1

1.8 Matrix Inverse

MATH 294 SPRING 1983 PRELIM 1 # 4 $_{294SP83P1Q4.tex}$ 1.8.1 Let

$$A = \left[\begin{array}{rrr} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{array} \right]$$

- a) Find A^{-1} . Us any method you wish. check your result.
- **b**) Use your inverse above to find all solutions to $A\mathbf{x} = \mathbf{b}$, where

$$\mathbf{b} = \left[\begin{array}{c} 2 \\ 1 \\ 3 \end{array} \right].$$

MATH 294 SPRING 1983 PRELIM 1 # 5 294SP83P1Q5.tex

1.8.2 a) consider the 2 x 2 matrix

$$B = \left[\left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right] - k \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \right].$$

Find all values of k for which B has no inverse.

b) In the vector space of polynomials of degree two or less are the vectors

$$\{1-x, 2+x^2, x^2-x-1\}$$

linearly independent? Give a reason. (You may assume that $\{1, x, x^2\}$ are linearly independent.)

 \mathbf{c}) In the vector space S of solutions to the differential equation

$$y" - 3y' + 2y = 0$$

Are the vectors $y=3e^{-2t}$, $y=e^{-t}-e^{-2t}$, and $y=-e^{-t}$ linearly independent? Give a reason.

MATH 294 SPRING 1983 FINAL # 10 294SP83FQ10.tex

- 1.8.3 a) Find a basis for the vector space of all 2x2 matrices.
 - b) \underline{A} is the matrix given below, \underline{v} is an eigenvector of \underline{A} . Find any eigenvalue of \underline{A} .

$$\underline{\underline{A}} = \left[\begin{array}{cccc} 3 & 0 & 4 & 2 \\ 8 & 5 & 1 & 3 \\ 4 & 0 & 9 & 8 \\ 2 & 0 & 1 & 6 \end{array} \right] \text{ with } \underline{v} = [\text{an eigenvector of } \underline{\underline{A}}] = \left[\begin{array}{c} 0 \\ 2 \\ 0 \\ 0 \end{array} \right]$$

c) Find one solution to each system of equations below, if possible. If not possible, explain why not.

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 \end{bmatrix} \cdot \underline{x} = \underline{b}, \ \underline{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \text{ and } \underline{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

d) Read carefully. Solve for $\underline{\mathbf{x}}$ in the equation $\underline{A} \cdot \underline{b} = \underline{\mathbf{x}}$ with:

$$\underline{\underline{A}} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix} \text{ and } \underline{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

e) Find the inverse of the matrix

$$\underline{\underline{A}} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

MATH 294 FALL 1984 FINAL # 2 294FA84FQ2.tex

1.8.4 a) Find the eigenvalues and eigenvectors of the matrix

$$A = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array}\right)$$

- **b**) Find A^{-1} and A^{T} .
- c) Find the general solution of

$$\frac{d}{dx} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

MATH 294 SPRING 1985 FINAL # 2 294SP85FQ2.tex

- **1.8.5** For the case $\vec{b} = \vec{0}$, the vector $\vec{x} = \vec{0}$
 - a) Is always a solution.
 - **b**) May or may not be a solution depending on \underline{A} .
 - **c**) Is always the only solution.
 - d) Is never a solution.

1.8. MATRIX INVERSE

3

MATH 294 FALL 1985 FINAL # 4 294FA85FQ4.tex

1.8.6Find an elementary matrix E so that EA is in reduced form, where

$$A = \left(\begin{array}{rrrr} 1 & 0 & 2 & 1 \\ -1 & 1 & 2 & 3 \\ 3 & 0 & 1 & 0 \end{array}\right)$$

MATH 294

294 FALL 1987 FINAL # 3 $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 1 & 1 & 1 & 1 \end{bmatrix}$, or show that no inverse 1.8.7 exists.

MATH 294 SUMMER 1989 PRELIM 2 # 5 294SU89P2Q5.tex

- Let A be a 2 x 2 matrix with real entries. Assume that A has an inverse Q and 1.8.8
 - a) Find all vectors \vec{x} in \Re^2 such that $A\vec{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
 - **b**) Find the matrix A.

MATH 294 SPRING 1992 PRELIM 3 # 2 293SP92P3Q2.tex

- Here $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. **a)** Find A^{-1} . 1.8.9

 - **b)** Find X if $AX = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. **c)** Find \vec{v} if $A\vec{v} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

MATH 293 SPRING 1993 PRELIM 3 # 1 293SP93P3Q1.tex

1.8.10 Given the matrix

$$A = \left(\begin{array}{rrr} -2 & 1 & 2\\ -2 & 2 & 2\\ -9 & 3 & 7 \end{array}\right)$$

- a) Find det A.
- **b**) Find A^{-1} and check your answer.

MATH 293 SPRING 1993 FINAL # 1

a) Find the general solution, and write your answer as a particular solution plus the 1.8.11general solution of the associated homogeneous system.

- **b)** Check your answer for part a.
- c) Find the inverse of the matrix

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -1 & -2 & -2 \end{array}\right).$$

d) Check your answer for part c.

MATH 293 SPRING 1994 PRELIM 2

- 1.8.12 a) Find the inverse of the matrix $\begin{pmatrix} 1 & 3 & 5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$. b) Explain what you do to she is
 - b) Explain what you do to check your result in part (a), and then do it.
 - Compute the determinant of the matrix $A(\lambda) = \begin{pmatrix} 1 \lambda & 1 & 0 \\ 2 & 2 \lambda & 1 \\ 0 & 1 & 2 \lambda \end{pmatrix}$, writ-

ing your result as a function of λ .

d) Partially check your result by computing the determinant of A(0), and compare this value with the value of the function you found in (c) when $\lambda = 0$.

3

math 293 FALL 1994 PRELIM 2

1.8.13 a) Find
$$A^{-1}$$
 if $A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 3 & 1 & -1 \end{pmatrix}$.

- **b**) Use the result of part (a) to solve $A\vec{x} = \vec{b}$ where $\vec{b} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$.
- c) Suppose B and C are N x N invertible matrices and you know B^{-1} and C^{-1} . What is $(BC)^{-1}$ equal to?

1.8. MATRIX INVERSE

5

MATH 293 FALL 1994 FINAL # 6 1.8.14 The inverse of the matrix $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ is

$$\mathbf{a}) \quad \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$$

$$\mathbf{b}) \quad \begin{bmatrix} 3 & 2 \\ 2 & -1 \end{bmatrix}$$

$$\mathbf{c}) \quad \begin{bmatrix} -3 & 2 \\ 0 & 0 \end{bmatrix}$$

$$\mathbf{d}) \quad \begin{bmatrix} -3 & 2 \\ 2 & 1 \end{bmatrix}$$

$$\mathbf{e}) \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

MATH 293 SPRING 1995 FINAL # 4 293SP95FQ4.tex

1.8.15 Give a formula for

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]^{-1}$$

when it exists, and prove that your answer is correct.

SPRING 1995 PRELIM 2 # 4 293SP95P2Q4.tex

1.8.16 a) Find the inverse of the matrix

$$A = \left[\begin{array}{rrr} 1 & -1 & 2 \\ -1 & 2 & 4 \\ 2 & 1 & 0 \end{array} \right].$$

- **b**) Check your result by computing $A^{-1}A$.
- c) Use the result to find the solution of

MATH 293 FALL 1995 PRELIM 2 # 5 293FA95P2Q5.tex

$$A = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 1 & 1 & 2 \end{array} \right]$$

- **b**) Verify your answer for part (a).
- c) Consider the matrix

$$B = \left[\begin{array}{cc} \lambda & 1 \\ 1 & \lambda \end{array} \right]$$

where λ is an unspecified parameter. For what values of λ (if any) does B^{-1} not exist?

MATH 293 SPRING 1996 PRELIM 2 # 5 293SP96P2Q5.tex 1.8.18

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} -1 & 2 & 3 & 4 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ -1 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$

Is A invertible? If yes, explain why and find A^{-1} . If no, explain why?

MATH 293 SPRING 1996 PRELIM 2 # 6 293SP96P2Q6.tex

1.8.19 Let I be the 3-by-3 identity matrix, let 0 be the 3-by-3 matrix consisting of all zeros, let A be the matrix in the question above, and let D be the 6-by-6 matrix given as four 3-by-3 blocks

$$D = \left(\begin{array}{cc} I & A \\ 0 & I \end{array}\right).$$

Find D^{-1} .

MATH 293 SPRING 1996 FINAL # 9 $_{293SP96FQ9.tex}$ 1.8.20 Let

$$A = \left(\begin{array}{rrr} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{array}\right).$$

Then the element in the 3rd row, 2nd column of A^{-1} is:

- **a**) -1
- **b**) $-\frac{1}{2}$
- **c**) 1
- **d**) $\frac{1}{2}$
- e) none of the above.

7

MATH 293 SPRING 1996 FINAL # 10 $_{293SP96FQ10.tex}$ 1.8.21 Suppose

$$A^{-1} = \begin{pmatrix} 1 & 0 & -2 \\ 2 & 1 & 3 \\ 4 & 2 & 5 \end{pmatrix}, \ \mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}.$$

What is the solution of $A\mathbf{x} = \mathbf{b}$?

a)
$$\begin{bmatrix} 2 \\ 2 \\ -3 \end{bmatrix}$$
b)
$$\begin{bmatrix} -2 \\ -2 \\ 3 \end{bmatrix}$$
c)
$$\begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$$
d)
$$\begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$$

e) none of the above

MATH 293 FALL 1996 PRELIM 2 # 2 293 FA96 P2Q2.tex 1.8.22* Matrix algebra. Let [A] be the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix} \text{ and let } \vec{b} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \text{ and let } \vec{c} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$$

- a) Find all solutions \vec{x} to $A\vec{x} = \vec{b}$ and check your answer by substitution.
- **b**) Find all solutions \vec{x} to $A\vec{x} = \vec{c}$ and check your answer by substitution.
- c) Give a reason why you believe that A^{-1} does or does not exist.

MATH 294 SPRING 1997 PRELIM 2 # 7 294SP97P2Q7.tes **1.8.23** Let *M* be the 5-by-5 matrix

$$M = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 100 & 0 & & & \\ 200 & 0 & & A \\ 300 & 0 & & & \end{pmatrix} \text{ where } A^{-1} = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 2 & 0 & 0 \end{pmatrix}.$$

Find the inverse of M.

MATH 294 SPRING 1997 FINAL # 6 294SP97FQ6.tex

1.8.24 Find the inverse of matrix M. A is a general matrix and I is the identity matrix.

$$M = \left[\begin{array}{cc} I & 0 \\ A & I \end{array} \right]$$

MATH 294 FALL 1997 PRELIM 1 # 4 294FA97P1Q4.tex

1.8.25 Find the inverse of the matrix

$$A = \left(\begin{array}{rrr} 1 & -2 & -1 \\ 1 & 1 & 1 \\ -1 & 6 & 4 \end{array}\right).$$

MATH 294 FALL 1997 PRELIM 1 # 5 294FA97P1Q5.tex

1.8.26 Find the inverse of the matrix

$$A = \left(\begin{array}{ccc} I & B & 0 \\ 0 & I & B \\ 0 & 0 & I \end{array} \right),$$

where each block is a 3 by 3 matrix, and $I = I_3$ is the 3 by 3 identity matrix.

Hint: the inverse is of the form

$$A^{-1} = \left(\begin{array}{ccc} I & E_1 & E_2 \\ 0 & I & E_3 \\ 0 & 0 & I \end{array} \right),$$

for certain E_1 , E_2 , E_3 .

MATH 294 SPRING 1998 PRELIM 2 # 2 294SP98P2Q2.tex

1.8.27 a) Find the inverse of the matrix

$$\left[\begin{array}{ccc} 4 & 0 & 0 \\ 0 & 1 & 2 \\ 4 & 0 & 3 \end{array}\right].$$

- **b**) True or False?
- i) If A and B are invertible, then $A^{-1}B^{-1}$ is the inverse of AB.
- ii) If A is an invertible $n \times n$ matrix, then the equation $A\vec{x} = \vec{b}$ is consistent for each \vec{b} in \Re^n .

MATH 293 SPRING 1998 PRELIM 2 # 4 293SP98P2Q4.tex

1.8.28 Determine whether the following matrices are invertible. If they are invertible then find the inverse.

$$A = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array} \right] \qquad B = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$$

1.8. MATRIX INVERSE

9

1.8.29 (b) Is
$$B = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{bmatrix}$$
 the inverse of $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$?

MATH 294 FALL 1998 PRELIM 2 # 2bc 294FA98P2Q2bc.tex

1.8.29 (b) Is $B = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{bmatrix}$ the inverse of $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$?

(c) Is the matrix $A = \begin{bmatrix} 5 & 3 & 2 \\ 0 & 7 & 1 \\ 5 & 10 & 4 \end{bmatrix}$ invertible? (You need not calculate the inverse

MATH 293 SPRING ?? PRELIM 2 293SPxxP2O2.tex

1.8.30 a) If A and B are 4×4 matrices such that

$$AB = \left[\begin{array}{cccc} 2 & 1 & 1 & 0 \\ -1 & 2 & 2 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right],$$

show that the column space of A is at least three dimensional.

b) Find
$$A^{-1}$$
 if $A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$

MATH 293

293 SPRING ?? FINAL # 3 293SPxxFQ3.tex

a) Show that $A = \begin{pmatrix} 1 & -2 & 1 \\ -2 & 5 & -4 \\ 1 & -4 & 6 \end{pmatrix}$ is nonsingular without finding A^{-1} .

- c) Solve $A\vec{x} = \vec{b}$ where $\vec{b} = (1, -2, 1)$ by using part (b).

PRACTICE PRELIM? **MATH 293** Unknown

1.8.32 a) For what value of a does the matrix $B = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 \\ 1 & a & 0 \end{bmatrix}$ not have an inverse?

b) A $n \times n$ matrix C is said to be orthogonal if $C^t = C^{-1}$. Show that either det C= 1 or det C = -1. Hint: $CC^t = I$.

Unknown PRACTICE PRELIM 2 # 4 293UnknownPP2Q4.tex **MATH 293** 1.8.33

$$A = \left[\begin{array}{rrr} 3 & -1 & -2 \\ 4 & 1 & -2 \\ -1 & 1 & 1 \end{array} \right]$$

calculate the inverse of A. Check your answer.

Find the 3 x 3 matrix X if AX = B where A is the 3 x 3 matrix above and

$$B = \left[\begin{array}{rrr} 2 & 1 & 7 \\ 3 & -4 & 0 \\ -1 & 2 & 5 \end{array} \right]$$