4.4 General 3-D Integrals

MATH 293 SPRING ???? FINAL # 8 293SPXXFQ8.tex

4.4.1 Set up iterated triple integral for the volume of the region bounded by the sphere $x^2 + y^2 + z^2 = 4$ in

- a) spherical
- **b**) cylinder
- c) rectangular coordinates.

Use the following orders of integration:

- a) ρ, θ, ϕ
- b) z, θ, r
- c) x, y, z

MATH 294 SPRING 1990 PRELIM 1 # 1 294SP90P1Q1.tex

4.4.2 Find the volume of the solid enclosed by the cylinder $x^2 + y^2 = 4$, bounded below by the plane z = x, and bounded above by the paraboloid $x^2 + y^2 + z = 10$.

MATH 294 SPRING 1990 PRELIM 1 # 5 294SP90P1Q5.tex

- **4.4.3** Determine the location of the center of mass of the solid that is enclosed between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$ and inside the cone $z = \sqrt{x^2 + y^2}$. Assume uniform density $\rho \equiv 1$.
- MATH 293 SPRING 1990 PRELIM 3 # 5 293SP90P3Q5.tex
- 4.4.4 Find the volume of the region in the first octant bounded by the coordinate planes, the cylinder $x^2 + y^2 = 4$ and the plane z = 4 y.
- MATH 293 SUMMER 1992 PRELIM 6/30 # 4 293SU92P1Q4.tex
- **4.4.5 a**) Find the volume of the tetrahedron with vertices

A(0,0,0), B(1,0,0), C(0,1,0) and D(x,y,z); in terms of x, y and z

b) For what point (s) D is this volume a minimum? What is this minimum volume? What does this mean physically?

MATH 294 SPRING 1996 PRELIM 1 # 4 294SP96P1Q4.tex

- **4.4.6** a) Sketch the level curve f(x, y) = 3, where $f(x, y) = x y^2$. Show some point (a, b) on this curve, giving a and b explicitly. Compute $\vec{\nabla}f(a, b)$ and show it on the same figure. What is the relation between $\vec{\nabla}f$ and the level curve?
 - **b**) Evaluate $\int_{C_1} x dy y dx$ and $\int_{C_2} x dy + y dx$ where C_1 is the unit circle counterclockwise and C_2 is the semicircular part of C_1 where $x \ge 0$.

MATH 293 FALL 1996 PRELIM 3 # 2 293 FA 96 P3Q2.tex

- **4.4.7** Find I_{zz} the moment of inertia about the z axis through its center, of a solid sphere of radius R = 1, and density $\rho = 1$. HINTS:
 - 1. Definition: $I_{zz} = \int \int \int \int (x^2 + y^2) \delta dV$, and
 - 2. Trig identity for help in doing integrals: $\sin^3 w = (1 \cos^2 w) \sin w$.

MATH 293 FALL 1996 PRELIM 2 #4 293FA96P2Q4.tex

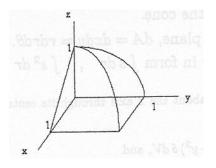
- 4.4.8Find the volume of the wedge cut from the first octant (x, y, and z are all positive)by the surface $x + y^2 = 4$ and the surface $z = 12 - 3y^2$. (make a sketch of at least the domain in the (x, y) plane; the surfaces themselves are harder to draw.)
- **MATH 293 FALL 1996** FINAL #4 293FA96FQ4.tex
- **Centroid.** Find the centroid of the solid bounded by the cone $z = \sqrt{x^2 + y^2}$ and 4.4.9the plane z = 1. [Hint: The volume of a solid cone is $\frac{1}{3} \ge (\text{base area}) \ge (\text{height})$.] Clear MATLAB code which would yield a numerical approximation to the desired

value of \vec{z} gets full credit for \vec{z} .

MATH 293 FALL 1997 PRELIM 3 4.4.10 Consider the sphere $x^2 + y^2 + z^2 = 25$. # 3 293FA97P3Q3.tex

- - **a**) Express the equation of the sphere in cylindrical coordinates (r, θ, z) and find the volume inside it by evaluating a triple integral in cylindrical coordinates.
 - **b**) Now consider the region that you get by starting with the solid interior of the sphere as before, and removing the points which are contained inside the cone $z = \sqrt{x^2 + y^2}$. This means that our new region consists of points having $x^2 + y^2$. $y^2 + z^2 \le 25$ and $z \le \sqrt{x^2 + y^2}$. Find the volume of this region by evaluating a triple integral in spherical coordinates (ρ, ϕ, θ) .

MATH 293 FALL 1997 PRELIM 3 #1 293FA97P3Q1.tex


- Consider the region in the first octant bounded by the coordinate planes, the plane 4.4.11x + z = 1, and the plane y + 2z = 2.
 - **a**) Sketch the region.
 - **b**) Set up a triple integral for the volume of the region, including all the limits.
 - c) Find the volume of the region.

MATH 293 FALL 1998 FINAL 293FA98FQ6.tex # 6

4.4.12 Calculate the volume of that part of the sphere $x^2 + y^2 + z^2 \le 2$ above the plane z=0 and below the cone $z=\sqrt{x^2+y^2}$.

MATH 293 FALL 1998 PRELIM 3 # 2293FA98P3Q2.tex

Find the volume of the region in the first octant bounded by the coordinate planes, 4.4.13the plane x + z = 1 and the cylinder $z = 1 - y^2$.

MATH 293 FALL 1998 PRELIM 3 # 3 293 FA 98 P3Q 3.tex

4.4.14 Find the volume of the capped circular cylinder that consists of the interior of the cylinder $x^2 + y^2 = 1$ that is bounded above and below by the sphere $x^2 + y^2 + z^2 = 4$.