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The human frame is built for walking. It has both the right kinematics and the right
dynamics—so much so, in fact, that our legs are capable of walking without any
motor control, Their gait can be sustained simply by interaction of gravity and
inertia, in a natural limit cycle which we call passive dynamic walking. This cycle
needs motor input only for starting and stopping, for modulation when terrain calls
for irregular strides, and for energy supply when the need arises. Analytical study
reveals that any of several simple control strategies are effective for these purposes.
This helps to explain why dextrous and efficient walking is so easy to a child to
master. Moreover, it suggests that rehabilitation and robot design may be less
difficult than one might at first imagine.

1. Passive Locomotion Cycles

We offer here a theory of legged locomotion based upon the phenomenon of passive
dynamic walking. The treatment extends our earlier work on gravity-powered models
{(McGeer, 1990b) to encompass walking on up- and downhiil grades, over a range of
speeds, and with modulation of the gait to accommodate uneven footholds. At the
same time, it provides a detailed mathematical companion to our somewhat lighter
treatment in McGeer (1992). It is intended for mathematically inclined readers with
interest in either animal locomotion or robot design.

To begin on familiar ground, we cite the toy of Fig. 1. It walks passively, that is to
say, without any motor control. Energy is obtained by descending a shallow slope,
and the gait emerges as a naturally stable limit cycle. The same effect is inherent in
quite a variety of other models, and so can form the basis for legged locomotion in
many forms. Take, for example, the range of possibilities illustrated in Fig. 2(a)-(h).
Models (a) and (b) are “silly wheels” which we will use to illustrate key concepts and
mathematical methods. Models {c), (d) and (¢) are straight-legged bipeds similar to
the toy: model (c) is the simplest, consisting of just an isolated pair of legs confined to
the sagittal plane. Model (d) adds an (actively balanced) torso, while madel (e) has a
hip joint of finite width and moves in three dimensions. Model () is a knee-jointed
passive walker, which is particularly attractive because it has a strikingly anthropo-
morphic gait. Finally, models (g) and (h) extend the passive dynamic idea to running
and hopping, using springs in the legs and hip as cyclic energy stores. [The action of
various natural tissues with the necessary spring-like properties has been noted by
Alexander (1988).] We will use the first four of these models to study the dynamics of
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Fig. 1. A bipedal toy which walks passively down shallow inclines (from McMahon, 1984),
Quadrupedal toys of similar design walk passively on level ground while being drawn by a falling weight.

fully passive walking, and the pumping and modulation of these dynamics to achieve
dextrous locomotion. Details of the remaining models can be found in the references.
All symbols, sub- and superscripts are defined in Appendices A and B, respectively.

Now consider, informally at first, how passive cycles can be calculated. Take the
start of a ¢ycle to be the instant when the trailing leg leaves the ground. At this point
each model has certain degrees of freedom. For example, the straight-legged biped (c)
has three: the rotational speeds of the two legs Q. and Q, plus the inter-leg angle 2a.
(Individual leg angles are +a.) If these are specified then the subsequent motion is
determined, and proceeds generally as shown in Fig. 2, [Note that this model runs
the risk of dragging its swing foot at midstride. Consequently, when testing robots of
this type we either folded the swing foot out of the way or arranged the fioor as a
chequerboard pattern of stepping stones (McGeer, 19905). Knee-jointed models do
not have this problem.] After getting through midstride the swing foot eventually -
hits the ground; there is then an impulsive energy loss, and an effectively instanta-
neous change in rotational speeds as support is transferred fron one leg to the next.
This leaves the model ready to begin the next stride. If the angles and speeds at this
instant are the same as they were at the beginning of the preceding stride, then the
walking cycle is re-entrant and will repeat indefinitely.

The knee-jointed walker illustrates the same idea in a more complicated cycle. Its
stance knee rests against a mechanical stop and so moves as a single unit throughout
the cycle. Meanwhile, however, the swing knee starts in flexural rotation, so the
swing shank and thigh move independently. This continues until the knee rotates
back to full extension towards the end of the stride, whereupon impact occurs
against the mechanical stop and the impulse changes the speed of each link. After
that both knees remain extended until heel strike, when there is another collision and
another shift in speeds. Again, if this chain of events leaves the initial conditions the
same as on the previous stride, then the cycle repeats indefinitely.

In mathematical terms there is, in general, a stride function S that maps initial
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conditions v from one stride to the next:

Vi1 = S(v). 1)
For a cyclic gait we must find an argument v, which maps onto itself:
vo = S{ro). (2}

Formulation of § is relatively simple for the “silly wheels” of Fig. 2(a) and (b), so we
will discuss them first to demonstrate the idea (sections 3, 6). Then we will develop
more general mathematics for straight-legged biped walking.

2. Stability of Passive Cycles

To be successful a passive mechanism must have not only a cyclic gait, but also the
ability to recover when the gait is disturbed. Recovery from all possible disturbances
would be too much to ask, but small perturbations should be tolerable. This level of
stability can be investigated by linearizing the stride function (1). We take the cyclic
start-of-stride conditions v, as the reference point for linearization. Then

Slvo+Av) = S(ro)+ VS Av (3)

VS is the gradient matrix of §, evaluated at v, [for example, (67)], and A is the
perturbation in start-of-stride conditions. Then the stride-to-stride mapping (1) is
approximately

Vo+ A, = S(vg)+ VSAr,. 4
Canceling the cyclic terms (2) leaves
Av,., % VSAr,, (5)

This is just a set of lingar difference equations, Therefore transients following small
perturbations can be analyzed into modes of the form

Av, ~v,2* (6)

where z is an eigenvalue of VS, and v, the associated eigenvector. For stability, all
eigenvalues must have magnitude less than unity, with smaller magnitudes indicating
that fewer strides are required to recover from a disturbance.

Table 1 lists eigenvalues and eigenvectors for the two-dimensional biped models.
The precise numerical values depend upon each model’s mass distribution and other
parameters, and in some cases instabilitics can arise. However, the remarkable point
is that passive cycles are stable over a wide range of parameter choices, which implies
that walking and running are easier than standing stili (standing being impossible
without active balance). Note also that similar modes can be recognized from one
model to the next. Hence if we use the simple “silly wheels™ to develop analysis and

interpretation of transient behavior, then the understanding that emerges can be
transferred directly to the more complicated cases.
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TABLE |
Stride-to-stride eigenvectors of typical passive cycles. Elements are normalized as
appropriate by leg length 1 and gravitational acceleration g. Each eigenvector also has
been scaled so that its largest element has unit value

Rimless wheel (McGeer, 1990b)

Mode _ Speed .
Eigenvalue, z n?
Q 1

Walking wheel (McGeer, 1990b)
Mode Speed Swing Totter
Eigenvalue, z 1 0 -02
o 2:03/wg 2fep 1
Q¢ 1 0 0
Q. 1 1 0

F1G. 2. (a}+{h) illustrate typical cyclic gaits for various passive models. Except as noted, link angles

relative to the surface normal are shown vs. time. Timescales are normalized by \/I/_g (a) Rimless wheel
{McGeer, 19905), On a sufficiently steep slope (here 0-035 rad), it establishes a cyclic rolling motion, with
energy gained from descent through each stride balancing energy dissipated in an inelastic collision at heet
strike. (b) Walking wheel (McGeer, 1990b). This is the simplest of bipeds, whose legs are two spokes and
feet two rim sections from an ordinary wheel. It has a large mass at the hip to decouple the stance and
swing motions. Thus one leg behaves as a section of wheel, rotating along the ground at constant speed,
and the other as a pendulum, swinging forward in preparation for the next stride. The legs exchange roles
when they reach opposite angles. The cycle continues indefinitely, mimicking a rolling wheel. (c) Straight-
legged biped walker (McGeer, 19905), This is a more general version of the walking wheel, with smaller
feet and more flexibility in the mass distribution. Like a rimless wheel it dissipates energy at heel strike,
and so needs a shallow downhill slope to keep the cycle going. (d) Straight-legged biped with actively-
stabilized torso (McGeer, 1988). Here a torso is added to the previous model. The torso is an inverted
pendulum and so requires active stabilization; this is provided by a damped spring acting against the
stance leg. Meanwhile the legs continue to walk passively. (e) Straight-legged biped with a three-
dimensions cycle {McGeer, 1991). Side-to-side swerving is superimposed upon a longitudinal motion
which is essentially the same as in two dimensions. Swerving allows the weight of the swing leg (here offset
from the stance leg by 015/} to be balanced by centrifugal effect about the vertical axis. Humans maintain
a more nearly straight motion by rotating their legs toward the body centerline while walking, but this
example illustrates the possibility of a three-dimensional passive motion with a simpler model. As in two-
dimensional, the swing foot is calculated to pass slightly below ground level at midstride, but this problem
would be remedied by knees. (f) Knee-jointed biped walker (Mochon & McMahen, 1980; McGeer, 1992).
Passive walking also works with knee-jointed legs. The knees have mechanical stops to prevent
hyperextension; with the feet placed forward on the leg, the contact force then keeps the stance knee
locked throughout the stride. Meanwhile the swing leg flexes naturally, re-extends after midstride, locks
inelastically when the knee reaches full extension, and thereafter remains extended until heel strike. This
cycle is appealingly anthropomorphic, and also has the practical advantage of passive foot clearance.
() Biped runner (McGeer, 1990a). Running can be realized by putting a torsional spring at the hip and
telescoping springs in each leg. The torsional spring gives the legs a natural “scissor” oscillation, and the
telescoping springs allow for bouncing between stance and flight phases. The cyclic gait is essentially a
combination of these two motions proceeding tn-phase. (h) Monoped hopper (Thompson & Raibert,
1989). The “bounce-and-scissor” cycle of the biped runner can also be realized in a monoped. Here the
scissoring spring is put between the leg and torso.
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TABLE 1—continued.
Straight-legged biped watker (McGeer, 1990b)

Mode Speed Swing Totter
Eigenvalue, z 070 005 —083
o 088 o4 1

Q 1 015 013
Qr 027 1 -003

Knee-jointed biped walker (McGeer, 1990c)

Totter
Mode Speed Swing Mag. +Phase
Eigenvalue, z 007 —-0002 045 +095
o 017 008 0-38 +0-00
Q- 01t 0-06 023 057
Qer -097 -019 0-89 +282
ey 1 1 1 +0

Straight-legged biped walker with actively stabilized torso (McGeer, 1988)

Totter
Mode Speed Swing Mag. +Phase Torso
Eigenvalue, z 047 00015 018 +2-62 16x 1072
a 1 001 062 +248 007
fr ~016 —047 013 F291 —049
0, 060 032 060 +280 —016
Q, —031 1 050 TI08 02
Q, 090 —059 1 10 1
Biped runner (McGeer, 1990a)
Swing Totter
Mode Speed Mag. 4 Phase Mag. + Phase
Eigenvalue, z 1 022 +1-62 165 +2:42
8¢ —-013 003 +1-43 008 FO55
B¢ ¢11 0-49 2499 024 F260
Q. —0-58 008 F102 014 F1-61
Q i 1 10 1 +0

I ~073 Q09 +1-84 15 +104
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3. The Rimless Wheel

Having reviewed in the abstract all of the elements of passive walking analysis, let
us take up the specific case of the rimless wheel. First we develop its stride function
(1). In cases of interest the stance leg angle 8, remains small throughout, so the
equation of motion can be written as

d26,

e -0, ~ oy (N
Here 6 is measured from the surface normal. All quantities are normalized by total
mass m, leg length I, and gravity g. ¢ is a dimensionless pendulum frequency, given by

1
L4k,

g

i

8

where r,, is the wheel’s radius of gyration about the hub. Start-of-stride conditions
are

8c0) =—ap  Qc(0) =, 9
The motion during the stride, found by solving (7), then satisfies
1 1
Oc(r) = S (v =0 +8)e, 0)e™ + S (r — g~ L, fo)e ™"~ {10)
g a ot
Qclr) = 5(7»% +Qc, /o)™ — 2 (y — oo —CQ¢, /o)™ " (11)

The motion proceeds until 8, = o, when the next leg strikes the ground. Applying
this condition determines the stride period and end-of-stride speed:

eatk — y + a() + (QC;;/O')Z + 4?“0
y—og+Qc, /o

QC(T") = 4/ Qék+4ya00'2. (13)

We treat the collision as inelastic and impulsive. In that case the wheel conserves
angular momentum about the impact point, and the loss in speed can be calculated
as follows. The angular momenta immediately before and after impact are

(12)

H™ = (cos 2ay+ 12 mlPQc(1y) (14)
H* = (1 +r2,)mPQ, . (15)
Equating these implies that
c0s 2ug +72,,
Q. = ‘—1_“9_2—§L Qclt) = nQclry) (16)
+ T

Notice that # is a measure of the wheel’s efficiency. Substituting for Q(t,) from (13)
produces the stride function:

Qc,., = 1/QE, +dyaga’. (17)
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FI1G. 3. Speed of a rimless wheel rolling downhill (expressed in units of \/g_'l). Larger inertia and smaller
step length produce higher speeds.

Now we can find the steady cycle. The cyclic-gait condition is that Q¢, | = Qc, =Q,;
inserting this into the stride function leads to

dyayoin’
Qg = [0S (18)
L 1_’)2

The corresponding forward speed, averaged over the stride, is

V, = 22 (19)

To
with 7, from (12). This is plotted in Fig. 3, as a function of slope.

Next, consider small perturbations on the cyclic motion. Differentiating the stride
function gives

dQ Q
Crer ) > Cae -. (20)
dQc, \/ Qf, +dyogo
The value at Qp, = is
4. 5
dye,
Hence a perturbation would decay over k strides according to
AQq, = n** A, . (22)

We call this transient the speed mode: a monotonic convergence to the speed
appropriate for the slope in use, The more efficient the wheel, the more strides are
necessary for convergence. All of the models in Table 1, despite their obviously more
complicated dynamics, have a8 mode with similar behavior.
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4, Impulsive Pushing

The rimiess wheel, in addition to serving as a simplified model for gravity-powered
walking, offers an easily understood introduction to alternative methods of energy
supply. We will consider two possibilities. One is analogous to pushing with the
stance knee in human walking, which is particularly useful for climbing stairs. The
other is analogous to plantarflexion of the stance angle, which generates a push from
the trailing foot as it leaves the ground. We will study the plantarflexion method first.

For analytical convenience we will concentrate the push into an impulse applied at
the point of contact. Nominally the impulse and support transfer will be simul-
taneous, but we will demonstrate that energy consumption depends strongly npon
the sequencing of the two events. Suppose first that the impulse (P, , ,) is applied just
before contact of the forward foot, in which case it actually makes the wheel jump off
the ground. Initial velocities in rotation and translation for the flight phase are

—sina
Vess,; = Veu(t) + Py = [ c0s %0] Qc(t)+ Pysy 23)
1 .
Qc, = Qclt)+ - [sinay —cosap]Py, o 24

£yr

If the impulse is smaller than a certain limit, then it slows but does not stop the
downward motion of the forward leg, and the jump off one foot is followed
immediately by landing on the next. This event produces another impulse P, and
another change in velocities, satisfying

sin o
IJCMk“. =[COSGZ]QCIHI = ’/CM_,-+PJ| (25)
1 sine,
Q. =0 —— P} o1 26
Ci+1 Cy rgyr A [COS ao] ( )
Define )5

sin o,
= . 2n

i+r2,

Then eliminating V., and P, from (23-26) leaves
ﬂck-rl = r’QC(rk)—i—rPx (28)

where subscript x designates the x-component of the impulsive push. This is a more
general version of the original support-transfer eqn (16). The corresponding stride
function [cf. (17)] becomes

Q... = 1/ Q¢ +ayo,0?+TP, . 2%

Applying the cyclic-gait condition {2) then determines the impulse necessary for
steady rolling on any selected slope and speed:

P, = %(QCO 1, + 5, (30)

K+ 1
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Now let us evaluate the energy supplied. In the impulsive limit the product of force
and displacement during the push is

W = PTHV; +V}) @1)

where ¥, and ¥} are the velocities of the trailing foot immediately before and after

the impulse is applied. If the push precedes support transfer, then V is zero, and

v = VCM!+[ s %o ]nc,. (32)

—Cos ity

On the other hand, if the impulse follows support transfer, then it turns out that the
equation for support transfer {28) still holds; however, the velocities in (31) become

V: = 2sinzoQe, & (33)
¥, = 2sinag(Qc,, — TPy, ). (34)

The energy inputs then work out to

! sin? o —sina, cosx
Pre-ST W =4PI_( P,, + — . ° ° ®lp 35
‘1’ k+1( k+1 gyr ~ i ot COS &y COSZL’XO k1 ( )

Post-ST W = P, (9% - :‘::‘; th,) 2sin g, (36)

BYr
Figure 4 plots these equations, as functions of slope, for steady rolling at speed

025, /gl. Two additional functions are plotted for reference. One is just the work
against gravity, which for small y and &, is

W= —20,7. (37

The other is the same function offset by v,, the slope for gravity-powered rolling at
the specified speed. If the dissipation at foot strike were invariant with slope, then
energy requirements would be as indicated by this second line. However the push
softens the blow, so that energy requirements for climbing prove to be smaller.
Indeed if the impulse precedes support transfer then the reduction is quite dramatic,
to the point that on slope —y, (ie. opposite to that for gravity-powered rolling}
dissipation goes to zero. All of the work is applied to lifting the center of mass.
There is, as you might expect, an underlying symmetry: the dissipation-free climb
is the mirror image of the gravity-powered descent. (If you were shown a film of the
motion, you could not tell whether the projector was running in forward or reverse))
Naturally some care must be exercised to achieve this ideal; in particular, the climb

impulse must be applied at the correct angle. From (25), (26), its components should
be in the ratio

Py_ ~1 1-1

P, tana, 147 (38)

Fortunately, as we will show presently, imprecision entails only a modest penalty.
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0-08 -
A Work required with
post-8T impulsive push
007 B Work required with
pre-ST impuigive push
0-06
Passive dissipation
0-05 , plus work against g
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F1G. 4. Rolling of a rimless wheel can be sustained in a climb by pushing with the trailing foot just as it
leaves the ground. The ordinate shows the energy input required per stride to maintain rolling at a speed

of 0-25\/g_;—l. The input is zero at the right-hand side of the plot, where energy gained in descending siope y,
¢here 0-033 rad) balances dissipation at heel strike. For “uphill” slopes (i.e. y <y,) some input is required to
maintain the energy balance, but the economics are sensitive to timing. In particular, much less work is
required if the push is applied just before support transfer rather than just after.

Dissipation is eliminated by this ideal impulse because it is just strong enough to
arrest the forward foot before it hits the ground. But by the same token, a slightly
stronger impulse would launch the wheel right off the ground. This precludes
applying the same strategy for steeper climbs at the same speed, so, instead, one must
adopt one of the following alternatives:

(i) Go faster. According to the symmetry argument, the speed for dissipation-free
climbing increases with stope according to the mirror image of Fig. 3.
However, this strategy carries the rather odd corollary that higher efficiency
calls for a bigger engine,

(i) Push more gradually. The wheel will not be thrown off the gound if the
impulse is delivered sufficiently slowly that the peak force is only of order mg.

(iii) Combine pushing with leg length variation (analogous to knee flexure).

On steep slopes the last of these is the only practical choice, and we will discuss it
further below. However, let us first finish impuise-powered rolling with a brief
stability analysis. Applying the general procedure (5) to the stride function (29)
produces

Qc,

AQ, ., ~ AQc, +TAP,, . (39}
Ci ”W Cie "

The coefficient of A€, increases in a climb, reaching unity when y= —y,. This
implies that perfectly efficient climbing without active control would be neutrally
stable. Stability could be improved by varying the pulse according to a simple
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feedback law:
AP

Xrc4

= Ki€dc,— Q) (40)

where K is selected to produce any desired speed-mode cigenvalue z, according to
1 Q.
K= ﬁs" —-z). (41)
r (n Qéo + 4?&0 02 )

5. Length Cycling

Our second scheme for “pumping” the passive motion involves leg length varia-
tion. Humans do this by knee flexure, but for the rimless wheel we instead iragine a
telescopic action. The stance leg starts the stride with length (1 —Al), lengthens
instantaneously to (14 Al) while passing through the vertical, and then continues at
this length until support transfer. Start- and end-of-stride angles with this strategy
satisfy

(1—Al)cos 8, = (1+ Al)cos 6, (42)
0, —0; = 2uq. 43)

Formulation of the stride function is simplified if the energy E, rather than the speed
€., is used as the state variable. Thus the k-th stride begins with energy

Ey = (1—Al)cos(y +8)+ 4(r2, +(1 — AYIZ,. (44)
The wheel rolls to the vertical (6, = —v), decelerating to
—(1-Al
clocsyo- = (-2 5)

ri+(1—AlP"

Then the leg extends, Angular momentum about the foot is conserved, so the speed
immediately after the length change is

ri.+(1—- Al}z
ri.+(1+Al)
The total energy after the length change is therefore [from (45)]
E+W=(1+ AI)+i{rm.+(1 + A, 4 =0+
+(1-Al?
={1+Al ""

ﬁl"r

Then rolling on to the end-of-stride accelerates the wheel to

_ E +W-—(1+Alcos(y+6))
felv) = \/ 2 +(1+AlY '

C|8c+1r-0" {46)

QCJﬂc+'}I=0* =

—(1—AD). C5)

(48)

I)"’

At support transfer angular momentum about the forward foot is conserved, so that
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Lcf. (14) and (15)]
(rZ +(1— AN, | = (P2 + (1 — A1+ Aljcos 2ug)Q (7). 49)
The coefficient of restitution # in this case [cf. (16)] is then
+(1 —AP)cos 24,
rl.+(1—Al?
The energy at the start of stride k+ 1, from (44), (47), and (48), works out to

B)"’

(50)

(1 —AD\2
Eeor = (-ﬂr_-l—il—-{'A%) n?E,+(1—Al)cos(y +8)
gyr

2 +(1—~ADPY?
(s,,+(1+AI)2) A1-ah

+(1-Al?

yr 2 _
* T an " L+ AN —cos(y+07), (51)

85"

This is the stride function.
Specifying Al and invoking the ¢yclic condition (2) produces a solution, but to find
the corresponding translational speed we need the stride period. This is not supplied
by the analysis of energetics, so instead we turn to the equation of motion (7). Length
change modifies the timescale parameter o (8); thus before and after the event we

have
_ (1—Al)
%= R AP 43

.. = (1+Al)
= +(1+ AN

8)”

(53)

Pre- and post-length-change sections of the stride must be calculated separately. The

original solutions (10) and (11} apply in each section, with appropriate modifications

to ¢ and initial angles and speeds. The stride period ultimately turns out to satisfy

1. Qfo—y—=6 _1_ Qoo +7+0,

% e o 4776, T 20, ™ Qcfrfo,— 70,

with (1,) from (48). This, together with the stride length [from (42)], determines the
wheel’s translational speed.

These formulae allow calculation of energy requirements as a function of slope and
speed. In Fig. 4 the resuits would fall just above the “gravity plus dissipation” line,
indicating that dissipation increases slightly in a climb. However this penalty would
be suffered only if length cycling were used on its own. When humans negotiate steep
slopes, we instead use length cycling and impulsive pushing in combination; to see
the advantage of this approach, consider the problem of steep descent. If the legs
were held at fixed length in such a descent, then according to (18) the speed would

(54)
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become intolerably high. (In fact, cenirifugal effect would throw the wheel off the
ground.) If, on the other hand, length cycling were used, then speed could be
regulated to whatever level were desired; some cnergy still would be dissipated in the
heel-strike impulse, and some in the length adjustment. Now imagine watching a film
of this motion-—in reverse. You see a steep dissipation-free climb, with an impulsive
push and length change mirrored (and easily calculated) from those in the steady
descent.

6. The Walking Wheel

Next we consider the simplest of all bipeds: the “walking” or “synthetic” wheel
[Fig. 2(b)]. This device earns its name by synthesizing a wagon wheel from two
hinged spokes, each with a section of rim. Let us suppose that it carries a payload
sufficiently large to make its overall mass center practically coincident with the hip.
Now observe the following:

(i) If one leg is put on level ground and given a push, then it will behave like a
section of wheel and simply roll along at constant speed.

{iy If, meanwhile, the other leg is shortened slightly, then it wili swing clear of the
ground as an unforced pendulum.

(iti) Support can be transferred at any time by infinitesimal length changes. Both
contact points would be directly below the hub, and consequently the transfer
would not change the translational speed of the mass center.

With these observations in mind we can develop the stride function easily. Initial
conditions are

ABC = —0 QC = Qck

{55)
AB’.‘ = Otk QF = QF’C'
Thereafter, the positions and speeds satisfy

AB 1) = —o, + 8, T (56)

ABp(7) = o cos wpT+ %sin 0T (57

F
Qc(T) = Qch (58)
Qp(1) = —wpd, SN W T+ Qp, COS WpT (59

where o is the pendulum frequency of the free leg. Let us specify that support
transfer will occur when the leg angles become equal and opposite. Then from (56)
and (57) the stride period t, satisfies

Qo .
olcos wptp— 1)+ Qp, 7, + EFE sin wpT, = 0. (60)
F

Since support transfer can produce no change in the hub speed, both legs must
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emerge rotating at €, . Hence the complete stride function, with 7, given by (60), is

ak+l =_ak+gcktk (61)
Qck+l = QCk (62)
Qryy = Qck- (63}

We now impose the cyclic-gait condition (2} and solve for the repetitive initial
conditions and stride period. These turn out to satisfy

wrTo = 7 or 4-058 (64)
g = fo Qc, (65)

2
Qp, = Q¢,. (66)

Thus there are two sets of cyclic gaits, either of which can be sustained at any speed.
Higher speeds simply call for longer strides (65), while the cadence remains constant
at either of the two values in (64). Of these two possible solutions, the longer period
gait, is to be preferred for a couple of reasons. First, as we shall demonstrate
presently, it is stable while the other is not. Second, it entails support transfer when
not only the angles match but also the speeds [cf. Fig. 2(b)]. This is more in the spirit
of mimicking a genuine wheel and, moreover, suggests a practical idea. The fact that
the swing foot skims the ground through the whole stride makes the walking wheel
hard to implement in practice. However, observe that the foot moves forward
throughout the swing phase until the moment desired for support transfer, at which
point it tries to reverse. Thus, if the soles of the feet were lined with cat’s fur or a
similarly ratchet-like material, then an experimental model just might be made to
work.

To assess stability (with angle matching as the support-transfer condition} we
differentiate the stride function as follows. VS, for (5), is
[ Oer Pgr Dy

b, Qg %

aﬂckn aQCk+1 aQCk+1
50(,‘ aﬂck 59”

aQ1“lc+ 1 aQ'Fk+ 1 aQ'Fk+ 1
da, 0, I J

~1 7, 0] [ , 0n o,
=0 1 g + g da, 0Qc, 0 |° (67)
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But from (60)

" v,
o, cos wet,— 1
ot 1
2, |~ morsinere - Og—Opeosarn| -
0y, Gy SIN Wp Ty — - COS§T :
Cu W Py 38c, —Repk £y Sin Wy,
o1, Wr
[ 9

If [from {64)] wzT, =, then the leading coefficient here goes to infinity; thus the
shorter-period gait is (for infinitesimal perturbations) quite dramatically unstable. If
W, = 4058, on the other hand, then we have

Ax 02 203 044 r 4,
k+1 —reL —— — k
AQc. | = Dr Gr | fAQ, . (69}
AQ 0 1 0] a9
Fk+1 0 ] 0 Fik

The eigenvalues and eigenvectors of this system are as listed in Table 1. We can
interpret them as follows.

{i) The “speed” mode is at Toot the same as in the rimless wheel. But since the
walking wheel is equally happy at any speed, the mode is, in this case,
neutrally stable, and the eigenvector’s A¢/AQ ratio is given by the steady-
rolling condition (65).

{(ii) The “swing” mode is a rapid elimination of any perturbation in Qp. With a
large hip mass the first support transfer makes Qp =Q, so z=0.

(iii) The “totter” mode is a transient whereby the stride length accommodates to
the steady walking speed. That is, the wheel once started maintains its initial
speed through all subsequent motion; however, the initial o may not be
appropriate for that speed as specified in (65). In this case, « adjusts through a
decaying oscillation which persists over several steps.

These same modes can be recognized in some form across the whole the spectrum of
models included in Table 1. However, of the three, the totter mode is the most
variable, and as mentioned carlier, some design choices make it unstable {(McGeer,
1990b).

7. Equations of Motion for a Straight-legged Biped

We now turn to our main attraction: the general straight-legged biped as illus-
trated in Fig. 5. This improves upon the walking wheel, in that it allows smaller feet
more flexibility in the mass distribution, and the option of a torso. If the torso is
included, then some provision must be made for keeping it upright. The obvious
scheme is to apply appropriate torgues at the hip, with reaction against the stance
leg (that offering a more robust antagonist than the swing leg). Here we will choose
the torques such that the torso angle remains constant throughout the stride. This
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F1G. 5. General model of a straight-legged biped walker. Motion is confined to the sagittal plane. (In
practice this can be arranged by building each leg like a coupled pair of crutches. See McGeer, 1990b.)

proves to be a good approximation for the more complicated case illustrated in
Fig. 2{d), in which the torso bobs back and forth.
Analysis begins with the equations of motion. These are fourth order, with state

variables
bc
H =
[ BF] (70)

0= [gc:l (71)

In straight-legged walking (although not in running or knee-joint walking), the angles
remain near the vertical and the speeds remain small («./g/l). Therefore it is
reasonably safe to linearize, and write the equations of motion as

MR +K[AO—AO ] ~ T (72)

where A@ is the rotation from the surface normal, Afg (81) the static equilibrium
position, K (D.18) the stiffness matrix, M, (D.23) the inertia matrix, and T a vector of
(optional) control torques applied to each leg. The derivation of this system is given
in Appendix D. Its solution can be expressed in terms of a transition matrix D(r)
(F.4), relating the initial state to the state at time 1 later in the stride, The form of this
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ABGRY| . [A8,—~ABs |  [Af
) o

[In the case of the walking wheel, this set reduces to (56-59).] Define

_ —1
12[1]. (74)

Then A8 = A, at the start of the k-th stride, and A@ = — A« ., at the end; hence, 7,
and o, , satisfy

— Aoy, = Dyt )[Aoy, — Abgp]+ D102, + Al (75)

solution is

where the submatrices Dg; and Dy, form the top half of D.

8. Support Transfer

When the forward leg strikes the ground, the impact is perfectly inelastic, some
energy is dissipated, and support is transferred instantaneously. If the model has a
torso, then an impulsive torque must be applied against the post-transfer stance leg
to hold the torso in place. Also, an impulsive push P, ; can be applied to pump the
motion. The speed change produced by this combination of events satisfies

-QI_:+1 = AQ[tk}fTPkH (76)

where A and T are derived in Appendix E. This is analogous to (29) for the rimless
wheel: the first term accounts for angular momentum conservation at support
transfer, and the second for the change in angular momentum produced by the
impulse. Note that since the stance and swing legs exchange roles at support transier,
the leg indexing (71) must reverse between £2(t,) and 2, . ,. A (E.19) is defined to take
care of the reordering.

Despite the compiication introduced by the extra degree of freedom, the same
effects that influence efficiency of support transfer in a rimless wheel also apply in a
biped. In particular, high inertia and small « (16) are desirable. In the case of a biped,
the effective “a” can be reduced by reducing stride length, increasing foot radtus (as
in the walking wheel} or raising the modei’s overall mass center (McGeer, 1990b).

Combining (76) with the transition eqns (73) and (75) produces the stride function

[—lak_l] _ [ Dy Dy :“:j'ak_ABSE] N |: Abgg ] 7
Qk+l ADnﬂ ADﬂﬂ gk rPk+l

There are three initial conditions for each stride (o, (¢, {35), but four equations since
7, must be found simuitaneously {as in (60-63)].
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9. Cyclic Walking Conditions

We now apply the cyclic-gait condition (2}, and solve for 1, &y, and €2, First,
solve for £2, using the “42™ equations of the stride function (77). Thus

2, = [1--ADqq]  '(ADgg[Aag — AlBs ]+ T Py). (78)
Now define
D'(2g, 7o) = Dgp+Dyg[T—ADyga] 'ADg,. )]

Then climinating £2, in the “8” equations of the stride function leaves as the steady
walking conditions

0 = [1+ Doy + [1— D'JAGg +Dyg[1— ADo ]~ TP, (80)

Consider first gravity-powered walking, with Py = 0. The slope y necessary to sustain
the walk enters through Afg;, which can be expressed as

where b accounts for the leaning necessary to balance on a slope, and A@,, for any
model asymmetry which would produce a non-vertical equilibrium on level ground.
Putting (81) into the steady-gait condition (80), and setting P, = 0, leaves

0 = [1+D]Aay+[I-D][AB, +by]. (82)

One can choose y and solve this pair of equations for a, and t,, with £2, following
from (78). Alternatively, one can choose a, and solve y and 1,; this is easier since the
equations are linear in 7. In any case solutions come in pairs, as we found for the
walking wheel. Figure 6 shows examples. In experiments, gravity-powered bipeds

B 275 —_\\
B
D
o 2501
=
3 225
w R=03
[ ! | ! I ! rgn = 0?
w=0
0-041 my=07
Long-peried
003 gait
é. N
@ 0-02p Short-period
gait
001
| 1 1 |
0 0-05 01 0-15 02 0-25 0-3 0-35

Translational speed

F1G. 6. Gravity-powered walking of an example straight-legged biped. Stride period t, and slope 7y, are
shown as functions of speed (in units of \/g_;‘i']. Model parameters are indicated on the right of the plot. (my
is a point mass at the hip.) At any speed there are two possible cyclic gaits, which are distinguished by
quite different periods. The short-period gait is unstable, so only long-period walking is sustainable under
gravity power.
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almost invariably adopt the longer-period gait (McGeer, 1990b, 1992). The shorter-
period gait, meanwhile, seems to be unstable for all parameter choices, and is usually
less efficient because the forward foot tends to strike with appreciable forward
motion.

10. Energy Consumption in Steady Walking

Since gravity-powered walking has been discussed at length in the references, we
wish to concentrate here upon powered walking. Toward this end let us develop a
formula for energy consumption with toe-off impulses. As in the rimless wheel, the
same momentum is transferred whether the impulses are applied pre- or post-
support transfer, but in most cases the former strategy requires much less work.
According to (31) it can be calculated from

W= 4PV} (83)

¥; being the post-impulse velocity of the original point of contact. Calculation of ¥,
proceeds by analogy with the derivation for the rimiess wheel. Thus the impulse
causes a momentary flight phase; translational and rotational velocities in this phase
[¢f. (23), (24) and (E.4)] are given by

Vem, = Veu(td+ By = GR()+ B, (84)
2, = 0()-M;'G™E,,, (85)
with G from (C.21} and M, from (C.19). ¥} [cf. (32)] is then
Vi = Ver,~ G2, = 1+ GM;'G™IR,, .. (86)
The work done by the impulse {cf. {35)} is therefore
W =4P[, I+GM;'G"IP,, .. (87)

Notice that the energy input is quadratic in B .

11. The Symmetric Impulse

We showed in section 4 that an impulse of just the right magnitude and direction
(38) makes the rimless wheel free of dissipation when climbing slope —v,. Inspection
of (80) suggests that the analogous “symmetric” impulse for a straight-legged biped is

Py = [Dgoll—ADgqo] 'T] ' —D"]b(y, 7). (88)

This eliminates y from the cyclic-gait condition, so that the same (a,, 75) which solve
the system when P, =0 continue to hold regardless of slope. Figure 7 shows the
work done by this impulse as a function of slope. The plot has the same format as in
Fig. 4 for the rimless wheel, and all of the important features are common between
the two plots.

If the impuise is not applied as specified by (88), then some penalty is incurred.
Usually the penalty is not large, but if a particularly bad choice is made then the
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FiG. 7. Energy requirements for impulsive pumping of the biped walking cycle. Note the similarity to
Fig. 4.

walking cycle can disappear. Figure 8 shows gait parameters (ie. o, and 1) vs.
impulse angle for a specified slope (—0-01 rad) and speed (0-25\/571). Also as an index
of energy consumption it shows the specific resistance, defined as

energy dissipated

=— - . 89
weight x distance traveled ®9)
35
¥ Symmetric long-cycle impulse
- © Symmetric short-cycle impulse
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FiG. 8. Stride length, period, and “efficiency” as functions of the angle of a toe-off impulse. For each
angle the impulse size is adjusted to maintain a speed of 0-25\/a when climbing a 1% slope. Impulse
angles between 0-23 and 0-28 rad should be avoided, since there turn out to be no cyclic gaits in this range
{(80). For any other angle, however, cyclic solutions come in pairs as in the gravity-powered case.
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(Note that energy per step as in Fig. 7 would be a misleading indicator of efficiency,
since in this plot is is speed that is being held constant rather than step length.)
Starting at the left edge of the plot, with the impulse nearly vertical, one finds a
choice between long- and short-period gaits. Then rotating the impulses forward
brings the cyclic solutions together, until at a certain point they “pinch off . With
further rotation they reappear and separate, but impulses between the pinch-off
angles cannot sustain steady gaits. A review of the energy requirements over the
remaining range of solutions indicates that the best strategy in this case would be to
push at an angle of 0-3 rad or so; this would leave a prudent margin for error, while
reducing energy consumption to a nearly optimal level. However the choice is not
particularly critical, which is to say that walking has rather forgiving dynamics. All
you have to do is push in more or less the right direction and your legs will take care
of the rest.

12. Stability

Linearizing the stride function for the straight-legged biped (77) leads {(as
deveioped in the Appendix) to

Aak+ 1
Agy 38 o8
AR 1= V,,S‘: ] + [-— ——] AP, . ,. (90
Ar: AR, FTFT *

There are four equations in the set, but only the first three are nceded to assess
stability. The fourth emerges as a bonus from the derivation, and allows one to solve
for Ar,. Thus the eigenvalues and eigenvectors listed in the example of Table 1 are
those of the upper 3 x 3 submairix of ¥, 8.

Figure 9 shows the modes of an example model, in the form of a root locus over a

R=03 Im{z)

Fayr = 0-3 1 Speed
¢= 06 t pe
w=10 v 01
Mg = 0.7

o 1 Refz)

Fic. 9. Root locus for gravity-powered walking in the long-period gait. The three stride-to-siride
eigenvalues for an example biped are plotted vs. speed. All loci remain within the unit circle, so gravity-
powered walking is stable throughout the speed range. (However a similar locus for the short-period gait
would show instability.)
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FiG. 10. Root locus vs, impulse angie. All three stride-to-stride eigenvalues remain stable over impulse
angles ranging from (-28 rad to more than +9 rad.

range of walking speeds. Here the modes are quite different from those in Table 1
(mainly because for this calculation we have specified a smaller foot radius). At low
speed there is a well-defined “speed” mode, but the “totter” and “swing” modes
merge into a conjugate pair. At high speed, on the other hand, the “swing” mode is
distinct, but the “totter” and “speed” modes are coupled. In any event, the locus
shows stability across the full speed range. However this conclusion applies only to
the long-period set of gaits; the short-period set turns out to have a monotonic
divergence in one mode. '

Figure 9 was done for gravity-powered walking. Before doing similar calculations
for impulse-powered walking, some thought must be given to mechanization of the
impulse. We envision that a robot might nse spring-loaded pistons in each foot.
These would be cocked to a specified energy and, just before support transfer, fired in
a specified direction. Hence the variables under direct control would be the
impulsive work W and inclination ¢, (G.2). Appendix G explains how to linearize
the stride function in terms of these variables; the result is

A%y Aw| a8 2§
AR | =VS|  F+ o AW+ - A, (91)
o | =505 | iy A 35,

If the impulsive work is kept constant from one stride to the next, then stability is
indicated by the upper 3 x 3 submatrix of V8. An example is given in Fig. 10, which
shows a root locus for the long-period gaits of Fig. 8. The locus shows that almost
any impulse angle is acceptable as far as stability is concerned.

Similar analyses can be done to investigate sensitivity to each parameter of the
model. Further examples are provided in McGeer (1990q, b). In general, passive
locomotion proves to be quite robust with respect to parameter variations.
Furthermore, stability can be augmented by feedback; possibilities are discussed in
section 14,
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13. Torso Orientation

The strategy of pushing with the trailing foot suffers from the obvious limitation
that it only works for walking “uphill”, ie. for slopes above y,. To walk downhill
length cycling can be used instead, as in the rimless wheel, but for a biped with a
torso another option arises. In order to hold the torso motionless during the stride, a
torque must be applied by reaction against the stance leg. This torque is derived in
the Appendix (I3.22); the reaction against the stance leg is

Teir = —IrcQc+mrer(Br+7). (92)

Thus holding the torso in a backward recline brakes the stance leg, and so
dissipates energy into whatever device is applying the torque. (In animals this means
heat generation in muscle, but a robot might make provision for regenerative
braking.) On the other hand, leaning the torso forward allows the stance/torso
actuator to pump energy into walking and so supplement the impulsive push.

In any case, the energy transferred over one stride is

ap I
Wim | Topdt = 2204~ QR+ 2mrcsOrt e 09

— o

For shallow slopes Q, = Q{1,); making this approximation and matching actuator
work to the potential energy change per stride (37) leaves
-1

TCr

Or+y =

(7 —7,) (94)

With m; =07 and ¢y = 0-3, for example, the required torso recline {from the vertical)
works out to about 4-8 rad per radian of slope if no other method is used to dissipate
energy.

To check this result against an exact calculation, we return to the stride function
{77). The torso angle enters through A@: (81), which can be written as

Abgg = A0w|sr=o+arar+bﬂ’ 95)

with ay from (D.25). To find a steady walk with a leaning torso, we simply choose a
desired 85 and solve for the cyclic-gait [eqn (80)]. Figure 11 shows a range of
example results. The relationship between torso angle and slope proves to be as
predicted by (94), and—at least for the long-period gait—the stride period varies in
the intuitive sense: a braking torque on the stance leg slows the cadence, and a
thrusting torque accelerates the cadence. But accelerated cadence causes a problem:
at (Br+7v) = 0045 (in this exampie} the long- and short-period solutions “pinch-off”
and disappear. The model cannot walk with the torso leaning further forward.
This is no great restriction, since one has no particular need to walk and bow at
the same time;, however, in any case, the restriction is easily removed. As Fig. 11
indicates, a small offset of the legs’ mass centers (w) shifts the pinch-off 8 substan-
tially. Pinch-off still occurs at the same 1, (satisfying wpt, = 7), but not at the same y.
Humans may exploit this effect. When leaning forward we walk on the balls of the
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Fi1G. 11. Gait adjustment by torso inclination. The torso can be held in a backward recline by applying a
torque against the stance leg. The reaction brakes the leg, and so aliows a steep descent. Conversely, the
torso can be inclined forward for climb. However, the dynamics of the model are not symmetric; leaning

forward too far makes the cyclic solutions disappear. Fortunately, the vanishing point can be adjusted by
making w (Fig. 5) non-zero.

feet, which effectively shifts the leg axes forward with respect to the mass centers, and
so makes w negative just as required by Fig. 11.

w in fact proves to be something of a panacea. It can also be used to compensate
for friction in the joints, which otherwise would be intolerable (McGeer, 1990b), and
generally in any other situation when 1, has to be shifted into a more acceptable
range. McGeer (1990q, ¢) offers more examples.

14. Scattered Stepping Stones

To this point we have concentrated on steady walking over uniform terrain.
However one also must be able to negotiate more difficult situations, and as an
elerentary example consider the stepping stone problem. A one-dimensional field of
stepping stones is randomly spaced along the model's path. The problem is to
modulate the gait from stride to stride such that the feet land on top of each stone.

We take up the issue at the start of the k-th stride. By some means, visual or
otherwise, we measure the distance to the next stepping stone; this determines the
desired value for «,_ ;. Thus, in terms of the stride function (77), the left-hand side of
the two “@” equations is specified. The control problem is to adjust two parameters
on the right-hand side so that the two equations are satisfied.

The most convenient parameters mathematically are the two elements of Afgg,
since these allow a linear solution. Thus, solving (77} for a suitable value of Ay,
leaves

Abg, = [Dgy— 1] (Aegy | + Dgpday, + Dy £2,). (96)



BIPEDAL WALKING 303

Once 7, is chosen (to fix D), Afg,, follows. It, in turn, can be set via torques applied
between the torso and each leg. Thus, the required torques, from (D.4) and (D.17), are

[7}] = K(AOsz, — A8, — by). o7
T &

Note that these remain constant throughout the stride.

The big problem with this scheme is that the torque applied to the torso, namely
—(Te+ T), is, in general, not the torque required to hold the torso at its original
angle (92). The obvious solution might appear to be rotation of the torso to a
suitable new angle; however, this turns out not to work. Suppose, for example, that a
long stride were required; this would call for a positive torque on the stance leg, and
50 a positive 1. But rotating the torso forward dynamically causes the stance leg to
recoil backward, which produces an effect exactly opposite to that desired! Dynamic
adjustment of torso angle is therefore not very helpful.

Alternatively, then, we might discard Af; as the stepping-stone control and
instead adjust P,. For this purpose the “8” equations of the stride function can be
written as

— 4w,y = DgolAoty — Absg,) + Dog(AS2(t, ) +TF)+ Abgg, . (98)

Solving for P, gives
P =Y 'Dog(— Aoy, — Ay, —Dgglday — Ay ) — Do AT, _1)). 9%

Again, this control strategy is convenient mathematically. However it can run into
trouble on short strides, which may call for a shallow impulse angle or even an
inadmissible downward puli.

A third stepping-stone strategy which would avoid the shallow-angle problem uses
one torque and one impulse variable as the control pair. In particular, the impulse
angle could be specified a priori, leaving the magnitude as the first control variable.
The second could be a stance/torso torque Ty added to T, from (92), and balanced
by a swing/torso torque — T,;. Together these would leave the torso undisturbed.
Meanwhile the stride function is linear in the two control variables, so again the
appropriate values are easily calculated, and the solution easily implemented so long
as P, remains positive.

One final alternative is to use Ty as a single control variable, and vary 1, as the
second free parameter in solving the “8” equations. Figure 12 shows an example of
this technique. Unfortunately the stride function is non-linear in t,, and this
introduces certain restrictions. First, it makes solution for Ty less convenient than in
the previous schemes. More fundamentally, it means that in some cases there is
simply no solution to be found. Large changes in stride length are particularly
problematic.

Nevertheless this technique allows a quite useful range of gait modulation, as do
the other methods which we have discussed. In combination they can achieve very
dextrous locomotion. Moreover, their application is not just for the stepping-stone
problem. They can be used simply as regulators to augment the stride-to-stride
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Fi1G. 12. Modulation of the walking cycle. A passive biped can walk across randomly scattered stepping
stones by modulating its cycle from stride to stride. Here, the modulation is controlled by a torque T,
applied between the legs. Notice that the torque is selected at the start of each stride, and then held
constant until the next heel strike.

stability of steady walking. In fact, the “7T” technique can be applied at any time
during the motion, and so can compensate for disturbances arising’in midstride.

15. Free and Easy

It is sometimes assumed, by both students of biomechanics and designers of
robotic analogs, that walking requires complex motor control. This is certainly not
so. In fact if one is satisfied only to go downhill then walking can be completely free.
If, on the other hand, one wants to go uphill or to negotiate uneven terrain, then
walking, while not quite free, is still very easy; one need only pump and modulate the
passive limit cycle. The forgiving dynamics at play allow a child easily to learn the
necessary techniques (thankfully without benefit of our mathematical recapitulation!)
and the locomotion repertoire that results offers an attractive combination of
dexterity, efficiency, and simplicity. Engineers, of course, prefer to travel on wheels;
however, for an organism fated to evolve in the absence of weil-graded highways, legs
are a natural alternative.

REFERENCES

ALEXANDER, R. M. (1988). Elastic Mechanisms in Animal Movement. Cambridge: Cambridge University
Press.

McGezer, T. (1988), Stability and Control of Two-dimensional Biped Walking. Technical Report CSS-IS
TR 88-01. Burnaby, BC: Simon Fraser University Centre for Systems Science, Septernber.

MCGEER, T. (1990q). Passive bipedal running. Proc. R. Soc. B 1240, 107-134,

MCGEERr, T. (19906). Passive dynamic walking, Intern. J. Robot Res. (2), 68-82, April.

McGeEr, T. (1990c). Passive walking with knees. In: Proc. 1990 IEEE Robotics & Automation Conference,
May 1990. Cincinnati, OH: pp. 1640-1645.



BIPEDAL WALKING 305

McGEeR, T. (1991). Passive dynamic biped catalogue, 1991. In: Proc. 2nd Int. Symp. of Experimental
Robotics, June (Chatila, R, ed.). New York: Springer-Verlag, in press.

McGeEr, T. (1992). Principles of walking and running. In: Advances in Comparative and Environmental
Physiology, Vol. 11, Mechanics of Animal Locomotion (Alexander, R. M., ed.). Berlin: Springer-Verlag.

McMaHon, T. A. (1984). Mechanics of locomotion. Intern. J. Robot. Res. 3(2), 4-28.

MocHon, S. & McMaHon, T. A, (1980). Ballastic walking: an improved model. Math, Biosci. 52,
241-260.

THoMpsoN, C. & Raisert, M. C. (1989). Passive dynamic runnming. In: Proc. Ist Int. Symp. of
Experimental Roborics (Hayward, V. & Khatib, O., eds) pp. 74-83. New York: Springer-Verlag.

APPENDIX A

Sub- and Superscripts

+ immediately after support transfer g due to gravity

— immediately before support transfer H at the hip

0 cycle-gait condition h  at heel strike

a  start-of-stride k  stride index

b  end-of-stride p  impulse application point
C  stance leg SE static equilibrium

¢ contact point (as subscript) torso

F  swing leg normal to ground

T
CM overall center of mass T  (as superscript) matrix transpose
X
[ flight phase y  parallel to ground

APPENDIX B

Symbols
(Defining equations are noted in pargntheses.)

Roman
ap derivative of static equilibrium energy (44)

w.r.t. torso angle (D.25) stance/swing index exchanger
b  derivative of static equilibrium (E.2)

o
5

w.r.t. slope (D.24) F.  contact force (C.1)
¢ distance from foot to leg mass f  stride function error vector (F.1)
center (Fig. 5) G CM velocity Jacobian (C.21),
D  start- to end-of-stride transition D2)
matrix (F.4) g  gravitational acceleration (D.12)
Dyg, Dyq, Do, Dy submatrices of H  angular momentum
start- to end-of-stride transition J  angular impulse
matrix i identity matrix
D (79 I moment of inertia
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K  stance stiffness matrix (D.18) z eigenvalue of V.8 (6)
! leg length (Fig. 5)
M  stance inertia matrix (D.23) Greek
M, Mforf:=0,0=n(72) o  leg angle at support transfer (74)
M, flight-phase inertia matrix (C.19) I' impulse-coupling matrix (E.20),
m  mass (Fig. 5) (76), (27)
P toe-off impulse ¥y siope (Fig. 5)
P magnitude of toe-off impulse 8  link angle
(G.2) A8 rotation from surface normal
p  toe-off impulse of unit magni- (Fig. 5)
tude (G.2) A8y, static equilibrium position (81),
Q  diagonal matrix of eigenvalues (95)
(F.3) A@, static equilibrium on level
R foot radius (Fig. 5) ground (D.19)
r position vector n  coefficient of restitution (16)
re,e Tadius of gyration A support transfer matrix (E.19),
S stride function (1) (76)
VS gradient of stride function (3) A (79
SR specific resistance (89) v start-of-stride state vector (1)
T torque ¢  rimless wheel timescale para-
V  linear velocity meter (8)
W energy input (31), (47) T dimensionless time t\/gW
w  offset from leg axis to leg mass @  matrix of eigenvectors (F.3)
center (Fig. 5) ¢, angle of p w.r.t. trailing leg (G.2)
% unit vector normal to ground Q0  angular speed
y unit vector parallel to ground we swing pendulum frequency
APPENDIX C

General Equations of Motion

We now derive the equations of motion for the biped of Fig. 5. Translation of the
overall mass center is governed by
Veu =8+F, (c.y

where F, is the force at the point of contact, normalized by total mass. (Also note that
g =1 in normalized units.) Meanwhile rotation of each link is governed by an
equation of the form
dH
=T
dt
where H is the angular momentum and T the torque about the hip. Formulation of
this equation proceeds similarly for each link. Consider the stance ieg. The left-hand

(C2)
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side is
dHc
de
rc is the vector from the hip to leg mass center, and ¥, the acceleration at the mass
center. V. can be separated into components due to translation and rotation. The

translational component is just ¥,,. The rotational component is derived as follows.
First, call reyc the vector from overall mass center to leg mass center. This is

= Myey(rd, Qe +ryc X V) (C.3)

¥omic = ¥ac—Vuiem: (C4)
The vector from hip to overall mass center is, in turn,
Paicm = Mieg(Puc +ryp)+Mrry; (C.3)
where my,, and my are normalized by total mass. Thus from (C.4)
Fome = (L—mydrye— My g yg —Mpry s (C.6)
Differentiating for velocity gives

dr, CMiC

dr = (1= )Qc X tye— My Qe X rgp—mQyp Xryr €7

where the £2 vector points into the page in Fig. 5. Differentiating again leaves the
component of ¥ due to rotation about the overall mass center:

d2
%t;fi&' = —(1 =My Jryc Qe+ My FupQf +mpry Q7

+(1 _mleg)nc XFge _mlegQF X "HF—'"TQT XFyr. (C.8)
Substituting this into the formula for H. (C.3) completes the left-hand side of the
rotational equation for the stance leg (C.2)

dH .
ﬁ = mleg(rsyr + (1 - mleg)lrﬂclz)nc

—mlzcg"ﬂc"Hrnr—mlegmr"ﬂc"ﬂrnr
+ Mgt ye X rgpQE + My mrtye X rgp Qi+ Migglyc X Vep. (C9)
Now turn attention to the torques on the right-hand side of (C.2). Components are

due to gravity, the contact force, and a control torque at the hip. The gravitational
component is

I, = Mygrucx g (C.10)
The component due to the contact force, from (C.1), is
Tro=—tgx Fo=—ryx(Von—8) €1y

where r; is the vector from contact point to hip. Adding these two components
together with a control torque T gives

T, = (rytmyeruc) Xg—rg X Ve + T (C.12)
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Combining this result with the angular momentum (C.9) completes the rotational
equation of motion (C.2) for the stance leg, Similar derivations follow for the swing
leg and torso; the three equations together have the form

M; 2+C; 22 =Glg—Vpp)+ T (C.13)
The matrices are as follows. Define
Iy, = Miglrgye +(1—myeg)lrad?) (C.14)
Ir, = mylrg,, +(1—mg)c3) (C.15)
Igc, = —mlzeg"yc"'ﬂr (C.16)
Ire, = —Myegmyryc Tyr (C.17)
Irg, = —myemerye rys. (C.18)

Then

IL! IFC; ITC]
Mr,= Iec, 1y, g, (C.19)

Irc, Irs, Iy,

2
5 0 MicgFucXFfygr  MrMefge Xrgr
Cf = mle‘rﬂp X Fuce 0 mrmlegrﬂ'p Xrygr (C..ZO)
My Pyr X Fgc MrMyeFyr X Xyp

G= l:—x"y] O [reg+Mygtycl Mygrge Mrryr] (C.21)

where © indicates a dot product in each ¢lement of the matrix multiplication.

APPENDIX D

Stance Dynamics

The rotational eqn (C.13) applies regardless of whether the model is off the ground
or in contact. When off the ground, ¥,,,=g. When in contact, on the other hand,
Vs is determined by 2 as follows. Take the origin of co-ordinates to be the contact
point at midstance. Then from (C.5) the position of the overall mass center is

Poicm = VROCHr g+ rycy

= JROc+ g+ My {ruc+rup)+merar. (D.1)
Differentiating this [from (C.21)] gives
Vorg = G2 D.2)

where G is as in (C.13). Differentiating again gives the acceleration,

: - -y A(rey + My yc) dryr dryr 2
Ve, = i) N2 (D3
oM Gﬂ‘*‘l: . ]O[ a6, Myeq do, mr a6, (D.3)
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Substituting into (C.13) produces the stance-phase equations
M 2+CR*=GTg+T (D.4)

where the new matrices are as follows. Define

IC = mleg{rgyr + |rcH + rHClz) +(1 - mleg}lrcﬂlz (DS)

Ip = my(rgye+Irygl) (D.6)

Ir = myri, +cP) (D.7)

Irc=myrye by (D.8)

Irc =mergr -ty (D.9)

Then

Ie Ipe Irc

MT = MT!+GTG = Ipc IF 0 (D.IO)
I« 0O Iy

—=R(Foy+Megryc) ¥ Myeefup X ey Mylyr X ¥y
C= —m,eg(rHFXl'cH+RrHF‘ﬁ) 0 0 (D.ll)
—my{rgr Xty +Rrgy ) 0 0

The (X, ) components of the vectors in these equations are

g= [-:;’3 ?] (D.12)
ruc = (I1—¢) [ o gj +w [ ;i“eic] (D.13)
S v L et
rar = Cr [‘:’: gj (D.15)
Fog = [g] +(I-R) [Z?;gj | (D.16)

In walking, rotations remain small, so the equations of motion (D.4) can be
linearized. Thus the centrifugal (£22) terms are dropped, My is evaluated at §.=0,
8 ==, and the gravitational terms become

Gy = K;[AB, + +5;7—A0] (D.17)
where
ml,s(c —R+
(Mg +mYi—R) 0 0
Ky=g¢g 0 —mg(l—¢c) 0 (D.18)

0 0 mrcy
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Myeg W
A8, ;= gKit| mw (D.19)
L 0
[ mlegc + (mlcg + mT)l
by = gl(}1 — mles(l— ) . (D.20)
Mrlr

The equations of motion (D.4) thus reduce to
M. 2+K, A = K. [AG,;+ b1+ T (D.21)

Now we wish to hold the torso motionless while the stride proceeds, which means
that we must choose Ty (the third element of T) such that Q; =0 throughout.
Solving the third equation in this set for T; thus leaves

Ty = IrcQc—mpcrg(f7+7). (D.22)

This torque is to be applied by reaction against the stance leg; hence — T must be
added to the first equation. The equations for 0. and @ are then left as quoted in (72)
and (95), with K being the upper 2 x 2 submatrix of K, A8, the first two elements of
A8, and the remaining terms as follows:

M = IC+ITC IFC (D.23)
IFC IF
— x| Mgl + )+ mpll+cq)
b=gK [ i) (D.24)
ar=gK! ["’B"T]. (D.25)
APPENDIX E

Support Transfer and Impulse Coupling

Calculation of impulse coupling and support transfer for a straight-legged biped
proceeds by analogy with the rimless wheel case (23-28). Some care must be applied
to mainiain consistent leg indexing. In this derivation we will use the following
convention: G~ and G* will indicate values of G calculated according to (C.21),
respectively, using pre- and post-ST indexing of #—i.e. in evaluating (C.21) for G-, 0,
refers to the angle of the trailing leg; for G+, 8, refers to the angle of the leading leg.
£2 will be ordered throughout according to the post-ST indexing, i.e. leading leg first.

If the impulse is applied prior to support transfer, then direct integration of (C.13)
gives the instantaneous change in £2. With post-ST indexing of £2, the result is

F;M; Fr(2,—27)=-F;G™'P (E.1)
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where F; is the index-exchanging matrix

010
Fr=|1 0 0f. (E.2)
¢ 01
But
F:Mz Fp =Mz, (E.3)

where M7 is evaluated from (C.19) with post-ST link angles. Thus, solving (E.1) for
the flight-phase £2 gives [cf. (24), (85)]
2, =02--M},'FG~'P. (E4)

Provided that the forward foot continues to translate downward after the impulse,
the flight phase ends immediately. The landing generates a second impulse P,, and
we also apply a torsional impulse # to nuil torso rotation. Integrating the equations
of motion through these events gives [cf. (26)]

M; 2+ = Mf,2,—G*'P,+ K. (E.5)
P, Icf 29)] is .
Py =Viy—Veu, =G 2% —(G"F 27 +P) (E.6)
Substituting this and (E.4) into (E.5) leaves
[Mf, +G*'G*]2* = [M},+G" G F 1R +[G* —F,G1P+s#. (ET)
Notice [from (D.2)] that
[(G*—GF; 102 = Voo + Vysem (E.8)

gives the velocity of the point of impulse application, relative to the post-ST contact
point. By inspection of Fig. 5, then,

(!— R)sin {({—R)sina Oi\

. ES
R+({(I—R)cosa —R—(I—R)cosa 0 (E9)

[G* -G Fr] =[

Also notice that the matrix multiplying £2 * is just M as given by (D.10), The matrix
muitiplying 2~ is new. Define

I¢ = my (rl, +w?—(I—cl(c— R}+ Rcos @)+ Rwsin ) (E.10)
Iee = 2m ((R—D(R—¢)cos 2a+[I— R+ R(e—R)]cosx + R}

+m({I— R)* cos 24+ 2(— R)R cos « + R?) (E.11)

I7¢ = mper(R cos 81+ (1— R)cos(e + 04)) (E.12)

If = m (rl, +(— MR —c)+w?) —my  R((I— c)cos a + wsin &) (E.13)

I7p = mycp(Rcos B4+ (1 — Rjcos(fy— a)). (E.14)

Then

Ic Ipc Ic
. (E.15)

M{,+G*'GFl=|0 iz ©
0 Ipp Ir



312 T. McGEER

It remains to choose # such that the QF = 0. Thus, solving the third eqn of (E.7) for
the necessary torsional impulse gives

H = 170 — 176005 (E.16)

This is applied by reaction against the post-ST stance leg; thus putting — 5 into the
first equation of (E.7} leads to the following 2 x 2 system for Q. and Q;:

—_  [U—Rpsineg R+(I—R)cosa
M*2+ =M E.17
* [(I —R}sina —R—(I—R)cosa (E17)
M+ is as given by (D.23), and
Ic Ipc+ir
M-=|'¢ “FCTITRY E.18
[0 Iz (E.18)
Solving for £2* leads to the support transfer eqn (76) given in section 8, with
. 01
A=M"M" .
’:l 0] {E.19)

=M+ [(I—R)sina R+(1—R)cosa ] (E.20)

{I—R)sina —R—(I—R)cosa

APPENDIX F

Linearization of the Stride Function

For the purposes of linearization it is convenient to write the stride function (77) in

the form
f= [ Dy, Dyq :II:Aak_AGSE] + [ Al :| _ |:_}~°‘k+ 1:|. (F.1)
ADﬂG ADﬂﬂ Qk rPk+ 1 gk+ 1
Then the linearized stride function (90) emerges from

AU.“_ 1 1
AQe, | _ [ af oF of g -
O,y ., Q. O Ag,

AQypy 4y
Az aQ
: LA S S . A | Rl NS
0oy, 08, Qg 0P, 0P, || Ap - -

Xk +1

Yl
Calculation of the partials of f is straightforward given the partials of the various

component matrices. Actually most of the component partials are zero; only the
following three are not.
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(i) éD/dr,
The equations of motion (72) can be written (with T excluded) in the form

E AB—AOSE _ 0 I AB—AQSE
de fo) | -M;K @ 0

AB—AGSE] (F.3)

=0Q¢—l[ P

where Q is the diagonal matrix of eigenvalues, and @ the matrix of corre-
sponding eigenvectors. The transition matrix D is then

D(1r) = ® ¥ &', (F4)
The derivative of D is therefore
b ] I
ZoeQeot = 1P ¥ P 1) = D. (F5
7, OQ TP (@Q® HP TP [—ME‘K 0] (F.5)
(ii) 9A/do, 1
Differentiating (E.19} involves
o Ina— +-1 -
iM* M _ M M-+M* M ‘ F6)
da oot oo
But F\Y i\
=M M (F.7)
ot du
50 JA M- [0 1 M+
o mr - A F.8
da M ( da [1 0] o ) (F-8)

dM* /0o and 6M~/da are found directly by differentiating the elements of
(D.23) and (E.18), respectively, and evaluating at 8. = —ag, 8, = m+ o, Notice
that df./de=—1, d8;/da=1.

(it) oT/0a,, ,
From (E.20), and by analogy with (F.g),

ar M ([(I—R)cosa —(I—R)sino:il _ oM 1")

P (I—-Rxosa (/—R)sina da (F-9)

(F.5), (F.8), and (F.9) are evaluated at the steady cycle conditions, and inserted
into the appropriate slots of (F.2). The “AP-controlled” stride-to-stride
eqns (30} result.

APPENDIX G

Recasting in Terms of AW

As discussed in section 12, in practice it may prove most convenient to specify the
impulsive push by the energy delivered W and the angle of application (x+¢,). To
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reformulate the linearization in terms of these variables, differentiate (87) as foliows:

dW = P}[1+GM;'G"]dP ‘
+4PI[dGM;'G” + GM[ 'dGT—GM; ! dM M} GT1P,. (G.1)
Now write P as

cos(a+ )
= = Pp, G.
P=p [sin(a + 4>p)il ? G2
Then the differential of P is
dP = dPp+ Pdp. (G.3)

To get dP, return to the energy formula (G.1). In terms of (P p) it becomes

dW = PI[1+GM;'G"1pdP+ PI[1+GM; 1G"]P 3, do,
+P§([I +GM; 1G"’]P ?—‘E
T
+ = 3 [‘ZG M; 1GT+GM“ aai —-GM;1 5;:; M;‘GT] Po) da. (G.4)
Solving for dP leaves an expression of the form
oP oP oP
dP = 6_d x+ WdW-i— 2, d¢,. (G.5)
Putting this into (G.3) produces gradients of P, ,, in the form
ank-u anku ank+l
Oag,y OWiyy a¢pk+1
JP P aP (G6)

Fhe+1 Fie+1 Fica i

aak+l al’Vk+1 6¢Pk+l

Inserting this in turn into (F.2) converts from “AP-controlled” stride-to-stride eqn
(90) to “AW-controlled” eqn (91).




