty .
expr ed in the ( X, ¥, 2 ) systen;

the angles of rotation of the fr

and ®¢ and «g

ront and rear wheels

respectively 'as measured from systems fixed on the

rk and the frame respectively.

By requiri the following

tE!

tween the bike coordinate systen

correspondences be-

and the inertial

system one can f£ind the linear transformation betwee:

the two systems.

Bike Svsten

Inertial Svystem
Z=mx +ny -h - > Z =0 plane
Z< O, line
X=0, 2= ny -h <+ > ?:A'\Q X- (Agx tangent
~d, +nh ...4 -h point of
(O, nE e ) Oy ) < > (x, Y, O) contact
The first relation is the regquirement that the ground

systen (here equations (1) have

point as expressed in the bike-fi

- . i . . m—— .
For convenience the quantity ¥= Jmer 1s

The transfo

is then:
4 ain O aim @ KA -nnCan?)
VI3 [-am® o Y2 0+ n e walf)
3 ~wn® “n¥ a6

X +¥5(dcn® +hwabamtle)
+ |2 +3(el, anip -hinBoanle)
h ¥ €

ems. The second relates

the rear wheel in each

been solved for ti

ixed systen).
}

F(nwn® +unsia?)

V(nﬁ@'mem‘@)
Yo ©

rmation between the two coordinate systems

X

v
z
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Other important geometric guantities in this pro-
& 3] &

wt © lanV
¥

and which is the coordinate of the solution
=

blen are A defined as A= n -

of the system of eguations (2) for the point of

contact of the front wheeal:

Using analytic geometry in the bike-fixed coordinate

systam one can then determine the distance betiween the

=

two points of contact L , the angle between the two

lines tangent, A , and the angle between the tangent

o

¢}

ti the two

(e}
<4

to the back wheel andkhe line conne

h

reoints of contact,” © ., In the actual process o
derivation it was easier to arrive at the follcwing
relations which are sufficient to determine L, &  ana

or .

Luwao = ye( Ve ~nwt@tlan¥) s+ -rn
L ame = Y dc B laa ¥

i ® ~a¥un LY

Jlain & -n¥ o 0¥ N+ ¥ L2Y
¥ L ¥

J (e & - T Bl ¥N + YU L2Y

One final purely geometric guantity which is neces-

w & T

U]

s D

sary to the constrzints is /O , the angle between the




necessary geometry in the (X, 4, 2 )

o

o

along with the
meters becones

straints o©f no

all four

and f}

fact that of

upon the ¥

Tr

PAS

egr

NETIC &

'J;\’- "‘4‘4}1“'

three previocusly mentioned

o
nese quant

es

of fre

(3

the w

POTENTIAL

|

para-

riting cf the con-

teworthy is

ities depend

i

edomn.

t-

In order to formulate the equations of

using Lagrang

(0}

o

=

D
6]

sary to 3

Mpre

{

the

system can be

between the two

enter

(9]

h
-

zed 3 te

Pcsition

o

Position of

o~ T
TCors

the kKinetic and

undetermnined nultipliers,

p

expr

the

. The coo

e

cente

(O) - Fr,

nmotion

it is

:3

2Cc2

5=
otential energies

freedom. Becaus

0}
[

rigid bodies,

sed as the sum the

the

4

rmation

rdinates of the frame

-
4

of the bike-

mass in

) F":)

[ Foain¥, P, Foy)




Where b is a subscript referring to the

rh

is the ¢ th coordinate of the center o

6]

b tn body as expressed in the pbike sy

following define Agaﬁéand Cb:
Ay = 5(d, + Fi3) *»¥ Fiy

85 = 601‘9'[3’(})4 Fb;) -ny sz] * o & Fu

body.

mas.d

ten

S5

’

£ Fyi

of the

then the

Cb = MG[)’(A + F@,;) -n¥ Fbl] -wr O Fy

Because the center of mass of each
5 cn its respective axle, the center of

rear wheel iz fixed with respect to the

of the

mass of th

, these three quantities depend only upon v’

wheaels

the center of mass of the front wheel with respect to

the fork,

The translational energies of the wheels,

therefore, do not have to be treated independently. It
is only necessary to correct for the positicns of the
centers of nass of the frame and fork in the usual
manner.

The translational Minetic energy can then be writ-
ten down as the sum of the rear wheel-frame translation
kinetic energy and the front wheel-fork translatiocnal

dnetic energy.

-
<«

[}

1

S
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Trans. X.E, = j‘ bs ) f[x """‘Q(AG *BAQ) *MP(B‘°A‘U)]

*[I ‘w'-""(‘i"&‘é) 'M‘t"(ér'*&q’)]l * éal

t
poa
(O]
o
]
o
-
<
167]
=
0]

iere, and in the remainder of
vention of using dots above a wvariable to indicatsa

its time derivative is followed.

The next step is to £ind the rotational kiaetic L
energies in teorms of the degrees of freedom, but first e
it is convenient to write down the angular wvelccity

of the bike-fiited axis with respect tc the ground fixed

)
A
"
H
[0)
L]
=
o
]
IS
)

he compo of this angular velocity should

he expressed in terms of the bike-fixed awis.
The three angles which are sufficient to determine
he orientation of the bike system are €, € ang vV, the
engle betwzen the steering axis and the tangent to the

The direction of this time derivative is zalonyg the
positive X axis fixed on the bike. Referring to

Figures 1 and 2 the components cf the angular veloc-

W, = ?’.'(‘t"‘») + '9(- x‘”‘) *‘é(w‘ne)
Wiy = & (-¥) 4@ (-n¥5n®)
wyy = & (-n¥) +€(¥an©)

- 1

’

Given the tenscr of in-:-:-:tia,Ip,.;J for the frame about




ct
15
[0
o
(Y]
(2]
‘_.l
0
v
[0
0]
}_l
3
(8]
cr
o3
5
(0]
o
0
p}
}_l.
f
n

center of mass and parallel
to the (¥,4,8%) axis, the rotational kinetic energy
of the frame about its center of mass is then:

I T £ £z ! . . .
Rot, K.E. of frame = 3 e IFM‘, w, . w.J

To find the rotational kinetic energy of the fork
it is necessary to find its angular velocity with
respect to the ground system in terms oi components
along its body-fined amis. The only difference be-
tween the orientaticn of the frame-fixed system and the
fork-£fixed system is the angle of steer,}‘ . This

th

Fh
th
o]
=
~
QO
I..J
ih
Fh
(0]
I~
W

(@

implies that the angular velocity o
’

v by ¥ . Choosing fork-
. . ) . ' '
fixed axis ( X , v , 2 ) with X parallel to the axle
of the front wheel, 4 in the plane of the front wheel

and perpendicular to the stesering axis and €

parallel to the steering axis, one gets the following
conponents for the angular velocitvy of the fork:

£
r'

"
}
<
5
3
S
£
»

wyy T w3 v Y

If this fork-fixed systen i1s chosen with o

ks

center of mass and the tenscr of inertia is J&;;S

then the rotational kinetic enenrgy of the fork about




[a]
~J

D]

(

The angular velocity of the rear wheel differs
Ffrom that of the frame only by oy while the:front

wheel angular velocityv equals the forlk angular velco-

city plus ®g ., In terms of body-fixed axis for each

of the wheels which for the rear wheel are parallel
to the frame-fixed axis when &p 0O and for the front
wheel are parallel to the fork-fixed axis when & =0,
the vheel angular velocities are:

W

Fwr = Wy, +

wpwz = un-(,; w)z - A;n V': was

wal = w“ + éﬂ
Wawa =  wa g Wiy - .2 % W
Waw3 =  aem Xp Wy + wa ¥ Wi

with 1,2 and 3 referring to the respective body-fixed

[
6]

ax Because of thie symmetry, =ach wheel has only
two independent elements in its inertia tensor and
his tensor is diagonal. The rotational kinetic

energies are then:

P.W,., Rot.

A
.
s}

.3 j[Isw. Wet, *Lruya (‘*‘ftz. ¥ ""’*b!ﬂ

2 3
R.7. Rot. X.E., *® j:'IIgm.w:m "‘Igv&i (an.l + Waws)]

-~
=1

Substitution for the angular velocities yields:
.\ 2 1
F.W. Rot. X.E, "Z"[I;m, (wa+ ;) +Irvaz(“‘zz""zs)

3." [I Rwn (Wu + g )z * Tawn (M§ *wfs)]

The total kinetic energy of the bicycle can now

)
"

. Rot. K.E.

be written down, but first it is convenient to define

a new inertia tensor, Ib('i . I. ¢ 1s the same as Ifu‘j
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and Izij is the same as If,.’j with the following

exceptions:

m = Ten + Tawe,
Tiaa = Teay * Tewnr

Ly = TqHv  *Tewsn

H
~
N

¥
~
by
[ Y]
,J

+ Tewan
La3 = Tras  + Teuns i

This notation convention allows for the concise ex-

pression of the total rotaticnal kinetic energy:

[ &t ZI_ 8
Total Rot. K.Z. = 3 §‘€§ bey Wil W;j} A

4yt

+ T;w“ ()-'c,wl, + Q'I‘a) + Iﬁuu (.)-.l&w“ -+ Q'lnz)]

Cne 1is now prepared to write down the total

Kinetic energy in a form which is most useful when
later deriving the equations cf motion. For convenisznce,

£]

)
)
)
s

1@ generalized degrees of freedon, ?K‘ ,have been

used in p

ot

r

4 3 : . ..
T= $ E; 4 G +;{-6€m5€[x *m‘é(npg‘w)qm;,zp(g‘.gsq)]
u}:a 2}

J[¥ +an @iy +8,0) - (8 -4 0)] }

3]

The glossary contains an explanation cf the U~

From the preceding analysis the E{jare defined as

follows: 2 3
- 4 . _ .
Eij= 3 §, {"‘b Coi Goj R§ Tyns “’cm‘“u;} G5 0,2,3
)21
Eivz Eyi = i Lawn wi TS

E‘-;: ES'(. = i Iguu Ware c= ,23,3




m
F
1]
()
™
wy
*
§
O

where 3 . - éC&
wye = € wyiy U and Coe ~ :%:
J=

Recalling that the Wiy A‘, 65 and C‘ depend only
upon the degrees of freedom ¥ and € , the kinetic
energy is seen to devend only on Y ) € ana € as
coordinates with @ appearing in a cyclic manner.
This fact will taks on importance when it comes time
to reduce the number of equations of motion by elimi-
nating the dependent ones.

Knowing the E? coordinate of the center of mass
for both the rear wheel-frame system and the front
wheel-fork system, it is straightforward to derive

ot
oy
(®
o]
le]
ct
0]
3
s
I_l
U]
i"'
U]
3
]
H
Q
w3
H
r
I._I
0]
6]
'..J

mply the sum over body

systems of the system mass times its height ( 2 coordinate

Q
V= q £§iww Cy

Again, it should be remembered that the potential
energy cepends only upon ¥ ard € because Ck depends

only upon these two degrzes of freedom.

W

Although the kinetic energy, the potential energy

and therefore the Lagrangian are alreacy derived, it

is not vet pcssible to formulate the eguations of

)
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motion. It is first necessary to detsrmine the kine-

RS gz .

matical equations which express the constraints of

The condition for zero slippage reguires the

velocity to be zero for that point of each wheel which
is in contact with the ground at any given instant.

An eqguivalent condition for no slippage which 15 more

ecasily appli=d to the geometry of the problem is the
following: the velocity of the gecmetric point of

is egual to the speed of the geometric point expressed
in a2 system fixed on the wheel.

write down the coordinates of the point of contact in

1. By taking time deri-

Y = or(wy - w, b )

-r Cp'1* 4/&‘é’ + dk)

D)

1
§ The tangent to the rear wheel makes an angle o=f Q? with

i respect to the X axis, and the tangent to the front

wheel nakes an angle of @+4 uitn respect to the X




axis. The kinematical eguztions of constraint are
then: . .
X €Y
Y sy
. .
X, = we(@+8) e
.
Y, =on(€+0)Y: |
The negative signs in the eupressions for %’ and '%}
ares necessary to nmake a negative Mg and %% correspond

to the bike traveling forward. X; and yp and their

derivatives can be

16}
6]

xpressed in terns of the previously

()

definad geometric guantities:

X X +Lew(@~ 00 i
Y 4 Lan(e +o)

Toking derivatives, one can solve the last two equa

x

It is also convaeniesnt to rewrite the first
straint relaticns:

x.u + Xl‘e + Il&‘(ﬂ
Sz'U' + S5L€> + SZu‘WQ

ne ccoefficients in the above four equationsz are

"

Hq- bd.

izl




[§]
[§]

W'ma -
- - m—————— -« __.I_g_____. - . =" l
&gy V'W?.(A"’) M(Q'O‘) [ ¢ J
coe O

o (8-9)
}Ig = wr @ %Q ol
Y.= ony: ¢

ha, ¢
1, 2,%

}f“ T srw ¢ =02

=
7
\
h)

It is now possible to formulate the equaticns of

EQUATIONS OF MOTION

If there were nc constiraints on the tires, that

7

iz, if they were perfectly slippery, then the equa-
ticns of motion weuld simply be the usual unconstrained

Lagrange equation

n the case of constrained motion, however, there arc
forces of constraint, Qi , wmich act to cause the mo-

tion of the system toc satisfy the e

Q

uations of con
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The generalized eguations of motion then becone:

following energy conservation relation nust Dbe satis-

2
= ~

Substitution of the kinematical constraints into this
relatio ives:

0=%[Q + Q¥ + Qs + Q X, + O, F,]

3
0]

""é[ql *@;9 + Qyey *AX, + Q7EJ

“";‘g[Qlﬁ t 038 * Qe +Q X, ¢+ Q‘IY]

Y ) < and %g ara now independent so their coeffi-

cients in the above relaztion must vanish, ubstitu-
tion fcr the { vields the following eguations of
motion:
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remembering that - and are all
membering “2 , 9%z , X oY are ¢
equal to zero. The other four necessary eguations
to determine the time evolution of the seven degrezes

~

of freedom are sinply the kinematic equations of

~

constraint. Vi
At this point, bicycle dynamics has been de-
scribed by s=ven equations cf motion relating seven

degrees of freecdon and their first and second deri-

urther reduced to three independen
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As was already notad and should now be recalled,

only 10‘; € and ¢ appear as coordinates in the seven

e (44

egquations. By substituting for X ) Y ) X and I

in the above three equations using their =xpressions

{ from the first two equations c¢f constraint, one can
immediatzly eliminate these two degrees of freedom £ronm

degrees of freedom. Furthermore, the cyclic nature of ‘e

the coordinate,as it enters into these two constraint

relations and in +the above three equations causes

dependence upon it to vanish from the remaining five
eguaticns. It is now a sinple matter to eliminate
@) Xp W and ¥ from the dcve three eguations
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ubstitution of the last two constraint ra-
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thrze zquations of motion involve

only the ¥, €

9

nd ¥gdegrees cf freedom. The equations

take the following form:

ot év M
0:‘ €T:.)i:\ €ug)gzltl + 3. L='J2)'+
JRue -b““ L4 &
where the coefficients are defined as follows:
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By inspection it is seen that Tfj ] 7;‘:’ and Wijk s Uiy,

Also, none of the coefficients
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upon the coor-
dinate %R which is preciselv as things should be:
this degree of freedom defines the angle of rcoctation

of the rear wheel with respect tc the frame and is
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obviously cyclic because the wheel is a symmetric

disk. Yormally this fact would allow the integration

.

of the third egquation of motion, ¢ = ¥ , but one

sees by inspecticn that:

d Ty . 9 Tuue
Q¢ 35

#F WUpsx + Wyu; 4

“Then dealing with non-holonomic constraints, cyclic
coordinates do not become ignorable.

An interesting sidelight to the analysis seems
ppropriate here. Ip writing down an expression for
the kinetic energy, T , it is possible to substitute

the constraints directly into the kinetic energy.

The resulting expression is a function only of the

[an

<
o,
D

) degrees of freedon.

. U L= and %@ ¢
; only upon Y anda & . It night seem reasonabla to _””

formulate the Lagrangian in this manner as a function

Fn

only of these three degrees of freedom and to write
down three uncontrained Lagrangs equations as the 0
correct equations of motion. This method does not,

however, yield the same equations as those already

derived. It is therefore, incorrect. Holonomic and

non-holonomic constraints are physically different.
Mon-holonomic forces of constraint cannot be eliminated

from the squations of motion.
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LINEARIZED EQUATIONS

The complexity of the general equations of moticn
for the bicycle make an analytic integration virtually
impossible. One much more practical approach is to
study the steady motion of a bicycle and small dis-
turbances therefrom.

Steady motion for a bicycle is when ¥<%,, €+ € cg = e
1;:0 ,é=0 and ®p= 0 , '7’9, 9, and &go

must, of course, satisfy the equaticns of motion:
c;(:, a,.,.,/ " %—2\{ = 0

¥,,%, %, ©,

(8)
O.tkal u,z“@/ + ..——/
1['0'95 éo uOIGU

Because g is cyclic, Ugwe = O and 3V/.}¢¢=Oso the

0

third equation is trivial., This steady motion cor-
responds to the bike traveling around a constant

turn the radiué of which is determined Dby %% and € .
One of these constant turns is with infinite radius: '% ;0;
6, * '2; . In this case L(,‘,‘:uzw:%:‘;:%%'—o. &gy can
take on any value. The fact that motion is steady

does not imply that it is stable, i.e. if it is dis-
turbed by a small amount does the motion remain bounded
about the steady state or is it unbouncded? This ques-
ticn can be answered in a quantitatiVe way by studying
the linearized equations cf motion about tha steady

state.




Small disturbances from steady motion can be
defined as fcllows: )
Y%A, KO, %l %
5,50 |, & 4], & <<
xp, &< |
Rewriting the equations of motion and neglecting all
terms of order higher than 1 in the infintesmal

guantities, thie linearized equations become

9 0= i; T +U; o + .Qlf + ol é.__!) ; 2,2,
() J_“{ si-\ 3% % ta i)tu oo Y 13 X7

where the new correspondence between the remaining

degrees of freedom and the generalized degrees of free-

dom is Y, ¢ , 8 and o4, = Q@ and all of the

coefficients are evaluated at %, and € . In this li-

nearized case, taking into account the fact that Wees =0

2
sV .

and Jﬁq‘- O |, the third equation of motion can be
[}

integrated:

Constant = Jg ¥ * nzé’ + Tow %y
+ QU iy %0 ¥+ AUuau %0 &
This constant is chosen to be zero because the com-
pination 7}; o 9 o anddgl O must be a solution to
the linearized equations. One can now substitute for
‘;'M and &g, in the first two relations. The resulting

equations are:

2
(10) . €( N D' + Ry 0 "pm‘,‘)ij c:l,Q
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with the usual ccnvention: D z;




and the coefficients definsd as:
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Solutions for % and €k take on the form ekttimes
a constant where the constant depends upon the initial
conditions and A is a solution of the characteristic
quartic of the following fourth order differential

equation in one unknown:

0 = [(e!ll Dl + ’;4 on)(arl. JJLD + po:l)
(-m. na.D + P, on)( 22! Dl ‘Ru D ‘eu )] 1

which was derived in the usual manner from the two
preceding linearized equations in two unknowns., The
coefficients of this polynomial are real, so the roots
occur as real numbers or pairs of complex ccnjugates.
The condition for stability of the bike in steady mo-
tion is reduced tc the regquirement thatkhe real part
of each of the four roots be less than or equal to zero
If the system is stable, the stability can be quanti-
fied by the magnitude of the imaginary part of the
root., ‘This imaginary part is egqual to J1rtlleo the
frequency of oscillation about the steady state. Aas

in the case of a simple harmonic oscillator, the higher

the fregquency of oscillation the more stable the state.

o
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CzJord




30

In the case o

th

1

1=

nearized equations of motion about
‘an equilibrium configuration (as oppcsed tc steady mo-
tion) or the case of steady motion with only holonomic
constraints, the absence of dissipative forces and
driving forces implies that the roots of the charac-
teristic polynomial are either pure real or pure ima-
ginary. ‘Iﬁ the case of the bicycle, however, the li-
nearlized equations of motion take a form which admits
the possibility of mixed complex roots to the charac-
teristic polynomial. When the bicycle is disturbed
from steady motion, it oscillates.about that steadvy
motion, but the oscillations eventually die out, and
the system returns to i1ts steady state coniiguration.
Tnis happens in the absence of damping forces.

It is not useful to attempt to further the purely
analytic development of the model beyond this point, given
the assumptions involved. IHore valuable insight can Dbe
gained through a numerical study of the dependence
cf the roots of the characteristic gquartic upon the
various design parameters of the bike and upon varying

configurations of steady turning.

LNUMERICAL ANALYSIS

A brief cdescription of the computer programming

used in the numerical study is in order here. Two
pPrograms were actually written. 3Both of them appear




31

in the appendix. The first studies the effects upon
the stability in 2 straight line of the various bicycle
&sign parameters as were included in the pr=ceding for-
mulaticn and of the bicycle speed. he other f£inds
values for 9% and.ék,given '6% corresponding to a
steady turn for a given bicycle desigﬁ and solves the
characteristic equation for that steady turn, Al-
though the first prdgram is merely a special case of

the second, it was written as a separate program for

H

he saks of computational efficiency. The first was
also one £ifth the length of the second, and therefore,

far less complicated tc check cut.

The straight line program onlv involved computing
the coefficients cf auations (10) for the values #20,

-

o .
62 - The equation for h could be solved by inspec-
-y

“o"‘li

equatiocns (9) is trivial: &g, =0 . Otherwise the pro-

tion in this case:

3
.

. Also, the third.of

gramming was straightforward. 'qf

The seccnd of the two pregrams was far nore involved.

. : o y R
Given @, , it was necessary to eliminate Oge from
equations (8) and solve numerically for % . This
was done using a MNewton-Rapheson approximation with :
(9,- 7/2) . i
5 . The equation for h was o
)

also scolved in this manner with the straight ahead

-

a first guess of ¥, =

value n=

used as a first guess for HwW . A

drdy

wrong first guess would have yielded MW corrassponding




to the cround being above the front wheel instead of
below 1it.

Once a correct configuration of 2& J €% and &Qo
was determined, the program computed the coefficients
of eguations (10) and solved the characteristic quar-

tic., Also, in both programs, the phase difference

’

ct
=
0
0
h
.
(

0
®
o

betweenu. and '9. and the magnitude ra
variables were also corputed for each root.

The first program was checked out by comparing it
to Collins' program in the case of zero friction and
zero driving force. The results of the two were close
for two cf the four rcots but not identical. Further
inspection revealed that the difference was in the
mathematical analysis and not in program operation.
Collins made an error in his geometric analysis. The
discrepancy, in effect, involves the dependence of N
on 1P near the upright position. When this difference

sults fall

D

is eliminated £from the programs, their r

within a reasonabl

0]
=]
53]
iy
«Q
-
o]
Fh
6]

rrecr for the computer
accuracy.
The only way to check out the second program is
. : : w -
to run it for values of €% approaching 2 - it
should then appreach the first program in results, given

the same ®e and Yvicycle design parameters for both.

|

5

0]
«Q

program did check out in this manner. Although it

@
(0]
o]
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ot
e
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sible to wverify that the solutions to equa-

32
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tions (8) were indeed correct, they did behave in a
proper manner in that if (%, €, %go ) was a solution,
then (’y%,Tr‘ek ,&¢¢> was also a solution with both of
these solutions generating identical coefficients for
he linearized equations of mection.
The programs were written in Fortran IV and run
on the IBM 360 batched processor at Princeton Univer-

sity. The msults were graphed by hand.

METHCDS OF ANALYSIS

The method used to study the variations of the
stability with the different design parameters was to

first find a stable configuration, then to vary one

parameter at a time., A somewhat different set of geo-
metric parameters was used in this study. Fr, ) F’J, 6'(.,

2 and o(; are replaced by:

. + L
Rake angle = —;—': - aacesn (-—4—'——-—1—""‘ )

Ulzz "(l,‘é, N
Trail = rd, - d, '!Jclal‘(‘*’.*fl‘s)L

L+ Ly
Wheel base = JJ:“ (1,"“5);

FFrame center of mass height= i +

(4,-Fe) dy + Fry (d+4))
1}4& *C&‘ch

Horizontal distance from frame c.m. to rear

wheel center _ (J, 'Fq) (J',J,‘, - ‘lz F';

UJ: + (JI"‘I} )T-‘

The rake angle is the angle between the stee:

ky
‘-—l
3
)
ot}
»
’—t
[}

and the vertical when the bike is upright. The trail




is the distance

G
o]

v which the point cf contact cf the
Zront wheel trails the point where the line extended
from the steering axis intersects the ground when the

bike 1s upright.

The stable configuration from which variations

were made 1s the following:
rake angle = )§ degrees wheel radius:@3Snmeters i
trail = 0.10 neters wheel base = /LS neters
frame c.m. height:lOmeters frame c.m. horiz. cffset
F°a = 0.0% meters from rear wheel®*@3neters

Fo’ = °O.IO meters m' = 60-0 "g

2 i
m, = $.0 kg I’," s I5.0 kg-netexr” i

)
~
~
1Y)
“
Q
'
9]
i
3
6]
o+
[0
L8
)

Te33= 6.0 kg-meter
Tsra3= 015 kg-meter” Teent = /.0 Xg-meter®
IF.J:. = 0.5 kg-meter I:,;; 0.5 kg-meter”

IFolS = -0 0% kg-meter Teun

C.l10 kg-meter

"

Iewn = 0.10 kg-meter” Tew2r > 0.0 kg-neter
2 .
Trwyy = ©.05  lhg-neter” ago = -30.0 radianc/sec.

The parameters which were then varied were the
trail, the rake angle, the wheesl base, the frame cen-
ter of mass heignht, the distance of the fork-front
wheel c.m. from the steering axis, fat,the frame-rear

wheel mass, M, , the fork-front wheel mass, My

’ the mo-

ment of inertia of the front whzel about its axle, J}V",

the moment of inertia of the fork about the axis through

“
|
1ts center of mass and parallel to the steering axis,Iﬁzh
and the speed of the bicycle, ¥p.
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Also, Lor the above listed set of bicycle design
paraneters, the variation of the stability with the

%

, for an ecquilibrium turn was studied,

RESULTS AlD DISCUSSION i

A qualitative description of how a bicycle main-

t;

tains stability is as follows: If the

3]

hike is per-

mtly frem its steady state, it begins to

fall, that is, its lean, € , increases. This, in |
turn, causes the steering angle, ¥ , to respond in

to restore the bhike to zero lean. It is with this in

stability of a bicycle.
In most cases the solutions of the characteristic
quartic consizted cf one pair of complex conjugates, o
a small real root, and a large negative real root.
In such extreme cases as low bike speed the roots
varied from this to become four real roots, two posi-
tive and two negative. In these cases

, the bicycle |

(D

was cbhvicusly unstabl
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stability requires that the
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roots to the characteristic ; !
quartic e less than or egual to zerc. As the last Y

roct. alwvays takes on a lar

({9}

e negative value, it need




not be considered in studying the stabilitv. he

<

o

other real rcot and the r=zl part of the complsx con-

Jigates, however, take on both positiv

o]
O}
)

nd negative

[J]

values depending upon the design configuration.
These are the two roots which determine whether or not

cach cor-

Fer the solutiocn to the egquations of motion cor-
responding to the small pure real root, the lean, &,

and the steer 2‘. are alwvays in phase, with the

bike simply falls over tc cne side or the other, The
hike never goes intc encugh of a turn to counteract
the force of gravity on the lean.

he variation of the real root with the bicvcle

+

speed illustrates this point well. Tith increased

a turn is needed to
counteract the force of gravity at higher s»needs: the
centrifugal acceleration goes as speed  /radius of turn.

Thy then does this root go unstable at higher spseds?

The answer is that the magnitude ratio o

I
ci
Ly
(D
6]
ct
(0]
0]
[
cr
0]

the lean for this root is decreasing more rapidly than

the ztser necessary to counteract the force of gravity

for a given lean (Graph 1). The rzason for this decreas

w

[0))
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in the macnitude ratio follows: The cecnstraint

Zorces, which keep the

Fh
ot

on

vaeel from slipping side-

wvays and which increase with speed, act to restore the

car has changed direction.
The instability that arises when the real part of

the complex conjugates goes positive is mucl

[oh
',.l
Fh
Fh
'
H
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5
cr

Here the bicycle over-reacts to a fall. hen the lean
increases, the resultant turn is5 such that it not only

restores the lean, but causes a fall i:

=

the other direc-

3

tion which is larger than the original fall. The oscil-
lation »lows up instead of damping ocut. As can be seen

from graphs 2,3, and 4, the magnitude of this real

=
g
=
)

se difference between
the lean and the stzer for this root. ¥When the lean is

too far ahead of the steer the root goes unstable. This

nakes sense because the lean will be einperiencing its
maxinum restoring force (the steer is at its maxinumn)

vast the time of its maximum displacement. Also, the

=

ower the ratio of the magnitude of steer to the:magni-
tude of lean, the lcwer the phase lead of lean over

steer that is still stabla. Although only shown for

)

these threze caszes, this rel

ticnshi

O

e

part of the complex conjugates and the phase difference




between ¥ and € rfor this root was found to be the

~

o

ju}
t
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3

same for all vari design parameters and for
variation of the steady turn.

The way in which the various parameters affec-
ted the stability are as follows:

1. The distance of the center of mass of the
front wheel-fork system from the steering axis, FB;,
was very important to the stahility (Graph 5). If
it was toco close to the axis or behind it, then the
steering moment due to gravity was too small and the
bike fell over (meaning the r=al root was positive),.
This lcw steering moment also caused a large enoudh
phase lead of the lean for the bicycle to exhibit
oscillatory instability in this region. If the center
of mass was too far ahead of the steering axis, then
the moment of inertia of the front wheel-fork systen
was too large and the bike developed sufficient phase
lead of lean over steer to go unstable in the r=al

zart oI the complex conjugates. This is exactly the

same as what happens when the moment of inertia of the
fork about the axis parallel to the steering axis and

passing through its center of mass is increased beyond
a certain point or when the mass cof this system 1s in-

creased bevond a certain point. In all three cases the

causes a decreased frequency of vibration of the so0lu-

tion corr=sponcing to the complex root.




2. Waen the trail of the front wheel point of
contact behind the steering axis is too small (Graph 6)
there is only a small gravitational moment causing the
steer to respond in the direction of the lean. This
causes the real root to be unstable in this region.
The complex root is also unstable here because the

restoring moment on the steer due to the caster forces

cdue to the caster forces acts to delay the phase of

12 steer enough to cause instability of the complex
root as was previously described. The freguenc
thhe complex root decreases with increased trail because

the magnitude of the r=acticn of the stser to the lean

o
o
o
=1
o
5
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o
rh
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o
t
h
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0

=

rtia of the <front whee
about its axle proved to be of great importance to

the stability. If it was too low, the steer was too

far behind the lean in phase and the solution ccrre-
sponding to the complexx root hecame unstable (Graph 7).

r

nis is dus to the fact that the response of the steer

is caused in part by the torgue of gravity acting upon

1.

the angular nonentum of the frent wheel. TFor reasons

hich are not cleaxr, the bike exhibhits instability in
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teering response

due to low angular momentum of the front wheel is ex-
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needs of the bicvcle causing instability
in the complex root (Graph 8).

5. The dependence of the stability upon the

increases, thz real root dacreaseas until the bilie goes

reason for 1ts going unstable in the oscillatory mode in

the small region between 0.4 and 0.7 meters, on the other

hand, is not at all clear.

6. TFor too shall a wneel base, the bike exhibited
instability in the real root or falling=-over mode (CGraph
10), whereas it goes unstable in the oscillatory mode
at large wvalues of this parameter. The r=ason for

each of these resp

0]

n

6]

S

V)
a]

e at best unclear.

163}

7. Ralke angle had a great effect upon the stability

(Graph 11). Steeper designs were more stable in every
sense excepting the frequency of vibration corresponding

to the complex root. This effect i35 due to the fact

that for a given steer, the actual turn is sharper (of

- - PN - - - PR - -1 Pes - -~ 3 =
greater for the biks with the steeper steering axis.

£
2 e LT o~ -~ - o - T < - E -
8. & rather surprising result 153 that £for wvalues
- .. o \ - 2 . SR
of the frame mass within 2 well-defined regicn the bike

el
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Graph 11.

The Two Rootsz vs. Rake Angle
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Appendix

Listed in this appendix are the main program Ifor the

stability in a straight line, a subroutine for the solution of

a general quartic equation with real coefficients, and the main

program for the determination of equilibrium turning configur-

ations and their stability. Included after the main for Turns

are the subroutines used by this main., A glossary of the term-

inology used in the straight-ahead program is as follows:

Program symbol

(L)

I33°W
I113W
1778y
T(v,i,3)
ALFHAO
BASE

R

HRCM

DC MW

Explanation or equivalent symbol from analysis

mp
Teriy
JERJK
Lrwar
Iﬁwll
IBw:l

The wheel base

r

Height of the frame center of mass
Horizontal distance between frame c.m.

and center of rear wheel
Fou
F03

The rake angle in degrees

d,




A2 Y
Symbol Explanation | ;
D2 "lz ‘
D3 d,

N n
caM ¥ ,
GANN Tn 1
H h |
DDN(1i,]) The second partial derivative of A with
g and ¢

DDGAM(L,]) The second partial derivative of ¥ '
DDGAMN(1,]) The second partial derivative of In
DDH (i, ]) The second partial derivative of h
Yw Y&
L L
PHI (1) ©;
ALPHA(1) S
z (1) ¥
DFHI(i, ) ©:; o
722 Fey

;
PR3 Fey
4 (o) A |
B(b) A
DA(b,1) 4 /3¢
DB(b,1) 38 /3¢ i
oDC (b,1,3) )‘Q/At:éti i
W(b,i,3) wyiy
DW (b,i,5,%) dwyiy / ¢ 1‘\}'




Symbol
E(i,])

DE(1,],k)

DDV (§, k)

DVTU4L(],k)

VT4(],k)
T(J,k)
F2(j.k)
P1(j,k)
PO(j,k)’
Qi

AR(],k)

BR(],k)

PHASE(])

ANG (3)
RATi(])

Explanation

E{S

3Eij /d¢r

by V/)r(j‘ d <
Ujus /& qx
Uik

T
Orjx

Pojl(

Po";:(

Coefficient of the i th degree term in

the characteristic guartic

Term used in calculating the phase differ-
ence and magnitude ratio of the steer to
the lean for the J th rcot

Another term in the phase and magnitude
calculation for the j th root

The phase lead of € over ¥ in radians
for the J th root

PHASE(]j) expressed in degrees

Terms used in determining the magnitude

ratio of steer to lean for the j th root

Many of the symbols in the analysis have no equivalent

in the program for straight line motion because their values

are zero in this case,
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MATH P293I0AY FNR SOLVINT PYE THARATTRRISTIC POLYNIMTAL 722 THE

LTNTARTZEN TYTATTIONS 07 MITINY NO? A RICYCLT TRAVELING TN A

STRATSAT LINT

IMPLTZTY ?91L*8 (A,R,7,D,%,?,3,%,T7,L,%,%,7,0,%,5,7,7,%,%,Y,7

DIMINSTON XYOEAL(4), YTHAT(4)

DTWENSITIN DIN(2,2), DO3AM(2,2), DN3AMY(2,2), PDPH(2,2)
, DDYT (1,2 ), DDL:SS(1,2), DDL (1,2}, DDROA(1,?), DHT (4)
ALDHA (), 7(%), DPHTI (4,4), DALDPHA(4,4), DZ(4,4), F(2,
RT(2), Q(’i, “”(7 2, 7‘, DA(2,8), PR (2,4), DC(2,M), DD
, NNBZ(2,2,2), wnc(v 1,2), 4(2,3,3), D¥(2,3,3,2), (S
D= (5,5,%), NOV(2,2), vvvuu(2,2;, gTH (4, 0), T(4,4), P2
01(7 ?),P?(? 2)

ATMTNSTAN AR(4,2), BR(M,2), PIASE(4), 2ATT(4), RAT2 (4),A¥3(H

DINTNSTINNY T(2,3,3), “1(2)

M(1) = 61D

M(?) = 3.9

4=
T ad J

TI1172 = 15.10
T22F2 = 5.9
T33FR = 5.0
I23PR = .15
11170 = 1.0
T22F2 = 0.5
3370 = 2.5
12370 = -0.74
I11F9 = 92.95
T3I3FH = 2.1
T11RY = ".35
13387 = D.1

Ny 4910 1 = 1,2
DAY 2930 31 = 1,3
"y 393) I2 = 1,3
T(3,31,32) = 2.0
CONTINUTD

TAMTINGR

CONTINTT

T(1,1,1) = T11F2 +13339
T(1,2,2) = I2?2°% +I113¥
T(1,3,3) = 7337 +I113%
T(1,2,3) = I23%7R

I, 3 2) = T23FR
T(2,1,1) = T11R) +I3174
I(2.;, )y = T22F0 +T11FY
T(2,3,3) = T3I3PD +7117y
T("u..) = I23F)
I(2,3,2) = 1237)

AL“HA? = =317.10
BAS®E = 1.5

2 = 1.35
HRZY = 1.0
poMw = N3
TAST = -7.1)
732 = 0,79

PN = =2,10

ALP = 15,7129

COSALE = DTS ( ALP%3.181592/1°0.0 )
STYALD = NSIAT( 1.707370009 -COSALI®=D )
D? = STNALIERNGT

D2 = CASTAIISALD +3%5TVATD

= TOSALPH¥INSE -D3




59
607

AU
A57

AS
No= =D2/( D1 +03 )
GAM = 1.0/DSNRT( NA*2 +1,0 )
SAMY = 3AM%Y
H = -‘4*")1 +R /G52
DpN (1, = ( RENAXDXTIAM =02 -NAD1 ) /( D1 403 )
DDN (1, 7; = =( D3I/GAM #R% ) /( D1 D3I )
NON (2, 1) = DON{1,?)
DON(2,2) = N0
DO NN T = 1,2
DY 590 71 = 1,2
DR3AM(T,T1) = =N*gamx=3&nnN (T, I
POSAMN (T, J1) = 34Mxx3*xDDN (T, T11)
DDH(T,JI1) = DDI(T,T1) *( R*3244 -n1 )
TANTINGT
CONTINg®
YR o= ((WE( 5 -D2 ) #D3 ) /( HExD 41,0 )
L = DSORT( D2%%2 +{ D1 #n03 ) %%
DD RSN T = 1,4
PHT(J) = 1.0
ALPAA(T) = N.D
(T = 0.0
DO 649 X = 1,u
DPHI(I,X) = 2.9
CONTINGR
CONTINO®
PHT (1) = -Yr/I,
DPET (4,1) = -R&3AM/T,
ALPEA (4) = 1.0
72(4) = -2
P2 = D1 =SIVALDPX( HOZY =R ) -CDSALDP®DINMY
PR3 = COSALD*( HRCTY -2 } -STNALPN~4y
A(1) = 3AM*( D1 =-FR2 ) +3AMN%FR3
A(2) = 3aM%( N1 +¥22 ) +5AMy%703
B(1) = N.0
3(2) = N.0
DA(T, M) = 1.9
DA(1,2) = 0.9
DA(2,1) = 0.0
DA(2,2) = 9.0
DR(1,1) = N.9
DB(1,2) = =3AME( H #7233 |} =3AMN%72)
DB(2,1) = =732
DB{2,2) = =3AMX({ 7 +FJ3 ) +3AMN%©92
ONT(1,7,1) = DDGAM(T, 1) 5 ( 9 $PR3 ) FZAMEDDH(1, 1) +DDIAYN(1,1) €222
DDT(1,1,2) = DD3AM(1,2)%{ 9 +7R3 ) +3AMXDDH(1,2) +DD3AMN(1,2) *712
nRC(1,2,1) = DNC(1,1,2)
T‘”(1.~.J = °tB(1,2)
N7 (2,1,1) = FO2%( GAMY =DDGAMN(1,1) ) +DDBAM(1,1)%{ H +773 |
+saw*noa(1,n
DDT(2,1,2) = -PO2%( 1.9 #DD3AMN(1,2) ) +DD3AY(1,2)%( 5 4277 |

FGAMENDA (1, 2)
P (2,2,1) = DDT(2,1,2
DNC{2,2,2) = DR(?,2)
Ny 111 7 = 1,3
Do o12%0 11 = 1,3
H(1,.3,J1) = 7.9
"y 1280 12 = 1,2
nE{1,7,31,72)
SONTING T

coNTTHAR

e Ty




1379

1349
1359

1380
1373

117
14292
130
1449
1489

. 1u8s

ey e

-

yNTTNNR
W(1,2,2)
w(1,2,3)
§(1,3,2)
9(1,3,3)
D9 (1,1,1, 1)
DH (1,1, 1 2)
Dd (1, 10201

ononou

DW(1,1,3,2) 1.0
DD 1350 71T = 1,3
Do 134N 1 = 1,3
¥(2,7, 31) = ®{1,7,IN
CONTINOE
TONTTNO®
(2,3, = 1.10
po 1379 1 = 1,2
DIST = N.)
TP( I . %) . 1) 9T51 = 1.0
nn 12517 31 = 1,3
nw(? 1,31,7) = DH(1,1,31,7)
(7,d,71 J) = =8(1,1,31)%=DT31 + 4 ()
os(z,R 11,7y = na(1,3,31,0)
CONTINGR
ZONTIND®
DD 1450 31 = 1,3
(I, ) = T%?B'*W(w /2.0
*{J,5) = T33TEAXF (2 1 7) /2.0
R(U,T) = T(T,NH)
w{5,1) = %(J,5)
DD 1uun 7 = 1,3
B(I,%) = 9.0
pH 130 J1 = 1,2
Dy 14209 12 = 1,3
no 141y 13 = 1,3
7(3,%) = B(I,X) +T(]1, ]_,kT)*H{TT
/2.0
CONTINOR
TONTINGR
TONTINGOR
CONTINGS
CTONTINGR
R(n,4)y = T3IIBY/2.0
2(5,5) = I33FF/2.D
B{4,5) = 2.0
2(5,4) = 0.9
po 1527 ID = 1,2
Ny 1499 3 = 1,3
DT(I,%,3IN) = TAIBE*DW(1,1,7,7I0) /2.0
nE(J,5,JID) = T3I3P4*DE(2,1,3,ID) /2.0
DE(4,3,IN) = DR(I,4,ID)
DE(5,7,3Y) = DFE(I,5,IN)
DI 1880 ¥ = 1,3
N7 (J,%,ID) = 2.0
Dy 1472 31 = 1,72
Do 184) 12 = 1,3
Y 1355 33 = 1,3
DR{J,XK,JD) = DI(J,%,1N)
32,3, IM) %9 (T1,73,%) +§
IM Yy /2.7

-5
-53AMN

~3AMy

ShM

"

SGRMEREQENNN (1, 1)
SGAMEREDIXDDN (1, 2)
-3ANKEQENDY (2, 1)

wowon

TONTYNOR

+#4(1,2,31) £DTS1
, T

;2,31

¥T (31,32
31,12,

A6

,J)EA (71,73, %)

L, I3V R 2R (T,
Ty =DE(31,73,X%,




1T4A/D
1472
14812
1499

983
999
1197

1030
1040
1050

1149
1151

F= RV IR R

W N -

(39 ]

N -4

A7

CANTING®
CONTINDR
CONTTNO®
CONTINOR

DT(4,4,30) = n.9)
DT(4,5,I0) = 9.0
DE(S,4,ID) = N.n
DE(5,5,ID) = 0.9

CoNTING S

DY 2000 3 = 1,5
DO 1930 R = 1,5
DRI, %, 4) = D.n
CONTIVOR
CONTTYOR
DO 1300 3 = 1,9
DD 999 R = 1,2
DDV (I,%) = 0.0

PVTHE(T,K) = -2.0%( DE(3,4,7) #0PYT (4, R) +DT(3,5,7) «
DPHT (4, K) *ALP49A (1) )
nY 987 71 1,2
NDY(J,K) = DOT(T,K) *9.32%% (T1) %D0C (11, 7, 7)
DUTHL (I, K) = DYTUL(T, ) +4(T1) *( =7 (4) *NPHT (4, K) &
{ DS (J1,3) =-A(JIN*PATI(T) ) )
CONTING®
CONTINGT
coNTINgR
D2 1950 3 = 1,1
I"( J . ?) . 3
nD 1780 Kk =

1]

) 32 TO 1059

U

I?( R . ") . 3) 33 ™ 1049

TTHAI,®) = DTLI,N,K) +7(],3) x0DAT (4,R) +D7(3,5,%) £ALP a1 (1)
S DE(T,4,3) #2B(8,3,])%0qr (7) +DT(K,5,J) *ALPHA {1)
*DE(3,5,7) *PAT(¥) *ALPAA (1) ) +05HT (J) & ( T(3,3) x0T 114, %)
*DE(B,3,K) +DF(3,5,K) *¥ALPIA (4) ) +ALPHA (T) %8 (3,5, «
DPHT (4, X)

TUT,%) = 2.0%( P(T,K) +7(7,3) *pqT (x) +R(R, ) XPAT(J) +2 (7,5 &
ALPHR (X) +7(R,5) *ALPHA (J) +7(3,5) % ( PHT(J) *ALPHA (X)
+DHT (X) *ALPHA(T) ) +P(3,3) ¥PIT(J) ¥PHT (%) +2(5,5) ¢
ALPHA (J) #ALDHY (R)

"D 1030 31 = 1,2
DA(I1,4) = A.n
PB(J1,8) = 2.1

VYTH(T,]) IPHLTLE) +M (I R ( ( DA(IT, Ty +3(T1) *39 (7
*ZLT) ) ( B(IN) KDPET (1,%) ) +( DB(I1,T) =A(T1) #0297 (T)
PEC -A(IT) *NOHT (4,K) -PHI(R) %2(4) ) ) /2.0
PAT,®) = T(1,%) +m(I1)«( ( pa(a1,y) *B{J1) %PAT(T) +7(T)
P 0 DA(IT, %) #B(T1) *PHT(K) +7(K) ) ${ODB(IT, T - (31 %
PHI(J) ) *( DR(IT,K) =1 (T1) «PHT (K) ) )
coNTINgR
CONTINO®
TONTINTE
DD 1150 3 = 1,
Dy 114y 11
P2(J, 1)

1,2
TOI,31) =T(3,8) %771, 4y /T (4, 1)

[ It | I | BT RN

91(37713 Z.G*I\L?Hﬁﬁ*( U2 O I O B ={ T(1,4) cyTy (n,71)
OO MY RVTH Oy, 0y ) T,y )
POCT, 31 = DDVIT,91) $ALPHAYRX2%( DyTHa(y, 711 -4, 0%x7Py (T, )

EUTH (B, 71) ST ys, 0y )
CONTTRUR
CONTTINR




%ﬁ,

syl

W

5099

ANND

6012
AN2D

987

2% = 22(1,1) %P2 (2,

03 = D2(1,1)%p1(2,
P1(2,1)

12 = D2(1,1) %P0 (2
-P2(2,1) 5PN (1, 2)

91 = P1{1,1) 27 (2,
PN (1, 2)

27 = PO{1,1) £pn(2,

CALL QUART( 23/0H,

DD AN2D 3 = 1,4
DY 5099 K = 1,2
AR(7,%) = p2(1,
TRIAL(T) +PO(1,X
BRR (T, %)

CoNTINOT
PHASR(J) =
BP(J, 1) *3R (7], 2)
RATT(T) = =-A=(7,2)
RAT2(I) = rR(J, 1)
ANGY(T) =

y2) ¥P2(2,2)%«pN(1,1)

= 2,0%XRTAL(T) #XTMAS (J) %22 (1, )

DATAN2 { BR{T,1)%AR ({7, ?)

A8
=22(1,2) %

Z)y =P2(2,1)%02(1,2)
2) #92(2, %P1 {1, 1) =P2(2,1) %P1 (1,2)
#P1(1,1)%21(2,?
-02(1,2)%20(2,1) -P1(1,2)%P1(2,1)
2) FPI{2,2)%PD(1,1) =DP1(1,2)%PN(2,1) =-21(2,1)*
2y =PD(1,2)%PN(2,1)

D2/284, 21/24, ND/04, YRWAL, YTHMAG)

B) & ( LRPAL(T) %52 -XTIVAG (J) &%2 )
)

+P1(1, %) ¢
+XTMAS (T) %P1 (1, R)
SAR(T, 1) %8R (T,2) ,

FAR(T, 1) ®AR (T, 2) )
*DTIS( PHASE(J) ) +BR(T,2)*DSTN( PHASE(T) |

PIASTE(T) *130.02/3.141592

BRIT® (5, 5095 ) 7

FORMAT (' PNR RONT 1,T2 /)

ARITR(A,5200 ) ANG(J)

PORMAT (' DHAST THRTA = DHASE PST + ',1DD3).15,' DRIRTIS! /)
RIT2(5,5%210 ) RAT1(J), RAT2 (J)

FORMAT (' ¥AG PST : A5 THETA AS ',1PDIN.I5,0 i v,n30.15 s/ )

CONTINGgT
ARTTE(/,387 )
BARPART( /// )
END




————EEEEEEEEEEN.

A9

SMRROITINE FO2 3ALYTNG A ITNERAL JIARTTT SOOATION JIHT RFAL ZORFP,
YJART (A, 3,C,D, YR PAL, YIMAG)

STUBRIAJTTNR

REAL%A

nr,

51,

®,%,3,7,v1,¥2,73,2700,FPRATY,YINFH, T

RRAL*A 2 R,2,N, Y, RS), ne"2,DS),752,21, 2, Y27AL, {413,

DR2S), RO, NRROA, THETA,IRTAL,DTUAG, TREAL, TIYAA
DIMPNITON TRTAL (), TIMASG (4)
DIMENSTON YRFAL(4), XIYAG (4)
TT) = THKRI #DETRED £VET 4R
P = -R
D o= A%T -4, 0%D
R = =A%¥2%N +4, 0%RA] -Tk%)
HRITR (6, 25 ) o, 7, ?
TIRMAT (! O = v ,1PD20.9,' 0 = *,D20.9,' R = ' ,D20.9//)
1 = -9/3,0
RTP) = DSORT( NABS( P%%x2 =-3.0%3 ) )
Y2 = Y1 #3723/3.0
Y3 = Y1 -rTP2/3.0
IF( (Y2). 30 . 0.0 « AND . F(Y2) . 57 . 2.0 ) ¥1 = 1 -2,7%27p)
/2.0
TP OP(Y2) . LT . 0.0 . AND . P(Y) . LT . 0.0 ) Y1 = Y1 #2,3%R79)
/3.0
TR{ P{Y2) . ?9.0.0 ) 3D T0 50
IP( F(Y3) . ED . N.D ) 50 TO 45
TF( DABS(®) . LT . 1.7D=-20) GO TO 40
nn 30 3 =1, 390
PPRATY = 3,1%K71%%2 £, 0%DXY1 +)
YIN?F = Y1 =P (Y1) /FPPATY
TF{ DABS( { ZINRW =-¥1) /71 ). L™ . 1.9D=1D ) 30 ™0 A)
Y1 = yin=g
COMTTNT®
®RITR (A, 35)
FORYAT( '  ¥1 CALC. TODK MORT THAN 20 ST2PS ' )
REMIPN
CONTINGT
Y1 = 0.0
50 TO 7D
CONTING®
¥1 = Y2
50 Tn 70
CONTINTP
vl = v2
50 ™ 79
CONTINTT
v1 = YINTW
CONTING T

FATY = ¥1*
§RTTI( 5,
PORMAT (

Y = Y1
RSN = A%%2
pe1 = 2Nk
?1 = pSoar
TR (PSD) 2
CONTINTR
DR = ( 4,
NSH = DT
250 = 94
D1 = ne3pT
T = DIQRT(

€3 +PRVIEXD 40%T1 4R

3% ) PATY
THET TEST P2R THER CORTZ = ¢

/4.0 =B +Y

Ak %D /4.0 -R30 -2,0%B

{ DASS( 2S97) )

00, 159, 127

DERER -8 NXT -pxx3 ) /u.0/80
+D82

-DE2

{ DABS(
BaB3

DS2) )
IS )

» 1PE1S.5 )



123

123

151

50N

115
120

W N -

o —

TRTATL, (1)
X2 TAL (7)

JTHAG (1)

YIMAS (2)
IF{ NsS) .
YRRAL (N
XREAL({(2)
XIMac (1)
XIMAG (2)
coMTTAanR
YRTAL (3)
YREAL (4)
XTYAG (3)
XTIMAS ()
TF({ ®SD .
¥REAL (3)
YR®AL (1)
XTMAS (3)
TTMAG (1)
CONTINDR
G0 ™D 590
CONTINTS

DT2SD = (*x%2

DE2 = 2.9
I?({ DE2S)

coMTTHOR

DR2 = —{ B.0KA%B =8, 0% -1xk3 ) /1,0/21

CONTTNOR

LRTAL (1)
nt/2.0
-n1/2.0
LT . 0.0
LREAL ()
TRTAL {2)
.0

7.0

Wohnouou

oo

CREAL (3)
/2.0
-7/2.0
LT . 0.0
XREAL (3)
YRTAL (4)
D.n

7.7

W onn

{1 L T

-1.0%D

=A/%.0 #R1/2.0

)y 32 TN 129
£XTMAG ()
FYTYAG (2)

-A/%.0 -R1/72.0

y 32 TD 128
+ITHAS (D)
FYTYAG (1)

*NSHRAT{ DARS( DE2SD ) )

)y 2H2, 124,

12F

ROW = DSORT( DT1#£%2 #N72x%D )

YREAL (4)

-A/4,0 -DRRAL/2.0

nNTROY = NSQRT( POH)

THE™A = DATAN2({ D32, NP1 )
DREAL = DRRNHADINS( TITTA/2.0 )
DIMAS = DRIDHEXDSTIN( TH=™A/2.0 )
YREAL(1) = =-A/4.0 +DRZAL/2.0
XIMAS (1) = 21/2.0 +NINAG/2.0
XOFAL(2) = -A/4.0 =DRIAL/2.D
XTMAG(2) = 21/2.0 -DTMAI/2.0
YRPAL (3) = -A/48.0 +DRT7AL/2.N
XTMA5(3) = =R1/2.0 =DTMAG/2.0

XI¥a3(U)
CONTINIE
DY 127 1
WRTTI (5
PORMAT (1
TRTAL(J)

= 1,4
, 110 ) 3,
e, 1,0

= ( YREAL(J) k%2

XREAT, (T),

YREAL (T) *XTHAS (J) *%2 )

YR7AL (]
TTMAG ()

¥ TYAG (
IRITT [ 5
PORMAT (!
coNmINgw
RETIRY
NN

Yy D

-R1/72.0 #DIMAZ/2.0

TTUAS ()

',1e020%,3,!

S{TMAG (T) %%2) £%2
YTMAG(T) %2 A% { YATAL(J) & ({ ¥Y274L () %2
+B%( YRTAL(T) £%2

. = B.0%YRTAL(T) XYTIAG (T) =
AR YTMAG (D) K { 3. NEYRTAL(I) £%2 ~XIMAG (J) %2 )
J) +CEYTMAG ()

, 115 ) 47,
TESTY, T,

TRTAL(TY,

1,1PN20.

TTM

TRFPAL (J) € %2

(7Y
1

y

+

+

v,n21.9,"

r,n2n.9,°"

Al0

€£SORT(~1) '/ /)

-4 C*¥YRIEAL (J) xx2%
SXINAG(J) *%2 )} -2,0%
SYTMAG (J) ¥%2 ) +I*

-VIMAG (J) %2 )
) #RED NKYIPAT, (T)

XSHRT(-1) '/ /)




[

298]
N
an

TAIN PROSRAM FOR THR CALIULATION H® THT 3
THT STARILITY IN THOST TTRNS w0 X“V SIVa
1,

All

DUTILIRRTON TURNS AND

bl %I YZLR

TMPLIZIT RTAL®8 (A,R8,2,0,%,F,G, S DRy S,T,T,9,%,Y,7)

DIMPNSTON XR7™AL(4), XTMAG (4

DI®INSTON P2(2,2), P1(2,2), P0{2,2)

DTMENSION A2(4,2), B2(4,2), PHAST(L), ANG(4), RATI{(u), AT (4

COMMIN /JR/ JR220R

COMMON /POT2/ NV (2), NNY (2,7

COMMON 7RG/ 7(5,5), T{4,84), DT(5,5,4%), VTH (4,9}, DVTU4(2 s 2)
DD®33(2,2), HN234(2,2 ), NDEIS (2, 2)

COMMAN /2457 9(2,3,3), DE(2,3,2,2)

COMMDY /3AZ/ 2732, #03, 722, FR3, A(2), B{2), BI(2), F(2,3),
PT(2,2,2), DA(2,3), PBC(2,2), 93(2,4), DC(2,3), NDA(2.2,7),

nnB{2,2,2), n')cp 2,2)
COMMON /¥MA/ T(2,2,3), TH(2), M(2)

COMMON /7 /?Ht(a), ALOHA (1), Z{4), DPIT({4,4), DALDHA(U,4), DZ(4,a)
COMMON /TH/ ZOSTHE, STNTHT, COTTIT, CSCTHE, DOISTE(2), DITNTY(2),
DCSCTA(2), DINTTH(?), DOCOST(2,2), DOSINT(2,2), DDCSIT(2,2),

DDCOTT (2, 2)

TOMMON /37T3/ B, D1, D2, D3, SAM, FIMN, H, N, D3AM(2), DIAMV{(2),
DH(2), DN(2}, DDGAM(2,2), DDGAMY(2,2), DDA(2,2), DDN(2,2)

COMMON /85707 LAM, YF¥, Y7D, LST3, SCOAL, NDN#,OLAM(2), DYPN(2),
DYPD(2) ,D¥YP(2),DLSTS(2)

M{1) = §0.9

M(2) = 1.9
IT11FR = 15.)
T22F% = 5.0
T337R = A.D
I237R = 5,15
T118Y = 0,058
3383 = 2.1
T11F0 = 1.0
T22%3 = N.5
T33%®) = D.5
I23F) = -N_01
T11P% = 0.05
3379 = N1
BAS® = 1.5

B = 1,135
HRZY = 1.n
nCHy = 2,3
D2 = 0,09

03 = -0, 1)

CAST = -N,17

ALP = 15,0

COSALP = DIZIS( ALP#3,141592/180.7 )
STNALP = DS)RT{ 1.000000000D0 -COSALDE%D )

D2 = SINALP%RASE
D3 = CAST#CDSALP #R*STINALD
D1 = TOSALPXBASE -D3

PR2 = N1 -SINALP#*({ HRZY =R ) =CNSALP*N~wy
FP3 = COSALDA( HRCM =R ) =-STNALD#DINMA
ny RN 31 = 1,2
DO TN 32 = 1,3
o0 AN 33 = 1,3
T131,32,33) = 2.0
coNTTNyT
mONTINgT
coNTINGED




T(1,1,1) T1177 +T323%
1(1,2,2) T27°R +T113%
(1,3, T3272 +T11R349
T(1,2,7?) T237R
T(1,3,2) 21378

[ T { T ¥ ¥ N T N T AR T N [ N}

(2,1, M T11PD +133°9
T(2,2,2) I22FD +T1179
T(2,3,3) T33P) +T11°R
T(2,2,3) T22%n
1(2,3,2) 12370

TW(1) = T3I3BW

TR(2) = I337%
PTE = 3,181592553590
85  RFAD ( 5, 92 ) THPTY
9% FORMAT ( 215,0 )
WRTTT ( A, 17D ) THTITA
100 FORMAT ( ' THETA = ', 1PD3N.15,' TDFIRWIS '// )
THITA = THITAXDTIE/130,700000 #+DT7/2.0000

IP( TYETA . L% . 0.0 . OR . TYRTA _, G® , DTT ) STHD

CATL DTHRTA( THITR )

PST = ( TATPA  =DTIR/2.00000 ) /10,0

JCOONT = 1 '

117 CourTNg®

CALL NPSI( PST )

CATYL NCOMD

T® { JUR2OR . ") . 1) 30 TO 85

no 120 3 = 1,2
CALL S®CDER

127 CONTINOP
9(1,1,3) -TOSTHR

(1,2, ~GAMNESTINTH?

R{1,3,3) = GAMASIYTH?

CALL W?ORK(3)

CALL A3C

CALY, PHTIZOY (4)

CALL ALPCON (4)

TALL 200N (U)

DY 130 1 = 1,2
ng(1,1,3,1)
nD¥(1,2,3, N -DGAMY(T) *STNTH? -33MN*NSTNTH (J)
nF(1,2,3, ) D3AM(T) KSTYTHT +3A%DSTYTH(T)
CALL DHFORK (3, )

CALL DTTIR(3,3,T)
CALL DETJR(3,4,J)
CALL DPIJK (2,5,J)
CALL DABZ(J)

CALL 2HYCON(T)
CALL 700N ()

£

(7,1

o

-DCO3ITH ()

o n

Al2

YT, 4) = -( DT(3,3,T)%PHI(4) ¥x%x2 +2 DADE (3,4, J) *PUT {J) +2.0%
1 DE(3,5,7) *PHT (4) *ALDAA (4) )
70 125 11 = 1,2
VTG (T,%) = VTH(J,8) +M(J1)*( -7 (4)*pgT(8)*=( DR{J1, -A (TN
1 XPHT(J) ) =-PHI () *%2%( B(T1) DB (J1,J) +A(J1y%( DA(T1,J)

2 +7 () ) ) )
125 CONTINTT
NV(I) = F.80%( M (1) =0T, T) +M(2).DI(2,T) )
130 courTyUw
TALL PHATD®R (4,1
CALL ArpRe2 (4, 1)
DO 140 7 = 1,2

)

—h



CALL PHTNRR{J, 1) AL3

CALL ZDER(J, 1)
CATL ¢TDER (T, 1)
14N CONTINOR
PATPST = DV (1) &YTU(2,4) =DV (2) =xT7T4({1,4)
PORATD = 9OV (1, 1) *VTU (2, 4) 4DV (1) *DYTHL (2,1) =DDV(2,1)*VT4{1,4)
1 =DV ({2)*xDyTaa(Y, 1) '
T ( FPRATP , B . 0.7 ) 50 7O 3D
STHAW = PST - PATPST/ZDPRATD
I?{ DABS ( ( PSINT®Y -PST ) /PST¥FZ ) . LT . 1.7D-°2 ) 50 TI 353
DST = PSINEW
JCOUNT = JCOUNT + 1
TP ( JTOUNT . 3T . 31 ) GO TO 499
6D TH 119
3Ny WRITI ( 6, 310 )
31) ®NPMAT (1 F PRIME AT PST TS Z3IRD. OST CALT ARDRTED ' /// )

oy HEE N AT LT 1 T S SERTANTEAT 2 VS Ve T A SN b i sl on g TG

530 T 85

1NN WRITE {6, 419 )

419 TORMAT{ ' THR DPSI CZALZ. PATLED T™O TONV. TN 203 ITRRATYONS ' /// )
30 TH 85

859 gaT172 ( A, 060 )

an) PORMAT (' ALPHA S)OUARTD TS LESS THAN ZARO Y /// )
50 T A5

309 CONTINTR

ALDS) = =DV (1) /VTG(1,0)
TF ( ALPSD . LT . 0.0 ) 50 TN 450
ALPHAD = -DSDRT( ALPSH )
PSTNIS = PSINEW%130,007/pI7
WRTTT( 4, 510 ) JCOUNT, DSTDZG, ALDPIAD
517 FoeMAT (' JCOUNT = 1, T3, /0 25T = ',1PD30.15, /" ALPIA) =
11,D30.15 7/ )

CALL DPSI( PSINTH )

CATLL NCOMD ,

T® ( JTR2OR . FD . 1) 50 ™0 35

Y® = YTN/Y7D

gRI™T (5, 2045 ) Y7

PORMAT( *  YF = ', 1PN2D.15// )

CALYL ABC

[($)]

W{1,1,7) = =3AM%*2%DN (1)
F(1,1,2) = =ZAMREEDN (D)
9(1,1,3) = ~-COosTH?T
F{1,2,1) = 2.9

F(1,2,2) = =374

9(1,2,3) = -GAMNXSINTHE
F(1,3,1 = 0.9

¥(1,3,2) = -Gasy
w(1,3,3) = SAM¥SINTAR

CALL WFDRK (1)
CRLL WFNRK (2?)
CALL RTORK (3)
CALL S®INER (1, 1)
CALL STCDER(1,2)
CALLS®CDNZR (2, 1)
CALL STCTDZR(2,2)
DY 552 3 = 1,2

DR (1,1,1,3) = =2.0%38%%DGRY(J) «DY (1) =-3A%x%x2%DDNY{1,])
DA(1,1,2,T) = -2.0%3A4%DAAM(J) XDN(2) =33u=&2%n0N (2, )
DR (1,1,3,3) = -NCOSTH (1)

n3I(1,2,1,7) = 0.3

DW(1,2,2,T) = =N3AM(T)




-DFAMY (V) XSTYTAT =3IAMYADSINTH (1) ALk
.0

DA {1,2,2,T)
DY (1,3,1,T)
DH(1,73,2, ) -DGAMN (T)
ng(1,2,3,7) DEAM(T) XSTNTHT +3AM%NSINTH (J)
CALL nwﬁnRK(1ﬂn
CALL DWFORK(2,7)
CALL NHFPORK (3, 7)
CALL DABZ (J)
CONTTNO®
Ny END 3 = 1,5

DY 599 31 = 1,5

CALL SIJ(7,J1)
CONTTNMR

CONTING®
DY RSN T = 1,4
TP (T . %) . 3 ) GO ™ 559

CALL PHIZON(I])
CALL zZCON{(T)
CALL ALPTON{(D])
CALL ALDPDIER(L,])
CALT PHIDTR (4,.7)
CONTTINNR
" 757 7 = 1,5
DD 740 11 =1,
™" ( J1 . ®EN

. 3 ) 30 ™ 740
no 737 32 2,5
CALL D”IJK( J2,I1
CONTINOT
CONTINGR

CONTTNIR
DD BID Y = 1,4
I" 7T . 7). 3) 37 70 800
DN 799 J1 = 1,4
I (71 . 83 . 3 ) 50 70 79"
CALL VTIJ4 (3,31
CONTIND®
CONTINM®

DY 857 T = 1,2
DD 840 31 = 1,2
CALL 7D33(J,71)
CALL PYINER (I, T1)
CALL VTORER (J,J1)
CONTTNOR
CONTTNOR
nd 90N 3 = 1,2
no 890 31 = 1,2

P2(7,31) = T(I,TIN) -T(I,B)€T(I1,4) /T (4,1)
PU(I, TN = 2.0%ALPHANK( YTU(J,T1) = ( T(J,4)%VTa(4, T1) +T(11,4)«
TTH(T,8) ) /T (4,08) )
PO(J,T1) = DDV(J,J1) +ALPHAD&*2%( DVT4H(T,31) -4, 0k
TTU(T, H) *TTH (0, T1) ) /T(4,1)
CONTTNGR
CONTINO®

0 = P2(1,1)¥P2(2,2) -P2(2,1)%n2(1, 7)

N3 = P21, 1) 591(2,2) #P2(2,2)*P1(1,1) -22(2,1) %21(1,2) -22(1,2)%
D1(?2,1)

22 = 22(1,1) %27 (2,2) #22(2,2) %0 (1, 1) +P1(1,1)%P1(2,2) -22(2,1) &
P0(1,2) =P2(1,2)%21(2,1) -p1(2, 1) £01(1,2)

31 = P1(1, ‘kbﬁ(7 2} #21(2,2)%P0(1, 1) -P1(2,1) %P (1,2) -21(1,2)*%
p0(2,1)



50929

"D -

0 = PA(1,1) %07 (2,2)
CALL  QUART({ 03/Q4, 22

nn BN20 J = 1 4

/1%, n1/0n,

yE)E L XRTIATL (T) k%2

nH 5N9n ¥ = 1,2
AR(7,%) = DP2{
LRIAL(T) +PO(1, ™)
nR(T,K) =

CONTTNOR
PHASF(T) =

RR(J, 1) *BR (J,2)
RATT(T) =

2.0%XIZALAT) XLTUAS (T) %22 (1, K)

DATAN2 ( RE(J,7) *AR(7,2)

RAT2(T) = AR(J, 1)

ANG(J) = PHAST(J)*180.00N0000/ /DT ™
WRTPR( 6, 5095 ) J

FPORMAT( ! FO? ROQAT YV, T2 /)
®RITE(6,5007) AN3(T)

PORMAT(' DHAST THTTA = DHAST DST 4

WRTTR(A,5010 ) RATI(J), RAT2(J)
PORMAT (*  ¥A3 DPS5T : MA3 THETA A5 1,
coNTINT®

59 Tn 95

D

SUBRNATING 733 TAL CALTILATION OF T4
SORROATINA  DTHRTA (TITTA)

TMPLICTIT REAL%3 (C,S5,D,T)

TAMMIN /T9/ TOSTHT, STNTHR, COTTYR,

Ji

DCSTTR(2),

DNCOTT (2, 2)
CHOSTHT = DIOS{ THETA )
STNTHR = NSIN( THITA )

DTITTH (2)

, DDCIST(2,?)

-P9 (2, 1) *P0 (1, 2)
27724,

TR®AL,

-XTMAG (T)

',10en30,.15,

19130, 15,

I TRIS THETA

CSCTH?
NDSTN

14

XD )

-AR(J, 1) ¥BR (T,
#AR (T, 1) *AR(7,2) )

~AR (J,?) *DC0S( PHAST(T) ) B2 (J,2) XNSIN(

DINSTH(2),
r(2,2),

Als

XIM273)

+21(1,%) %

FXTMAG(T) 221 (1, K)

2y,

PHAI®

{(mn

NDEZREE3I! /)

1, D30.15//)

FANCTIONS

nNITNTY
ODISIT (2, 2)

r

{2}
’

COTTHAR = ZASTHAR/SINTHI

CSTTHR = 1.)/SINTHT

DN 43NN 3 = 1,2
DTS = 0.9
TR (J . ") . 2) DTS = 1.0
DCOSTH({I) = -SINTHZDTS
DSINTA(J) = CNSTHZADNTS
DISCTHA(J) = -CSCTHRACOTTHTANTS

DTOTTH (1)
CONTTHO®

DY 4200 3 = 1,
DY 4177 = =
DIS = N.0

IF( J . %

DNCOST (T,
DNSINT (T,
nDISCT (T,

DDIHTT{I, K)

TONTINTR
CONTINOF
R=THORN
END
ORIOOTINR RO 7
SO3ROATINT D3

TMDLITTT 2RAL %]
CORMDN /TH/ TOS

=CSCTHRxkDENT S

2
1,2

D « 2 . AND . R ., %) . 2 ) DI = 1.0

K) = =-20STHZ%DIS

7y = -STNTHTADTS

R) = ( ZSCTHR*®3 +ISITHRACOTTYI&®AD ) %DTS
= 2. D¥COTTHTACIITHTX%2%NTS

92 ZALITLATINN OF TYE TRT3 PST TONCTTING

T( PST )

(C,S,2,7,7)

re=, SINTH?, COTTHR, TSITHET, DZOSTR(2), DIINTA(2),

4



Al6

1 NCSCPH(2), DIITTH(?), DNTNST(2,2), DDSINT(2,2), DDCSIT(2,2),
2 nDCOTT (2, 2)
SaMMON /35,7 T03DST, SIYPST, STIPST, TANPSI, NINSDS(2), NIIVR3(2),
1 DSECPS(2), DTANPS(2), DDCOASP(2,2), DOSTND(2,2), DDSEIP(2,2),
2 CTTP, NCTTP(2), DDITTO(2,2), DDTAND(2,2)
COSPST = DTNS( PST ) -
STNDST = DSIN{ PST )
TANPST = STNPSTI/COSDPST
S?CPST = 1,0/CHSPST
C™TP = THOTTHEXTANPST
DN 4300 3 = 1,2
DIS = N.0
T? ( 7 ..FD) . 1) DIS = 1.0
DCOSPS(J) = -STINPST*NTS
NSTNDS (J) = TOSPSI*DTS
NSTCPS(J) = TANPST#SECDPST#0IS
DTANPS (J) = SRCPSI*%2%DIS
NITTD(J) = NIOTTH(J) $TANDST +COTTIRADTANDS (J)
CAONTINIR
Do 4500 3 = 1,2
DO 4490 R = 1,2
DTS = N.N
I (J . F) . 1 . AND . % . %3 . 1) NnIS = 1.0
DDZNSP(J,K) = -CNSPST%NIS
DDSTINP (J,X) = -SINPSI*DIS
NDSECP (J,R) = ( SEOPSI**3 +TANDSTA%2%S2CDST ) *DTS
DDTAND (J, %) = 2.0%TANPSI*SEIPST**2%DIS
NDITTP (J,K) = DDTATT(J,K) *TANDST +DCOTTH (1) «DTANPS (%)
1 #NCHTPH(K) XDTANDS (T) +COTTHRXNDTAND (T, 7)
conrTHOR O
CONTINUT
2TTIRIN
BMD

SUPRDOTINY ?)R THR ZALZILATION OF 3IRDMETRIC QUANTITITIS ANMND THPIR
RPYRST DERIVATIVES WITH RISPECT TO P5T AND THRTA

SUBPDUTINT HNCTOMD
TYPLICIT 2TAL=3 (C,S,T,
DI¥ENSTIY DLTSS(?2), DLS
COMMDY /JR/ J7230R
cCoMMON /PS/ CNSPSI, STNPSI, S®IDST, TANDST, DIISPS(2), DSIN?3(2),

1 nNSTCOS (2), DTANPS(2), DNCOSP(2,?), DOSINP(2,2), DDSITP(2,2),
CTTD, DITTP(2), DDCTTP(2,2), DDTAND (2,2)

COMMAN /TH/ CNSTHE, STNTY®, COTTHR, ISITHR, NTOSTH(2), DSINTH(2),
NCSCTY(2), DIOTTH(2), DDCOST(2,?), DDSINT(2,2), DDISIT(2,2),
nNCOTT (2, 2)

COMMON s3T5/ R, D1, D2, D3, =AM, 3149, H, N, DIAM(2), DIAMN(2),

’
1 DH(2), DN(2), DDGAM(2,2?), DD3AMN(2,2), DDH(2,2), DDY(2,?2)
CA¥MON /B37%0/ LAM, YFN, YFD, LST3, STDAL, NDNY, DLAM(2), NYFY(2),
1 9Y=®N{2), DYP(2), DLSIG(2)
Co®mnY /L383/ L, SINDTL, COSNEL, STNST3, COSST3, TANDMS, S3I0NMS,
1 DL(2), DDPEL(2), DST3(2), DOMS(2), "RIR(2), DOL(2,2), DD3I3(2,2)
JFRRO? = 0
SNS) = ( DIETANPST#CHPTHAT 4+N&SWCOST ) %%2 4+ DI +N1XSROPST ) £%2
1 -( RETANDST®COTTHY ) #%2 -R%?
S = 2.7%( D3 #D1%STCOST ) *D2%SPIAST
C0 = [ DIXTANDPSIXCOTTHE +R*SEAPST | %22 4 D2HSFCODST ) *%2
1 =( RATANPST*TITTHT ) %2 -( RXSTTIOJT ) *#7
CHS)RT = =2,0N%( DIXTANDSTI*COTVHE +#2%SFTDST )= ( N3 #D1%SEIPST )

n,?,%,4,9,0,¢,
TS {2}, DDTLID(2

4
14

N

g —




e B

1 #2.N#¥2 kx24T ANPST&COTTHT
CSORT = =2.0%{ DI*TANDPSTACHTTYT +2%GWCOST ) *D2XSRODPST
N = =D2/( D1 +D12 )
DD 26 JITHANT = 1,30
]TN221 = DSHRT( NEXD +1.0 )
PATY = CNSO*WRED +CNAY +CNH +CNSORTENXRTN2D] +TS5)RT=BTN2D1
FORATY = 2,.)*CNSQOEN +TN +CNSQRTHRTN2D1 $CNSOATHRNX%D /RTN2D 1
1 +CSHRTRN/ITN2PI :
IP ( FPRATY . 70 . N.Y ) GN T7 15))
N = N -FATH/FDRATY
T? ( DABS ( FATN/TDRATH/N) . LT . 1.9D-19 ) GO TO 39

W h

CONTINTE
WRITR (A, 137 )
PORMAT THR N CALZOLATION TODX ¥0ORF THAN, 20 ST

i34

14
\l DS \] ;
1

CANTTNI™

GAM = 1.0/DSONT( Nk%x2 +1.0 )
GAMN = GAMEN

H = -4%D1 +R/GAM

LAM = N -7TTP/35AM

YFY = LAMX( P -D2 } +ND3I*SECPST
YRD = LAM%%D 4+3UCDPST**)

Y? = YRPN/YPD

LSTGR = YFx( 1.3 +NELAM ) -HXN +D1
LTSS = 3AY*LS

LSTYS = V’*"?"“WV*“AﬁpsT

I. = NSH DAT{ LISS%%2 $1STS%x%?D )
CNSSTE = LG SS/T

SINSTS = LSTIS/L

DRELCOS = SINTHF -GAMNXCHASTHEXPANDST

<3
tg
b
9]
4
P
i

SAM*TANPST

DELDONY = DRELCOS**) +DELSIN*x%?

PTNELD = DSHRT( DELDNY )

CASNZL = DTLIIS/RTHTLD

STYD®L = DELSTN/RTDFLD

STCOMS = 1.3/ CTHSDWLATOSSTG +STYN2L*STINSIS )
TANDMS = ( SINDEL*CNSSTS -COSNPLESINSTS ) *SETNDMS

STDHL = S CPSIX( N2 -H ) +D3I*XLAM

NDNM = ¥2%LAME( 1.0 -SAMNECTTP | =-SCDHL*( SECPSTIX({ D1 -R2&3AMN )
1 +D3*( 1 N -GAMNXCTTP ) )
DO 10D T = 1,2
DMA{J) = ( STDHAL*( DSRWIPS(J)*( N2 =H ) -D3I=DTTTP(J) /334 ) #+R*%2

1 *LAMENCTTP (J) /3AM -R%%2%XSRCPST*DNSACDS (T) ) /HDNY
NEAMA{T) = =-M*GAM%EIXON (J) :
DIAMN(T) = 3AM¥x3I&DY (7T)

DH(IY = DN(7)*{ R*GAMN -D1 )

DLAM(J) = DN(T)*( 1.0 =3RAMN*CTT?) =DITTD(J) /7A%
NYTY(I) = DLAM(I)*( A =-D2 ) +LEM%)DH(J) +D3I*DS7IPS (7)
DY®D(J) = 2.9%( LAMEDLAIM(T) +SPCP3T&DSZOPS (J) )

DYP(J) = { YEDADYPN(J) -YPNEDYTD(J) ) /YPn*#*2

DLSTS(J) = DYF(I)*{ 1.7 #N%LAM ) +77%( DY (J) ALAM +N*DLAY(T) )
1 DA (J) XN -HADY ()

NDLCSS({J) = DIAM(J)#LST3 +5AMRDLSTI(T)

PLSTS(J) = DYP(T)V*TSITAA*TANDPST +¥2%( NCSCTH(T) *TANDST +I5777%%
1 DTANDS (1) )




1

1099

(RS

1

N —

N -

3

1

Al18
DL{J) = 7OS5IG%DLASS(T) +SINSTIS*DLSYS (T)

NDSTG(T) = { -STNSIG*NLTSS(T) #+CO0SSIZADLSTS(I) ) /L

DROH(I) = { ~-DLAM(J) XSTTPST +LAMEDSTIPS (J) ) /97D

DNTLI0(J) = DSINTH(I)*( 1.7 =GAMNETTTD ) +STMTHTX( -DEAMY (]) =
TTTP -3AMNXDCTTP(J) )

DDILST(J) = NAAM(J) XTUNPST +3AMEDTANDS (T)

DDETL () ( DELCOS*DDPLST (J) -DELSTN=DDELCO(T) ) /DELDUX

nAMS (J) DOEL(J) =-DSTG (M)
CONTTNOR

RRTIRY

2ND

SUBROITING FOR THT ZALTJLATION OF THIZ GEOMITRIC SECOND DERIVATIVES

STRROOTING  STCDRR(T, T)
I“PLICIT ®RAL%*] (9,L.,%,S,%,7,T,R%,3,9)
DTMENSTIN D3ICDAL(2), DNUM(2,?), DNDNM(2), DDLAM(2,2), DDY?N(2,2)

1 4
DDY?N(2,2), DOLSIG{2,2), DDLTSS(2,2), DDLSIS(2,2) , DDI®(2,2)

TOMYOY /R3TI/ LAM, Y®N, YRD, LSIS, SCNAL, WDNM, DLAM(?), NYPY(2),
DYFD(2), DY?(2), DLST3(2)

CoMMAN /237 T03PST, STNOST, STCPST, PANDPSTI, DCOSPS(2), DSILIPS(2),
DS®OPS (2), DTAMDPS (2), DDCNSP(2,2), DDSTND(2,2), DDSZCP(2,2),
STTP, DITTDP(2), DDITTP{2,2), DDTANP(2,2)

CYMMON ST/ ZOSTHE, STYTHRE, COTTY®, CSCTHR, DCASTH(2), DSTNTH(2),

NCSTTH(2), DINTTH(2), DDCOST(2,?), nogINm(z,za, ANCSIT(2,2),
BDCOTT (2, 2)

COMYMON /GRO/ R, D1, D2, D3I, GAM, 3aMv, H, ¥, DGAW(z), D?&ﬂﬁ(?),
DH(2), 0n(2), DD3AM(2,2), DD3AMN(2,2), DDI(2,2), DDN(2,

TOMMIN /LGRY/ L, STYDRL, COSDIL, 3TNSIG, CHSSIS, TANDHS, SB:D!S,
DL(?), DNPEL(2), DS5T3(2), DDMS(2), DRIA(2), DNL{?2,?2), DDSI3(2,2)

DSTDAL(JT) = DSRCOS(J)*( D2 =-A ) -S2TDSTHDH(T) +D3I*DLAM(J)

DNOY (T, T) DSZDAL(J) *{ DSECPS(T)*( D2 =4 ) =N3I«DCTTP (T) /3A4)
+SCDAL%®( DN3ZCP (T, J) *( N2 =H ) =DSTCOS{T)*DH(J) -D3IXIAMNEDN (7])
*DCTTP (I) -o?*nn,rrp(I,J\/sAﬁ ) #R%%Dx( DCTTP(T)*( DLAY(T) /3AM
+3AMNEDY () *LAM }) +LAMADDCTTP{T,J) /G4M =NDSFACDPS (T) *DSPTOS (T)
-3®CPSTI%DDSTCO (T, )

DUDNM(J) = 2K%2EDTAM(T) % ( 1.0 =3AMNECTID ) +RAXDXLAM%( =D3A98 (J)
=ECTTP -3ZAMN%DITTP(J) ) -DSCDHL (J) *({ STCPSI*( D1 -D%GAMYN ) +D3x
{ 1.9 -3AAN%CTTD ) ) -SCNHL*( DSIIPS(J) *( D1 -R=3ANMN ) -RE
SBCPSTADIAMN(T) =D3%( DIAMN(J) £TTTP +GAMUXDCTTP (J) ) )

DION(T,J) = DNOM(T,T) Z9DNM -DN(T) £DYDYM (J) /NDNM

DDRAM(T, J) = DN(T)*DN (J) X TAME*I%k { 3, NxNkxDx3AM%%D -1, 0 ) -y%314
xx3«DNN (T, T)

DDRAMN (T, J) = SAMX%3#NDN(T,J) +3.753AMKXD&N5AM (T) DN (T)

DOH(T,J) = DDN(TI,J)*( R*GAMN -D1 ) +R*DGAMN(J) %DV (T)

DOLAM(T,J) = DDN(T,J)*{ 1.0 =-GAMNACTTP ) =DN(T)%( DGAMN{J)*TTTD
$SAMNEDITED (T) ) -GAMNEDN (J)*NCPTP(T) -DDOTTO(T,J) /GAM

DDYFY(T,J) = DOLAM(T,J)*( H =D2 ) #DLAM{I)%DH(J) #+DLAM(J) *D4(I)
+LAMADDA (T, T} +D3I*DDSRCP (T, )

DDYFD(T,J) = 2.0%( DLAM(T)*DLAM(J) +LAMADDLAM(T,T) +DSTC23(T) %
DSETPS (J) +SICPSTANDDSECD(T,T) )

DNYR(T,J) = ( DYFD(J)£NYPN(I) +YFOENNYRPY(I,T) =-NYFN(J)%DY?D(T)
-YPIADDYPN(T,T) ) /YPD.XD -2_0%NY?(T)*DYPD (J) /TFD

MDLST3I(I,T) = DOYPAT, T)*{ 1.0 +N5LAM ) +DVF(T)%( DN (J)XLAY +#y%
DLAM(T) ) +DYZ (J) % ( DN (T)%LAM +N=DLAM(T) ) +YFPx({ DNON(T,T) *LAN
0N (T) =DLAM(T) +DN (T) =DLAM(T) +N€DIDLAM(T,J) ) -DDH(T,.J) *N
-DE(T) ADN(T) =DH(J) #DN (T) =-9*NDN(T,.T)

DNLCSS(T,3) = DDGAM(T,T)=L5IG +D3AM{T)*DLSIS(T) +D3IA¥(J) *DL3T3(T)

Gl“*DDfQIS(T J)
DDLSTS(T,J) = DDY®(T,T) «TSCTHE*TANDST +DY# (T) *{ DCSCTH(JI) *TANPST




[SURRN Y

Al9Q

YOSCTREXDTANDS () ) 4DYP (3) *g NZSZTA(I) *TANPST +2SCTHRANTINDS
{(T) ) +YF*( DDCSTT(T,J)*TaNpST FOCSCTH(I) *DTANDS(J) +n25Cr(T) *
DTANDS (T) +CSCTYEADDTAND(T, )

POLIT,J) = L¥DSIG(T) *N3TA () tCOSSIS*DNLCSS(T, J) +5TYSIZ&NNLSTS
(r,1

ODSIS(I,T) = ( -dL(T)*"
+COSSTG*DOLSTS (T, .7} )

RETIRY

FND

IG(J) =DL(7) #DSIG(T) -STNSIG*DDLISS(T, T)
Tﬁ




A20
c SU8RNITINE PIR TALCOLATION OF TRZ Z3MSTRATNTS 9N PHI
1 SURPAOTINT  DHICON (J)
) IMPLICTT 23WAL*3 (A,72,D,7,3,9,%,1,5%,2,7,P)
i3 COMMON /T /0HT (4), ALPAA (L), 7Z(8), DPAT(L,4), DALPHA(4,4), DZ{4,4)
3 TOMMON /3207 R, DYV, D2, D3, GAM, 3AMN, 9, N, DIAM(2), DSAMN(2),
ks 1 NH {2y, DN(2), DDGAM(?,2), DDGAMN(2,2), DDH(?,2), DDV(2,2
5 COMM2Y /L3377 L, SINDRL, CONSDIL, SINSTG, ©OSST3, TANDNS, S2IDAS,
* 1 DL(2), DODZL(2), DNSI3(2), NDMS(2), DROY9(2), OOL(2,2), DDSI3(2,2)
i DHY (J) = -R¥STNDEL*SEIDYS/L
T IP (J . N2 . 8 ) DHI(J) = DL(J)*TANDMS/L -DSI3(J) +R*STNNEL*
; 1 SECDMS®ZAM®X2%DN (J) /L
8 RETHRN
9 BN
W €
.. C SOR2OATING FPIR ZALTTLATING THE CONSTRATNTS NN ALPREA
0 SUBROUTTN®  ALPCON(J)
IMPLICIT 2WAL*R (P,A,Z%,D,2,3,A,%,L,5,C,™
COMMON /CT/PHT (4), ALPHA(B), 7(8), DPHI(4,4), DALPHA(4,8), D7 (4,4)
CoMMNN /3?07 2, D1, D2, D3, 5AM, IAMN, H, ¥, D3AM(2), D3av1N(2),
v 1 DY (2), IV(2), DDGAM(2,2), DN3AMN(2,2), DDH(2,2), DDN(2,2)
’ CoM®o% /L3®)/ L, SINDRL, COSDEL, STNSI3, CNSSTS, TANDMS, SAINNS,
3 1 nL(2), DDFL(?), NST3(2), DD¥S(2), DRIF(2), DDL(2,2), DOST3I(2,2)
RS ALDHA(J) = COSSIG*STCDMS
3l I#7 (3 . %% . 3 ) ALOPHA(J) = =-DL(J)*SECDMS/R -COSSISHSRECDUSE
3 1 GAMXXDXDN (J) =DR0OH (7)
e RRTIAN
3 mN
W oc
‘§‘ c SORROUTINEG F33 THE CALTTLATION OF THT CONSTRAINTS ON 7
STRRNUTINE  ZCON(T)
TYPLTCTI? RTAL*R (P,1,7,9,R,G,A,YN)
COMMON /T/PAT (4), ALPAA(4), Z(4), DOHT(4,8), DALPYA(U,H), D7Z(%,1)
COMMON /3E0/ R, D1, D2, D3, GAM, SAMN, H, N, D3AM(?), DIRUN(2),
1 DA (2), DN(2), DD3AM(?,2), DDGAMN(2,2), DDH(2,2), DDN(2,?2)
I (T . ®) . %) 50 ™1 100
Z(T) = REGAMXE2EDN(T)
RETORY
MY 7Z(T) = -®
RETIRN
END

SUBRDNATINE FOR CALCULATION NP THAR DERTVATIVRS JF TUR CONSTRATNTS
ON PHT

STBROUTINT  PHINER (T, J)
I¥PLTCTIT RPAL*% (L,S,2,T,D,R,G5,4,4,P,1,7)
CoM¥MON /L3237 L, SINDTL, COSNRL, SINSTS, COSSIG, TANDMS, S$70DMS,

1 nL(2), DDEL(2), DST3(2), DDMS(2), DPOH(2), DOL(2,2), DOSI3(?2,?2)
TOMMON /3ED/ R, D1, D2, D3, GAM, IAMY, H, N, DIAM(2), NIAMN(2),

1 294 (2), DN(2), DD3AM(2,2), DD3AMY(2,2), DOI(2,2), DDON(?,?)
COMMON /C/DPHI(4), ALPHA(8), 7 (%), DPHT (4,4}, DALDHA(4,4), DZ(4,0)
DPHT (I, T) = 0.0
T?( T . ®) . % . AND , J . NT . 4 ) NDPIT(T,]) = -R*STCHM3{

1 -DL(J) *5TND2L/L +COSDEL*DDAL (J) +STNDEL*TARDIMS®DDMS (J) ) /L
TP( T . NT . 4 . AND . T . NT . 8 ) DBUL(I,T) = TANDMSE( L*

1 PNL(T,J) =DL(T) #DL(7T) ) /L +DNL(T) *3PCDMS%%2%NNMS (I} /L -DDST3 (T,

L
—_



-
A21
2 T} #RESECOMSHIANMEEDE ( =DL(T) *STUDILADU(I) /L +INSDIL*ODEL(T) *
3 NN (T) +STNDELETANDUSADDMS (J) *NY (T) =-2.0%STHDPLXNEGAMEXDIXDY (J) *
4 DN (T) 4STHNDTL®NDN(T,J) ) /L
17 PITIIRY
- *q PND
; c SORRDYTINT PIP TALCHULATION NF TH® H22TYARTYIS DP THT CONSTRATNTS
B C IN ALDHA
.9 SHRRNUTING ALDGER(I,J)
a0 IMPLICTIT RFAL%*3 (L,S,7,T,D,P,1,7%)
4 41 COMMON /L53ED/ L, SIHDEL, COSDZTL, STNSIG, CO3S5I5, TANDMS, SETDNS,
1 DL(2), DD7L(2), DSIZ(2), DNMS(2), DROA(2), DDL(2,2), DDSI3(?2,2)
2 COMMON /C/PHY(4), ALPHA(4Y, 7(3), DPHI(4,4), DALDPHA{L,U4), DZ(4,1)
13 DALPHA(T,J) = 1.9
Rt 2 TR T . F) . 4 . AND . J . NR _, 4 ) DALPHA(I,J) = SHWCO¥SE( TANDMS
- 1 ANNMS (T) *2DSST5 ~SINSIGHEDSTS (T) )
545 RTTIRY
EE END
o 3U8R70TINT PIR CALCILATING ™HP NDIRTYATIVIS N? THT CONSTRATNTS ON 72
47 STRROUTING  ZDER(T,.T)
18 TMOLICTT RTAL%*3 (P,%,%,0,R,5,4,N)
9 COMMON /T/DHT (4), ALPHA(L), Z{4), DOIT(4,4), DALPHA(4,4), DZ2(4,4%)
) coMMon /3707 2, D1, D2, D3I, GAM, S3AMY, T, N, DIAM(2), DGAMN(2Y,
5 1 DI (2), DN(2), DDGAH(Z,Z), JDCAWN(?,2), DNH (2,2), DDW(2,?2)
' D72({I,T) = N.0
IP( T . N% . 4 . AND . J . NT . %) DUT,JY = RE{ 2. NAGAAE
1 DGAM(T) *DN (T) +GAMX&2%DNN(T,J) )
RATHRY
END
- 508°207TNZ 3R TYR TALZILATION NF THT YRLOCITY TERMS, 2, 3, AND C

SURRNANTINE  ARC
TMPLICTT R27AL*3 (%,a,3,0,C,S,™,R,3,H,Y)

Sy e
et N e

COMMON /BAC/ FO2, ®n3, PR2, FR3, A(2), 3(2), 3I(2), F(2,3),
1 DR (2,2,2), DA(2,4), MBC(2,2), DR(2,4), DI(2,3), DOA(2,2,2),

nna(_,b,z), DD (2, 3,2)

20MMIN /T9/ COSTHR, SINTHR, COTTHT, C3CTAP, DCOSTH(2Y, DSIATI(2),
NCSCTY(2), DIDTTU(2), DDTOST(2,2), Dwsxv?(z,zy, ANCSTT(2,2),
nNCOTT (2, 2)

COMMNAN /PS/ CNSPST, STNPST, SECPST, TANPST, DTASPS(2), DSTYPS (2),
DS=2TPS(2), DTANPS(2), DNCOSP(2,2?), nasrnn(z,za, DDSPID(

2  CTTP, DITTP(2), DNITTP(2,2), DDTAND(2,2)

CoMMa® /3307 R, D1, D2, D3, GAM, 31N, H, N, DIAN(2), DIA¥N(2),

-

~

e e o Ay, e R, v 10 SO 1

9

-

—

2,2,

] 1 ng {2y, DN{2), DD31%(2,?), DD3 nﬂw(d,_), nDY(2,2), DDN(2,2)
: {1, = 1.0
» F{2,1) = -PO2*STNDST
" F(1,2) = -¥22
; P(2,2) = RN2%CNSPST
?(1,3) = 7R3
P(2,3) = 723
no 100 3 = 1,2
A(J) = ZAMA( D1 +%(J,2) ) +53MNER(] 3

ATAT) = GAME{ H +P(J,3) ) -ZAMNRT(],2)
B{J) = TOSTHT*BCZ(J) +STATHEXP (J,1)

17 cowTINg®
RETIRY




- 13

o
15
- 16

(@]

IS D]

G ]

]

1
2

1
2

1
5

1

1

1

1

3
4

END

SUBRIINTINF 2OHR ZALCZOLATING

SARRAPTINE  DABC(TI)

TMPLICIT 27AL%3 (®,%,8,0,2,S5,7,%,7%,1

COMMDN /BAS/ FI2, P33, FR2,
nR(2,2,2), DA(2,B), DBT(2
nns(2,2,2), DPC(2,3,?)

COMNNN /TH/ CZOSTHERE,

STNTHE,

NDCSCTH(2), NTOTTH(2), DOC

DNCATT (2, 2)
CYMMINY /PS/ TOSPSI,

STUPST,

DS2TPS (2), DTANPS (2), DO
TTTP, DITTR(2), DODCTTP(2,2), DOTAN

COMMON /3®0/ R, D1,

nz2, n3,

DH(2), DN{2), DIGAM(2,2),

n®(2,1,I)
n?(2,2,T)
DR (1,1,7T) = 0.0
DP(1,2,T) = N.0
DY 101 3 = 1,2

-®02*DSTNDPS (T)
FN2%*DCOSPS(T)

L)
r2), DB

cAT™Y T,
0sT(2,7),

S®CPST,
052 (2,2),

TAM, GAM
DDGAMN (2

), B(2)

TH® DERIFATIV®S N7 1, 91,

Sty

» BT(2)

B, NC(2,3),

cscrTez,

TANPST,

P(2,2)

N, H, N,

AZ22

Ann C

14

?(2'7‘, ’
DDA (2,2,2),

PCASTH(?),
DNSINT(2,2),

DSTHTH (),

nDCSCT(2,2),

nCOAsSPS 2y,
DDSIND(2,2),

,2), TDH(2,?),

DSIN®?S(2),

DRsS®ECP(2,2),

DAY (2),

AN (2),

nDN (2, 2)

r
DA(T,T) = DGAM(I)*( D1 +F(J,2) ) +3AM%*0™({J,2,T) +D3ARN(T) xr (T, 2
DBC(T,T) = DOAM(I)%=( A +7(J,3) ) +32

-3AMNADR(T,2,T

DR(I,TY = DTOSTH({T)*BZ({TJ)

FSTNHEXDR (T, 1, T)

NT(T,TY = DITNTH{I)*BI(T)

-COSTHEAN? (T, 1, I)
CONTTNUER
RETIRYN
R B

308ROUTINA *)2 CALCOLATMION DOF THS

STVEN THE ANGOLAR VILOCITIES OF THR 7

SUBRNOTINE HPNRK (T)

IMPLICIT R®ALX*8 (C,S,7,D,W)

COMMON /P3/ CNSPSI,

STNDST,

DSTCPS (2), DTAADS(2), DDC

TTTD, NITTP(2), DNSTTP{2,2), DNTAN
COMMON /0M3/ W (2,3,3), DH(2
W(2,1,T) = COSPST*W (1,1, T)

¥(2,2,7T)

o

H(2,3,1) = 7(1,3,T)
W(2,3,1) = 1.0
R®TIRY

LRk

-SINPST®*W (1,1,1)

3?TPST,

nsp(zl?) [4

3,3, 2)
+SIRPSI*Y

MEDH (T)

+C0OSTHEZ*DBCZ (7, T)

+STNTIREDRT (T, )

RAMT

TANDST,
P(2,2)

(,2,T)

=DGAMN((T) *F (7, 2)

FDSTNT™I(T) %2 (T, 1)

-DIOSTH(TY %7 (71, 1)

ANGOLAR VELOTIYI®S

or

nENsSPs(2y,
DOSIND(?2,2),

+CNSPST®*R (1,2,7)

SOB°eNUTIN? ®OR THE CALZOLATION OF TH7T
ANSOLAR VELNIITIES 5TV7TN THE

VELOCTITIVS

SORRONTTINT  DAFORK(I, T)
TMDLICTT RFAL*R ( C,S5,7,n,H)

COMMNN /DS/ TDSPST,

STyoST,

NSTIPS (), DTANDS(2), NOC
CTTP, NITTP(2), DDITTN(2,2), DDTAY
COMMON /0M5/ F(2,3,3), "W(2

N9 (2,1,7,3) = DIOSBS({Iy=xw (1,1,7)

DTIRIVATIVES NF TH=RE

SZTRhST,
osP(2,?),

13,7,2)

m3ET FIRK

DSTNPS (2),

DDSEIP (2,2},

DERIVATIVES OF THR #0RK
ANGTILAR

TANPST,

DNSTNP (2,7

P(2,2)

DTASPS

7

FRAME

A

(I
no

+20SPSTENY {1,1,T,T)

.

r

DSTNP3(2),

TIP(2,2) ;5

+DSTNOS () X



209
301
10

507

9]

270
1NN

W(1,2,T) +STNPST*DF(1,2,1,J)
DN (2,2,I,7) = -DSINPS(J)*¥(1,1,T) -3INDSI*OW(1,1,T,J) +DI0305(J) *
H(1,2,T) +COSPSTAnw(1,2,T,J)
DE(2,3,T,J) = DH(1,3,T,7)
RETIRY
BTN
SUBRIYTINTG PIR CALCULATING THE FTJ COIPRFICTONTS

SUBRNITTING  FTI(J,K)

TYPLICIT RTAL*8 ( 7,T,D,V,%,F,A,3, L,va

COMMON /RR3/ 2(5,5), T{4,4), D7 (5, u), VT4 (4, 0), DYTAu(2,?),
PNI33(2,2), DDE3N(2,2), DDF3S(2,

COMMON /OM3/ W(2,3,3), 0@(2,3,3,2)

COMYON /BAZ/ FD2, PD3, PR2, FR3, A(2), B(2), 3Z(2), F(2,3),
°7{2,2,2), DA(2,%), DIC(2,2), DI(2,4), DT(2,3), DDA(2,2,2),
DDB(2,2,2), DDC(2,3,2)

COMMON /MA/ T(2,3,3), IN(2), M(2)

TP(J . 5% . 3.0 . % .37 . 3 ) 19 70 500

F(J, R} = 0.0

DN 42N § = 1

PO(L,3) =

5
.2
2.7
(

(I, 7Y = T{I,K) #M(L)ADC(L,T)£D7(L,%) /2.0
DO 302 J1 = 1,3
Do 209 %1 = 1,3

(I, ) = T(J,K) +T(L,T1,R1)*q(L,J1,T) %% (L,K1,%) /2.7
CONTTNIE :
CONTINT®
CONTINOR
RTTIRN

CONTINOR

IPCJ . 37 .3 . AND . K . GT . 3 ) 30 ™0 400
TROT . 3T . 3 ) B(J = IF(J-3)%9(J-3,1,%) /2.0
I?( K . 357 . 3 ) 2(7 = TH(K=3) *5(X-2,1,3) /2.9

RETIRY
CONTINDR
T(I,K) = N.N

I?0T . ) . X)) 2(I,R) = TH#(I-3) /2.0
RETIRN
BND

STARDUTIND FIR CALZULATING THE D%(7,%,L) WITH K RESTRICTED T3 3I-5

SUBROOTTNE  DETIR({J,R,L)

TMPLICIT "BAL*3 (W,D,I,™, L)

ConMoN ,0M57 w(2,3,3), Dﬂ(z ?,J, )

COMYMON /MA/ 142, 3 3y, TE(2), 4(2)

COMMDYN /?R5/ =(5, % T{4,4y, DEA(5,5,4), VT4(4,y4), nyT44(2,2y,
nww33(7,2), WOV?J(? 2y, DNR3I5(2,2)

DEA(I, %, L) =

IP (L . 23 . u }) RETTIRN

. AND . K . GT . 3 ) RTUTURN

‘OR . R . GT . 3 ) 30 7D 599

Q
J

2 = 1,3
P33, K, 1) = DRI, R, L) +T(L1,31,K1)%( DI(L1,T1,7,L0) %
(L1, %1,K) +49(11,31, ])*“4(L1 K1,%,L) Yy /2.0
CONTTHOT
CONTINGDT




A24

399 CONTTINTR
RTTIRY
579 CONTTNR
IT( 3 . 57 . 3 ) D®(I,RK,L) = TH(J=-3)*DW (J-3,1,%,1)/2.0
IF( K . 37 . 3 ) D=(] 1) = TH(X-2)*DA(K-3, 1 I,y /2.9
RETURN
END
z SUBROUTINR FOR THT CALZOLATION 37 THR TIJ CORFPICIINTS
o] AND THT VPr4(I,T) COMFRICTENTS
SNBROTTINE  VTIJU(I,J)
T¥DPLTZIT REAL*S (0,4,%8,7,D,V,P,A,2,7,B)
COMMON /MA/ D(2,3,3), 21(2), M(2)
COMMON /9R3/ F(5,5), T(%,4y, DT(5,5,48), VPH(3,4), DVTLL{2,2),
E 1 nn®33I(2,2y, DDR3IU(2,2y, DDF3IS(2,2)
1 COMMON /T/PST (%), ALPYA (L), T (8)y, DDIAT(4,4), DALPHA (UL, UG), DZ(8,4)
k6 COMMON /RAZ/ PD2, F03, ?P2, PR3, 1(2), B(2), BZ(?), 7{(2,3),
: 1 T\U(')"_")) nﬂ(?‘lusl ORC(zlz)" Dq(zlu)' Dﬁ(~v1)1 DD:‘-&(,?,”Z),
S 2 nnB(2,2,2), DRC(2,3,2)
134 TAT,T) = 2.0%( B(T,J) +2(T,3)*PAL(J) +T(J,3) *PHT (T) +R7(T,5)*
5 1 ALPAA(T) #+7(J,5)*ALPHA(T) +T(3,5) % ( D9HI (I) *ALPHA(J) +DHAT(J) *
2 ALPHA(T) ) +EB(3,3)*PAT(TY*PHAT(J) +7(5,5) *ALDPAA(T) *ALPHA(T) )
VoL (T,J) = DE(T,4,T) #D2(T,3,3)*PqT (4) +9(T,3) =DPHTI (u,])
1 +DT(T,5,7) *ALPHA(4) +7(T,S5)*DALPIA(4,T) -( DE(JI,4,T)
2 +D7(3,3,7T) %PHT (J) =PHT (1) +DT(5,5,T) *ALPHA (J) *ALPHA (U4)
2 +D?(T,3,T) *DHATI (4) +n’(n,,,T)*DHT(1) +DT(J,5,T) *ALPHA (4)
u +D8(3,5,I) *( PHI(J) *ALPHA(H) +PHTI{4) *ALPHA(J) ) )} #PHI (I) =
5 { D°(3,3,7)%PHAT (4) +%7(3,3)*DPAI(4,T) +DP(4,3,J) +DE(3,5,7) %
A ALDHA (LY +7 (3, 5)*DATDHA(U4,T) ) #ALDPHA (I} *( DR(S5,5,J)*ALPRA{14)
7 +F(5,5) *DALPHA (4, T) +DB(3,5,7)%2aT (#) +E(3,5)*nPaT(1,T) )
PO 102 1, = 1,2
DA(L,U) = 0.0
DRAIL,4) = n.1
T(I,T) = TH{T,J) #M{LY={ ( DA(L,T) +RB(L)*PHT(T) +Z (T} y*( DA
1 (L,J) +B(L)*DHTI(J) +Z(J) ) +(DB(L,I) =-A(L)%PHI(I) ) *{ DB(L,
2 Ty =A (L) *PHTI(I) ) )
YTU(T,T) = VTPU(T,J) +M(LY*( ( DA(L,T) +B(L)*DHT(T) +72(T) } x*
1 ( 2.0%D3 (L, J) *PHT (4) +3(L)=DPIT (4,T) ) +( DR(L,I) -2 (L)*
2 PHY(T) )% ( =2.0%NDA(L,J)*PHI (9) =-A(L)*OPHI {4,J) -DHT (1) %Z(J)
3 =PHT () %7 (%) ) =2.7%PqT (Jy*xpIT (B)y=( B(L)*DB(L,I) +A(L)*
4 { DA(L,T) +7(T) ) ) ) /2.0
CONTINUR
RRTIRYN

END

SURROUTINR FIOR CALCULATTING THE DERIVATIV® OF VTO(J,U
AND TH® SECOND DERIVATIVE OF THT® POTTNTIAL

SOPROUTIN®  YTDER (T, J)

I4PLICIT RTAL®] (D,4,D,%,™ V,A,%,%,8,2,5,R,3,4,5,¥)
DTMTNSTON DDW (2,3,3,2,2)

DTHRNSTON 09?(2,2,2 2), DDBC(2,2,?)

COMMON /MA/ PTI(2,3,3), PTH(2),1(2)
COMMON /POTZ/ DV (2), DDV (2,2)
COMMON /ER3/ 2(5,5), T(4,8), D®(5,5,4), ¥TL(u,n)y, DVYLL{(2,2),
1 IDRI(2,2), DDF3U(2,2), NDTI5(2,2)
COMMAON /T/PHT(4), ALPHA MY, Z(U4), DPHT(U,4), DALDPTA(4,8), DZ(4,4)
COoO™4ny /BAZ/ PQ2, FD2, PR2, FR2, A (2}, B(?), 3C(2Yy, T(2,N,
1 NF(2,2,2), DA(2,4Y, DRT{(2,2), DR(2,4)y, NC{2,3), DDA(2,2,2),




21
10
5N

.

W

w N -

N —

N =

N -

N -

W D —

2
nDR(2,2,2), DNC(2,3,2) A25
CIMMAY /DS, ZOSPST, STMPST, SWIOPST, TANDST, DINSPS(2), DSINPS(2),
DSWCPS (2), DIANPS(2), DDCEOSDPI2,2), DNSTND(2,2), ODSICP (2,2),

oTTP, NITTR(2), DDTTT2(2,2), DNTAND (2,2)

COMMON /TH/ COSTHE, STYTHT, COTTY®, TSCTHE, DCASTH(2), DSINTE(2),
NCSCTH(2), DSOTTH(2), DDEOST(2,7), DDSINT(2,2), DOCSIT(2,?),
DNEOTT (2, 2)

COMMIN /3®)/ R, D1, D2, DI, GAM, SANMN, ", N, DGAM(2), DSAMN(2),
DY (2), DW{2), DD3AY[2,2), DDEAYMN(2,2), DDH(2,2), DDN(2,?)

Co¥MNY /DH%/ W(2,3,3), D¥(2,3,3,2)

OPR(1,1,3,T,7) = =DDCIST{T,J)

POW(1,2,3,T,T) = =DDGAMN{I,T)*SINTIZ =DN3AMN(T)=DSINTH(J) -"3AH#N
(TY=DSTNTH (I) =-3AMNEDNSTNT(T,J)

oW (1,32,3,T,7) = DOGAM (I, J)*STHTHT +DGAM(T)*DSTUTI(J) +D3A%(J) *
DSINTH (T) +5AMXDDSTNT(T,J)

DOW(2,1,3,%,3) = DDCOSD(T,T) %€ (1,1,3) +DC0SPS(T) *n¥({1,1,2,7)
#NCOSPS (T) *DW (1,1,3,T) +COSPSI*DDF{1,1,3,T,J) +NDSIND(T,T)*
§(1,2,3) +0SINDS(T)*d#(1,2,2,T) +0STI¥PS(J) *D7(1,2,3,I) +5IYPSTx
nw(1,2,3,7T,7)

DP9 (2,2,3,7,7) = -DDSIND(T,J)*3(1,1,3) -nSTUDPS(I)*nd[1,1,2,]7)
-n5TNDS (J) %09 (1,1,3,T) =-SINDST#n0%(1,1,3,T,T) +DDCOSP(T,T)*
9(1,2,3) +D00SOS(I)*DW(1,2,3,T) #DTOSPS (J) *NF(1,2,3,I) +I05PSTx
nE(1,2,3,T,T)

now(2,3,3,7,3) = DDW(1,3,3,T,J)

DDR3I(T,T) = 0.0

DO 5N L = 1,2

DN 40 L1 =
ny 30 L2
DDeP33(T,J "DE33(I,J) +PT(L,L1,L2)*( DOW(L,L1,3,T,J)*
A(L,L2,3) +"¥(L,L1,3,T)*nPA(L,L2,3,T) #9¥{L,L1,7,7}=
DW(L,L2,3,T) +W(L,L1,3)*nDW(L,L2,3,T,T) }/2.0
CONTINU®
CONTINGS

CONTTNUE

DNRIB(T,T) = DIA(1)*DNH(1,1,3,T,T1 /2.0

DDFE35(T,J) = DTH(2)*0D¥(2,1,3,7,7) /2.0

nR®(1,1,71,J) 2.0

POP(1,2,T,7) = 0.0

DR (2,1,I,J) = -FO2%¥NNSIND (T,J)

DD®(2,2,T,T) FN2%DDTOSP (T, )

DYTHG (T, T} = =( DDII(T,J) =PYT (4) **2 +2.0%({ DE(3,3,T) *pqr (4) *
NPHT (4, 7) +DDE3B (T, T)*PHT(4) +DF (3, 4,T)y%*D2UT (4, T) +DD™3S (T, J)*
DAY (4) *ALDHA (B) +DB(3,5,T)*{ DPYT (4,T) *ALPHA(4) +PHT (4) *
NALPHA (4, 1) ) ) )

"o 190 L o= 1,2

DDA(L,T,J) = DDSAM(T,J)*( D1 +7(L,2) ) +DGAM(T)Y®DP(L,2,7)
#D3AM(T) %*DP(L,2,T) +CGAMEDDF(L,2,I,J) +DDGAMN(T,J)*7(L,3)

NDRC(L,T,J) = DDSAYM(T,J)%( 9 *+P(L,3) ) +DGAY(T)%DE(I) +D3AM{J)
ADH (T} +GAMEDDH(T,J) =-DDGAMN(I,J)*?(L,2) =-DGAMN(I)*
DFIL,2,7) =-DGAMN(T)%D?(L,2,I) -GAYN%DDF(L,2,7,J)

ann(L,T,J) = DDCOST(T,J)*RC{L) +DTOSTH(T) %*DBC(L,J) +DIDISTH(J) *
DBC(L,T) +ZOSTHR=DDRC(L,T,J) +DDSTHT (T,J) =P (L,1) +DSTNTH (T) %
DT(L,1,J) +DSTNTH(T)*DP(L,1,T) +STNTHF*HDP(L,1,T,7T)

DNT(L,T,T) = DDSINT™(T,J)*RC(L) #NSTNTH (T) *NBT (L, J) +DITH™H(J) «
DBZ (L, T) +STNTHEEDDBC(L,TI, ) =0DCHST(T,J)*F (L, 1) =-DIDSTPH(T) *
DT(L,1,J) -DCOSTH(J)*DP(L,1,T) -CNASTEIT4DD?(T,1,T,T)

NTTUY (T, TY) = DYTHELT,J) 4M{T)E([ =7 (4) %*NDOHT (4,3)*( DB(L, I}
SA(L)*PHI(T) ) =7 (%) £DAT (U)y*x{ DDS(L,T,T) -DA(L,J)*DHT (T}

SA(LYEDPHT{T,T) ) =2.0%DHT (4) #0047 (4, J) *( B (L) *D3(L,T) *+A(L)*

{ DA(L,T) #7(I) } ) =-PHI(4)=%2%( DR(L,T)4DB(L,T) +B(L)*

1.3
= 1,3
) =



POR(L,T,7) +DA(L,J) *( DA(L,T) +7(r . A26
RIS )x ( ) (T} ) +A (L) = DDA(L, T, )

100 oowrragg %
DOV(T,q) = 9.89% TN *ONC (1, T,3) +%(2) #Dnr
RETORY - | ,
END

I =

(2,7, )




