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5.2.1 Consider the PDE ut = −6ux

a) What is the most general solution to this equation you can find?
b) Consider the initial condition u(x, 0) = sin (x). What does u(x, t) look like for a

very small but not zero t?
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5.2.2 Consider ut = ux. Which of the functions below are solutions to this equation?
(Show your reasoning.)
a) 3e−λt sin

√
λt

b) 3 e−3te−3x + 5e−5te−5x

c) ae−3te−5x

d) sin (x) cos (t) + cos (x) sin (t)
e) sinh−1

[
(x + t)3

]
.
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5.2.3 Determine if the following equation is of the form of a linear partial differential
equation. If not, explain why.

∂2u

∂x2
+

∂2u

∂y2
+

∂u

∂x

∂u

∂y
= 0.
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5.2.4 Verify that the given function is a solution of the given partial differential equation

x
∂u

∂x
+ y

∂u

∂y
= 0, u(x, y) = f

(y

x

)
, x = 0

f(·) is a differentiable function of one variable.
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5.2.5 a) Find the general solution of
(y + 2x sin ydx + (x + x2 cos y)dy = 0.

b) Determine the solution of the initial-value problem
(x2 + 4) dy

dx + 2xy = x, with y(0) = 0.
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5.2.6 Consider the initial boundary value problem for the heat equation

∂u

∂t
=

∂2u

∂x2
, 0 < x < L, t > 0

with the boundary conditions

u(0, t) = u(L, t) = 0, t ≥ 0

and the initial condition

u(x, 0) = f(x), 0 ≤ x ≤ L.

a) Use the method of separation of variables to derive the solution of this problem.
You may use the fact that the equation Ẋ+λX = 0, 0 < x < L with the boundary
condition X(0) = X(L) = 0 has nontrivial solutions only for an interface number
of constants lambdan = n2π2

L2 for n = 1, 2, . . . . This corresponding solutions are
of the form Xn = An sin nπx

L .
b) Find the solution when L = 1 and f(x) = −6 sin 4πx + sin 7πx.
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5.2.7 For the PDE ux + 4uy = 0:
a) Solve it by separation of variables.
b) Show that any function of the form u(x, y) = f(ax + y) is a solution if f is

differentiable and the constant a is chosen correctly.
c) Solve the PDE with boundary condition u(x, 0) = cos x. (You may use (b) rather

than (a).)

MATH 294 SPRING 1994 FINAL # 3

5.2.8 Let D be a region in the (x, y) plane and C be its boundary curve with counter-
clockwise orientation. If the function u(x, y) satisfies uxx + uyy = 0 in D, show
that ∮

C

uuxdy − uuydx =
∫ ∫

D

(
u2

x + u2
y

)
dxdy.
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5.2.9 Show that the partial differential equation

∂u

∂t
= k

(
∂2u

∂x2
+ A

∂u

∂x
+ Bu

)
can be reduced to

∂v

∂t
= k

∂2v

∂x2

by setting u(t, x) = eαx+βtv(t, x) and choosing the constants α and β appropriately.
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5.2.10 Find one non-zero solution to the equation below. Do not leave any free constants
in your solution (that is, assign some specific numerical values to any constants in
your solution). Note that you do not have to satisfy any specific initial conditions
or boundary conditions.

∂u

∂t
=

∂2u

∂x2
− u

)
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5.2.11 a) Find the two ordinary differential equations that arise from the partial differ-
ential equation

α2uxx = utt for 0 < x < `, t ≥ 0 when the equation is solved by separation of
variables using a separation constant σ = −λ2 < 0.
b) Solve the ordinary differential equation which gives the x dependence. Use the

boundary conditions u(0, t) = u(`, t) = 0 for t ≥ 0
c) Solve the ordinary differential equation which gives the time dependence.

MATH 294 FALL 1994 PRELIM 3 # 2

5.2.12 Given the partial differential equation (P.D.E)

ux + uyy + u = 0,

a) Use separation of variables to replace the equation with two ordinary differential
equations.

b) Find a non-zero solution to the P.D.E.

MATH 294 SPRING 1995 FINAL # 4

5.2.13 Consider the first order partial differential equation

ut + cux = 0,−∞ < x <∞, o < t <∞, (∗)

where c is a constant. We wish to solve this in two different ways.
a) Find a general solution to (*) by first writing the equation with the change of

variables, ξ = x− ct, η = t.
b) Now solve (*) using a separation of variables technique. What are the units of c

if x is in meters and t is in second?
c) Find u(x, t) if u(x, 0) = ke−x2

.
d) Discuss the nature of your solution.
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5.2.14 While separating variables for a PDE, Professor X was faced with the problem of
finding positive numbers λ and functions X which are not identically zero and

X ′′(x) = −λX(x)

X(0) = 0, X ′(1) = 0

Find the values of λ and corresponding functions X which will solve the professor’s
problem.

MATH 294 FALL 1995 PRELIM 3 # 4

5.2.15 For the PDE yuxx + uy = 0, (which is not the heat equation)
a) Assuming the product form u(x, y) = X(x)Y (y), find ODE’s satisfied by X and

Y .
b) Find solutions to the ODE’s.
c) Write down at least one non-constant solution to the PDE.

MATH 294 SPRING 1996 PRELIM 3 # 2

5.2.16 a) Consider the function f defined by

f(x) =

 0 if −π ≤ x < 0
3 if 0 ≤ x < π

f(x + 2π) for all x.

Calculate the Fourier series of f . Write out the first few terms of the series
explicitly. Make a sketch showing the graph of the function to which the series
converges on the interval −4π < x < 4π. To what values does the series converges
at x = 0?

b) Consider the partial differential equation ut+u = 3ux which is not the heat equa-
tion). Assuming the product form u(x, t) = X(x)T (t), find ordinary differential
equations satisfied by X and T , (You are not asked to solve them.)

MATH 294 SPRING 1996 FINAL # 6

5.2.17 Consider the equation for a vibrating string moving in an elastic medium

a2uxx − b2u = utt

where a and b are constants. (a would be the wave speed if not for the elastic
constant b.) Assume the ends are fixed at x = 0, L and initially the string is
displaced by u(x, 0) = f(x), but not moving ut(x, o) = 0.
a) Find a general solution for these conditions. (If you need help, you may wish to

work part (b) first.)
b) If the first term in the general solution to part (a) is

u1(x, t) = c1 cos (λ1t) sin
(πx

L

)
where (λ1)2 =

(
πa
L

)2 + b2, find the solution when the string starts from u(x, 0) =
2 sin

(
πx
L

)
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5.2.18 Consider the PDE

∂u(x, t)
∂t

=
∂2u(x, t)

∂x2
− u(x, t); 0 ≤ x < π; t ≥ 0 (7)

with boundary conditions

u(0, t) = u(π, t) = 0 (8)

u(x, 0) = sin (x) (9)

a) Define

v(x, t) = etu)x, t) (10)

If u(x, t) satisfies equations (7, 8 ,9), show that v(x, t) satisfies the standard heat
equation

∂v(x, t)
∂t

=
∂2v(x, t)

∂x2

∂v(x, t)
∂t

(11)

with boundary conditions and initial conditions

v(0, t) = v(π, t) = 0 (12)

v(x, 0) = sinx (13)

b) The general solution of equations (11,12) is

v(x, t) =
∞∑

n=1

Cne−n2t sinnx (14)

Find the unique solution v)x, t) of equations (11,12,13).
c) Now find the unique solution of equations (7, 8, 9).

MATH 294 FALL 1992 FINAL # 7

5.2.19 For each of the following Fourier series representations,
1 = 4

π

∑i
nftyn=1

1
2n−1 sin [(2n− 1)x], 0 < x < π,

x = 2
∑i

nftyn=1
(−1)n+1

n sinnx, −π < x < π,

x = π
2 −

4
π

∑i
nftyn=1

1
(2n−1)2 cos [(2n− 1)x], 0 ≤ x < π.

a) Find the numerical value of the series at x = −π
3 , π and 12π + 0.2 (9 answers

required).
b) Find the Fourier series for |x|, −π < x < π. (Think - this is easy!).
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5.2.20 Solve the initial-boundary-value problem

Tt = Txx, 0 < x < π, t > 0,

Tx(0, t) = Tx(π, t) = 0,

T (x, 0) = 3x.

(You may use information from problem 7 if this helps.)

MATH 294 SPRING 1998 PRELIM 1 # 5

5.2.21 Consider the partial differential equation for u(x, t)

∂u

∂t
+

∂u

∂x
= 0

with the initial conditions

u(x, 0) = 1− x, 0 ≤ x ≤ 1, u(x, 0) = 0 elsewhere.

(No boundary conditions are necessary).
Use a centered difference approximation for the space derivative:

∂u

∂x
(x, t) ≈ 1

2h
[u(x + h, t)− u(x− h, t)],

and a forward difference approximation for the time derivative:

u(x, t + k) ≈ u(x, t) + k
∂u

∂t
(x, t).

Then introduce a grid with N + 1 spatial points xi = ih, with i = 0, 1, 2, . . . N
(where h is the grid spacing) and times tj = jk (where k is the time step). Let
u(xi, tj) ≡ u[i, j].
a) With h = 0.25, and k = 0.25, write down the values of the initial condition at

each grid point for 0 ≤ x ≤ 2, i.e. u[i, 0], i = 0, . . . , 8.
b) Obtain the expression relating u[i, j + 1] to u[i− 1, j] and u[i + 1, j].
c) Use the initial data (with h = 0.25 and k = 0.25) to determine the approximate

the value of u at xi = 1.0, tk = 0.5.
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5.2.22 Consider the partial differential equation ∂u
∂x − β ∂u

∂t = 0 (Note that this is not the
heat equation.) with the initial condition u(x, 0) = x2. In an approximate solution
u is to be evaluated on a grid of points spaces by h on the x axis and δt on the t
axis: xi = (i− 1)h and tj = (j − 1)δt. The values of u(xi, tj) are contained in the
array ûij ≡ û(i, j) ≡ u(xi, tj). Here are the forward difference approximations:
∂u(x,t)

∂x = 1
h [u(x + h, t)− u(x, t)] and ∂u(x,t)

∂t = 1
δt [u(x, t + δt)− u(x, t)]

a) Derive a finite difference algorithm for this equation. That is, find an expression
for û(i, j + 1) in terms of û(i, j) and û(i + 1, j).

b) Let h = 1, δt = 1
2 , and β = 1. Use your approximate scheme above and the given

initial condition to find approximate values for u
(
2, 1

2

)
, u
(
3, 1

2

)
, and u(2, 1).

c) Find the exact solution to the partial differential equation and given boundary
condition. (Do not waste time with Fourier series formulae).

MATH 294 SPRING 1999 PRELIM 3 # 2

5.2.23 Parts a), b), and c) are related, but each part can be done independently of the
other parts. Consider the following problem consisting of a PDE for u = u(x, t),
two B.C.’s and an I.C.:

∂2u

∂x2
= u +

∂u

∂t

B.C.’s: u(0, t) = 0,
∂u(2, t)

∂x
= 0, t > 0

I.C. : u(x, 0) = sin
πx

4
, 0 ≤ x ≤ 2.

a) Use separation of variables on the PDE to obtain two ODE’s for X(x) and T (t),
and the B.C. for X(x).

b) In some separation of variables problem, a student obtained the following ODE
plus B.C.’s on X(x):

d2X

dx2
+ λX = 0 X(0) = 0,

dX(2)
dx

= 0.

Find all nontrivial solutions to the ODE with these B.C.’s.
c) Which, if any, of the equations given below is a solution to the PDE’s, B.C.’s

and I.C. at the top of the page? (Justification of your answer is required to get
credit. Note that you may have to check several boundary conditions as well as
the PDE.)

i) u(x, t) = e

(
−1−π2

16

)
t sin πx

4

ii) u(x, t) = e−
π2t
16 sin πx

4

iii) u(x, t) = e−
π2t
16 cos πx

iv) u(x, t) =
∑∞

n=1 bne−
n2π2t

16 sin nπx
4 , bn =

∫ 2

0
sin
(

πx
4

)
sin
(

nπx
2

)
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5.2.24 Consider the PDE ut = −6ux.
a) What is the most general solution to this equation you can find?
b) Consider the initial condition U(x, 0) = sin(x). What does u(x, t) look like for a

very small but not zero t?

MATH 294 FALL 1987 PRELIM 2 # 5 MAKE-UP

5.2.25 Find the solution of the boundary-value problem

∂2u

∂x2
+

∂2u

∂y2
= 0

0 < x < 1
0 < y < 1 ,

u(0, y) = u(x, 0) ≡ 0,

u(1, y) = u(x, 1) ≡ 1.

MATH 294 SPRING 1996 FINAL # 7 MAKE-UP

5.2.26 Solve the problem

urr +
1
r
ur +

1
r2

uθθ = 0

u(1, θ) = 4 sin(θ)− 3 cos(2θ)

lim
r→0

u(r, θ) = 0

You may use the fact that r±n cos(nθ) and r±n sin(nθ) are some of the solutions to
this partial differential equation.

MATH 294 FALL 1996 PRELIM 3 # 3 MAKE-UP

5.2.27 a) Find all solutions of the form u(x, t) = X(x)T (t) for

xux = 2ut ;

subscripts indicate differentiation with respect to that variable.
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b) If u(x, 0) = 2x− 3x2, find u(x, t).
MATH 294 SPRING 1996 FINAL # 7

5.2.28 In the problem below, choose the solution that corresponds to the given physical
problem. Justify your choice. (Note that a sketch is required with (a), and that
to make the right choices you will probably have to check several of the bound-
ary/initial conditions as well as the appropriate partial differential equation.)
a) A taut string stretching to infinity in both directions has a wave speed a and an

initial displacement y(x, 0) = 1
(1+8x2) but no initial velocity.

i) y(x, t) =
1
2

1+8(x−at)2
+

1
2

1+8(x+at)2

ii) y(x, t) = 1
1+8x2 +

1
2

1+8(x−at)2
+

1
2

1+8(x+at)2

iii) y(x, t) =
n∑

i=1

cn sin
(

nπx
L

)
sin
(

nπat
L

)
where cn = 1

L

∫ L

0
f(x) cos

(
nπx
L

)
dx.

iv) (no choice, do this) Plot the solution initially and when at = 1
b) The steady state temperature exterior to a semicircular hole (r > a, 0 < θ < π)

with boundary conditions u(r, 0) = 0 andu(r, π) = 0 for a < r <∞ and u(a, θ) =
f(θ) and limr→∞ u(r, θ) = 0 for 0 ≤ θ ≤ π.

In all of the choices, cn = 2an

π

∫ π

0
f(θ) sin(nθ)dθ.

i) u(r, θ) =
n∑

i=1

cnr−n sin(nθ)

ii) u(r, θ) =
n∑

i=1

cnr−n cos(nθ)

iii) u(r, θ) =
n∑

i=1

cnrn sin(nθ)

iv) u(r, θ) =
n∑

i=1

cnrn cos(nθ)

c) A square copper plate with sides L has all four edges maintained at 0◦

A line across the plate at x = x1, 0 < y < L is heated to T1 by an external heat
source until a steady state results. The temperature in the plate is:
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i) T =
{

T1
x
x1

if x ≤ x1

T1
L−x
L−x1

if x > x1

ii) T =
n∑

i=1

bne−
n2π2kt

L where bn = 1
L

∫ L

0
T1x
x1

sin
(

nπx
L

)
dx

iii) T = 4T1
π

∑
n=1,3,5,...

sin(nπx
L ) sinh(nπ(L−y)

L )
n sinh(nπ)

iv) None of the above.


