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4.1 General 2-D Integrals
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4.1.1 Show that the transformation x = au cos 2�v; y = bu sin 2�v, where a and b are
positive constants, takes the unit square 0 � u � 1; 0 � v � 1 in the (u; v) plane
onto the region bounded by the ellipse x2

a2 + y2

b2 = 1 in the (x; y) plane. (Hint: draw
a picture and show where each edge of the unit square in the (u; v) plane is taken by
the transformation.) Then compute the area of the region bounded by the ellipse
x2

a2 + y2

b2 = 1, by a suitable integral over the unit square in the (u; v) plane.
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4.1.2 Evaluate the integralZ 1

0

Z p1�y

0
e(3x�x3)dxdy:
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4.1.3 Recall that the moment of the inertia of a planar region R about the origin is de�end
by

I0 =
Z Z

R
�(x; y)(x2 + y2)dA;

where � denotes the mass density (per unit area) For �(x; y) = cos [(x2 + y2)2] and
R de�ned by 1 � x2 + y2 � �2

4 , compute I0.

MATH 294 SUMMER 1990 PRELIM 1 # 3 294SU90P1Q3.tex

4.1.4 Set up (but do not evaluate) the integrals necessary to �nd the area of the region
bounded by the curves x = y2; y = 2x� 6, and the x axis,
a) integrating �rst with respect to x, and
b) integrating �rst with respect to y.
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4.1.5 Let R be the interior of the triangle with vertices at (0,0), (1,0) and (a; b). Find the
y coordinate of its centroid. [If you happen to know the answer without calculation
you may use this as a check. No partial credit for just quoting the result and
plugging it in, however.]
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4.1.6 Consider the integralZ 2

0

Z p1�(x�1)2

0

x+ y
x2 + y2 dydx

a) Sketch the region for which this integral gives the area.
b) Convert the integral to polar coordinates.
c) Evaluate the integral.
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4.1.7 Consider the integralZ 1

0

Z 1

p
x

cos (y3)dydx

a) Draw the region of integration in the x-y plane.
b) Write an equivalent integral with the order of integration reversed.
c) Evaluate the integral.


