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Symbols
(relevant formulae are referencéd in parentheses)

axial position of mass centre (fig-
ure 12)

matrix of control gains (22)
identity matrix

gravitational acceleration

angular momentum

leg length

mass
foot radius
radius of gyration

stride function (1)

jacobian of § (6)

first row of V.5 (23)
gradient of § w.r.t. @ (25)
gradient of § w.r.t. Ty (20)

§ first element of V.5 (23)

torque

vector of control variables (25)
translational velocity

forward offset from link axis to
mass centre (Ay in figure 12)

hip width (figure 12)

coordinate normal to the ground
(figure 12)

coordinate along the slope (fig-
ure 12)

eigenvalue (7); lateral coordinate
(figure 12)

Greek

ap leg pitch angle at support transfer

8 torso inclination

z slope, positive downhill

Yg slope for gravity-powered walking

Ay  forward offset from link axis to
mass centre (figure 12)

Az lateral offset from link axis to mass
centre (figure 12)

] pitch angle (figure 12)

v start-of-step state vector (1)

c dimensionless pendulum
frequency (9)

T dimensionless time #/g/l

To step period

o] roll angle (figure 12)

WP yaw angle (figure 12)

Q rotation rate in pitch

w rotation rate

Subscripts

0 steady cycle conditions

C stance leg

F swing leg

H at the hip

k step index

T torso or hip
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Figure 1: A bipedal toy which walks passively down shallow slopes. Energy gained by
descending the slope is balanced by energy dissipated each time the swing foot hits the
ground. The illustration is adapted from McMahon [8].

Abstract

Passive dynamic bipeds walk and run by virtue of physics inherent in the interac-
tion of their legs and the ground; they need no motor control. A diverse spectrum
of passive models are now known; together they offer a lively repertoire, including
locomotion at various speeds, up and down hills, in two and three dimensions, and
over unevenly-spaced footholds. We review the principal passive walkers investi-
gated to date, including experimental results and references to detailed analyses.

These suggest enticing opportunities for design of efficient and dextrous walking
machines.

Perhaps legged locomotion has been imposed upon the roboticist’s agenda by Holly-
wood. After all, as any moviegoer knows, real robots don’t have wheels. Alternatively,
perhaps the practical argument is genuinely compelling: legs do promise superb all-terrain
transport, although one may be sceptical about applications in the near term. Or perhaps,
as for me, their attraction is simply a conundrum. Wheels, wings, skates or skis obviously
constitute a sound basis for travelling hither and yon: smooth, efficient, and devoid of
any hint of complexity or needless appendage. But legs! All of those bits flailing around
— hardly an obvious solution, and yet in their element so much more effective than any
device on file in the patent office. To anyone guided by a faith in simplicity, the challenge
is disconcerting. Can so successful a scheme be as contrived as it seems? If not, where is
the simplicity?

The answer, I believe, lies in passive dynamic walking. Through this effect legged
locomotion can proceed as a passive interaction of gravity and inertia, without any motor
control. The effect is demonstrated most conclusively by the walking toy in figure 1, but
our own steps are guided just as surely by the same simple physics. In fact dynamics
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Figure 2: Passive dynamic walking cycle calculated for our first experimental biped de-
scending a 2.5% slope. The plot shows stance and swing angles relative to the surface
normal, as functions of time (made dimensionless by gravitational acceleration and leg
length). The machine is modelled as two straight legs with semicircular feet and a pin
joint at the hip. Parameters of the machine are tabulated in the margin.

of this sort can be seen in quite a variety of legged models, including devices having
straight or knee-jointed legs (figures 2 and 3), with or without a torso (figure 4), moving
in two dimensions or three (figure 5), and capable of walking or running (figure 6) or
hopping (figure 7). Here we will concentrate on walking, tracing our own development
from previously-reported work on simpler models through to newer results with knees and
three-dimensional motion, and finally shining some light down paths for further experi-
mental and analytical progress.

1 Straight-legged walking in 2D

Our experimental work on passive walking began with the machine shown in figure 8,
which was essentially a two-dimensional version of the walking toy. We will not discuss
it in detail, since a full report can be found elsewhere [3]. However a review is in order
to indicate the central ideas in passive walking theory. The review begins at time zero in
figure 2, when the step is just beginning and both legs are momentarily on the ground.
The legs must at this instant be at equal and opposite angles (+ag), but their rotational
speeds remain independently variable and so, at this instant, the model has three degrees
of freedom: one angle plus two speeds. When this set is specified the subsequent motion
is determined, and will proceed generally as shown in the figure. A small problem arises
at midstride, when the swing foot attempts to drop below ground level (cf. figure 5) but
contact can be prevented by briefly shortening the swing leg. Once the danger is past
the leg can be reextended, and the motion then will continue until the legs again reach
equal and opposite angles. At that point the forward foot hits the ground inelastically,
dissipating some energy and changing the speeds of each leg The model is then poised to
begin another step. If the speeds and angles at this instant are the same as they were at
the beginning of the last step, then the model has hit upon a passively re-entrant cycle
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Figure 3: Passive cycle calculated for a pair of anthropomorphic legs having knees free
in flexure but stopped against hyperextention. The slope is 4.6%. Model parameters are

explained by McGeer [5].
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Figure 4: Walking cycle predicted for a straight-legged biped with a torso. This model
leaves its legs free to swing passively, but holds its torso upright by actively controlling
torque between the torso and stance leg [7].
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Figure 5: Three-dimensional passive cycle, as calculated for a straight-legged biped having
legs separated by 15% of leg length. The slope is 3.2%. The legs’ pitching motion
is essentially the same as in two-dimensional passive walking, but to maintain lateral
balance the model also develops a synchronised roll/yaw oscillation. In this example the
yaw amplitude is substantially greater than the roll, and the cycle involves a pronounced
lateral swaying of the hips (plotted in the upper right panel in units of leg length). As in
the two-dimensional cycle the swing foot is calculated to pass slightly below ground level
at midstride, but this problem could be remedied by knees.
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Figure 6: Passive dynamic running. This cycle can be realised by putting a torsional
spring at the hip and telescopic springs in each leg [2].
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Figure 7: Passive dynamic hopping. Like passive running this cycle involves scissoring
back and forth on a hip spring while bouncing on a leg spring [11].
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Figure 8: Our original straight-legged biped walking passively down a 2.5% slope. Weight
is 3.5 kg and leg length 50 cm. Notice that the outer legs are paired like crutches to
prevent lateral tipping. A leadscrew mechanism on each leg folds the swing feet sideways
for clearance at midstride.

and can keep walking indefinitely.
To explore the feasibility of such cycles we formulate a stride function S, which will
map initial conditions 7 from one stride to the next:

—

Vi1 = S(7k) (1)

§ can be formulated analytically using linearised equations of motion, and in past work we
have taken this approach [3]. However linearisation causes some noticeable loss in accuracy
for gaits of normal speed, so alternatively § can be cast as a subroutine incorporating
integration of fully nonlinear dynamical equations, recognition of end-of-step contact, and
calculation of speed changes due to the impulse at heel strike. Whatever the formulation,
however, a cyclic gait is indicated by an argument #; which maps onto itself:

Vo = 5(#) (2)

This is a set of three equations which in general cannot be solved analytically, so we resort
to Newton’s method. Thus we differentiate the stride function (numerically) and linearise
according to

S(7+ AP) =~ S(7) + VS A? (3)
Following Newton’s method an initial estimate i/ for 75 can be improved by iteration of

A7 = [1- V(@) (5(7) - 7) (4)

where I is the identity matrix. The result of this procedure depends upon the model
parameters and the initial estimate. If the parameters are such that no cyclic gait exists
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Figure 9: Analytical and experimental results for our first straight-legged biped. One time
unit is 0.226 sec. Two sets of cyclic gaits can be calculated for this machine, but only
the longer-period gaits could be observed quantitatively. The others were unstable. Each
experimental point represents a composite of five trials on a 4 m ramp. Disagreements
between the calculations and measurements are due in part to basing calculations on
linearised equations of motion, and possibly in part to slightly elastic support transfer.
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(e.g. on an uphill slope) or if the initial estimate is poor, then the iteration will quickly
blow up. Otherwise, however, it will converge to one of twe distinct solutions: that is, a
model such as our experimental machine is in fact capable of two distinct passive gaits.
Figure 9 shows the features of these gaits calculated over a range of slopes. It also shows
the experimentally-measured features, which correspond to only one of the gaits. We have
failed to observe the other, except over occasional fleeting steps, because it is unstable.
The instability can be demonstrated using the linearised stride function. Suppose that at
the start of step k the state vector is perturbed from #, by A#;. Then at the start of the
next step Ary4; satisfies, according to (1) and (3),

- -

o + Aﬁk+1 ~ 5(170) + VS Ay (5)
Cancelling the cyclic terms (2) leaves
Aﬁk+l ~ VS.: Aljk (6)

This is just a set of three linear difference equations. Therefore transients following small
perturbations can be analysed into three modes of the form

Avy ~ vz (7

where z is an eigenvalue of v , and 7/, is the associated eigenvector. For stability all three
eigenvalues must have magnitude less than unity, with smaller magnitudes indicating that
fewer strides are required to recover from a disturbance.

Table 1 lists the eigenvalues and eigenvectors calculated for the experimental machine
walking on a 2.5% slope. We have given the modes names which roughly indicate their
physical role: the “speed” mode is the principal means for eliminating perturbations
in forward speed (reflected by its large amplitudes in Q¢ and «); the “swing” mode is
the principal means for eliminating perturbations in Qf; and the “totter” mode is the
principal means for responding to a mismatch between forward speed and step length
(which normally satisfy ag & ¢, 79/2). More detailed discussion of them modes is offered
in [3]. In the longer-period gait all three modes of the machine are stable, but in the
shorter-period gait its totter mode is strongly unstable and quickly leads to toppling.
With different parameter sets this problem can be tamed somewhat, but we have not
found any cases in which the short-period gait is positively stable. In the long-period
gait stability is much more reliable, being the rule over wide parameter variations, and
holding for perturbations of useful (not merely infinitesimal) magnitude. Thus for example
in experimental work we can start the machine manually, and rely on its own dynamics
to handle imperfections in our technique.

2 Passive walking with knees

Our first machine left us with a lingering sense that the straight leg was not sufficiently
realistic, and so in time we launched into a study of knees. We imagined a roughly an-
thropormorphic model, with the knee hinged freely in flexure but blocked mechanically
against hyperextention. We formulated its stride function for motions of the general form
shown in figure 3, with four initial conditions (one angle plus three rotational speeds), a
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Table 1: Modes of the straight-legged machine on a 2.5% slope

long-period gait short-period gait
mode speed | swing | totter || speed [ swing [ totter
eigenvalue, z || 0.692 | -0.050 | -0.825 || 0.591 | 0.076 | 9.606
a 0.653 | 0.136 | 0.993 || 0.391 | 0.191 | 0.643
Q¢ 0.736 | 0.149 | 0.113 || 0.638 | 0.385 | 0.592
QF 0.179 | 0.979 | -0.046 || 0.663 | 0.903 | 0.485

knee-free swing phase, an impulsive knee lock, a knee-locked swing phase, and an impul-
sive heel strike. We then set about searching for cycles following Newton’s method. Qur
exploration was undertaken with fair optimism, since an earlier study of ballistic walking
by Mochon & McMahon [9] had shown that passive dynamics could get a knee-jointed
model through at least part of a walking cycle. Fortunately the promise of this work was
soon borne out by our new stride function. Paired cyclic solutions emerged over a wide
range of parameter variations, as in the straight-legged model. Anthropomorphic param-
eters proved to be particularly good, with a nicely stable long-period gait, comfortable
ground clearance for the swing foot, and a positive locking torque on the stance knee
maintained naturally throughout the stride. Thus the active mechanism used to clear the
swing feet of our first biped now could be eliminated.

A selection of analytical results for these cycles is given in [5]. Here we add experi-
mental data obtained with a machine called Dynamite. Figure 10 shows the machine, and
figure 11 the calculated and measured walking behaviour. The agreement is better than
in our straight-legged analysis because here the stride function was formulated using fully
nonlinear dynamics. However while the solution for steady walking apparently is correct,
experience suggests that the stability calculation is conservative. Dynamite regularly was
able to walk the full length of our test ramp (= 5 m) despite a calculated totter-mode
eigenvalue of —1.5. Since both the steady-gait and stability analyses rely upon the same
stride function, it is odd that there should be agreement on one and not the other; this
discrepancy remains unresolved.

In the experimental work we also tested Dynamite with knees locked, thus reverting
to the straight-legged model, and revisiting the problem of swing foot clearance. The
solution for these trials was to put the machine on a chequerboard pattern of tiles. As
the figure indicates gait timing and step length then proved to be quite close to those
with knees-free, so the straight-legged dynamics continued to operate beneath all the new
features.

Of course several important lessons had to be learned to obtain these results, and the
main points to be made are as follows.

1. Debouncing. As the knee reextends during the latter part of the step, it makes
hard contact with a mechanical stop. Once brought to rest against the stop it will
stay there passively, but if it bounces it may still be flexed when the leg hits the
ground. The result is usually catastrophic. To prevent bouncing and its unpleasant
consequences we first tried hydraulic dampers under the kneecaps, but these proved
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Figure 10: Dynamite, a two-dimensional biped with knees. Leg length is 80 cm, and
mass 6.2 kg. Note the fishing weights on the hips, and on the shanks above the knees.
The shank weights are attached to paddles which in this view hide the suction-cup knee
debouncers.
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Figure 11: Walking behaviour of Dynamite. For the trials on 5% and shallower slopes the
shanks were ballasted for improved foot clearance, as described in the text. On steeper
slopes the ballast was eliminated. Each knees-free data point represents a composite of
five trials, each of which included about a dozen steps. Fewer data were obtained in the
straight-legged experiments. Difficulties arose because the machine had to be kept on
a chequerboard pattern of elevated tiles for foot clearance, and moreover the straight-
legged totter mode was calculated to be unstable. Nevertheless over many attempts we
did manage a couple of straight-legged walks from start to end of the test ramp.
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ineffective. Next we installed momentary mechanical catches, but these were tem-
permental and so not satisfactory. Finally we adopted a leaky suction cup, which
proved very effective once we hit upon the right size for the leak. Sizing, however,
remains tricky: the leak must be sufficiently slow to prevent ventilation of the cup
during the few milliseconds of rebound, but at the same time must be sufficiently
fast to prevent the cup from “grabbing” the shank when it is jerked into flexure by
the impact of heel strike.

. Ballasting. Impulsive energy losses, and hence the slope required for steady walking,
are reduced by raising the overall mass centre of the model. Dynamite therefore had
about 1 kg of lead across the hips. Furthermore for experiments on shallower slopes
we also added 125 gm to the top of each half shank; the added inertia carried
the swing leg into deeper flexure following support transfer, and so increased foot
clearance. In general ballasting scales with the skeletal weight, and often carries
an appreciable multiplier, so one must be careful to keep the basic structure light.
Dynamite grew a bit out-of-hand in this respect, and so when it fell it was something
of a hazard. A later machine, Dynamite Jr., was smaller and caused its investigators
much less apprehension on this account.

. Foot placement. Whereas on the original straight-legged biped the feet were sym-
metric about the leg axis, on Dynamite they were displaced forward according to the
anthropomorphic model. The reason was not just aesthetic. Forward displacement
is required to put the contact force vector forward of the stance knee, and so keep it
locked against its stop. Anthropomorphic sizing of the feet is also preferable, since
much larger feet would reduce swing foot clearance, while much smaller feet would
both increase dissipation at heel strike [3] and fail to provide locking torque unless
the stance knee were allowed to hyperextend. Foot curvature is less important, but
our semicircular shape is convenenient mathematically.

. Shank and thigh proportions. A more subtle point of anthropomorphic design arose
after our first iteration on Dynamite design. After a variety of computations had
demonstrated that the knee-jointed model was reasonably robust we designed the
experimetal machine. When assembly was complete we measured its mass distri-
bution, and then set about calculating adjustments to be made by ballasting. The
calculations revealed that no reasonable amount of ballasting would produce a sat-
isfactory gait, that is, with stable eigenvalues, adequate foot clearance, and positive
locking torque on the knee throughout the stance phase. We then systematically
compared Dynamite with our successful anthropomorphic model, and discovered
that the key difference was in the relative lengths of the shank and thigh. Dyna-
mite’s proportions were 50/50, but people have closer to 54/46; the shorter thigh
turns out to generate substantially deeper knee flexion during the swing phase. We
quickly modified Dynamite to 56/44, and immediately discovered a much broader
range of ballasting options.

. Confidence in the analysis. In responding to inquiries while preparing for experi-
ments with Dynamite, we would reply quite honestly that if it didn’t work we would
be puzzled, but if it did work we would be amazed! When faced at the outset with
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a machine whose only demonstrated abilities are very suddenly to topple face first
or to buckle at the knee, analytical results often seem rather remote from the reality
at hand. Under these circumstances persistence and flexibility are helpful, but one
must above all maintain confidence that the analytical model is sound and that the
mechanical implementation is faithful. We in particular had the problem of how
to start the machine, which we tried to address through more than a month of un-
successful tinkering with an automatic launcher. Ultimately we hit upon a manual
starting technique that worked with passable reliability, and so obtained the results
discussed above.

Of course once viewed in action the knee-jointed cycle, however surprising on paper,
soon seems perfectly normal: seeing is believing. (Interested readers can obtain video for
this purpose either from the IEEE [4] or directly from me.) Unfortunately, however, we
still cannot claim good intuition about the physics of the cycle. Ballasting, for example,
is guided by calculations and previous results rather than by a more holistic feeling for
the dynamics. This remains a handicap, as better intuition would doubtless accelerate
the evolution of improved walking models.

3 Three-dimensional walking

Let us now step out of the two-dimensional bounds of the preceding pages and consider
how to operate in a three-dimensional world. As a first intermediate imagine a biped
which is two-dimensional in design (that is, which has no lateral thickness and so can
swing its legs past each other in the same plane) but nevertheless has freedom to move
in three dimensions. Then its “three-dimensional” steady gait is the same as in 2D, and
the only new complication is associated with stability — or more to the point, instability,
since in the lateral plane the model behaves more or less as inverted pendulum. (One
might hope for a “rolling coin” dynamic effect to stabilise the lateral motion. However
‘the rolling coin owes all of its stability to spin, and a biped doesn’t have the necessary
store of angular momentum since its legs counter-oscillate.) Thus a small perturbation in
yaw will quickly cause a steepening spiral turn followed by a sideways crash.

At this point we might observe that the 2D model also has inverted-pendulum fea-
tures in the longitudinal plane, but manages to stabilise itself by periodically exchanging
support between legs set some distance apart. Following this observation we might expect
out-of-plane stability to benefit from lateral leg separation. Lateral separation, however,
raises the question of whether and how a passive model might counter the unsupported
weight of the swing leg. One can certainly attempt to reason out a scheme, but for
those whose 3D intuition is unreliable there is also the option of blind recourse to numer-
ical methods. We conceded membership in the latter category and so developed a new
stride function for the 3D model sketched in figure 12. This model has seven start-of-step
variables: yaw, roll, and stance pitch angles (swing pitch is determined by the contact
condition) plus rates about the three stance leg axes, plus interleg pitch rate about the
hip. The motion is calculated using fully nonlinear dynamics (which for security we de-
rived once by hand and again using the Autolev program [10]). End-of-step conditions are
conservation of the angular momentum vector H of the whole machine about the point of
heel strike, and of H - 7, about the hip. These determine the change in rotation rates at
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Figure 12: A three-dimensional passive biped. Like the original 2D model it has straight
legs and semicircular feet. Orientation of the stance leg relative to the ground coordinates
is determined by the yaw (1), roll (@), pitch (#) sequence of rotations about the axes
indicated. The swing and stance legs have the same yaw and roll angles, but can pitch
independently. Mass centres are shown for the legs and hip; those on the legs have 3D
rotational inertia, while the hip axle carries only a point mass.
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impact, and so together with the equations of motion complete the stride function. Once
this was encoded in FORTRAN we applied the cycle-searching procedure (4), looking
first at models with narrow hips as for them the 2D solution provided a good estimate to
start the iteration. Note that in 3D the search must look not for initial conditions which
repeat, but rather which produce a mirror image on the succeeding step. Yaw and roll
therefore should change sign from one step to the next.

Thankfully the search procedure did turn up cyclic solutions, as plotted for example
in figures 5 and 13. Let us begin with figure 13, which shows the effect of hip width
on gait. As the hips widens, both the short- and long-period passive gaits evolve from
their distinct 2D forms, until they merge at a hip width of about 0.42[. Passive walking
cannot be sustained with wider leg spacing, unless some adjustment is made in the other
parameters of the model. One parameter which can be used to good effect in this direction
is Ay, the fore/aft offset in the leg’s mass centre. Notice that in this example we put the
mass centre slightly aft of the leg axis. Had we instead put it on the axis, the acceptable
hip width would have been substantially reduced. This is but one illustration of the
potency of Ay in modulating gait; other examples are discussed in [3] and [1].

Returning now to the case of zero hip width, notice that each gait has the strong
inverted-pendulum instability mentioned earlier. We can explain the magnitude by the
following analysis. If we neglect coupling from longitudinal motion, then we can write the
equation of motion in roll as

d*¢

?Eé-—crzq')zﬁ (8)

where o is the (inverted) pendulum frequency. When normalised by 1/g/{ this is

(9)

> 2myge+ mr
2mMieg(c + 12, ) +mr

The dominant term in the rolling solution is then
b~ 6(0)e” (10)
By comparison with (7) we therefore should expect a mode with
z e’ . (11)

where 79 is the step period. In the example of figure 13, mi, = 0.4, mr = 0.2, ¢ = 0.6,
rgyr, = 0.3, s0 ¢ is 1.10, and z then works out to 9.96 for the short-period gait and
20.1 for the long-period. By comparison the values calculated using (7) are about 16 and
24, respectively; the aggravated instability in the full model apparently arises from an
“anti-rolling-coin” effect due to the angular momentum of the swing leg.

As anticipated this spiral instability moderates if some lateral separation is put be-
tween the legs. Unfortunately that is not to say that the instability disappears. Instead
as Whp increases not only does the spiral mode ultimately “bottom out” with |z| = 5, but
several other modes go unstable as well. Table 2 lists these bad actors for the long-period
gait with wps, = 0.15. Furthermore explorations through parameter space have failed to
turn up any set of parameters with which the situation is much better. Therefore some
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Table 2: Unstable modes of example long-period gait with wy;, = 0.15

| mode | spiral | | l directional i
eigenvalue, z | -10.340 | 4.341 | 2.224 -1.066
fc -0.319 | 0.547 | 0.471 -0.009
@ 0.592 | 0.166 | -0.056 0.032
P 0.074 | -0.688 | -0.364 -0.999
Wz 0.380 | 0.145 | -0.176 -0.010
Wy 0.608 | 0.223 | -0.179 0.002
Q¢ 0.061 | 0.136 | 0.675 0.008
Qp -0.157 | 0.333 | 0.351 0.010

variation on the model appears to be necessary for stabilisation of 3D passive walking,
and we will suggest measures below.

However let us not be too hasty to dismiss the present model, for the character of its
steady cycles is well worth examining. Notice first that the longitudinal motion is hardly
different from that in the 2D cyclic gait (cf. figures 5, 2) save for the fact that in 3D the
motion is somewhat accelerated. Hence the lessons of the straight-legged 2D model can
be applied in the 3D case. Presumably the same would prove true for a 3D model with
knees, which in particular we would expect to eliminate the problem of midstride swing
clearance.

Moving on to the uniquely 3D behaviour, notice that the amplitude in roll is nearly
nil while that in yaw is quite large. This combination is surprising in view of the exactly
opposite strategy of our introductory toy. Its cycle develops pronounced roll but little
yaw; in fact a quadrupedal cousin of the toy cannot yaw at all. The differences between
the models can be ascribed to foot design. In the sagittal plane the toy’s feet form a
circular section centred above the overall mass centre. Lateral rocking then reduces to
a lightly-damped pendulum oscillation, and to make the toy work well the body-rock
and leg-pitch pendulums should be tuned with frequencies roughly in the ratio 3:4 [3].
The model of figure 12, on the other hand, has blade feet and so cannot rock without
dissipating a lot of energy. It therefore eliminates rocking, and instead arranges for lateral
balance by exploiting centrifugal effect in a turn. The balance can be demonstrated as
follows. The centrifugal acceleration of each mass centre is Vi), V being the local speed
tangent to the turn and 4 the yaw rate. The net centrifugal torque, when normalised by
mgl, is therefore roughly

2010 2&’!!)

V'l,[) (ngcgc + 'i’TLT) ~ —;— N
0 0

(ngegc + m7) (12)

where ap is the excursion of the stance leg in pitch, and A the excursion in yaw. (Note
that the local speed is less than 2eg/7y at the stance mass centre, but greater at the
swing mass centre; the differences cancel.) Meanwhile the centripetal torque due to the
unsupported weight of the hip and stance leg is approximately

Whip my
MiegWhip + MT 5 = mzeg+—2 Whip
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Figure 13: Step periods, equilibrium slopes, and dominant eigenvalues calculated for 3D
passive bipeds walking with a stride of about 0.6 leg length (initial f¢c = —0.3). Results
for both short- and long-period cycles are plotted against hip width. Evidently passive
walking can be maintained even with quite wide hips, although at some cost in dissipation
at heel strike (hence the steepening slope). As the width increases the spiral instability
is substantially moderated, but other modes go unstable, and the cyclic gaits “pinch off”
before absolute stability is achieved. Parameters of the model are listed in the margin,
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= = (13)
Balancing torques implies that

2
wm-p To 1

Avp

2 dag 2myege + my (14)
In the example of figure 5 this formula suggests Ay = 0.58, which agrees fairly well with
the amplitude of 0.64 actually calculated for the cyclic gait.

It is interesting to ask how the model manages to sustain such a large yawing motion.
To see the mechanism one should imagine the geometry just at the start-of-step, with
the swing leg well behind the stance leg. Its unsupported weight then applies a modest
rolling moment to the stance leg, but also a quite substantial yawing moment. The latter
moment starts the model turning towards its centreline. The yawing torque drops to zero
at midstride, and then builds in the opposite direction so that the turn straightens up by
the end-of-step.

Relative to the toy our model has three apparent advantages: first, it is less tippy in
roll, i.e. given a modest jolt with both feet on the ground, it will damp rocking cycles more
quickly. Second, its feet have simpler geometry. Third, it is more robust with respect to
parameter variations, because there is no requirement for tuning pitch and roll frequencies.
However the model still has unsatisfactory characteristics. The yawing motion is much
too exaggerated by anthropomorphic standards, and leads to excessive lateral motion of
the hip. Furthermore the instabilities in the gait must somehow be controlled.

Inspection of the human model suggests how the situation can be improved. The
most significant point is that we have three-degree-of-freedom hips. The rolling degree of
freedom seems particularly useful, as one can quickly surmise by attempting to walk with
the same constraints as our model. That is, try walking while keeping the legs as far apart
at the feet as at the hips - it will feel awkward! Compare this with walking on a balance
beam, with footfalls almost collinear — much easier! Evidently we use the roll freedom to
reduce lateral separation between the legs, and so eliminate most of the rolling torque.
Moreover the ability to modulate lateral leg separation provides a powerful control, not
only for stabilisation but also for steering [12].

Hence the next recourse for the 3D model becomes evident: install roll joints at the
top of each leg. These cannot be left freely hinged like the pitch joints, since if they were
then the hip axle would collapse as soon as the swing leg were left unsupported. Instead
stiff torsional springs must be included. We are reasonably confident that a model with
joints thus stiffened will have passive gaits, but we are less sanguine about stability: it
will have four modes in addition to the present model’s seven, and only a committed
optimist would imagine all eleven eigenvalues clustered within the unit circle! However
one could stabilise the cycle by varying the equilibrium positions of the roll springs; in
the next section we will outline how to develop a control law.

4 Pumped passive walking

All of the models considered thus far have been analysed under gravity power. This
formulation is attractive in that it lets the models do entirely as they like, so to speak,
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unencumbered by any muddling of control with dynamics. However if we look carefully
at how the models do as they like, we can also discover how they could do more of what
we want — in particular, how they could walk uphill.

As an aid to looking carefully, imagine a reversible projector running film of a straight-
legged biped (in either 2D or 3D). Run the projector in one direction, and you see the
model going downhill. Run in the other, and you see it going uphill. But which direction
is forward in time? You cannot say! On the one hand, you might be looking at a biped
strolling downhill, dissipating energy in an impulse at each heel strike. But on the other
hand, you might be looking at a biped pumping uphill, supplying energy by an impulse
at each toe-off. Both interpretations are fully consistent with the equations of motion.

Of course one might protest that this sounds like a lot of smoke-and-mirrors: the
biped with supposed upward mobility couldn’t generate those impulses in practice, and
anyway this trick wouldn’t work on a knee-jointed model, which after all is the most
realistic of the lot. These objections would be entirely correct. However, they also would
be rather beside the point. With respect to the knee-jointed model, figure 11 indicated
that its dynamics are not so unique as they first might appear. And with respect to
impulses, indeed they are artificial; however, they also offer a good first approximation
to what could be implemented by a machine, and to what actually is implemented (via
dorsiplantarflezion) by people.

Thus we immediately have a solution for walking uphill: all we need do is calculate the
heel-strike impulse in downhill walking, and apply the mirror image. But we are still left
with the most basic problem of all: how to walk on the level? The “projector argument”
suggests that the solution should be symmetric, with energy input by an impulse at toe-
off and dissipated by a mirror-image impulse at heel strike. But we still don’t know
what impulses will work. Thus we are left again appealling to a cycle hunt via the stride
function. In this case the formulation must include impulse-coupling terms as well as

the heel-strike conditions and swing dynamics. With this in hand (as derived in [1]) the
~ protocol is simply to specify an impulse (by magnitude and direction) and then apply (4)
to find a cyclic gait. The results prove to be quite consisent with those for passive models,
but still perhaps a bit surprising at first glance.

First, for any specified impulse, cyclic gaits come in pairs, as in the grawty powered
model, but only one of the two gaits is symmetric. Second, such pairs can be generated by
a wide range of impulse choices. Figure 14 illustrates these points in the form of a contour
plot (for a 2D model) on axes of impulse energy and direction. For any point in this space
a pair of gaits can be calculated, although in some areas (show as broken contours) one
or the other is formally inadmissable because the impulse would throw the model off the
ground. (Mathematically the heel strike impulse then becomes a non-physical downward
pull.) The asymmetric gait in the pair turns out to have a cadence exactly twice the
frequency of the leg swinging as a free pendulum. Meanwhile the symmetric gait may
have a higher or lower cadence depending upon how the impulse is applied.

Figure 14 is good news for engineers aspiring to biped de ign, since its essential message
is that anything goes: any reasonable choice of impulse will generate at least one gait and
quite possibly two. Which (if either) of the two gaits develops depends upon how the biped
starts, and upon stability, although with the possibility of varying impulses from one step
to the next we could actively stabilise one gait and prevent development of another. We
will discuss algorithms after making some further observations on the dynamics of steady
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from the vertical). The top plot shows the corresponding step period, and the middle
plot the start-of-step leg angle. It turns out that there are two sets of solutions for each
walking speed, and hence two contours.
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walking.

Our earlier “projector argument” revealed one impulse for climbing uphill, but none
for walking on level ground. Now having seen that there is in fact a multitude of impulses
that will work for level walking, we should investigate whether the projector also failed
to tell the full story for climbing. Indeed stride-function calculations reveal much more;
impulses over a range of angles and energies will generate a cyclic climb. (Details are given
in [6] and [1].) However it turns out that the admissable region of impulse space shrinks
considerably as the slope increases, so that impulses alone ultimately are restricted only
to rather shallow slopes.

For steeper slopes two options are available. The first is to vary leg length cyclically,
making the leg on the uphill side short and the downhill side long. A good approximation
for the necessary amplitude is

mg 2a9 | (v, —7) = mg 2Al

energy required energy input
for climbing
Al
T ~ ao (v — ) (15)

where 7, is the slope required for walking with no length variation. With this as the
pumping mechanism (or braking mechanism when travelling downhill) cyclic gaits can be
sustained on slopes as steep as a normal staircase [1].

A second method is to grow a torso and lean it in the appropriate direction. Thus for
descent the torso would be held in a backward recline by reaction against the stance leg;
the effect is to brake the stance leg at the hip. The braking torque with the torso at angle
3 from the vertical is

Ty = —mrgersing (16)

where the torso has mass my centred a distance cr from the hip. The energy dissipated
through one step is then

Op -
W = — Trdle = 2mryger sinff o (17)

Meanwhile the excess energy gained in descending slope «y is
E = 2mglag(y — ) (18)

so that the required torso recline is

o f—m 1
(3 = sin (mT CT(/ 79)) (19)
Cycle analysis for the 2D biped with torso shows that such a model can maintain stable
descents on moderately steep slopes [1]. Climbing then follows by the projector method:
a film of a descending biped with a backward inclination, dissipating energy via impulses
and braking, could just as easily show a climbing biped with a forward bent, thrusting
itself upward via impulses and hip exercise. Again both interpretations are dynamically
admissable.
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However a problem with relying on the torso to facilitate climbs and descents is that it
isn’t very powerful; with anthropomorphic values of mg = 0.7 and cr = 0.3, (19) dictates
that the torso lean seven degrees for each degree of slope. Hence on even moderately
steep slopes it runs out of leverage, and the model must revert to leg-cycling. A second
problem is that the the torso is essentially an inverted pendulum, so that the torso/stance
leg torque has to be adjusted actively to keep it near the desired angle. Thus for example
in figure 4 the stance/torso torque is specified by a proportional-derivative feedback law
on torso angle. It is interesting that human evolution has accepted this control task rather
than arrange for the torso to be statically stable, as might perhaps be accomplished by
moving the hips up to the shoulders. One reason might be that when standing still there
would remain a control problem due to the static instability of the legs; solving that takes
care of the torso as well.

5 Stability augmentation and gait modulation

Let us now take up the question of how to actively stabilise a passive gait, and how to
modulate it from step to step. For a first example we shall suppose that the control is
torque Ty between the legs (applied in practice by adding Tx to the stabilising torque
between the stance leg and torso, and offsetting it by —T% between the swing leg and
torso). We will allow Ty to change between steps, but will hold it constant through any
one step. To estimate its effect we use the stride function. Thus from (5)

S(Fo + Adi, Trr) = S(io, T = 0) + VS A+ V18 Ty (20)
Cancelling cyclic terms as in (2) leaves
Al =~ VS Ady+ V1S Ty (21)

Here we have a set of linear difference equations in standard form, which invites a standard
linear control law:

Ty = C (o — ) (22)

Familiar methods of controller design (e.g. LQR) can now be brought to bear. (Formal
controllability is unlikely ever to be a problem.) [2] gives an example of this procedure
applied to active stabilisation of running. Notice that to implement the controller one
need sample the state of the model only once per stride.

While mathematical methods of controller design thus come readily to hand, one can
also imagine a physical approach motivated by what might be called the “stepping stone”
problem. Here the objective is to precisely modulate footfalls from one step to the next,
which implies that aj4; is specified for all k. According to (21), the hip torque required
to achieve the desired step length is

1

THR; = VT'lg, (Aakﬂ . Vlg Aﬂ'k) (23)
where VT,I.S” is the first element of VT§, and V1§ the first row of VS. Thus in this
formulation )

C _ V.5 (24)

 VraS
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Figure 15: A hip actuator using Levered Isotonic Tendons for Human Emulation: LITHE,
The pulleys maintain equal tensions in the two antagonistic tendons, while differential
adjustment of their mechanical advantage determines the net torque about the crank.
Elasticity in the tendons keeps the tension, and therefore the torque, constant over large
swings in leg angle.

In many cases this choice is quite satisfactory. However in others it can lead to unstable
modes in the remaining elements of 7. If one wants to do “stepping stone” control in
these cases, one must invoke other controls — toe-off impulses, length cycling, and (in
our proposed 3D development) roll-spring-equilibria — to take care of the stabilisation
problem. Thus in general one could write (20) as

— —

Al ~ VS A7+ V.5 @ (25)

where # includes all of the control variables. Following (23) some of these could be used to
set elements of 7y, directly (e.g. apy1 for step length, ¢y, for steering). One would then
be left with a system of reduced order, which could be stabilised using those variables not
already “used up” for step-to-step modulation.
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6 Powered walking experiments

Work on powered walking has been taken up by the Carnegie-Mellon Robotics Institute,
and an experimental machine is nearing completion. It is a straight-legged 2D biped with
a torso, having 1 m leg length and an anticipated mass of 20-30 kg. It will be impulse-
powered by spring-loaded pistons acting between each leg and foot. These will be cocked
by small motors during the stance phase, and then fired just before heel strike.

Hip actuator design has required particular care. At support transfer the stance/torso
torque must be switched quickly across the hips; otherwise the suddenly unrestrained
swing leg will get a big kick! The hip actuator therefore must be fast. Moreover, it must
be supple: when acting on a dangling leg, it should set the equilibrium position, but not
affect the pendulum frequency or damping. The geared motors or fluidic actuators used
on most mechanical bipeds do not satisfy this requirement; lift one of their legs, and it
will hang catatonically or, at best, grind slowly to a halt at the bottom of its swing.
With joints like these the physics of passive walking are reduced to so much background
noise. To preserve dynamics we have developed the so-called LITHE actuator shown in
figure 15. The mechanism has proved to be quite satisfactory in balancing a leg inverted,
and we look forward to equally good performance in walking experiments.

7 The collection of results

The models that we have outlined are together capable of a strong repertoire of locomo-
tion, including walking at a range of speeds, in two or three dimensions, up and down
slopes steep and shallow, and over unevenly-spaced footholds. All of this repertoire is
built upon the robust foundation of the elementary passive cycle, which leads to efficient
performance and simple control methods for the design engineer (and, one might imagine,
a forgiving feel for a child finding his feet). In this light legs seem not so complicated
after all.

At present, however, the elements that we have mentioned remain in pieces. Obviously
the long-term objective is to bring them together, and the immediate opportunities for
progress seem to be the following.

1. Completion of the 2D, powered, straight legged biped, and demonstration of climbs,
descents, and stepping-stone control using impulse energy, torso inclination, and hip
torque for pumping and modulation.

2. Design of a 2D powered biped with knees. If left without a torso this will be simpler
than the current powered biped project, but more aesthetically pleasing because of
the anthropomorphism. Initial analytical work is required to test impulsive pumping
in the knee-jointed model (by plantarflexion), but this is likely to be successful in
view of the robustness of the passive gait with respect to impulse angle and energy.

3. Analytical development of the proposed 3D model with roll springs at the hips. If
this model proves to have cyclic gaits, then an experimental machine could be built
(which, as mentioned earlier, would probably need active stabilisation according
to the formulation of (25)). Alternatively the analytical work might be extended
further by addition of knees.
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Should the work on this agenda prove successful, the next step would be to make a

steep-slope machine (probably with knees) pumped by leg-length cycling. That in turn
would open a number of paths leading to a “full repertoire” biped, but further mapping
is best left until the landscape is better known. Of course, there is also an agenda to be
developed for passive running, figures 6 and 7 hardly begin to scratch the surface. That,
however, is another story entirely.
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