2.4 Coordinates

34

MATH 294 SPRING 1987 PRELIM 3

2.4.1 For problems (a) - (c) use the bases B and B' below:

$$B = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\} \text{ and } B' = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}.$$

- a) Given that $[\vec{v}]_B = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ what is $[\vec{v}]_{B'}$?
- b) Using the standard relation between \Re^2 and points on the plane make a sketch with the point \vec{v} clearly marked. Also mark the point \vec{w} , where $[\vec{w}]_B = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$.
- c) Draw the line defined by the points \vec{v} and \vec{w} . Do the points on this line represent a subspace of \Re^2 ?

SPRING 1987 MATH 294 FINAL

2.4.2

A general vector
$$\vec{v}$$
 in \Re^2 is $\vec{v} = b_1 \vec{v}_1 + b_2 \vec{v}_2 = b_1' \vec{v}_1' + b_2' \vec{v}_2'$ where $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \vec{v}_1' = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \vec{v}_2' = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Find a matrix $B'[I]_B$ so that $\begin{pmatrix} b'_1 \\ b'_2 \end{pmatrix} =_{B'} [I]_B \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ for all vectors \vec{v} in \Re^2 .

SPRING 1993 MATH 293

a) Determine the matrix $H_{E,E}$ which represents reflection of vectors in \Re^2 about 2.4.3 the y-axis in the standard basis $E = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$. Verify your answer by evaluating the expression

$$H_{E,E}\left(\begin{array}{c}x\\y\end{array}\right).$$

- b) Now consider a basis B which is obtained by rotating each vector of the standard basis by 90 degrees in a counterclockwise direction. Find the change-of-basis matrices (B:E) and (E:B).
- c) Find $H_{B,B}$ from the formula $H_{B,B} = (E:B)H_{E,E}(B:E)$.
- d) It is claimed that $H_{B,B}$ is equal to the matrix $H_{E,E}$ which represents a reflection about the x-axis in the standard basis. Do you agree? Give geometrical reasons for your answer by drawing a suitable picture.

MATH 293 FALL 1995 PRELIM 3 # 2

2.4.4 Consider the vector space \Re^3 and the three bases:

the standard basis
$$E = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$
the basis $B = \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\}$, and the basis $C = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$.

- a) Given the E coordinates of a vector \vec{x} , $[\vec{x}]_E = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, find $[x]_C$.
- **b**) Given the *B* coordinates of a vector \vec{y} , $[\vec{y}]_B = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, find the coefficients y_j in $\vec{y} = \vec{y}_1 \vec{e}_1 + \vec{y}_2 \vec{e}_2 + \vec{y}_3 \vec{e}_3$.
- c) Find the change-of-coordinates matrix ${}_{C}P_{B}$ whose columns consist of the C coordinate vectors of the basis vectors of B.

MATH 293 SPRING 1996 PRELIM 3 #

2.4.5 Let

$$B = \left\{ \left[\begin{array}{c} -1 \\ 8 \end{array} \right], \left[\begin{array}{c} 1 \\ -5 \end{array} \right] \right\}, C = \left\{ \left[\begin{array}{c} 1 \\ 4 \end{array} \right], \left[\begin{array}{c} 1 \\ 1 \end{array} \right] \right\}.$$

- a) Find the change of coordinate matrix from B to C.
- **b)** Find the change of coordinate matrix from C to B.

MATH 293 SPRING 1996 FINAL # 8

2.4.6 Let

$$B = \left\{ \left[\begin{array}{c} 1 \\ 1 \end{array}\right], \left[\begin{array}{c} 2 \\ 0 \end{array}\right] \right\}, C = \left\{ \left[\begin{array}{c} 2 \\ 2 \end{array}\right], \left[\begin{array}{c} 2 \\ -2 \end{array}\right] \right\}.$$

Then the change of coordinates matrix from coordinates with respect to the basis C to coordinates with respect to the basis B is

$$\mathbf{a}) \quad \left(\begin{array}{cc} 2 & -2 \\ 0 & 2 \end{array} \right)$$

b)
$$\begin{pmatrix} -4 & 4 \\ 0 & -4 \end{pmatrix}$$

$$\mathbf{c}) \quad \left(\begin{array}{cc} 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array} \right)$$

$$\mathbf{d}) \quad \begin{pmatrix} 2 & 2 & 2 \\ 4 & 4 & 4 \end{pmatrix}$$

e) none of the above

36

MATH 294 FALL 1995 PRELIM 3 # 8

You are given a vector space V with an inner product <,> and an orthogonal basis $B = \{\vec{b}_1, \vec{b}_2, \vec{b}_3, \vec{b}_4, \vec{b}_5 \text{ for } V \text{ for which } ||\vec{b}_i|| = 2, i = 1, \dots, 5.$ Suppose that \vec{v} is in V

$$\left\langle \vec{v}, \vec{b}_1 \right\rangle = \left\langle \vec{v}, \vec{b}_2 \right\rangle = 0$$

$$\left\langle \vec{v}, \vec{b}_4 \right\rangle = 3, \left\langle \vec{v}, \vec{b}_4 \right\rangle = 4, \left\langle \vec{v}, \vec{b}_5 \right\rangle = 5$$

Find the coordinates of \vec{v} with respect to the basis B i.e. find c_1, c_2, c_3, c_4, c_5 such that

$$\vec{v} = c_1 \vec{b}_1 + c_2 \vec{b}_2 + c_3 \vec{b}_3 + c_4 \vec{b}_4 + c_5 \vec{b}_5$$

MATH 294 SPRING 1998 PRELIM 3 # 3

2.4.8 Let $T: \wp_1 \to \wp_3$ be defined by

$$T\left[p(t)\right] = t^2 p(t)$$

and take

$$B = \{1, 1+t\}$$

to be the basis of \wp_3 .

- a) Find the matrix of T relative to the bases B and C.
- **b**) Use this matrix to find T[2+t].
- c) Let $E = \{1, t\}$ be the standard basis for \wp_1 . Let $[\vec{x}]_B$ be the coordinate vector of \vec{x} in \wp_1 relative to the basis B, and let $[\vec{x}]_E$ be the coordinate vector of \vec{x} relative to the basis E. What is the change of coordinate matrix P. such that

$$P\left[\vec{x}\right]_B = \left[\vec{x}\right]_E.$$

[Note: The result of part c) does not depend on the results of parts a) or b)]

MATH 294 SPRING 1998 Final # 4

2.4.9 In P^2 , Find the change-of-coordinate matrix from the basis

$$B = \left\{1 - 2t + t^2, 3 - 5t, 2t + 3t^2\right\}$$

to the standard basis

$$E = \{1, t, t^2\}.$$

Then write t^2 as a linear combination of the polynomials in B, i.e. give the coordinates of t^2 with respect to the basis B.

2.4. COORDINATES

37

MATH 294 Fall 1998 PRELIM 2 # 3

2.4.10 Besides the standard basis ε here are two bases for \Re^2 :

$$B = \left\{ \underbrace{\begin{bmatrix} 1 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} -1 \\ 1 \end{bmatrix}}_{b_1} \right\}, C = \left\{ \underbrace{\begin{bmatrix} 2 \\ 4 \end{bmatrix}}, \underbrace{\begin{bmatrix} -4 \\ 4 \end{bmatrix}}_{c_1} \right\}$$

- **a**) What vectors \vec{x} are represented by $[\vec{x}]_B = \begin{bmatrix} 2 \\ 14 \end{bmatrix}$ and $[\vec{x}]_C = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$?
- **b**) Find a single tidy formula to find the components $\begin{bmatrix} d \\ e \end{bmatrix}$ of a vector \vec{x} in the basis B if you are given the components $\begin{bmatrix} f \\ g \end{bmatrix}$ of \vec{x} in the basis C.
- c) A student claims that the desired formula is $\begin{bmatrix} d \\ e \end{bmatrix} = \begin{bmatrix} 5 & -2 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} f \\ g \end{bmatrix}$. Does this formula make the right prediction for the component vector $[\vec{x}]_C = \begin{bmatrix} f \\ g \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$?

MATH 294 FALL 1998 Final # 6

2.4.11 Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

- a) Find orthogonal eigenvectors $\{\vec{v}_1, \vec{v}_2\}$ of A. [Hint: do not go on to parts d-e below until you have double checked that you have found two orthogonal unit vectors that are eigenvectors of A.]
- b) Use the eigenvectors above to diagonalize A.
- c) Make a clear sketch that shows the standard basis vectors $\{\vec{e}_1, \vec{e}_2\}$ of \Re^2 and the eigenvectors $\{\vec{v}_1, \vec{v}_2\}$ of A
- d) Give a geometric interpretation of the change of coordinates matrix, P, that maps coordinates of a vector with respect to the eigen basis to coordinates with respect to the standard basis.
- e) Let $\vec{b} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$. Using orthogonal projection express \vec{b} in terms of $\{\vec{v}_1, \vec{v}_2\}$ the eigenvectors of A.