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SUPPLEMENTARY LIST OF SYMBOLS

Chapter I
Xg Ty 2 body fixed orthogonal axes
x', y'y, 2' spaée fixed orthogonal axes
T position vector
C.E. center of mass
dm particle of mass
w angular velocity vector
v velocity vector
h angular momentum vector
i, j, k unit vectors along the x, y,
z axes :
P product of inertia
i} moment of inertia
Chapter II
Subscript 1 front end of vehicle
Subseript 2 rear end of vehicle |
) angular velocity (general)
L) angular velocity of rotating
parts
¢ lean angle (see page 12)
p ad_
dt
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“5
Ky ---= K3,
Ay ---- Ay
E, ---- Ey
D
Cl e o= Ch

constant of proportionality
relating the damping moment on
the steering axis to the rate of
change of the front wheel angle

Chapter IV

constants derived in the alge-
braic reduction of the basiec
equations of motion, reduced
forms shown in Chapter V

Chapter V

temporary terms composing part
of the polynomial coefficients,
defined for convenience and
eliminated almost immediately

final coefficients of the
polynomial equation for use in
the computer solution

operator denoting the rate of
change with respect to time

integration constants for the
solution of the final equation

xi
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the fact that it has been handled with a great deal of
success by trial and error methods.

The work of Dohring‘l’is the most recent analytical
study in this field. Dohring used the bicycle equations
of Klein and Sommerfield(z)to study the stability of
three industrial models. Prior to this were analytical
papers by'Pearsa11(3)and Bower(“).

In addition to these investigations a paper by
Wallace(S)included an important study of motorcycle
geometry and the more recent works of Irving(6)and Wilson-
Jones(7)provide excellent general background along with

some limited experimental results.

(1) E. Dohring, "Stability of Single-Track Vehicles",
Forschung Ing. - Wes. 21, no. 2,50-62 (1955);
Translated by J. Lotsof for Cornell Aeronautical
Laboratory Inc.

(2) F. Klein and A. Sommerfield, The Theory of the
Gyroscope, Vol. IV, Technical Applications, Berlin
and Leipzig (1910).

(3) R. H. Pearsall, "The Stability of the Bicycle", Proc.
Inst. Automobile Eng., Vol. XVII, p. 395, (1922).

(4) George S. Bower, "Steering and Stability of Single
Track Vehicles", The Automobile Engineer, Vol. V,
p. 280-283, (1915).

(5) John Wallace, "The Super Sports Motorcycle," The
Institute of Automobile Engineers Proceedings,
XXIv, 161-231, (1929).

(6) P. E. Irving, Motorcycle Engineering, Temple Press,
London (19615.

(7) R. A. Wilson-Jones, "Steering and Stability of
Single-Track Vehicles", Instn. of Mech. Engrs.-
Proc.(Automobile Div,) pt. 4, p. 191-199, (1951).



The analysis here 1s based on the following as-
sumptions:

(1) the vehicle 1s riderless

(2) the wheels are thin discs which remain in
contact with the ground without slipping

(3) the operation is on a level surface

(4) the vehicle has no suspension system.

The general approach 1s to break the vehicle into
two systems with System 1 as the front wheel and steer-
ing forks and System 2 as the rear frame, rear wheel,
and engine. Then the equations of motion are written
using Eulers equations fo; a set of body fixed axes
selected at the center of gravity of each system. This
procedure yields twelve equaticns in terms of the three
basic variables (lean angle, front wheel angle, and rear
wheel speed), nine reaction forces, and three reaction
moments., The three remaining equations necessary for a
solution come from the following conditions:

(1) an equations relating the moment on the front
wheel resulting from the tangential ground forces
to the moment imposed on the front frame at the
wheel bearing.

(2) an equation describing the driving force on the
rear wheel as a function of the square of the
rear wheel speed.

(3) an equation describing the moment about the



steering fork axis as coulomb friction.

Then by algebraically eliminating the reaction terms
and restricting the analysis to small angles, the equations
are reduced to a system of two second order linear differ-
ential equations with constant coefficients.

In turn these equations are reduced to the two fourth
order differential equations which are the basis for the
stability study.
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First writing an expression for the velocity of the
mass particle o m with respect to the space fixed axes

(1.1) ¥ = T, , +©OXFT

where @ is the angular velocity vector of the rigid body.
Using this equation together with the position vector,
T, the angular momentum, §h, becomes
(1.2) §h = (r'+T) XVém
S @+ X (T, , +PXD

Since the choice 1is arbitrary, let the space fixed
axes be made to coincide instantaneously with the body
fixed axes at the center of gravity. With this choice,
Equation (1.2) simplifies to

(1.3) B = TX (T, ,+ DX T)dn

AW SE [ TAT g rTX @X D) 6n

The second term of Equation (1l.4) can be expanded by
an identity for the vector triple product.
(1.5) 1 = ['fxvc.g:;- T T (@)
-T -.(D(?)]Sm

Summing over the entire mass ylelds the angular mo-
mentum for the body with respect to the space fixed axes.
(1.6) h = }(Fxx‘rc.g.)ém-t-Zr? Bém |
-EF « D(T)dm

The first term in Equation (1.6) becomes zero by



virtue of the location of the origin. That is, for the
origin at the center of gravity E? dm=0., Then ex-
panding the remaining terms of Equation (1.6)
(1.7) B = Zx2+y +22) (W A+ W 1+ @08
"L (x e+ yWy + zw)(x1+ vi + zk)S m

where i, J, and k are unit vectors along the x, y, and

Z axXes.

Breaking these terms into scalar components and

collecting terms yields
(1.8) (a) hy, = } I: (y% + 22)Wx - xy &)

- xz W, csm

(b) [ @@ 2wy - aya,
- yz COZ dm

(¢) h,, =E[- (x2 +-Y2)wz, - xzWy
- ¥z wyj dm.

The summations contained in Equation (1.8). can be
recognized as the various moments and products of in-
ertia. Rewriting Equation (1.8) with the usual inertia
symbols and dropping the prime notation because of the

coincidence of the axes gives

(1.9) (a) hy = Ly c.) xz Wy
(b) hy - Iy&)y xya)x Pyza)z
(e) h, = 1,0, - Cdx Pyz' -



Momentum Rate Referred to Body Axes

Here, if the time rate of change of angular momentum
is established with the space fixed axes as a reference,
the inertia terms are variables because of the body ro-
tation. However, the inertlia terms can be made constants

by using the body fixed axes as a reference.

v

C.ge

a2 BB ]

z
Body Fixed Axes

Figure (1.2)

With this as the object consider the rigid body in
Figure (1.2). The body fixed axes rotate and translate
with the body and as shown previously Equation (1.9)
represents the angular momentum with respect to these
axes.

(1200 $8 = na+hyy+Rk+DXE

In Equation (1.10) the first three terms represent
the rate of change of the magnitude of the momentum com-
ponents and the last term represents the rate of change
caused by the rotation of the axes of reference. Expand-

ing the cross product of Equation (1.10) yields



(1.11) dh = ﬁx1+f1yj+fuzk + (@, - Wyho)d
+(a.)zhx -wxhz):l
+(Wyhy - Wghy)k.

ct

The components of Equation (1.11l) can then be equated
to the sum of the external moments about each of the body
fixed axes.

(1.12) (a) My = hy+ Wph, -Wh

(b) M, hy + W,h, -Wyh,
(c) M, h,+ Cdxhy - Wyhy

Angular Momentum of Rotating Parts

Since the motorcycle has rotating parts, the angular
momentum contribution of these parts must be added to
Equation (1.12). From the derivation it follows that
Equations (1.9) and (1.12) can be applied to a rotating
- part since it alone can be regarded as a rigid body. Us-
ing a prime notation to designate the rotating part and
{lto indicate its angular velocity, the final moment
equation becomes |

(1.13) (a) My = B+ Wphy, - L h +h'

(b) My = ho+ Wy - Wyh, +hy'
+‘n'zhx' "Q'xhz'
(c) My = hy+@Wihy - L) ohy+h,'



+ﬂxhy' - ﬂyhx'.

Acceleration Along Body Axes

In addition to this momentum equation an expression
for the acceleration of the center of gravity along the
body fixed axes is necessary. As in the case of the angu-
lar momentum vector the rate of change of the velocity
vector 1s due to both the change of thz magnitude and the

rotation of the axes.

(1.14) vV = Vst +-Vyj +V,k+ WXV
Again expanding the cross product and breaking
Equation (1.14) into its scalar components the acceler-
ation becomes
(1.15) (a) ay
(b) a
(c) a, Vot @V, - WV,

Vgt 4V, - Wyl
Vyt WyVy = WV,

and since these expressions represent the acceleration of
the center of gravity of the body the external force be-
comes

(1.16) (a) Fy = m(Vy+QV, -WV)
(b) Fy = m(vy+a)zvx-wxvz)
() Fp = mVr@Vy -V,

Equations (1.13) and (1.16) are the relationships
to be applied to the motoreycle in the following chapter.

10
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CHAPTER II
APPLICATION OF THE MOMENTUM AND ACCELERATION EQUATIONS

In this chapter Equation (1.12) and (1.16) are to be
applied to each of the two systems shown in Figure (2.1).
Henceforth the front end of the motorcycle will be re-
ferred to as System 1 and the rear end as System 2. The

subscripts 1 and 2 will correspond to these systems.

Definition of Axes

TheAaxes are as illustrated in Figure (2.1). The x4
axis is in the plane of symmetry and perpendicular to the
steering axis. The X, axis 1s in the plane of symmetry

and parallel to the ground when the motorcycle 1s in the
| upright position. The slight deviation from this parallel
position which results from lean angle is neglected. In
each system the origin is at the center of gravity and the

X-z plane is the plane of symmetry.

Effect of Symmetry

Assuming symmetry for both the x, z plane and the
rotating parts then ny = PYZ = hx' = hz' = hx' = hz. = 0.

For the rotating part the angular momentum term can



System Breakdown for Analysis

Figure 2.1

ct
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then be expressed as

(2l hy' = - I0L
where (L is the angular velocity of the wheel. Note that
In the case of System 2, I' is the effective inertia of
the rear wheel and engine combined.

Taking advantage of these simplifications and sub-
stituting Equation (1.9) into Equation (1.13) yields

(2.2) (a) M,

IyWy = Pyp Wy+1,0,0,

- sza)xwy - Iyo.)y(dz 4 I’.Q.G.)z
y 2

2 L ]

'Izwxwz+lazwx -1'a

(b)

=
[} ]

(c) M, =I,0,-P & +I W6

- Iy Wy Wy + Py, W0, - TNW,

Definition of Terms

The variables in Equations (1.16) and (2.2) must now
be evaluated in terms of the basic variables,©, ¢, and
). . These variables are respectively:

(1) the angle of lean,®, as indicated by a vector
along the x axis of System 2, with the upright
position as zero, and with counter clockwise
rotation as viewed from the rear as positive.

(2) the angle of front wheel rotation,®©, as indi-

cated by a vector along the steering axis, with



the straight ahead position as zero, and with
counter clockwise rotation as viewed from the
top as positive.
(3) the angular velocity,{l, of the wheel in
question. |
In addition to these, several other machine di-
mensions are necessary. They will be defined by the vari-

ous filgures as the evaluation of the terms proceeds.

Evaluation of Angular Velocity Terms

The vectors Vi and Vo in Figure (2.2) are in the
ground plane and represent the velocity of the front and
rear wheels respectively. The gquantity R, which can be
treated as a constant for ordinary values of ©, is the
distance between the points where the wheels make contact

with the ground.

.

Vo

Wheel Velocities in the Ground Plane
Figure (2.2)

14



With (1l as the angular velocity, r as the wheel

1) . -1 COS o¢
radius, and ¢ = tan COS  COL & -~ S1N§ SIN =<

as the angle between the two veloclity vectors, the follow-

ing relationships hold:
(2.3) V2 = Vl COSQ) = r2.0.2

-T2 1o
(2.5) ﬂ1 - ry cose *

These equations are based on the assumption that the
tires do not slip and remain in contact with the ground.

Using these relationships the angular velocity com-
ponents in Figure (2.3) can be evaluated. The term &)v
is the angular velocity of System 2 about a line perpen-

dicular to the ground.

Rear View of Left Hand Turn
Figure (2.3)

Vy sind 0y o4nyg o THfl
R cos ¥ R R

(2.6) W, =

(1) Wallace, p. 187.
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The components of&)V are
1'2 q)
(2.7) Wy = g5y tan ¥ sin ¢

T
(2.8) W, = - ﬁgﬂz tan® cos @ .

Thus for System 2
(2.9) (a) &)xz -9
(b) Wop =g~ Qp sind tan®

.':Ulw"i

]

(e¢) U)zz -ﬁgﬂecos(p tan @ .

By differentiation
(2.10) (a) Ly, = -0
. _ r2 5 -
(b) wy2 -5 [_O. 2(sin¢) sec“PY

+ cos ¢tan4’d>)+ﬂ2 sin® tan‘-l)J
r :
- I72-E72(cos ¢ secQCPCP

- sinlbtan(l)(i) ),+£12 cos § tan‘e{l

() L0,

These expressions for System 2 are used in calcu-

lating the angular velocities of System 1.

The components of the angular veloclities of System

2 which contribute to the angular velocities of System 1

are as follows:

the contributions told,, (O and &, are re-

spectively

(a) By Cc)xz

a)xz CcOS =< cos &



a)xz cose<sine&

a)x2 sine<

(b) By Coyz
= OJyz sin ©
+wy2 cos ©
zZero

(e) By W,,
- C:.)zz sinorcos©&
-wzz sin<sin®

4"(4)22 LCOS e .

Substituting the expressions for wx2’wy2’ and sz
into these terms and adding © to the z component gives
the angular velocitlies for System R |9

(2.11) (a) Wy

- cose< cos©-

T
- ﬁgﬂ? sin® tan® sin®&

A _;_2_0_2 cos P tan® sin cos©

(b) W - f_2_ﬂ_2 cos Ptan ¥ sin o¢ sine
yl R
+ %2_ Lo sinQ tan @ cos©
-Pcosetsine
" . T
(e wzl = -@sine - i—z'ﬂz cosd tan @ cose<

-&

By differentiation
(2.12) (a) ("")xl - - cosa([-&)sine'é'f' ¢ cosx?']

17



(b) wyl

(e)w zl

18

r, .
- 5 .(')_2 sin @ (tan® cos©-S

+sec2(4)(;> sin ©)
+ tan ¥ sine(ﬂ.2 cos@cb
+ f)_a sind))]

I'2 e
+§- sine< ﬂz cos P(~-tan® sine&

+ cosSsec2PY )
+ tan ¢ cos €« -.0.2 sin 4)4‘)
+ .O. ) cos(bﬂ

T .
ﬁg sinx[ﬂz cos P (tan@® cos©6&

+ sine'sec2<P4))
+ tan® sin 9(-—0.2 sin®9
54 ﬂ2 cos‘b):]

T, :
+ g= ’:02 sind (-tan P sin6-H

+ cos©secZPQ )

+ tan¥ cos & (L1, cos O

s Qz sin(b):l

- cos d(écoséé+(‘ﬁsine')

o T -
- sinec - §_2_ cose< [f-'lz cos O secy

+ tan ¥ ({1, sin¢43+ﬂ2 cos¢)]
-&
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" This accounts for all of the terms in Equation (2.2).

The velocity terms in Equation (1.16) must now be evalu-
ated.

Evaluation of Velocity Terms

The terms in Equation (1.16) are the scalar components
of velocity along axes which are space fixed coincident
with the body fixed axes.

Since the point of contact of the rear wheel has no
side component of velocity, the veloclty components can

be expressed as

(2.13) (a) Vo, * rgﬂz.
(b) Vy2 - h2¢ - a2(_.JV cos
. 0
Z - hy0- ______ang 2 tan¥ cos §
() Vo = -apW, sin®
a,Ty(l,

=5 tan® sin{

By differentiation
(2.14) (a) V

x2 1”.20-2

(b) V

- T .
v2 - h2<D - igﬁ-g-,:ﬂz(cos¢sec2@q’

- tan¥ sin ¢€i))+hg cos@tan%’:]

a,r .
20 - -—%—2- I:D.2(sin @seczv@

<o
i

(e)
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gl

':UIH

- = cos«{ﬂz(cos‘bseczipd)

- sin¢ tan‘#lb) +cos¢tan‘+’f.).2}
-é]

+hy [- cose-d(-(.psine—é-

+ & cos®)

s 12{_(12 sin G(tan cos & &
+ sinOsecZOP)

+ tan ¥ sin (0, b (i)-l—‘ sind)flg)g

T i
+R—_2' sinoe{ﬂa cos® (-tan9 sino©

+ coseseczqui’)
+tan ¥ cos ©(-{l, sin ¢d>
+cos<pﬂ 2)”

- siny
(¢) Vy,y = 1y sinoc[ﬂz cos@ T T osQ ]

my 2 -
4

nis completes the evaluation of all of the velocity

terms to be used in Equation (1.16). Equations (2.9) thru
(2.17) can now be substituted directly into Equations (1.16)
and (2.2). This step will be taken up in the next chapter.

‘The remainder of this chapter will be concerned with

developing the expressions for the external forces and
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moments for the two systems.

Summing External Forces

Figure (2.4) is a free body diagram showing the
external forces and moments acting on System 1. The
numerical subscripts 1, 2, and 3 deﬁote the forces ex-
erted by System 2 on System 1. The "a" subscript
denotes the drag force which 1s assumed to be in the
X, 2 plane and proportional to the square of the front
wheel speed. The "g" subscripts denote the ground
reaction forces acting on the point of contact. Note
“that these ground reaction forces are defined to always
be parallel to the previously chosen body-fixed axes.

By summing forces on the free body for System 1

rafla ,
(2.18) (a) Fxl Fl = Fgl - cl(cosq)) COS <

- mlgc cos Bsinec

(b) Fyy

(e) F

1l
=

1
=
0
~

zl 3 g3 = "1l'cos¥

o m)8, COS ABecos =<

The variable & 1s the angle between the vertical
and the plane of the front wheel ahd mathematically 1s

equal (2)1:0 sin~t [sinecos¢sino< +sinQcos 9].'

(2) Wallace, p. 188,
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The expressions for the external forces given in
Equations (2.18) and (2.21) are to be equated to the ex-
panded forms of Equation (1.16). This will be taken up
In Chapter III.

Shift of Front Wheel Contact Point

Before evaluating the external moments the variation
of the position of the front wheel point of contact as a
function of  and © should be mentioned. In general the
shift of the contact point is small and will be neg-
lected for reasonable values of { and € . However, it
should be pointed out that either large values of §,€,
and =< or low values of "1, - a;" (see Figure (2.1)) will
make this shift important.

The x, y, and z components of the shift of the point
of contact, as derived in the previously cited work of

. (3)
Wallace, are given in the foot notes Xl, Yl, and Zl.

(3) From Wallace, p. 186.
Xy = [sinaz(l ~ c0os©)][ry cos(<+ N - ]

Yy [sine- cose<sin @ (1 - cose)
- siné(1 - cos®)][ ry cosle+¥) - ¢]
Z1 = [coseccos® (1 - cos©)

+sin®sing ][r1 cosex+d) - e]
where e = offset of fork from the hub and

- -1 cos 9
I'= cot” sin«fcos= (1 - cos®) +sino-tang| ol d]
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Now substituting Equations (2.20) and (2.24) into
Equation (2.23) gives

(2.25) (a) M, = Fgshy + (F) sin®- F

- cose')d2

2
- (M3 sinec - Ml cos©cos =<

- M, sin©cos ol )

(b) M j=

- Fg6a2 - (Fl covsesind

+ Fy sin©sine< - F3 cos=—<)12
+ (F2 sin6-005o<+F3 sin o<

+ Fq cosBcos a<)d2 - M; sin©-

+ M, cos€

(e) M, ngaz - (M cosVsine<
+ M, sinf}sina44'M3 COS < )

-+-(F1 sin® - F cos£9)12

2
This completes the expressions for the external
moments. _
Using the expressions developed in this chapter,
Equations (1.16) and (2.2) can be expanded for each |
system to yleld twelve independent equations in terms of

the fifteen time varying quantities; Fqi, F2, F3, Fgl’

28
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CHAPTER III
THE LINEARIZED EQUATIONS OF MOTION

A considerable reduction in algebraic manipulation
can he effected by linearizing the velocity and angular
velocity expressions before actually substituting them
into Equations (1.16) and (2.2). Consequently the ma-
terial in this chapter is in order;

(1) the linearization of the velocity and angular

velocity expressions developed in Chapter II,
(2) the substitution of these linearized expressions

into Equations (1.16) and (2.2) to form the

basic 12 equations in terms of 15 variables

(3) the formation of the 3 additional equations

necessary for a solution.

Approximations Used for Linearizing Equations

The following approximations are used in linearizing
the equations:

¢, sine =€,

b<<1,©<<1,0=0, sin b

cosP =1, cosE =1, tan? =¥

. r
Y I €cos o, r—;—ﬂl =4, 2L, sinBZBsinx+0¢ ,

Bz=6sin<+® , cos BT 1
0 Oz00-00-06-0 6=

©cos o<,

30



In view of these restrictions, some discussion con-
cerning the practical significance of the solutions 1is
in order. However, since this discussion bears directly
on the results, it will be delayed until Chapter VI.
Suffice 1t to say here, that the use of these approxi-
mations restricts the solutions to constant vehicle speeds

in the neighborhood of the upright equilibrium position.

Linearized Velocity and Angular Velocity Expressions

Using approximations defined above, the terms derived

in Chapter II can be simplified to the following:

(3.1) (a) Wxp = =0
(b) wyg <0
" #g
(e) a)z2 - -F5 cos=< {16
(3.2) (a) L:sz - -&S
() W, = 0
- y2 _ r2 #
(e) L:Jzz = = ﬁ—ﬂecos«

. T
-Pcos< + ﬁgﬂesin < COS o¢

(3'3) (a) wJ(l

. . = '
(¢) W,y -Psine - R—z_().écosad o= i

& r )
- cosex< + ﬁ—g-ﬂe-sin =< cos =

(3.4) (a) Wy,

il
o

(0) Wy

L. 4



, (e) W, q

(3.5) (a)
(v)
(e)
(3.6) (a)
(b)
(c)
(3:7) (a)

(b)

(c)
(3.8) (a)

(b)

@n 1'2 . 2 e
-Psino< - (1€ cos® -©&

ToLl

- h2d> - a§r2ﬂ6'cosc’<
0

0

. anT .
& hzd) “ —%—gﬂecosfx

0
reﬂ-cosae

: 2 06 ans2ct &
ay @ sin< + 7 {1 cos=(

h- <206

- hl cos«[ o sinx]
r2ﬂ.sino<
0

. r, . 5 .
a1[¢ sin o¢ + h—-—ﬂ.ecos o<+e—J

.7 )
- by cosot[d)- ﬁgﬂ.e sina]

All products of the angular velocity combinations

which appear in Equation (2.2) are secondary terms hence

- - - bR
(309) (a) wxlwyl = &)yl Ldzl - &)xlwzl - &)

x1
2 a

32



w W W W W
(b) x2 wyz y2 z2 x2 z2
_a)xz -a)y2 -u)zz = 0

The following products of velocity and angular
velocity which appear in Equation (1.16) are secondary

terms hence

(3.10) (a) uuyl vzl s a)zl vy1 cdxl vyl-

Doy ¥y -

(b) wy.? VzZ - wz2 Vy2 - wx2 Vy2

Wyo Vo =0

Wyo Vyo

Using the expreésions derived in this chapter,
Equations (1.16) and (2.2) can now be expanded for both
systems.

(3.11) (a) F, = 0

. T . ..
(b) Fyl - my [a1(¢ sine<+ ﬁg.ﬂ.e'cosex +€)
5o T s
- hy cos <(P - ﬁgﬂe sine<)
. T 5
- (§ sin<+ g=NEcos%<
+é)(r2ﬂ cos =)
+ (d’ cos &4
)
- g 1©sin < cos ) (5 Lsin <)
i T .
= m [al(d) sin <+ ﬁgﬂe COS X

-
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oo o .
(3.14) (a) My, 1,0 +P, . 7208 cos

X
Iéﬂ ﬁ—ﬂé COSex<

(b) Moo

(e¢) M

206 + P 0
22 T "z2 R REEe x2z2

+Iéﬂtb

The expressions for the external forces and moments
derived in Chapter II can now be linearized and equated
to Equations (3.11) thru (3.14) as follows:

2
(3.15) Fxl Fl - Fgl - °1(r2ﬂ) COS

- Mg, sine< - 0

(3.16) Fyl Fy - ng - mlgc(esinc«+¢ )

e T . .-
my [al( O sin < + ﬁ—‘?-ﬂe cose<+ )

o r .
- hy cose<( P - ﬁg-ﬂe‘ sine< )

2
(s L )
- _g_R—_ © cos < - I'QQ-GCOSG(]

(3.17) le - F3 - Fg3 - cl(reﬂ)2 sin o<
tmyg, cos< - 0
(3.18) Feo = th - F3 sinec - Fy cos=<
- Fy,0coser - 02(1‘2_(1)2 =0
(3.19) Fyo E Fg5+ F16-F, - mg, 0

35
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e a r 'A
S - my [h2¢+ —g—zﬂe COS o

2
(rzﬂ)

+ —-———-—Gcoso(]

R

(3.20) F22 LOY- S Fg6 + Fl sin.e< + er-sinc«

-F3 cos <=0

(3.21) MX]. nghl - M1+F2d1 = le(-(Pcosa(

T .
2 .
+ ﬁ-ﬂesind cos o< )+ szl(4> sin o<

1‘2 . 2 e r2 .
+ =£00cos=*+€) - I ==(L(P sin=<
R i Ty

T, sl
+ g {1Bcos<+€)

+ cl(rzﬂ)z(bl - h) cose<) =0

(3.23) M, = Fg2a1+ My +Foly = - Izl(¢sin¢—<

h g . Y .
+ g206ros2et 8) + Py ( cos

| D
- 'ﬁ-ﬂesino( COS=< )

T .
+ 14 r—i—ﬂ( ® cos<

r
- R—QQG sin o< cos =<)

(3.24) My, Fgghp + F1dy@ =~ Fody - My sine<.

+M; cose< + My©Ocos=< = - IxQ&’
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T .
2
+ Py ﬁ—(1€>c05c4

N6 cos o<

w'“;i

- 13
(3.25) My, = Fgyhp+ep(by - hy)(rp0)2 - Fyeay
- (Fy sinec+Fy9sinoec - Fq cos=<)1,
4—(F2€}cose<4-F3 sinec + F; cos=<)d,

- M1€*+'Mé =0

(3.26) MzZ ngag - Ml sin o< -~ M2€}sine4

- M3 cose< + (Flé*- F2)12

T . )
el PPy
- I, g Q6coses + Px22¢+1éﬂ®

Equations (3.15) thru (3.26) now form a system of
twelve independent equations in terms of the fifteen time
varying quantities F;, Fp, F3y Fgi1, Foo, Fg3, Fgu, Fg5
My, Mo, M3,<P,€}, and{) ., Conditions relating Fgl’ Fg3,
th, and £ must be imposed now to set up the three

additional equations necessary for solution.

Three Additional Equations

The first condition is based on a description of the
driving force applied at the rear wheel. This force

ordinarily oscillates slightly about a mean value because
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of the nature of the torque output of reciprocating
engines. However, since the variation is small and the
frequency is high, this force will hte treated as a
constant for the constant speed solutions. By summing
the external forces on the motorcycle
(3.27) th ey = Fg3 sin°(4—Fg1 COS=<
+ ey (r, )% ey(r, 21 )2

The second condition relates the first two terms of
Equation (3.27) to the ground forces tangent to the
front wheel. In the absence of acceleration the moment
generated by these forces about the front wheel hub must
be in equilibrium with the moment caused by the fraction-
al part of the toté&l drag force acting on the front
wheel alone (F)) and the moment (M) transmitted to the
wheel through the front wheel bearing. In practice the
sum "Fé ri+ MM will generally be small, These two terms

are lumped together in this analysis and assumed to be

directly proportional to the product of the front wheel
radius and the motorcycle speed. Using c3 as this
constant of proportionality the moment equation about
the front wheel hub can be written by reference to
Figure (3.1) as

(3.28) Fg3r1 sin=<4-Fglrl COSo< = c3r1(r2I2)

~Cancelling T

(3.29) Fg3 sine< + Fgl COSed = c3r2§1



\\

Moment About the Front Wheel Hub

Figure (3.1)
Substituting Equation (3.29) into Equation (3.27)
gives

(3.30) th = ey B c3r2£1-+(c1 +-02)(r251)2

Equation (3.30) combines both Equation (3.27) and
Equation (3.29) thus it eliminates both th and {1 as time
variables.

The third condition is a description of the moment
M3 imposed by System 2 on System 1. Note that here a
rider or servo input could be included, but for the
solutions formed here My is assumed to be entirely a
result of coulomb damping.
Using Cg as the constant of proportionality

(3.31) ¥y = cs @

Equations (3.15) thru (3.26) together with Equations
(3.30) and (3.31) constitute the complete equations of

39
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CHAPTER IV

ALGEBRA OF REDUCTION TO TWO VARIABLES

The material in this Chapter consists entirely of

the algebraic elimination of Fl’ F2, F3, Fgl’ Fg2, Fg3,

ng, Fg6’ M; and My. The two terms th and M3 are

carried forward to Chapter V to make it easier to change

the nature of the road load and to allow for the possi-

bility of a rider input in later solutions. In a few

instances secondary terms appear and are immediately

cancelled, otherwise the procedure is one of straight-

forward substitution.

Equations (3.15) thru (3.26) can be rewritten in

order as

(4.1)

(4.2)

(4.3)

(4.k)

- 2
Fgl = F - cl(rzﬂ) cos =< - myg, sine=<

ng = F, - mig, sin < © - m g, ¢

8.1 COS =<

- (al sine< ~ hy cosoz)mlép -[ R

hl sin o¢ . .
+ =g -1|mr, coso< {18 - mlale
El(rt?.lﬂ)%os o B

* R

- 2
Fg3 = F3 - cl(rg.ﬂ.) sinec + m, 8, COS =<
F3 sin =< = th - Fj cos o< - F, cos=c&

- 02(1'20.)2

41



(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

mohy

i m2a2r21.0. COS o< &

b 2 Fyy - PO+ Fy v myg, 0
mz(r2ﬂ)2cos.><9

Fo6
o F3

¥

= Po
+ Py

i

B e

R . R
myg, + F1 sine< + F2 sin-<-6

coSs o<
= Fg2h1+ F2d1 + (le cos o<
51 Sin <) - I [(le sin o<

B

T2 .
cos o< o )
z1 €08 =<)=FR " T ]rzﬂg Pyg1

Iir, L1 8in o« d) & Ii(r2_n.)29-

Fydy

+c1

rl r1R

Fpsay = Fghy = My = F3ly

(b - hy cos o()(l‘2.ﬂ-)2

Izle' - Fg2a1 - M3 - (Izl sine<

_Px

+Px

ity

21 cos <)¢ - (Izl cos o<

Ty L cos —c®
;1 Sin o< ) |

L1cos o< 4) Ii(raﬂ-)zsinozcos.ze-

2

+ 1

-F2

R r1R

1,

nghz = M3 sin e< - Ml COS =< = M2 COS°('6'

P
XZ
+ F 4, - Ix2¢ - F d29‘+

1
13

oTp (L cose< &

1
r2ﬂ2cos ot &

R
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(b.11) My = - Fahy - co(bp = hp)(rp D2+ Fygar
+ F112 sin o¢ + F212 sincec © - 1“312 COS8 =<

- Fd, cog=<®© - F.d, sinoec - F.d, cos =<

32 12
+ My €
(4.12) Fply = = Py,o® - T30 +Fysay - My sinec
- M, sin <& - My coses + F1, &

Iz2r2 {l cOS oc©
R

Eliminating Equation (4.6) by substituting it into
Equation (4.11)

. 2
(4.11 a) M, = - TF,hy = cy(by - hy)(ry 1)

+ Myg L8, +(a2 sino¢ + 1, sine<
- d, cos ac)(Fl + F26-) - (a2 COS o<
+ 1, cose< + d, sinod)F3 +M19'

Eliminating Equation (4.10) by substituting it into
Equations (4.5) and (4.12)

<
(4.5 a) m2h2® b= HE (M3 gsin o¢ =~ M1 COS o<

” P

. T ,(1 COS“'é‘
- <© . —xz2 2
M2 cos _ Ix2¢7 -

R

I3r, N2 po5ec© d, '

43



my8,T 5 (L cos &

mchdP - 3
i m2(r2 () )cos =< ©
R
= . s SIN &
- 2
a, COS <
- cos ::-!)M3 - (--—h-z—— + sin-c)(Ml-t- Mge-)
ad a I, 0 a,d
i _22 2 x2 2 2
' _[)_2
+sz2 or .ﬂ.cose(e ) 121512,r2 COS o< &
th th
L z2r2ﬂ0050('9'
R

Eliminating Equation (4.3) by substituting it into
Equation (4.8)

(4.8 a) Fqdy = (a; - 1;)F3+ a3(-cy(rpll )2sin o
+ m g, COS o) - Fglhl - My + cl(rgﬂ.)z(bl
- by coso<)

Eliminating Equation (4.1) by substituting it into
Equation (4.8 a)

(L|' .8 b) Fldl - (al - 11)F3 -+ al [‘cl(rz -()- )2Sin°4
+ m g, cos.,(] - hy [Fl - cl(r2ﬂ )2c0594
- mg, sine< :l - M, + cl(r2 -(7.)2(‘131

- hy cos =<¢)

Ll
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Eliminating Equation (4.2) by substituting it into
Equations (4.7) and (4.9)

(4.7 a) My = (hy+dq)Fp + by [- mge Sin <&

- mlgc¢ - (a1 sin e« - hy cos < )m]_@

8, COS o<¢ h., sin o<

o St 4+ -1 R - 1)m1r2ﬂc05od-é

. M coS ec (T n)°e
- ma, &4+ _—2 + (I cose<
f St R x1

- P, sine<)¢ - [(le sin o<
1

I .
cose< _ 1 _
* szl cos o<) R rl] r2ﬂ9 szle

I'r, () sinec I'(r, Q )2cos?uc e
+ 12 + L2
T, rlR

(4.9 a) Izlé = (a:L - 11)F2 + 8, [- Mg, Sinoce

- mg, ® - (a; sine< - by cos =< )m, ¢

a4 COS o< h1 sin e«

- (——-——'-R s e ep—— & 1)m1r2-0- COSac &
. My COS e (TrN)20
- b4 1 2 -
mla1 -+ R ] M3

- (I, sine¢ = Py, cos=<)P - (I, cosec

T, N CoS o< &
R

+ szl sine< )

& Iirzﬂ cos o< P Ij_(r2 0 )2sin°( COSo< &
r1~ - I'li

Eliminating Equation (4.7 a) by substituting it into
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Equations (4.11 a), (4.12 a) and (4.5 a)
& 2
+ myang, + (as sinec + 1y sin =<
- d, cos <><)F1 + (a2 sine< + 1, sin o<
- d, cos o<+ hy + dl)F29 - (ay cos <
+ 1, cose< +d, sin od)F3

- o . 2 an sin o«

and a~ COS o<
2 2 2
- cOS o<)My + < - (
3 hy h,

ay COS o<
+ sin 04)(h1+d1)F2 - (—'—5‘2—'—

+ sin 04){111 I:- LY sin e« - mlgc(p

(ay sin =« - hy cos =< Jm P

a9 COS o< hq sino< .
¥ ('LT—"'"‘ -"l—ﬁ"'""' = l)mlrzﬂcos.,ze

) ml(rzﬂ. )zcos ol S

o

CoSs =<
(I, sine< + P, 4 cos <) R

I €O0S o<~ Pyoq sin <)}

1

(

I . Iir, {) sin =< d)
oo 1 2

] r,1€ - P .6+ -

1
o

7

1
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2
. Ii(rzﬂl‘cos

2969} 8, COS of
- (

rlR ) h2
asIl .~ ¢ a,d
2-x2 2 2
. kN
- F}_g2a2r2‘(i COS o< © _ o azrzi).-cosue-
h~R 2 h2R

2
I,,Tp {) cos oy
t TR

M, sin o<
e, Bsosiose - (h,+ d )_Q_O_S__o_é__
R D

(4.5 D) mphy 6 = S

d2 hl COS o<
(1 + -1,—15) F, - —FQ———- - M8, sin occ &

“‘18c¢ - (al sin o< - h1 cos gz)mlif)

a; €OS o< h, sine< .
- ( R + " - l)mlrzﬂcosoze-
5 ml(r2 [} )zcos Y-S
= BBy & == R

d ow

'g?'f'l;——{(lxl cose< - P, sine< )¢
: coSs o<

- [(le sin .4+-sz1 COS of¢ )_}'T——

: . Iir, (1L sine« CD

I
T "
—ﬁ—-] rzﬂ‘e' - szl‘e'-f- rl

Ii(rzﬂ)acoszo.ge 1( " -
+ ——‘riﬁ +-h—2- - M, cos <



P, ,oTo(lcos oe & Iér O*cos <o

"Ix2m+ R - " R

d m.a~r~{lcos o< &
2 22" 2
- R rme,d - EE

2
i m‘?(rJ2 L) )%coSs oc ©

R

Eliminating Equation (4.11 b) by substituting it into
Equations (4.5 b), (4.8 b), and (4.12 b)

- M, sin o<¢ (h, + d,)cos o<
- 3 il 1

d, :, mh,g, sin —<cos .< B2
2

mhyg, cOS o< O N myhia, sin e cos=< ¢

mlhlzcoséx ¢ 1hlalr 0 cosd oc &

h, - h2R

m1h12r2 ) sin =< coslec &

hoR

_nl;her 0 cos?ac & N mya,hy COS o¢ &
h hy

v S
mlhl(r2 {1 )%cos® oc €&

hoR

cos o< . -
- =g, [ Iy COSec $ = P o sinecd

It fe) s_in =< ¢OS o< &
- R

18
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- d2 cos e-<)F19 - (a2 cose< +1, COS=¢
+ d, sin o< )F. 6 _12__15_2___ + (1
2 3 h2 2

i a2d2)F . szzazrg‘ﬂ. COS o< &
by 'F1 R R

{}cosade ) Iz2r2'()' co8 << €

Factoring F; from Equation (4.8 c) and F, from Equation
(4,12 ¢) gives

(4.8 d) Fy(ap sineec + 15 sine<=- dy coSe< + by
+dy) = (a3 = 1y +ap cose< + 1,5 cose<
+d, sin o()F3 - (a, sine<+1, sine<
- d, cosec + hi + dl)er- - aicl(r2ﬂ)251nad
+mg.a, cose< + clhl(rz.(l)2c09o<

2

- 2 - h.
m,g.a, + cl(ra.ﬂ.) (bl h, cos =<)

i a2d2 85 COS o<
(4,12 4) F2{12 - —h—z_ - ('-—"—H-é———-— + sin o< )(hl
TN - . . a5 sine
+dq) } = =P b - I300+( i
B 8, COS o<

- cos ,4)M3 - R

+ sin <) [- mlgchl sine< ©- - my gohy ¢



. 5 .
- mya;h, sin o ® + my hy cos<® - (

h. sin o<

1 -
+ T 1)mlh

12

2
- mlhl cosoa(r2.0.) £

a; CoSe<
R

r.{l cos==<€ - m.a h &

2 i b

= k) cos =< §

lerz {1l sine< cose<¢ -

_ szlrz QCOSzo-d 'é’ M
R I‘l

Iirzﬂ.e-

= sz.lG

+ +

I]'_r2 (L sinoec ¢ Ii(rgﬂ.)zcosZaze ]

Tq rlR

+ |1 - zslzd2 . (32 COS o<
h, hy

+Siﬂa~6)(&2 sinec + 1, sin o<

COS o<

B

2
+ sin e(.)(a2 COS ¢ +12 COS o<

a, COS o<
h

+d, sinol-)F3€' - ( .

+ sine<c ) l:- thhZG - e5(r, Q2 )2(b2 - hy)e

sz2a2r2 €l coSec ©

+ ngcaze-:, + th

I'a v ()L COS w¢ € I r O cosSecd
22 2

N s

h2R R

R
e

h2
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For convenience in writing, some definitions are made

at this point. 1In a few instances the constants defined

here and on the following pages can be conveniently modi-

fied or else eliminated entirely; hence the final forms

used for the computer solution will be given at the be-

ginning of Chapter V.

an2 85 COS o<
1, - By " ( B + sinoc)(h1+ dl)

an sin =< 4—12 sin o< - d2 COS =< +h1+dl

aq --11+a2 cos«x+12 COS =< + d2 sin =<

COS od
sin o<

Ky - dy
&
5—2- CoSe< + sine<

COS o<
Ky + Ky sin

not defined
ayd,
[12 - -—h—2—- - Ké(a2 sinec + 12 sin e«
- d2 cosx)] - K6 [32 cqso4 + 1o cos <
T ebme
+d2 sine<:| - e }

(a2 cose¢ + 1, cos=< + dy sine<)

(a2 8in ot + 12 sin o< - d2 cos o< )



Ky

[(h1+ Ellcos ol i ) :i-g
h, hy

Eliminating Equation (4.4) by substituting it into
Equations (4.5 ¢), (4.8 d), and (4.12 d) gives

e

hy hy

.. M, sin o< m.g h, sin o< cose=<®©
(4.5 @) myh,® = 2 po—tnd -

- myg,hy cosecd .,_mlaltll sino<cosoc §
hs h,
2 2§ h QL 3.,4-9'
i ﬂhl cosec¢ L m hja;ry{lcos
h2 h2R

2.5 2 ,
o mlhfZQ sin =< cos< & i mlhlrzﬂcos < &
Rk h,

~ 2 2
© e
mlalhl COS o . mlhl(rZQ) CcoS o<

B3 high

+

. _____ng l:le cose< § - Py,q sinec @

) o
i ler2 Q) sin o< coS<c© ) szlrzﬂcos o B
R R

. Iirzfl sine< ¢

I'r, Q6 N
i . 5 -

rl Xzl rl

+ 2102

T 1R

Iz Q)zcoszoee

+_]-[F h cose<c©

2
+ c2(r2ﬂ) (b, = hy)cosec& - myg.a, COSE

. y &
szzrzﬂcos«.& Izr%ﬂ. COS=c¢ &

o L i - 2

Sk
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- coSs oz)M3 - Ké[ - mlgchl sinec ©

mlgchld) - mah sine< )

.. in o<
5 a, COS o< hl s
+ m h7 cos =< P < - + R

4 L &
l)mlhlrzﬂ CoS o< ©& mlalhl

m, h.(r,.0))%cosoc &

i b
+ R + le cos o< ¢
. I 175 () sin oc¢ COS<c &
x1* 2
- Py,1 sinec ¢ - A= T
2 . .
szlrQQcos o © . Iir, NG 5 B
- R . Ty T Yxzl
' i ' 2 2
. Ilrzﬂsinoc [} \ Il(rzﬂ.):os ol O

K¢K
v |:Fg\+ = °2(r20)2}9 ¥ %% [thhz

2
+c2(r2ﬂ) (b2 - h2) - ngcag]e

Pypo8oTs Qcos < & Iasrs (')."cos o &
h2R - h2R
R h2

Cancelling the higher order terms, Equations (4.8 e) and
(4.12 e) can be substituted into Equations (4.5 d) and
(4.9 a) to give

56



27

. M, sine.c K K K.F, A€
= 3 10 3 gl
(Ll'os e) m2h2® - h2 - Kl {Kg [Sin“
K.c.(r ﬂ)26-
- jsin i - clal(r2Q)2sin <€

m g8, cos=<6& + clhl(rzﬂ)zcosde
+ mlgchl sin<© + thh26
+ cpy(r,01)2(b, = hy)® - myg a,&

+ ¢9(r,0)%(by - hy cos < )e} - 1300

8, Sinec M
+ = 3 - COS o< M
i, g

+ Kg I: mg.hy sinec® + myg h, ¢

. ) 5 -
+ alhlm1 sinec mlhl cos o< 9
2  ; 2 2
2 mlalhlrzﬂcos o< & N mlhlr2ﬂ sin o< cose<©
R R
m.h,(r ﬂ)zcosxe -
L1x-2° _
- R le cos =< 4)
o I_.r~-(sin o< cOSec &
+ X1 2 _
+ szl sine»cq> "
2 : ! -

R ry Xzl
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_I‘ireﬂsin "’ ¢ i Ii(rgﬂ. )2c05%.< &
Ty . rlR
& 2o
KlOth ) KlOC?_(rZQ) o
+
sin < sin =< 2 gh

1
2 = - &
c2(r2ﬂ) (b2 h2) mg .8, _l

. 2
Px22a2r2ﬂcos - E ) Iéa2r2ﬂcos=.<9

hoR Hplt

I,oT5{) cos=<© i azlxgd) E

R ho

mlgch1 sin «< cos < & 5 m, g, h, cos < ®

h h

2 2
e 2 e
ﬂalhl sin o< cos o< § i mli cos =<
h, h,
3 .
Eflhlrzﬂcos < &
hoR
m h2r Q1sin e-ccoszocé-
11 2
h2R
2 2 &
mlhﬁ-zﬂcos o< & 2 mlzalh1 COS o<
h2 h2
ﬁhl(igﬂ)zcoszace ) Ieq C08%< 43
hok hy
szl sin o< cose<
h,

lerzﬂ $in o< COS2c &
hoR




N R N o cosdc & I'r. 06

_ 4%
th h2r1
N Py, COSe< o ) Iir2ﬂ sin =< cos—< @
h2 h2r1
Ii(rzﬂ)2c053,ce o
- —— + F COS§ o<
h,r,R ght
2
= <
. cz(rzﬂ) (b2 h2)cos -
ho
N .
) m,g.a, COS o< i Ix2 ()
h2 h2
H 2
i & 'r Q) <
, szzr2 COS =< ) 121'2 COS o<
h2R h2R
&
e o = m2a2r20 CcoS =<
2%c R
2
i m2(r2ﬂ) CcOSs o< & i K,,cos 1
R h
2
2
N dp N Kyjpcos®ee [ 1 K3Fgl+e
h h, sinec K sin «<
2 2 L
Kyeq(rp,01)2%0 a2
= T sin o< - cy8y(1,8)"sin<€

G+ (50 1 ©
+m g a cose< clhl(r2 )cose<

+ 1c® + F , h &
mlgch sinoc gl

| 2

2
+ c2(r2f).) (b2 = h2)9 - mg.a,&

59



SR &
+ ¢, (r,0)%(b, - by cos =< ) ]

2
. Klocos o(Fg)_’ & i Klocos - c2(r2(1) -

h2 sin =< h2 sin =<
- a. - 1 K F ,K.©
1.6 = 1 1! 9 -4
zl Kl KL' sin =<
K.c.(r,1)%
~ %:mz.,c = clal(rzﬂ)asm“e

+ myg,8 cos <G -+ clhl(rzﬂ)zcos o< ©

+ mg.hy sineco + thhze -4-c2b2(1'2.0.)2e

- eohy(ry 1)%0 - myg 8, & +eby(r,0)20
- clhl(rzﬂ)2coso<9:l - szzd? - Iéﬂ(b

8, sin =<
< | R - COS o< )M3
ety

o

+ Kg [mlgc:h1 sin<®& + mlgchlq)

. 5 "
4+ mah sin e« ® -~ mh
1%1™ llcosoc¢

2 5
N m1a1h1r2ﬂ COS < 6
R
mlhi rzﬂ sin o< cosocé .
+ = R - mlhlrzﬂ cose<©E
i mlhl(rzf).)zcos..cze-
+ m1a1h19 - ~R

- Ix1 cose< O + Pyxz1 sinoéclﬁ
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Py,Tp O §in o< cose< e
- R

I'r ﬂ.cosocd) I(r_ O )2sin°<cos°ze
I - i

] 5]

R

Collecting terms in Equations (4.5 e) and (4.9 b)

. K. AP K..-K
(4.5 £) Q){mzh2 - 112{ Xz2 +-%i 6 [mlalhl sin.c
1

2
- mlhl COS =< = le COS o< + szl sind:]

K12 a21x2 mlalh1 sin o< cos =<

Ky h, h,
2 2
. mlhl COSSoc N le coOS° _« ) szl sine<coso<
h, hy h,
I - S P e RS P i 951
h2 Kl Kl

K K.K K-h KooK
<2 | - 293 - E 2 _ 1076
* the { K K, sine< L sine<
K COSe< K
10 1 %
- Kéhzj]""COS" + B Sin o2 -K:[ Sin o<
K d2 da 4 K3K10 cos“ ¢
sine< 2 h, sine o<

2

n




KlO c052,4 K3K11 COS o¢
£ sin o< + h -+ KllCOS o<

o sin o<

K K.c
+9(rﬂ)2{—%§% [ E%l%d—"'clal sin o<

clhl COS =< = 02(b2 - h,)

2
K, ,K-~K,C
127107672
- cl(bl - hl cos =< ) |+ K sine<
2
N ﬁlal Sin .¢ CcOS o< ) Kllhl coSac
h h
2 2

) Kll(bl - h1 COS o< )COS o< K3

h2 o sine<

+ a; sine< - h1 COS =< - (bl - h1 COS =< )

K3d2 a1d2 sin o« hld2 COS o<

+

2

d2(b1 - h. cos =<) COS e

1 o K3K10 "
h2 h2 sinc€ o<

K 2 K _h 3
+—1108.1 COS* ¢ _ 10 1 COSY o<

h2 h2 sin e«

Klo 005204 (bg - by cos <)
- h, sin =<

s [wz - npSgEst



) Kiq cosoc(b2 - h2) . (b, - h,)
2
= d2(b2-- h2) _ ﬁo(bg - h2)COS <
B, hioK), in =<

K COS =<
- h sin°¢

- h, sine<)
e 5 s il |
+ -ch{ 1[

K Ky

|

hl sin e< CcOS =<

) K_12K6El sin o< !

Kl h2
1 ; Kllal cosz.,z. Kllhl sin e< cos=<
+ e - e P e
a-.-d, CoS =<
- a, cos =< - h sinoc--l—i—-——-—
1 1 h2
<
i h1d2 sin =< ) 10 ly @ cos
h2 h2 BN o
5 -
K., h, cos.c K K
_ 10 ] )J + m.a 12 9
“hy 272 | KJK,
+ K10%g _gose< Ty, B08 es 5 Lo

2
i d2 +El0 COS% e

! 1
+0 1212 P - - Bten
| " PHLRT

1
) Ilr2 sin =< cose< + d)g ) .I.(12K6m1_11]_.
h2r1 c Kl
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Defining new constants for convenience 1n writing,
Equations (4.5 f) and (4.9 c) can be written

£ K289-+ K29_n_¢ + K3O¢ + K310.9 + K32ﬂ.9'

where the constants are defined as follows:
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The geometrical relationships below can be used to

somewhat reduce the 32 constants defined in this Chapter.
(4.13) R = (a; - 1;)cosec + 8y + 1y +(hy+d,)sin=

(4.14) h, + d2 = (h1+-dl)c05a< - (a1 - ll)sin=¢

The reduced forms are listed at the beginning of
Chapter V.
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CHAPTER V

SOLUTION OF THE £QUATIONS

The System of Two Second-Order Differential Equations

Equations (4.9 d) and (4.5 g) are rewritten here
as Equations (5.1) and (5.2) respectively. It remains
now to write the reduced forms oi the constants de-
'veloped in Chapter IV and to eliminate th and M3 from

the motion equations.

(5.1) K138 7 Kpd + Ky gF @+ Ky 0O+ Ky 0 + Kygd

. 2
+ K19M3+ K20¢ + Ky 00 + K22ﬂ-'e'

(5.2) Ky, d = Kyy® + Ky + KogF 1, €+ Ky (L'O +Kpg &
+K29.Q_<i>+K3O¢+ K310 + K06

The coefficients, as they are to be programmed in to the

computer, are as follows:

a
Ky = R+(ap - 11)(}% sin «< - cosos )
Ko - R sine<+h, cose<
K3 - R coSoc¢- h2 Sinec
R
Ky - sinec
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+(K27 + K32)ﬂ + K28

Equations (5.3) and (5.4) can then be rewritten as

(5.9) K38 = K€ + 430+ 8,6+Kg00 + Ky

(5.10) Ko T Kpyd + A8 + M, S +Kpg20 + Ky

Here only-¢ and © remain as time varilables.

Transformation to Two Fourth Order Equations

Equatiohs (5.9) and (5.10) can be reduced to two
fourth order differential equations by writing the
characteristic equations for (5.9) and (5.10) as follows:

25 = 2
(5.11) K;3p°@ = KD 0 + A€ +A,D& +K, gD O + K20¢

(5.12) KpD?h = K,0%0 + ADE + 4, & +Kpg DD + K30

Here the operator D represents the derivative and D2 the
second derivative. '

Factoring ¢ and € the equations become

2

(5.13) (Ky3p® - AD - A1) = (KpD® + Kjg0D + Kp) &

(5.14) (Kp0®+ AD + H)O = (KpD® - KpolD - Ky @

The left slide of the two equationé are made identical

by selecting the appropriate multiplication term for each

equation,

82
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(5.15) (Ky30° = ApD = Aj)(KpgD°+AD+A) S = (Kp,D?
+ Ky gD+ Kyg) (KpgDH AD +Ay) O
(5.16) (KpqD° + AD +Ah)(K13ﬁ2- AD- A1) € I (KyDP
- KpgfLD -Ks0) (Ky3D?~ A,D- 4;) ¢
By subtraction
(5.17) (KpD? = KpgllD = Kyq)(K; 0% = AD - ;)
- (Ky,0%+ KygQD +Kpo) (Kp3D? + AD + A9 = 0

Equation (5.17) is the characteristic equation for -
a fourth order differential equation in terms of ® .
Note that this algebraic process is the equiv#ient of
subtracting "K23 times the second derivative of Equation
(5.16) minus A, times the derivative of Equation (5.16)
minus A, times Equation (5.16)" from "K23 times the
second derivative of Equation (5.15) plus A3 times the
derivative of Equation (5.15) plus A), times Equation
(5.15)", |

If the same procedure is used, with the alternate
multiplication factors for Equations (95.19) and (%.16),
® can be eliminated and the characteristic equation for
© will be formed. The result of this procedure is an
equation identical to Equation (5.17) with © replacing
®, thus
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Solution Procedure for Motion Equations

The solutions of the fourth order differential
equations can be found by solving the corresponding
fourth degree polynomials formed by their characteristié
equations. Specifically 1f the four roots of the poly-

nomial Equation (5.19) are (l)Dl =< 4D, = =<, , and

Dy =4 ti4, then if <, ¥ =<, the solution for the corre-

sponding differential equation becomes
. (oig+ £ B ) (otg-i BT
(5.31) ¢ = B, e i

o, t
Bh e

-t

+-B2 e + B

3 e
| ibt

The Euler identity, € Z cosB ¢t+1 sind ¢, can be used

to write Equation (5.31) as

(5.32) $= B e°ﬂt+-B2 e¢5f4-ea%f- (Bg cos 4,¢

+Bg sinb t)

where By, Bo, B5’ and Bg are real coefficients.

A form which is still more convenient for this par-
ticular problem can be obtained by using the trigonometric
identity
(5.33) sin (51 t+@) = cos 51 t sincP, +-sin5’l t cos ¢,

i,

The use of Equation (5.33) gives the final form of

(1) In general two real and two complex roots were found
in the actual computer work.
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the solution as
o("é' ‘,42'{- L i'

- K J
(5.31) &= cre ' +C,e > +e [03 sin( 44 t+¢,)]
The four integration constants which must be determined
from the initlal condition are Cy, Cp, Cy, and },.
The solution for © is identical except for the
integration constants.

(5.35) &= ¢, et 1y

°“*+e*#[c6snu51t+aﬂ

The method of obtaining solutions for Equations (5.9)
and (5.10) can be summarized as follows:

(1) Calculate the coefficients of Equations (5.21)

thra (5.25) .
(2) Solve for the roots of the polynomial in
Equation (5.19).

(3) Impose the initial conditions to find the

integration constants.

It should be noted that C, C5’ and ©,, can be ex-
pressed in terms of C, C,, and ¢ . This calculation is
not carried out here however since it is not necessary to
actually impose initial conditions for the stability
study.

Stability Criterion

The form of Equations (5.34) and (5.35) is par-
ticularly adaptable to a study of stability. The neces-



sary and sufficient condition for stability is that all
of the real roots o, o«,, and =<, be negative. This
condition assures that once the disturbances are removed
all terms will decay toward zero as time increases. On
the other hand the presence of any positive real root
will cause P and © to increase with time. The margin of
stability or instability 1s of course indicated by the
magnitude of the real roots.

The frequency of the oscillation can be determined
by the imaginary part of the complex root. The relation-
ship is |
(5.36) f = A?éﬂ'

Since this information can be gained without speci-
fying the initial conditions, the computer program is
written to calculate the coefficients designated by
Equations (5.27) thru (5.30) and solve for the roots of
the polynomial Equation (5.19).

Computer Program

The computer program was written for an IBM 1620

2)

computer using Forgo.(

The output for each set of machine constants consists

(2) Forgo is a Fortran language compiler program develop-
ed by The Wisconsin College of Englneering Computer
Laboratory.

88
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of the coefficients and roots of Equation (5.19) for
wheel speeds of 20 to 160 radians per second at increments
of 20 radians per second. The root extraction is ac-
complished with Ferrari's(3)analyt1ca1 solution of the
quartic equation.

This program requires approximately four minutes to
feed in and one additional minute of computing time for
each set of input data. The details of the program and

its use are included in the Apvendix.

Input Constants

Application of the stability equations developed here
make it necessary to establish the 27 machine constants
which physically describe the machine. These constants

and representative values for each are listed below:

8, = -0.8 rt hy = 1.5 ft 1, T2ft

a, - 2 £t h, = 1.5 £t m S k4sl

by T3 ft I, 181 f£t° m, =158l

by 2 £t I,, =381 12 P, 051 et
¢ T 0.008 1by sec?/ft® I, 0.5 81 £t? P, = 0 5L £t?
cp T 0.002 1by sec?/ft? I, = 881 £t2 1, I 1 £t

cy  0.005 1by sec/ft I 181 ft° 1, T1ft

cg = 0 1by ft sec I, Z251 £t sin 2 0.5

dy = 2 ft 1, = -0.3 ft coser = 0.866

(3) Nelson B. Conkwright, Introduction to the Theory of
Equations, Ginn and Co., Boston (1941).
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An explanation of the selection of some of these
values 1s in order:

(1) The road load coefficients ¢y, ¢,, and cy are
selected to give a realistic horsepower re-
quirement. The coefficient c3 contributés
negligibly to the road load and in fact repre-
sents only a very small force tangent to the
front wheel. The bulk of the drag force is
assigned to System 1 because of its exposufe
and the common use of windshields. | |

(2) The mass of System 2 is relatively large be-
cause of the passenger and engine.

(3) The products of inertia are taken as zerc he-
cause in practice they can assume either positive
or negative values depending on the mass distri-
bution.

The values of the machine constants given here .are
the basis for the numerical results presented in Chapter
VI. While these values do not describe any specific
machine, they are sufficiently accurate to yield computer

results representative of actual machines.
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CHAPTER VI
NUMERICAL RESULTS

To Interpret the numerical results it is necessary

to examine the stabilizing action of motorcycles.

Stabilizing Action

The manual operation of the handle bars illustrates
the basic stabilizing process. Falls are avolded by
turning the front wheel in the direction of the fall.

For a simplified analysis the overturning moment
mey be approximated as

(6.1) M, = mg,h sin@
where m and h (as measured in the plane of symmetry) are
the mass and c.g. height of the entire unit. The right-
ing moment, M, , which opposes MO y, 1s set up by the
forces shown in Figure (6.1). In equation form M, can be
written as

(6.2) M, = (F,+Fs cos®)h

With the exception of extremely low speeds the
angle ¢ is small hence Equation (6.2) can be written

(6.3) M, = (Fr+—Ff)h

In terms of acceleration the reaction forces can

be approximated as
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(6.4) Fp+Fo 2 B0 (w24 £(0) =

To( tan¢
B = ) =

m(rgﬂ-)2

e sin® + f£(d)

where f($) is an acceleration term reflecting ¢ . Again

using the small angle approxjmations

m(r,()=¢

(6.5) Fop+F, = —s + £(4)
Finally, equating Mr to Mo

' 2

m(r, L) ¢

(6.6) mg.h sind = —= h + he($)

or
(TQD-)2

(6.7) £() = mg, [sinm - ’?T“‘"]
Cc

Equation (6.7) shows that for given values of lean
angle (¢) and speed (1), the acceleration term [f(@)]
can be altered by adjusting the front wheel angle (¢).
Increasing € in the direction of § causes the lean angle
to accelerate toward zero thus stability is possible
only through the proper control of the front wheel.

Further, Equation (6.7) also indicates that the
necessary variation of & is small compared to the range
of ¢ . This can be illustrated by using values of the
reference machine described in Chapter V. For an

equilibrium turn at.30 mph with a ¢ of 30°, & becomes

Y= 142119%ﬁ§éii4il = %5 radians <3°
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Control of the Front Wheel

At very low speeds a rider can and in general must
control the front wheel to keep the vehicle upright. At
high speeds, the reaction time is so short that the front
wheel control must be designed into the machihe itself.

With the geometry shown in Figure (2.1), three
factors tend to turn the front wheel directly.

(1) The weight of System 2 acts at the steering
axis to turn the front wheel in the direction
of the lean angle.

(2) In practice, the c.g. of System 1 is generally
in front of the steering axis thus the weight
of System 2 also contributes in the same
direction.

(3) The magnitude of the front wheel angle is
limited by the force Ff as shown 1n Figure
(6.1).

Two factors contribute rate controls to the front

wheel motion:

(1) The gyroscopic action of the front wheel
causes 1t to precess according to the external
moment on System 1. For an external moment
causing a given &D, the front wheel precesses

in the direction of ® .



"na\u\ N2\ \ L
System 2

System Breakdown for Analysis

Figure 2.1 (Repeated)




96

(2) All motion of the front wheel is opposed by
the damping in the steering axes.
From these considerations 1t can be seen that the
cnaracterictics of System 1 will have the greatest

influence on stability.

Restriction to Small Angles

The linearizing process of Chapter III eliminates
the product of @, © and their first derivatives as
secondary terms. The approximations given in Equation
(6.7) indicate that é is the largest of these terms for

1

a frequency f > Cr radians/sec. Assuming a sinusoidal

oscillation,

b=

d)max sin 27 ft

L F enf <bmax.

This of course indicates that the allowable value of
q)max must be reduced as the frequency is'increased.

At the highest frequency encountered in the solutions
(=210 cps)

b =62.8 ¢

¢ max max

or d)max must be less than one degree to insure a maxi-
mum value of one radian/second for d>max'
However, tracing { through the basic equations in

Chapter I indicates numerically that the contributions
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of ¢ are still small when compared to the other terms

involved.

There is no sharply defined limit but a’¢max of 2
degrees appears to be allowable and disturbances of this

magnlitude are representative for upright equilibrium

operation.

Presentation of Results

The final computer output consists of the four roots
of the polynomial Equation (5.19). With very few ex-
ceptions there are two real and two complex roots. One
of the real roots is consistently a large negative value
( -10 to -80 sec™t) hence it can be safely disregarded.
The plotted results then consist of (a) one real root
which 1s referred to as the "Marginal Root", (b) the real
part of the complex root which i1s referred to as the
"Damping Root", and (c) the frequency which is directly
proportional to the imaginary part of the complex root.

As indicated in Chapter V, all real roots must be
negative for stability, and the margin of stabllity is
indicated by the magnitude of these roots. Note that
the numerical results are plotted on pairs of curve
sheets. The ranges of stability can be read from either
sheet by the legend, however both sheets must be ex-

amined to establish the margin of stability.
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Since the study 1s dimensional, the results of the
reference machine (the physital characteristics given

in Chapter V) are shown on each curve sheet,
Discussion of Results

Since the Marginal Root 1s very small its importance
is open to question. With %tle small growth rate of ¢
resulting from this root, there is a possibility that the
rider may overcome this instability by unconsciously
inclining his body. Dohring concluded this from his calcu-
lations in which he found this root negative for only a
very short speed range. The absence of some of the machine
constants makes it impossible to reliably duplicate his
calculations.

Here, two faétors tend to lend credence to the
Marginal Root; (1) this root is generally negative for
reasonable values of the machine constants and (2) the
instability generally(l)intrcduced by a small value of
trail(z)is reflected only in this root.

(1) The Wilson-Jones paper cites an experiment in which

a motorcycle with negative trail was ridden with

"no~-hands" thus instabillty does not automatically

accompany negative trail. However, it is generally

agreed among designers that the optimum value of

trall 1s positive and its value depends heavily on

the many other characteristics of the machine.

(2) Referring to Figure (2.1); trail is defined as
(1 - a3)/cos <.



The followling remarks concern the numerical results

given in the curve sheets:

Figure 6.2:

Figure 6.3:

Some damping improves the margin of stability
but excessive damping interferes with the
motion of the front wheel to cause instability.
This interference is also reflected in the
frequency which decreases with increased
damping.

The fact that large values of damping
can be withstood 1s apparently the result of
the low values of © .

The discontinuities in the Damping Root
indicate the presence of four real roots.
With this exception, all of the results show
two real roots and one complex root.

Trail is one of the variables which motor-
cycle designers generally agree to be of
prime importance to stability. Reduction of

the trall to zero reduces the restoring

force and the action of the weight of System

2 on the front wheel. Since the stability
margin of the two roots are changing in oppo-
site directions, an optimum value of trail is
indicated. Note that the instability arising
from low values of trall are indicated en-

tirely by the Marginal Root.
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Figure 6.4:

Figure 6.5:

Figure 6.6:

Figure 6.7:

Figure 6.8:
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The indicated stability 1s'very sensitive to
the position of the front c.g. along the xq
axis. Note that this machine is unstable if
the c.g. 1s moved back as far as the steering
axis. This result is surprising in view of
the absence of any particular stress on this
point in the literature.

The frequency is not greatly effected
within the c.g. positions allowed for sta-
bility.

An improvement in the stability is indicated
b; both roofs as the height of the c.g. is
lowered along the z axis,

An optimum value of front wheel inertia is
indicated. Removal of the gyroscopic effect
gives instability according to the Damping
Root. The Marginal Root shows instability
for excessive values of Ij.

The frequency increases with Ii,

A reduction in rake angle (=< ) indicates an
improvement in the margin of stability. This
is somewhat surprising in view of the popular
rake angle design of 30 degrees. It 1s possi-
ble however, that this angle is selected more
for cornering response that for stability.

The frequency 1s generally insensitive to
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reasonable changes in mass and mass distri-
bution. This is exemplified by the changes
in Izl’
It should be noted that Izl has the
capacity to alter the Damping Root with no
appreciable effect on the Marginal Root.
Figure 6.9: Since the roots change 1n opposite directions
an optimum value of the c.g. height of
System 2 is indicated. In practice a low
c.g. 1s apparently desirable for the vehicle
itself because of the locztion of the rider
mass.
Figure 6.10:The stability is relatively insensitive to
movement of the rear c.g. along the P axis.
The stabllity 1s considerably more
sensitive when the rear c.g. 1s shifted along
both the Xo and z, axes simultaneously. This
combines the changes shown in Figures (6.9)
and (6,10). :
Figure 6.11:P,,;, like I ;, shows the capacity to alfer
the Damping Root without appreciably changing
the Marginal Root.
In addition to the machine constants shown on the
preceding pages, by, by, ¢y, €5, I3, my, m,, and Py,,
were studied. Only the extreme values of these constants

had any appreciable effect on either the stability or the
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frequency of oscillation.
Conclusions

The numefical results presented in this chapter are

from an application of the computer prcgram to an assumed

motorcycle model. The analysis leading to the program
is shown in the first five chapters; the program and its
use are detailed in the Appendix; the characteristics

122

of the hypothetical model are given on page 89 with refer-

ence to Figure (2.1).

The results predict the stabllity effect on this
specific model of the steering axis damping, trail (see
page 98 for definition), location of the c.g. of the
front and rear ends, front wheel inertia, rake angle
(see Figure 2.1 for definition), moment of inertia of
the front end about the steering axis, and the product
of inertia of the front end.

No experimental data 1s available to accurately
check these calculated results; however they are gener-
ally consistent with the qualitative results given in
the literature. Four specific areas of agreement can be
cited in support of the validity of these equations:

(1) Consistent with common experience, instability

is predicted for low speeds.

(2) Consistent with the literature and the quali-
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tative analysis in the first part of this
chapter, the results indicate an optimum value
of trail and instability for extreme values

of trail.

(3) Consistent with widely accepted ideas on the
subject, the results indicate that the gyro-
scoplic effect of the front wheel is critical
for stability. Instability is indicated for
extreme values of the front wheel moment of
inertia.

(4) Consistent with the gqualitative analysis in
the first part of this chapter, the stability
is most effected by the characteristics of
the front end.

For the assumed model, the greatest effect on sta-
bility is indicated for trail and the location of the
front c.g. along the Xy axls (see Figure 2.1). An optimum
value of trail between 0.6 and 1 feet is indicated. The
optimum position of the front c.g. is indicated as ap-
proximately 0.3 feet in front of the Steering axis. Note
however that these values are varied from the basic set
of machine characteristiecs and in no instance were combi-
nations of two or more variables studied.

In addition to these variables, the results indicate
increased stability for low values of rake angle with

instabllity occurring at rake angles greater than forty
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degrees. Notice that the change in rake angle automati-
cally changes the trail since the remaining vehicle
characteristics were unchanged.

Caution should be exercised in trying to generalize
the results of the limited calculations presented here.
The variety of opinions{3)on the effects of trail and rake
angle bear witness to the complexity of the problem. The
effect of any one design variable obviously depends on the

remaining characteristics of the particular machine being

studied.
Recommendations

The practical value of these equations can only be
established by extensive experimental work. A realistic
approach appears to be the use of this program in con-
junction with test riding. Rider opinion should be
adequate to establish the relative importance of the two
roots. However, the rider should be cautioned to dis-
tinguish between cornering and stability performance.
There is 1little doubt that any final design must compro-
mise between these two characteristicg.

In practice, two additional factars which are known

to be important to stabllity are tires and machine flexi-

(3) See the discussion of the Wilson-Jones paper.



bility. With considerable effort it appears practical to
develop equations to accounf for both of these factors.
This step should, of course, be preceded by a thorough
test of the equations developed here. 4

In view of the earlier assumptions of a rigid
machine and thin disc wheels without slip, the tire
and flexibility factors should be minimized on the test

machine.
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APPENDIX

The program shown in this section is written for

the IBM 1620 Computer using the Forgo compiler program.

The following statements are to clafify the program

for future use:

(1)

(2)

(3)

(%)
(5)

The second and third lines are the input
constants which physically describe the machine
being investigated.

The fourth line (statement 6) designates the
specific machine constants to be studied. 1In
this case a; and 11 are to assume the values
shown at the end of the program. The term XX
is the control which either ends the program
or causes the computer to read a new input
card according to its value of one or zero
respectively.

The calculations for the coefficients of the
fourth degree polynomial are concluded at
statement 4 plus 9 lines. The evaluation of
the roots are concluded at statement 11 plus
3 lines. -

Statement 12 prints out the coefficients.
Statement 14 prints out the roots. Elght
columns are printed for the roots but only

the four columns given in exponential form
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(naving an E as part of the answer) are sig-
nificant. The first four columns are real
roots. The last four columns give the complex
roots with columns five and seven being the
real parts and columns six and eight their
respective imaginary parts.

Each input card yields eight rows of coef-
ficients and the corresponding roots. These
rows correspond to the speeds of 20 to 160
radians per second at increments of 20 radians

per second.
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Zxx2¥=62D
6X*220=H2 O
9X*220=£2o
IX/2TX=229
2V *2RX=120
TX/0T10=020
TH*TWX=6TD
TV+TWX=8TD
CxxTHxTHX=4TO
Cxx LV« THYX=9TD
THx TV TWX=6TO
CH/ISx0T0=2TX
TQ-TH-2X=TTIX
IS*CH-HIO=0TX
nTO%(IS/(110-))=6X
00x2H- (ETO+ T)xh¥=4LX
OTD~-00+H=HTID
Cxx00=tTD .
IS+00%TT0=9X
Tq-2X=6X
IS/¥=HX
IS*xZH~00+4=EX
00xCH+IS*¥=CX
2TO*0TO+Y=TX
00-IS*TITO=C1D
CH/2V=TT1D
IS (TQ+TH)+2TIX+2V+00%0T0=4
00/ (00« TH-IS*0T0+2d+2cH)=Td
TIX~TV=019
20+I0=6D
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(CHX+62I%x6TI)%ID=0EX
(TY%CH)/CHx00%IS*dTIX~ (9Xx (TH/IS*CU*xdTIX)+dCIX ) (CH/ISx02D)=62X
(T20~IS*6TO) %620 0D+(T20-IS*x6TI+00*x8T D) *2t O (HX/0D~ )=Q2X
dlexX+dldex=4eX
((620-)%(IS/0TX)+(620-2E0x (HX/ " T) )% (2d~-CH) )xLcO=0lCX
Z2EO% ((00+TH-TH ) =00+ TH-IS*TV+(IS/EX) )* (HX/92D)=dLeX
(IS/0TO-TED)%620+CE D% (TED~ ) (HX/*T1)=92X

CH/0D*TTX+( (IS*xCH)/ETO*x0TX )+ (SH/2A)+°* T+KeI=2ED
SH+(IS/EX)=TED

CH/IS+(2TO-)*22d=562X

OheX=dheX=h2X

(SXIX- (Cx*xCH+xCWX)~-0E0%0D)* (CH/* T)=0heX

0E D% E2O+(EXIX*TTI+22Xd )% (22O~ )=dheX

00% (TXIX+.TO)-IS%*820=0tD

geoxb2o=£2X

€20~ (2H/00)=620

(TH/IS*xdTIX-8TO+d2CX )» (H/00)4 (Sx%cH)=22X

(CH/TTO*dCIX- ((TH/00+dTIX)+6TO) %93~ )x022=d2eX
(IS*TZXd+00+ T2IX+H*QTO-IS*xGTO+00%9TD) x (H/00%cH)-0TcX=I2X
((S2IX+22Xd*TTO)»SH+d T2 ) * (H/00%x022)=012X

((0O0*TH) /UkdTIX-00%T2Xd+IS* TXIX+d%6TO-IS*LTO+00%STO) % 9X»xSHU=dTCX
(TV-9X*TH*020) %« 0Dx TW¥=02X

*T-2TO%x020=6TX

TH/00%CU*d TIX+H TH/IS*CHxd TIX*9X-d2IX~ ) »020=8TX
(ISx3TO~-dLTIX%02D0)»0D=4TX
(T2O-IS*x6TO)*x9X+(TCO~00%BTO+IS*6TI )% T I (M/TTD~ )=dLTX
((IS%x2d-HTO)*9X*(IS/420)-d9TX)*020=9TX

((CH-29 ) %420~ (Td-IS*TV+cH- (IS/0D%H) )%920)* (H/HTO*TTD)=d9TX
HTO%x020=5TX

00% (TZXd+GTO)+ISx (TZIX49TO)-dRIX=HIX
(SXIX#TTO-22Xd- (0Ox TXIX-00%4TO-IS*x820)%x9X ) x020=dh1X
(820)*9Xx020-9TO+T2IX=CTX

TZXd+6TO=820

G20%20=42D

620xT0=920



C33=R2*CO/R
X31P=C33*(C19*(A1*CO+H1*SI)}+(XIX1*SI+PXZ1*C0))-R2*(C19*CO+XI1P/R1)
X31=C29*X31P-C33*(C22*(PXZ2*C11+XI1Z22)-((PXZ2/H2)-C21))
X32P=R2*C33*C29*(C19+XI1P*C0O/R1)
X32=(-X32P)+C33*((XI2P/H2)*(C22*A2-1.) -XM2*R2)
EOR=1./(X1L*X23-X13*X2k)

E1P=(X14*X25+X19*X2k4)*C5
E1Q=X1L4*X31+X18*X23+X21*X2L+X13*X29
E2P=X1L4*X28+X20*X23+X17*X2Lk+X13*X30
E2Q=(X18*X25-X19*X29)*C5

E2R=(X14*X26+X15*X24 ) *C9*CZ5
E2S=X16*X2L+X1L4*(X27+X32)+X18*X31+X22*X24-X21*X29
E2T=E2R+E2S

E20=(X14*X26+X15*X2k4 ) *C 3*R2

E3P=(X20*X25-X19*X30)*C§
E3Q=X18*X28+X20*X31-X17*X29-X21*X30 .
E3R=(X18*X26-X15%X29) *C9*C25+X18*(X27+X32) -X29*(X16+X22)
E3S=(X18*X26-X15*X29) *C 3*R2

ELP=X20*X28-X17*X30

E4Q=(X20*X26-X15*X30) *C9*C25+X20*(X27+X32) -(X16+X22) *X30
E4R=(X20*X26-X15*X30) *C 3%R2

W=20.

CLO=W*W*W

CLl=W*W

E1=(E1P+E1Q*W)*EOR

E2=(E2P+(E2Q+E2U) *W+E2T*C41) *ECR
quAmmm+Amuo+mwmv*z¥mww*orov*mow
EL=(EL4P+EL4R*W+ELQ*CL1) *ECR

Y1=-E2*.5

Y2=(E1*E3*.25)-Ek4 .

Y3=(4 . *E2*E4-E1*E1*EL-E3*E3) *.125
G=((2.*Y1*Y1-9,*Y2)*Y1/27,.)+¥Y3

E=(3.*Y2-Y1*Y1)/9.

F=ABS(G*G+Y . *H*H*H)

UP=( -G+SQRT(F))*.5

OtT



IF(UP)62,61,61
61 U=(UP)**,33333
GO TO 6
62 U=-(-UP)**,33333
63 Y=U-(H/U)-Y1/3. .
F1=2.*Y+(E1*E1%.25) -E2
IF(F1)65,64,64
64 A=SQRT(F1)
GO TO 66
65 F1P=-F1
A=SQRT(F1P)
66 B=(Y*E1-E3)/(2.%*A)
DES1=( ((E1*.5)-A)**2) -k *(Y-B)
DES2=( ((E1*.5)+A)**2) -4 *(Y+B)
IF(DES1)8,7,7
7 DR1=(-(E1*.5-A)+SQRT(DES1))*.5
DR2=(~(E1*.5-A)-SQRT(DES1))*.5
DR1R=0.
DR1IM=0.
GO TO 9
8 DRIR=-(E1*.5-4)*.5
DR1IM=SQRT(-DES1)*.5
DR1=0.
DR2=0.
9 IF(DES2)11,10,10
10 DR3=(-((E1%.5)+A)+SQRT(DES2))*.5
DRL=(-((E1*.5)+A)-SQRT(DES2))*.5
DR2R=0.
DR2IM=0.
GO TO 12
11 DR2R=(E1*.5+A)*.5
DR2IM=SQRT(-DES2)*.5
DR3=0.
DR4=0.
12 PUNCH,E1,E2,E3,Ek

TET



1% PUNCH,DR1,DR2,DR3 _Uwr ,DR1R ,DR1IM,DR2R ,DE2IM
W1=W+20.
W=W1
IF(W-160.)4,4,5
5 IF(XX)13,6,13 "
13 STOP
mzm 8 94145 5,8
w. OM.Uw.'N.QOOO Q.OONM0.0NOMwN.NQH. H. OHDQWOVQ 0 L]
H.mm.,-.u,m.,:..pm.,o.,o.,p.,u.,.m..mwm..oom
-e e'o.WoOo
'umuo. wO‘
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