Chapter 6

Outliers

6.1 Some Geometry and Kinematics

MATH 294 UNKNOWN FINAL # 2

- **6.1.1** Let $R(t) = e^t \cos t \vec{i} + t \vec{j} + t e^t \vec{k}$ be position of a particle moving in space at time t.
 - a) Set up, but do not evaluate, a definite integral equal to the distance traveled by the particle from t=0 to $t=\pi$.
 - **b**) Find all points on the curve where the velocity vector is orthogonal to the acceleration vector.

MATH 293 UNKNOWN PRELIM 2 # 2

- **6.1.2** If $\vec{r}(t) = \cos t \vec{i} 3 \sin t \vec{j}$ gives the position of a particle
 - a) find the velocity and acceleration
 - **b**) sketch the curve, and sketch the acceleration and velocity vectors at one point of the curve (you choose the point)
 - c) what is the torsion (if you can do this without computation, that is acceptable but please give reasons for your answer).

MATH 293 UNKNOWN FINAL # 1

- **6.1.3** a) Find an equation for the plane containing the points (1,0,1), (-1,2,0), (1,1,1).
 - b) Find the cosine of the angle between the plane in a) and the plane x-2y+z-5=0.

MATH 294 SPRING 1984 FINAL # 1

6.1.4 Prove that for any vector \vec{F} :

$$\vec{F} = \left(\vec{F} \cdot \vec{i} \right) \vec{i} + \left(\vec{F} \cdot \vec{j} \right) \vec{j} + \left(\vec{F} \cdot \vec{k} \right) \vec{k}.$$

MATH 294 FALL 1985 FINAL # 1

6.1.5 Find a unit vector in \Re^3 which is perpendicular to both $\vec{i} + \vec{j}$ and \vec{k} .

MATH 294 SPRING 1985 FINAL # 5

6.1.6 Find a solution defined in the right half-plane $\{(x,y)|x>0\}$ whose gradient is the vector field $\frac{-y}{x^2+y^2}\vec{i}+\frac{x}{x^2+y^2}\vec{j}$.

MATH 294 FALL 1985 FINAL

- Let S be the surface with equation $x^2 + xy = z^2 + 2y$.
 - a) Find the equation of the plane tangent to S at the point (1,0,1)
 - b) Find all points on S at which the tangent plane is parallel to the xy plane.

MATH 294

294 FALL 1986 FINAL # 8 Consider the curve $C: x=t, y=\frac{1}{t}, z=\ln t$, and the line $L: x=1+\tau, y=1$ 6.1.8 $1+2\tau, z=-\tau$. The curve and the line intersect at the point P=(1,1,0). Let \vec{v} be a unit vector tangent to C at P, \vec{w} a unit vector tangent to L at P. Compute the cosine of the angle θ between \vec{v} and \vec{w} .

MATH 294 SPRING 1987 PRELIM 1

- Consider the function $f(x, y, z) = 1 2x^2 3y^4$. 6.1.9
 - a) Find a unit vector that points in the direction of maximum increase of f at the point R = (1, 1, 1).
 - b) Find the outward unit normal to the surface f = -4 at any point of your choice (clearly indicate your choice near your answer).

MATH 294 SPRING 1987 FINAL

6.1.10 A particle moves with velocity \vec{v} that depends on position $(x,y) \cdot \vec{v} = (a+y)\vec{i} + ($ $(-x+y)\vec{j}$. At t=0 the particle is at x=1,y=0. Where is the particle at t=1?

MATH 294 SPRING 1988 PRELIM 2 # 1

- **6.1.11** Given $f = xy \sin z$ and $\vec{F} = (xy)\vec{i} + (e^{yz}\vec{j} + (z^2)\vec{k}$, evaluate:
 - a) $\vec{\nabla} f = grad(f)$ at (x, y, z) = (1, 2, 3)
 - **b**) $\vec{\nabla} \cdot \vec{F}$ at (x, y, z) = (1, 2, 3)

FALL 1988 PRELIM 3 **MATH 294** # 1

6.1.12 Curve C is the line of intersection of the paraboloid $z = x^2 + y^2$ and the plane $z=x+\frac{3}{4}$. The positive direction on C is the counterclockwise direction direction viewed from above, i.e. from a point (x, y, z) with z > 0. Calculate the length of the curve C.

MATH 293 SUMMER 1990 PRELIM 1 # 1

- **6.1.13** A parallelogram ABCD has vertices at A(2,-1,4), B(1,0,-1), C(1,2,3) and D.
 - a) Find the coordinates of D.
 - **b**) Find the cosine of the interior angle at B.
 - c) Find the vector projection of \overrightarrow{BA} onto \overrightarrow{BC}
 - **d**) Find the area of *ABCD*.
 - e) Find an equation for the plane in which ABCD lies.

SUMMER 1990 PRELIM 1 **MATH 294**

- **6.1.14** Given the function $f(x,y) = e^{-x^2} + y e^y$:
 - a) Compute the directional derivative at (1,-1) in the direction of the origin;
 - b) Find all relative extreme points and classify them as maximum, minimum, or saddle points:
 - Give the linearization of f about (1,-1)

MATH 293 SUMMER 1990 PRELIM 1 # 5

6.1.15 The position vector of a particle

$$\vec{R}(t)$$
 is given by $\vec{R}(t) = t \cos t \vec{i} + t \sin t \vec{j} + \left(\frac{2\sqrt{2}}{3}\right) t^{\frac{3}{2}} \vec{k}$

- a) Find the velocity and acceleration of the particle at $t = \pi$
- b) Find the total distance travelled by the particle in space from t=0 to $t=\pi$.

SUMMER 1990 MATH 293 PRELIM 1

6.1.16 Find $\vec{T}, \vec{N}, \vec{B}$ and κ at t = 0 for the space curve defined by

$$\vec{R}(t) = 2\cos t\vec{i} + 2\sin t\vec{j} + t\vec{k}$$

MATH 294 SPRING 1990 **FINAL** # 10

6.1.17 Find t e shortest distance from the plane 3x + y - z = 5 to the point (1,1,1).

MATH 293 FALL 1990 PRELIM 1 # 1

- **6.1.18** a) Find the equation of the plane P which contains the point R = (2, 1, -1) and is perpendicular to the straight line L: x = -1 + 2t, y = 5 - 4t, z = t.
 - b) Find the point of intersection of the lint L and the plane P.
 - c) Use b) to find the distance of the point R from the line L.

MATH 294 UNKNOWN 1990 **UNKNOWN**

- **6.1.19** a) Determine the rate of change of the function $f(x, y, z) = e^x \cos yz$ in the direction of the vector $A = 2\vec{i} + \vec{j} - 2\vec{k}$ at the point (0, 1, 0).
 - b) Determine the equation of the plane tangent to the surface $e^x \cos yz = 1$ at the point (0, 1, 0).

FALL 1990 MATH 293 PRELIM 1 # 2

6.1.20 a) Find a <u>unit</u> vector which lies in the plane of \vec{a} and \vec{b} and is orthogonal to \vec{c} if

$$\vec{a} = 2\vec{i} - \vec{j} + \vec{k}, \vec{b} = \vec{i} + 2\vec{j} - \vec{k}, \vec{c} = \vec{i} + \vec{j} - 2\vec{k}$$

b) Find the vector projection of \vec{b} onto \vec{a} .

MATH 293 FALL 1990 PRELIM 1

- 6.1.21
- Show that the following are true **a**) $\left(\vec{a} \cdot \vec{i}\right)^2 + \left(\vec{a} \cdot \vec{j}\right)^2 + \left(\vec{a} \cdot \vec{k}\right)^2 = |\vec{a}|^2$
 - **b**) $|\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2$ (hint: use the angle between them)
 - c) $|\vec{a}|\vec{b} |\vec{b}|\vec{a}$ is orthogonal to $|\vec{a}|\vec{b} + |\vec{b}|\vec{a}$

MATH 293 FALL 1990 PRELIM 1 # 4

6.1.22 a) Find \vec{v} and \vec{a} for the motion

$$\vec{R}(t) = t\vec{i} + t^3\vec{j}$$

- **b**) Sketch the curve including \vec{v}, \vec{a} .
- c) Find the speed at t = 2.

MATH 293 FALL 1990 PRELIM 1 # 5

6.1.23 Let $\vec{R}(t) = (\cos 2t)\vec{i} + (\sin 2t)\vec{j} + t\vec{k}$.

- a) Find the length of the curve from t = 0 to t = 1.
- b) Find the unit tangent \vec{T} , the principal unit normal \vec{N} and the curvature κ at t=1.

MATH 294 FALL 1990 FINAL # 1

- **6.1.24** Given the surface $z = x^2 + 2y^2$. At the point (1,1) in the x-y plane:
 - a) determine the direction of greatest increase of z
 - b) determine a unit normal to the surface.

Given the vector field $\vec{F} = 6xy^z\vec{i} - 2y^3z\vec{j} + 4z\vec{k}$,

- c) calculate its divergence
- d) use the divergence theorem to calculate the outward flux of the vector field over the surface of a sphere of unit radius centered at the origin.

MATH 293 SPRING 1992 PRELIM 1 # 1

6.1.25 Given the vectors

$$\vec{A} = \vec{i} + \vec{j} + \vec{k}$$

$$\vec{B} = \vec{i} + 2\vec{j} + 3\vec{k}$$

$$\vec{C} = \vec{i} - 2\vec{j} + \vec{k}$$

where \vec{i}, \vec{j} and \vec{k} are mutually perpendicular unit vectors. Evaluate

- $\vec{\mathbf{a}}$) $\vec{A} \cdot \vec{B}$
- **b**) $\vec{A} \times \vec{B}$
- $(\vec{A} \times \vec{B}) \cdot \vec{C}$
- **d**) $(\vec{A} \times \vec{B}) \times \vec{C}$

MATH 293 SPRING 1992 PRELIM 1 # 4

- **6.1.26** Consider the plane x+2y+3z=17 and the line through the points P:(0,3,4) and Q:(0,6,2).
 - a) Is the line parallel to the plane? Five clear reasons for your answer.
 - **b**) Find the point of intersection, if any, of the line and the plane.

MATH 293 SPRING 1992 PRELIM 1 # 2

6.1.27 The acceleration of a point moving on a curve in space is given by $\vec{a} = -\vec{i}b\cos t - \vec{j}c\sin t + 2d\vec{k}$ where \vec{i},\vec{j} , and \vec{k} are mutually perpendicular unit vectors and b,c and d are scalars. Also, the position vector $\vec{R}(t)$ and velocity vector $\vec{v}(t)$ have the initial values

$$\vec{R}(0) = \vec{i}(b+1), \vec{v}(0) = \vec{j}c$$

Find $\vec{R}(t)$ and $\vec{v}(t)$

MATH 293 SPRING 1992 PRELIM 1 # 5

6.1.28 Consider the curve

$$\vec{R}(t) = 3\vec{i} + \vec{j}\cos t + \vec{k}\sin t, 0 \le t \le 2\pi$$

where \vec{i}, \vec{j} and \vec{k} are mutually perpendicular unit vectors.

- a) Sketch and describe the curve in words.
- b) Determine the unit tangent, principal normal and binormal vectors $(\vec{T}, \vec{N} \text{ and } \vec{B})$ to the curve at the point $t = \frac{\pi}{2}$
- c) Sketch the vectors \vec{T}, \vec{N} and \vec{B} at $t = \frac{\pi}{2}$.

MATH 293 SPRING 1992 PRELIM 1 # 6

6.1.29 The position vector of a point moving along a curve is

$$\vec{R}(t) = t\vec{i} + e^{2t}\vec{j}$$

where \vec{i} and \vec{j} are mutually perpendicular unit vectors and t is time. The acceleration vector \vec{a} at the time t=0 can be written as

$$\vec{a}(0) = c\vec{T} + d\vec{N}$$

where \vec{T} and \vec{N} are the unit tangent and principal normal vectors to the curve at the time t=0. Find the scalars c and d

MATH 293 SPRING 1992 FINAL # 1

6.1.30 A point is moving on a spiral given by the equation

$$\vec{R}(t) = e^t \cos t \vec{i} + e^t \sin t \vec{j}$$

where \vec{i} and \vec{j} are the usual mutually perpendicular unit vectors. Find

- a) The speed (the magnitude of the velocity) of the point at t = 0.
- **b**) The curvature of the spiral at t = 0.

MATH 293 SUMMER 1992 PRELIM 6/30 # 1

6.1.31 Find the equation of the plane which passes through the points

$$A(0,0,0), B(-1,1,0)$$
 and $C(-1,1,1)$.

MATH 293 SUMMER 1992 PRELIM 6/30 # 5

6.1.32 A point P, starting at the origin (0,0,0) is moving along a smooth curve. At any time, the distance s travelled by the point from the origin, is observed to be

$$s = 2t$$

Also, the unit tangent vector to the curve, as this point, is

$$\vec{T} = -\frac{\sin t}{2}\vec{i} + \frac{\cos t}{2}\vec{j} + \frac{\sqrt{3}}{2}\vec{k}$$

- a) Find the acceleration \vec{a} of P as a function of time.
- **b**) Find the position vector $\vec{R}(t)$ of P.

MATH 293 SUMMER 1992 FINAL # 6

6.1.33 A point P is moving on a curve defined as

$$x(t) = \cos \alpha t$$

$$y(t) = 2t$$

144

$$z(t) = 3\cos t + 6t + 3(\alpha - 1)t^2$$

Find value(s) of α such that the curve defined above lies in a plane for all $0 \le t \le \infty$. Hint: The idea of torsion of a curve should be useful here!

MATH 293 FALL 1992 PRELIM 1 # 3

- **6.1.34** Let $P_1(-1,0,-1)$, $P_2(1,1,-1)$ and $P_3(1,-1,1)$ be three points and let $\vec{A} = \overrightarrow{P_1P_2} = 2\vec{i} + \vec{j}$ and $\vec{B} = \overrightarrow{P_1P_3} = 2\vec{i} \vec{j} + 2\vec{k}$.
 - a) Find a vector perpendicular to the plane containing \vec{A} and \vec{B} .
 - b) Find the area of the parallelogram whose edges are \vec{A} and \vec{B} .
 - c) Find the equation of the plane passing through the points P_1, P_2 and P_3 .

MATH 293 FALL 1992 PRELIM 1 # 4

- **6.1.35** Let $P_1(-1,0,-1)$, $P_2(1,1,-1)$ and $P_3(1,-1,1)$ be three points and let $\vec{A} = \overrightarrow{P_1P_2} = 2\vec{i} + \vec{j}$ and $\vec{B} = \overrightarrow{P_1P_3} = 2\vec{i} \vec{j} + 2\vec{k}$.
 - a) Find the distance from the point (1,1,1) to the plane passing through the points P_1, P_2 and P_3 .
 - b) Find the equation of the line passing through the point P_3 and parallel to the line passing through P_1 and P_2 .
 - c) Find the vector projection of \vec{A} in the direction of \vec{B} and the scalar component of \vec{A} in the direction of \vec{B} .

145

MATH 293 FALL 1992 PRELIM 1 # 5

6.1.36 Let \vec{u} and \vec{v} be two given vectors. The vector projection of \vec{u} in the direction of \vec{v} is $\frac{(\vec{u}\cdot\vec{v})}{(\vec{v}\cdot\vec{v})}\vec{v}$. Consider the vector $\vec{w}=\vec{u}-\frac{(\vec{u}\cdot\vec{v})}{(\vec{v}\cdot\vec{v})}\vec{v}$. By taking the scalar product of \vec{w} with \vec{v} show that \vec{w} is perpendicular (orthogonal) to \vec{v} .

MATH 293 FALL 1992 PRELIM 2 # 2

6.1.37 Find all points (x, y, z) which lie on the intersection of the planes

$$x + y + z = 6, -x + 2z = 1, y + 3z = 7$$

Is this set of points a single point, a line or a plane?

MATH 293 FALL 1992 PRELIM 2 # 3

6.1.38 A point move on a space curve with the position vector

$$\vec{v}(t) = e^t \cos t \vec{i} + e^t \sin t \vec{j} + 2\vec{k}$$

Find the velocity \vec{v} , speed, unit tangent vector \vec{T} , unit principal normal \vec{N} , acceleration \vec{a} and curvature κ as functions of time. Also check that \vec{N} is perpendicular to \vec{T} .

MATH 294 FALL 1992 PRELIM 2 # 3?

6.1.39 Determine the arc-length, $\int_C ds$ of the curve C (a cycloid) given by: $r(t) = (t - \sin t)\vec{i} + (1 - \cos t)\vec{j}, 0 \le t \le 2\pi$ (see figure below).

MATH 293 FALL 1993 PRELIM 1 # 4

6.1.40 The four corners of a parallelopiped are given as (1,1,1), (1,4,2), (4,2,3) and (1,1,4) in xyz-space. Using (1,1,4) as the common point of three vectors lying along the parallelopiped's edges, calculate the volume of the parallelopiped.

MATH 293 FALL 1992 FINAL # 2

- **6.1.41** A particle is moving along the positive branch of the curve $y = 1 + x^2$ and its x coordinates is controlled as a function of time according to x(t) = 2t. Find
 - a) The tangential component of the particle's acceleration, a_T , at time t=0.
 - b) The normal component of the particle's acceleration, A_N , at time t = 0.
 - c) The radius of curvature ρ of the curve, along which the particle is moving, at the point (0,1). Hint: $|\tilde{a}|^2 = a_N^2 + a_T^2, a_T = \frac{d\tilde{v}}{dt}, a_N = \frac{|\tilde{v}|^2}{\rho}$.

MATH 293 FALL 1993 PRELIM 1 # 6

6.1.42 Find the equation of the plane that contains the intersecting lines L_1 and L_2 given by:

$$L_1: \left| \begin{array}{c} x=1+t \\ y=2+t \\ z=1+t \end{array} \right| \left| \begin{array}{c} x=1-t \\ y=2-t \\ z=1 \end{array} \right|$$

Sketch the plane.

MATH 293 FALL 1993 PRELIM 1 # 5

6.1.43 A line contains the two points (1,2,3) and (-2,1,4). Find parametric equations of the line and calculate the distance from the line to the point (5,5,5).

MATH 293 FALL 1993 PRELIM 1 # 3

6.1.44 Calculate the volume of the ellipsoid

$$x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$$

by imaging it to be comprised of a set of thin elliptical disks, of thickness dz, oriented parallel to the x-y plane.

6.1. SOME GEOMETRY AND KINEMATICS

147

MATH 293 SPRING 1993 PRELIM 1 # 2

6.1.45 a) Solve the initial value problem

$$\frac{dy}{dx} + \frac{y}{x} = x^3$$

if y = 0 when x = 1

b) Consider a triangle ABC with three vectors defined as

$$\vec{v}_1 = \overrightarrow{AB}, \vec{v}_2 = \overrightarrow{BC}, \vec{v}_3 = \overrightarrow{CA}$$

From three points, one on each side of the triangle, draw vectors \vec{w}_1, \vec{w}_2 , and \vec{w}_3 in plane of the triangle. Each of these vectors is perpendicular to its side (i.e. \vec{w}_1 is perpendicular to \overrightarrow{AB} and so on) with length equal to the length of the side and pointing out of the triangle.

i) Find \vec{w}_1, \vec{w}_2 , and \vec{w}_3 in terms of the components of \vec{v}_1, \vec{v}_2 , and \vec{v}_3 .

c) Show that $\vec{w}_1 + \vec{w}_2 + \vec{w}_3 = 0$

MATH 294 FALL 1993 PRELIM 1 # 2

6.1.46 C is the curve given by

$$\vec{r}(t) = e^{-t} \cos t \vec{i} + e^{-t} \sin t \vec{j} + \sqrt{1 - e^{-2t}} \vec{k}, \ (0 \le t < \infty).$$

Show that C lies on the sphere $x^2 + y^2 + z^2 = 1$ and describe the curve with words and a sketch.

You may use the fact that $\cos t\vec{i} + \sin t\vec{j}$ $(0 \le t \le 2\pi)$ is a parametrization of the unit circle.

MATH 293 SPRING 1993 PRELIM 1 # 3

6.1.47 Find the equation of the plane that contains the intersecting lines L_1 and L_2 where:

$$L_1: \left| \begin{array}{c} x=1+t \\ y=1+t \\ z=1+t \end{array} \right| \left| \begin{array}{c} x=1-t \\ y=1-t \\ z=1 \end{array} \right|$$

MATH 293 SPRING 1993 PRELIM 1 # 4

6.1.48 Find the equation of the plane through the points (2,2,1) and (-1,1,-1) that is perpendicular to the plane 2x - 3y + z = 3.

MATH 293 SPRING 1993 PRELIM 1 # 5

6.1.49 Consider a point (x, y). Let d_1 be the distance from (x, y) to the line x + y = 0 and d_2 be the distance from (x, y) to the line x - y = 0. Given $d_1d_2 = 1$, find the locus of all such points, i.e., say what the curve is and find its equation.

MATH 293 SPRING 1993 PRELIM 2 # 1

6.1.50 A point P is moving along a plane curve. The unit tangent and principal normal vectors of this curve are, (for $t \ge 0$),

$$\vec{T}(t) = -\vec{i}\sin(t) + \vec{j}\cos(t)$$

$$\vec{N}(t) = -\vec{i}\cos(t) - \vec{j}\sin(t)$$

(where \vec{i} and \vec{j} are the usual mutually perpendicular unit vectors), and the tangential component of the velocity vector of P, (the speed), is

$$\vec{v}_T = t$$
.

- a) Find the velocity vector $\vec{v}(t)$ of P.
- **b**) Find the acceleration vector $\vec{a}(t)$ of P.
- c) Find the tangential (\vec{a}_T) and normal (\vec{a}_n) components of the acceleration vector.
- **d**) Find the radius of curvature $\rho(t)$ of the curve.

MATH 293 SPRING 1994 PRELIM 1 # 1

6.1.51 Find the distance from the point (2,1,3) to the plane which contains the points (2,1,0),(0,1,1),(0,0,2).

MATH 293 SPRING 1994 PRELIM 1 # 2

6.1.52 Find the point on the segment from $P_1 = (1, 0, -1)$ to $P_2 = (4, 3, 2)$ which is twice as far from P_2 as it is from P_1 .

MATH 293 SPRING 1994 PRELIM 1 # 3

6.1.53 A particle moves on the sphere of radius a centered at the origin. Its position vector $\vec{r}(t)$ is a differentiable function of the time, t. Show that the velocity vector $\vec{v}(t)$ of the particle is always perpendicular to its position vector, $\vec{r}(t)$.

MATH 293 SPRING 1994 PRELIM 1 # 4

6.1.54 A parallelogram, P, is determine by the two vectors $\vec{i} + \vec{j} + \vec{k}$ and $2\vec{i} - \vec{j} - \vec{k}$.

- a) What is the area of P?
- b) What is the area of the orthogonal projection of P in the xy-plane?
- c) What is the area of the orthogonal projection of P in the xz-plane?
- d) What is the area of the orthogonal projection of P in the yz-plane?
- e) What is the area of the orthogonal projection of P in the plane x + y z = 0?

MATH 293 SPRING 1994 PRELIM 2 # 1

6.1.55 A point P is moving along the spiral

$$x = e^t \cos(t)$$

$$y = e^t \sin(t).$$

- a) Find the curvature of the given spiral at t = 0.
- **b**) The acceleration of P is written as

$$\vec{a} = a_T \vec{T} + a_N \vec{N}.$$

Find a_T and a_N at t=0.

MATH 293 FALL 1994 PRELIM 1 # 1 6.1.56 Let

$$\vec{A} = 2\vec{i} - \vec{j} + \vec{k}$$

$$\vec{B} = \vec{i} + \vec{j} + \vec{k}$$

$$\vec{C} = \vec{i} + 2\vec{i} + \vec{k}$$

- a) Find the vector projection of A onto the direction of \vec{B} .
- b) Show that $\vec{A} proj_{\vec{B}}\vec{A}$ is perpendicular to \vec{B} .
- c) Find the area of the parallelogram with edges \vec{A} and \vec{B} .
- d) Find the volume of the box with edges \vec{A} , \vec{B} and \vec{C} .
- e) Find the parametric equation of the line through (0,0,0) and parallel to the intersection of the planes with normals \vec{A} and \vec{B} .

MATH 293 FALL 1994 PRELIM 1 # 2

6.1.57 Let \vec{a} and \vec{b} be vectors. Show that

- a) $|\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2$, and
- **b**) that $|\vec{a}|\vec{b} |\vec{b}|\vec{a}$ is perpendicular to $|\vec{a}|\vec{b} |\vec{b}|\vec{a}$

MATH 293 FALL 1994 PRELIM 1 # 3

6.1.58 Graph $z = x^2 + y^2 + 1$ and label any intersection the surface may have with any axis. Describe the curves that are the intersections of the surface with the planes z = constant (z > 1).

MATH 293 FALL 1994 PRELIM 2 # 1

- **6.1.59** Consider the path traversed by a particle given parametrically by $\vec{r}(t) = (e^t \cos t)\vec{i} +$ $(e^t \sin t)\vec{j} + e^t \vec{k}$. Find the
 - a) velocity vector
 - **b**) speed
 - c) acceleration vector
 - d) length of the path from t = 0 to $t = \ln 4$

FINAL **MATH 293 FALL 1994** # 1

- **6.1.60** The level curves of the function $f(x, y, z) = z + x^2 + y^2 + 1$ are:
 - a) Hyperboloids
 - b) Planes
 - c) Cones
 - d) Paraboloids
 - e) Spheres

MATH 293 FALL 1994 FINAL # 3

- **6.1.61** The vector projection of (1,0,1,0) in the direction of (1,1,1,1) is:
 - **a**) $\left(-\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right)$, **b**) (0, 1, 0, 1),

 - $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}),$

 - d) (0,-1,0,-1)e) $(\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2})$

MATH 293 FALL 1994 FINAL # 5

- **6.1.62** Any non-zero vector perpendicular to the vectors $\vec{i} + \vec{j} + \vec{k}$ and $\vec{i} + 2\vec{k}$ is
 - a) Perpendicular to $2\vec{i} + \vec{j} + \vec{k}$,
 - b) Parallel to $\vec{i} + \vec{j} + \vec{k}$,
 - c) Perpendicular to $2\vec{i} \vec{j} \vec{k}$,
 - d) Parallel to $2\vec{i} + \vec{j} + \vec{k}$,
 - e) Parallel to $2\vec{i} \vec{j} \vec{k}$

MATH 293 SPRING 1995 PRELIM 1 # 2

6.1.63 Consider the planar curve

$$y^2 = 4x$$
.

Find parametric equations of the following lines.

- a) Tangent to the above curve at P(1,2).
- **b**) Normal to the above curve at O(0,0).

6.1. SOME GEOMETRY AND KINEMATICS

151

MATH 293 SPRING 1995

PRELIM 1 # 3 $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ 3 \\ 0 \end{bmatrix}$ are the vertices of a **6.1.64** a) Show that the points

parallelogram.

b) What is the area of this parallelogram?

SPRING 1995 PRELIM 1 **MATH 294**

6.1.65 The surface S drawn below can be described in two ways, i.e.

as
$$z = f(x,y) = 1 - x^2 - y^2, -1 \le x \le 1, -1 \le y \le 1$$

or $g(x,y,z) = z + x^2 + y^2 = 1, -1 \le x \le 1, -1 \le y \le 1$

as $z = f(x,y) = 1 - x^2 - y^2, -1 \le x \le 1, -1 \le y \le 1$ or $g(x,y,z) = z + x^2 + y^2 = 1, -1 \le x \le 1, -1 \le y \le 1$ Evaluate and sketch the gradient fields ∇f and ∇g . Explain the relationship between these two vector fields.

MATH 293 SPRING 1995 PRELIM 2 **6.1.66** Let

$$\begin{bmatrix}
x(t) \\
y(t) \\
z(t)
\end{bmatrix}$$

be a space curve; let $\vec{v}(t)$ be the velocity vector and $\vec{a}(t)$ the acceleration vector.

- a) Give the formula which gives the curvature of the curve in terms of \vec{v} and \vec{a} . b) By differenting $|\vec{v}|^2 = \vec{v} \cdot \vec{v}$, find a formula for $\frac{d\vec{v}}{dt}$ in terms of \vec{v} and \vec{a}
- c) If at some instant we have

$$|\vec{v}| = 3 \ m/s, \frac{d|\vec{v}|}{dt} = 4 \ m/s^2, |\vec{a}| = 5 \ m/s^2$$

what is the radius of curvature in meters.

152

MATH 293 FALL 1995 PRELIM 1 # 1 *

6.1.67 This is a two-dimentional problem. Consider the parabola

$$y^2 = 4x$$
 and the point $P(1,2)$ on it.

- a) Find an unit vector \vec{t} that is tangential to the parabola at P.
- **b**) Find the equation of the tangent line to the parabola at *P*. Any correct form of the equation is acceptable.
- c) Find an unit vector \vec{n} that is normal to the parabola at P.
- **d**) Find the equation of the normal line to the parabola at *P*. Any correct form of the equation is acceptable.

MATH 294 FALL 1995 PRELIM 1 # 1 *

- **6.1.68** a) For $f = x^2 + 8y^2$, show that (4, 2) lies on the level curve f(x, y) = 48. Sketch this level curve.
 - **b**) Find the vector field $\vec{\nabla} f$
 - c) Evaluate ∇f at $(x,y) = (\sqrt{48},0), (4,2), (4,-2), (0,\sqrt{6})$ and sketch these vectors, showing very clearly their relation to the level curve.

MATH 293 FALL 1995 PRELIM 1 # 2

6.1.69 Consider two straight lines in space given by the equations:

$$L_1: \left| \begin{array}{l} x=2+t \\ y=2+t \\ z=-t \end{array} \right|$$

$$L_2: \left| \begin{array}{l} x=3+u \\ y=-2u \\ z=1+u \end{array} \right| -\infty \le u \le \infty$$

- a) Do these lines intersect? If so, find the coordinates of the point of intersection.
- **b**) Find a vector \vec{u} along L_1 and a vector \vec{v} along L_2 .
- c) Find, if possible, the equation of the plane that contains the lines L_1 and L_2 .

MATH 293 FALL 1995 PRELIM 1 # 4a *

6.1.70 Describe the set of points defined by the equations

$$\begin{array}{ccc} x^2 + y^2 + z^2 & \leq & 4 \\ z & \leq & 1 \end{array}$$

Also, draw a sketch showing this set of points.

MATH 293 FALL 1995 FINAL # 5

6.1.71 A point P is moving on a plane curve with the position vector

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j}, t \ge 0$$

where t is time and \vec{i} and \vec{j} are the usual orthogonal Cartesian unit vectors. The position components x(t) and y(t) satisfy the equations

$$t\frac{dx}{dt} + x = t^2, x(0) = 0$$

and
$$\frac{d^2y}{dt^2} - 6\frac{dy}{dt} + 9y = 0, y(0) = 0, \frac{dy}{dt}(0) = 1$$

- a) Find x(t) as an explicit function of time.
- **b**) Find y(t) as an explicit function of time.
- c) Find $\vec{v}(t) = \frac{d\vec{r}}{dt}$, the velocity of P as a function of time.

MATH 293 SPRING 1996 FINAL # 17

- **6.1.72** A bug flies around the room so that at time t, the position of the bug is given by $x=t^2, y=t^{\frac{3}{2}}, z=t^2$. The velocity at time t=1 is
 - **a**) 10.25
 - **b**) $2\vec{i} + \frac{3}{2}\vec{j} + 2\vec{k}$
 - c) $\vec{i} + \vec{j} + \vec{k}$
 - \mathbf{d}) 3
 - e) none of the above

MATH 293 SPRING 1996 FINAL # 18

- **6.1.73** The speed of the bug above at time t = 1 is
 - **a**) 40
 - **b**) 19
 - **c**) 3
 - **d**) $\vec{i} + 3\vec{j} + 8\vec{k}$
 - e) none of the above

MATH 293 SPRING 1996 FINAL # 19

- **6.1.74** The position of the bug above at time t = 1 is
 - $a) \sqrt{3}$
 - **b**) 40
 - **c**) 19
 - **d**) 3
 - e) none of the above

MATH 293 SPRING 1996 FINAL # 25

- 6.1.75 A cannon fires a cannonball at an angle of 45 degrees from horizontal. The cannonball lands 1000 meters away. Taking Newton's gravitational constant g to be 10 meters per second squared, the speed of the cannonball when leaving the cannon in meters per second is
 - **a**) 10
 - **b**) $10\sqrt{10}$
 - **c**) 100
 - **d**) $\frac{2000}{\sqrt{2}}$
 - e) none of the above

MATH 293 SPRING 1996 FINAL # 20

- **6.1.76** The projection of the vector (1,0,1,0) in the direction of (1,1,1,1) is
 - a) $\left(-\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right)$
 - **b**) (0,1,0,1)
 - **c**) $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
 - **d**) (0,-1,0,1)
 - **e**) none of the above

MATH 293 SPRING 1996 FINAL # 24

- **6.1.77** Let P = (1, 1, 1), Q = (1, 0, 0), R = (0, 1, 0). Then the equation of the plane in \Re^3 containing the triangle PQR is
 - a) x + y z = -1
 - **b**) x y + z = 1
 - **c**) -x + y z = -1
 - **d**) x + y z = 1
 - e) none of the above

MATH 293 SPRING 1996 FINAL # 30 *

6.1.78 If $\vec{u}, \vec{v}, \vec{w}$ are vectors in \Re^3 , then $\vec{u} \cdot (\vec{v} \times \vec{w}) = (\vec{w} \times \vec{v}) \cdot \vec{u}$ (T/F)

MATH 294 SPRING 1996 FINAL # 1 MAKE-UP

- **6.1.79** In this problem $f(x,y) = x y^2$.
 - a) Sketch the level curve f(x, y) = -7
 - b) Evaluate $\nabla f(2,3)$ and sketch it on the graph, showing the relation to the level curve
 - c) Find the to the right flux of ∇f across the segment $0 \le y \le 5, x = 0$

MATH 293 FALL 1997 PRELIM 3 # 4

6.1.80 Evaluate the line integral

$$\int_C \frac{zydx + zxdy + (z - xy)dz}{z^2}$$

where C is the curve given by parametric equations $x(t) = \cos(\pi t), y(t) = \sin(\pi t), z(t) = t, (1 \le t \le 2).$

MATH 293 SUMMER 1992 PRELIM 6/30 # 3

6.1.81 A point is moving along a curve given by the parametric equations

$$x(t) = t$$

$$y(t) = 2t^2$$

Find, as functions of time t

- a) The velocity of the point, \vec{v}
- **b**) The acceleration of the point, \vec{a}
- **c**) The curvature κ of the curve
- d) If $\vec{a} = a_N \vec{N} + a_T \vec{T}$, where \vec{N} is the principal unit normal and \vec{T} is the unit tangent vector to the curve at some point on it, find a_N and a_T .

MATH 293 SPRING 1995 PRELIM 2 # 1

6.1.82 Consider the spiral parametrized by

$$t \mapsto \left[\begin{array}{c} e^{-t} \cos t \\ e^{-t} \sin t \end{array} \right] \quad 0 \le t < \infty.$$

- a) Sketch the curve.
- **b**) Find its length or show that it has infinite length.

MATH 293 FALL 1994 PRELIM 2 # 1

6.1.83 Find the arc length parametrization of the space curve:

$$\vec{r}(t) = \cos(2t)\vec{i} + \sin(2t)\vec{j} + \frac{2}{3}t^{\frac{3}{2}}\vec{k}$$
, with $0 \le t \le 5$.

MATH 294 SUMMER 1995 PRELIM (1) # 1 6.1.84 The surface

$$z = f(x, y) = y^2 - x^2; -2 \le x \le 2, -2 \le y \le 2$$

is shown below along with its normal vectors.

- a) Sketch the contour lines of the surface in the (x,y) plane, i.e. draw the curves such that z = constant, for example z = -2, -1, 0, +1, +2.
- **b**) On your sketch for part (a) sketch the vector field $\vec{\nabla} f$.
- c) Find an expression for the unit normal vectors \vec{n} of the surface.

MATH 294

- 294 FALL 1992 FINAL # 2 Consider the curve $C: \vec{r}(t) = t \cos t \vec{i} + t \sin t \vec{j} + t \vec{k}, 0 \le t \le 4\pi$, which corresponds 6.1.85to the conical spiral shown below.
 - a) Set up, but so not evaluate, the integral yielding the arc-length of C.
 - **b**) Compute $\int_C (y+z)dx + (z+x)dy + (x+y)dz$.

MATH 293 FALL 1994 FINAL # 2

- **6.1.86** A bug flies around the room along a path parametrized by $x = t^2$, $y = t^{\frac{3}{2}}$, $z = t^2$. If the temperature at any point (x,y,z) is given by $T(x,y,z)=x^2y+z^2$, the rate at which the bug feels the temperature change when t = 1 is
 - **a**) 3
 - **b**) -3

 - $\begin{array}{cc} \mathbf{c}) & \frac{19}{2} \\ \mathbf{d}) & 0 \end{array}$
 - $\mathbf{e})$

MATH 294 FALL 1994 PRELIM 1

6.1.87 C is the line segment from (0,1,2) to (2,0,1).

- a) which of the following is a parametrization of C?
 - i) $x = 2t, y = 1 t, z = 2 t, 0 \le t \le 1$

 - ii) $x = 2 2t, y = -2t, z = 1 2t, 0 \le t \le \frac{1}{2}$ iii) $x = 2\cos t, y = \sin t, z = 1 + \sin t, 0 \le t \le \frac{\pi}{2}$
- **b**) evaluate $\int_C 3z \vec{j} \cdot d\vec{r}$

- **MATH 294** SPRING 1996 PRELIM 1 # 1 **6.1.88** a) Evaluate $\int_{(0,0,0)}^{(4,0,2)} 2xz^3 dx + 3x^2z^2 dz$ on any path.
 - **b)** Write parametric equations for the line segment from (1,0,3) to (2,5,0).

MATH 293 SPRING 1992 PRELIM 1 # 3

- **6.1.89** Given a plane x 5y + z = 21 and a point R with coordinates (1,2,3), find
 - a) The parametric equations of a line perpendicular to the plane and passing through
 - The point of intersection of the line and the plane.
 - \mathbf{c}) The distance from R to the plane.

MATH 293 FALL 1997 PRELIM 3 # 3

6.1.90 Consider the sphere $x^2 + y^2 + z^2 = 25$.

- a) Express the equation of the sphere in cylindrical coordinates (r, θ, z) and find volume inside it by evaluating a triple integral in cylindrical coordinates.
- b) Now consider the region that you get by starting with the solid interior of the sphere as before, and removing the points which are contained inside the cone $z = \sqrt{x^2 + y^2}$. This means that our new region consists of points having $x^2 + y^2 + z^2 \le 25, z \le \sqrt{x^2 + y^2}$. Find the volume of this region by evaluating a triple integral spherical coordinates (ρ, ϕ, θ) .

MATH 293 SUMMER 1992 PRELIM 6/30 # 6

6.1.91 A consider is described by the parametric equations

$$x = 2\cos t$$

$$y = 2\sin t$$

A point P inside the circle has coordinates (1,1). The line, normal to the circle, through P, intersects the circle at two points Q_1 and $Q_2.Q_1$ is the point nearer to P.

- a) Find the vector \vec{N} along the line PQ_1
- b) Find the parametric equations of the line segment PQ_1 .
- c) Find the distance PQ_1 .

MATH 293 SUMMER 1990 PRELIM 1 # 2

6.1.92 a) Find the distance between the point P=(0,0,0) and the line L defined parametrically by

$$X = t + 1$$

$$Y = t + 1$$

$$Z = t$$

b) Find an equation of the line through P that is perpendicular to the line L.