1.1 Introduction to Linear Systems and Row Reduction

MATH 294 FALL 1981 PRELIM 1 # 4 294FA81P1Q4.tex

1.1.1 Solve the following systems of linear equations. If there is no solution, show why. If there are infinitely many solutions, give a general expression.

$$\mathbf{a}) \quad \begin{bmatrix} 2 & 0 & 1 \\ -1 & 2 & 1 \\ 1 & 4 & 3 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix}$$

$$\mathbf{b}) \quad \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & -2 \\ -1 & 2 & -3 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$$

$$\mathbf{c}) \quad \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & -2 \\ -1 & 2 & -3 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

MATH 294 FALL 1982 FINAL # 1 294FA82FQ1.tex

1.1.2 a) Find all possible solutions \vec{x} of $B\vec{x} = \vec{c}$, where

$$B = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \text{ and } \vec{c} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

b) For the system $C\vec{x} = \vec{b}$, where

$$C = \left[\begin{array}{rrr} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 1 & 1 & 2 \end{array} \right],$$

determine all vectors \vec{b} for which the system possesses nontrivial solutions \vec{x} .

MATH 294 SPRING 1983 PRELIM 1 # 2 294SP83P1Q2.tex

1.1.3 Consider the system

- a) Find all the solutions to this system.
- b) Find a basis for the vector space of solutions to the system above. You need not prove this is a basis.
- c) What is the dimension of the vector space of solutions above?
- **d**) Is the the vector $\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 1 \\ 2 \end{bmatrix}$ a solution to the above system?

MATH 294 SPRING 1984 FINAL # 3 294SP84FQ3.tex

1.1.4 Find the general solution, or else show that the system has no solutions:

MATH 294 FALL 1985 FINAL # 2 294FA85FQ2.tex

1.1.5 Find the general solution of the system

and express your answer in vector form.

 $MATH~294 \qquad FALL~1986 \qquad FINAL~~\#~2~~ {}_{^{294FA86FQ2.tex}}$

1.1.6 a) Solve the linear system $A\vec{x} = \vec{b}$, where

$$A = \begin{bmatrix} 1 & 0 & -2 & 4 \\ 2 & 1 & -4 & 6 \\ -1 & 2 & 5 & -3 \\ 3 & 3 & -5 & 4 \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} 4 \\ 9 \\ 9 \\ 15 \end{bmatrix}.$$

b) Solve the linear system $A\vec{x} = \vec{0}$, where

$$A = \begin{bmatrix} -3 & -1 & 0 & 1 & -2 \\ 1 & 2 & -1 & 0 & 3 \\ 2 & 1 & 1 & -2 & 1 \\ 1 & 5 & 2 & -5 & 4 \end{bmatrix}$$

Express your answer in vector form, and give a basis for the space of solutions.

MATH 294 SPRING 1987 PRELIM 2 # 3 294SP87P2Q3.tex

1.1.7* Find all solutions to:

 $\mathbf{MATH} \ \ \mathbf{294} \qquad \mathbf{FALL} \ \ \mathbf{1987} \qquad \mathbf{PRELIM} \ \mathbf{2} \qquad \# \ \mathbf{4} \qquad {}_{\mathbf{294FA87P2Q4.tes}}$

1.1.8 a) Determine the row-reduced form of the matrix:

$$A = \left[\begin{array}{ccccc} 0 & 2 & 3 & 5 & 0 \\ 0 & 2 & 6 & 8 & -3 \\ 0 & 4 & 6 & 10 & 0 \\ 0 & 4 & 9 & 13 & -4 \end{array} \right].$$

b) Find the general solution of $A\vec{u} = \vec{0}$, where

$$ec{u} = \left[egin{array}{c} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{array}
ight] ext{ and } ec{0} = \left[egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}
ight].$$

MATH 294 FALL 1987 MAKE-UP 2 # 4 294FA87MU2Q4.tex

1.1.9 Use row reduction to either find the solution or show that no solution exists for the system

MATH 294 SPRING 1989 PRELIM 2 # 3 294SP89P2Q3.tex

1.1.10 Consider the system of equations,

- a) Find all solutions, if any exist, of the system.
- **b**) Is the set of vectors given by,

$$\begin{bmatrix} -1\\2\\11 \end{bmatrix}, \begin{bmatrix} 2\\5\\14 \end{bmatrix}, \text{ and } \begin{bmatrix} 3\\-3\\-21 \end{bmatrix}$$

linearly independent or dependent?

MATH 294 SUMMER 1989 PRELIM 2 # 1 294SU89P2Q1.tex

1.1.11 a) Find all solutions to

using only the row reduction method.

MATH 293 SPRING 1990 PRELIM 1 # 1

1.1.12* Find all the solutions. Write your answers in vector form.

b)
$$-x_1 + 3x_2 + 2x_3 = 1$$

 $3x_1 - 2x_2 - x_3 = 3$
 $x_1 + 4x_2 + 3x_3 = 5$

MATH 293 SPRING 1990 PRELIM 2 # 2 293SP90P2Q2.tex **1.1.13** Consider $A\vec{x} = \vec{b}$.

Where
$$A$$
 is $\begin{pmatrix} 1 & 3 & 5 & -1 \\ -1 & -2 & -5 & 4 \\ 0 & 1 & 1 & -1 \\ 1 & 4 & 6 & -2 \end{pmatrix}$.

- a) Solve for \vec{x} given $\vec{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$.
- **b**) Find a basis for the null space of A.
- c) Without carrying out explicit calculation, does a solution exist for any \vec{b} in \mathbf{V}^4 ?

MATH 293 FALL 1991 PRELIM 3 # 2 293FA91P3Q2.tex

1.1.14 Solve for the 2×2 matrix X if

$$\left(\begin{array}{cc} 2 & 3\\ 3 & 5 \end{array}\right) X = \left(\begin{array}{cc} -5 & 1\\ 0 & 4 \end{array}\right).$$

MATH 294 SPRING 1992 PRELIM 3 # 2

1.1.15 Here $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. a) Find A^{-1} .

a) Find
$$\vec{A}$$

b) Find X if $AX = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
c) Find \vec{v} if $A\vec{v} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

$$\mathbf{c}) \quad \text{Find } \vec{v} \text{if } A\vec{v} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

MATH 293 FALL 1990 PRELIM 2 # 2 293 FA 90 P 2 Q 2 . t e

- MATH 293 FALL 1990 1 ILLELIA 2 ... = \vec{b} if $A = \begin{bmatrix} 1 & 3 & -2 \\ 3 & -2 & 1 \\ 1 & -19 & 12 \end{bmatrix}$ and

 - a) $\vec{b} = 0$. b) $\vec{b} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$

Express all answers in vector form.

MATH 293 FALL 1992 FINAL # 4 293FA92FQ4.tex

1.1.17 a) Find the eigenvalues and eigenvectors of the matrix

$$B = \left[\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right].$$

- **b**) Let $A = \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$. Find a non singular matrix C such that $C^{-1}AC = D$ where D is a diagonal matrix. Find C^{-1} and D.
- c) For which value of a does the system of equations

has at least one solution? Explain your answer.

MATH 293 SPRING 1993 FINAL # 1 293SP93FQ1.tex

1.1.18 a) Find the general solution, and write your answer as a particular solution plus the general solution of the associated homogeneous system.

- **b**) Check your answer for part a.
- c) Find the inverse of the matrix

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -1 & -2 & -2 \end{array}\right).$$

d) Check your answer for part c.

MATH 293 SPRING 1993 FINAL # 3 293SP93FQ3.tex

1.1.19 Consider the matrix

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 0 \end{array}\right).$$

a) Find the vectors $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ such that a solution x of the equation $A\vec{x} = \vec{b}$

- exists. Find a basis for the column space $\Re(A)$ of A.
- c) It is claimed that $\Re(A)$ is a plane in \Re^3 . If you agree, find a vector \vec{n} in \Re^3 that is normal to this plane. Check you answer.
- d) Show that \vec{n} is perpendicular to each of the columns of A. Explain carefully why this is true.

SPRING 1994 MATH 293 PRELIM 2 # 2 293SP94P2Q2.tex

1.1.20 (True/false) The following properties hold for the matrix

$$A = \left(\begin{array}{ccc} 2 & -3 & 7 \\ -1 & 4 & 0 \end{array}\right) :$$

- a) If AM = AN then M = N, where M and N are 3 x 2 matrices.
- **b**) A has an inverse.
- A is in reduced row echelon form.
- d) A is equal to the matrix $B = \begin{pmatrix} -1 & 4 & 0 \\ 2 & -3 & 7 \end{pmatrix}$.
- A and B are row equivalent.
- \mathbf{f}) A and B have the same row reduced form.
- $\mathbf{g}) \quad (A^T)^T = A.$ $\mathbf{h}) \quad B^T A = B A^T.$

MATH 293 SPRING 1994 PRELIM 2 # 3 $_{293SP94P2Q3.tex}$ 1.1.21* If the reduced row echelon form of

$$\begin{pmatrix}
1 & -1 & 2 & -2 & 3 & -2 & 6 \\
2 & 0 & 3 & -4 & 1 & -1 & 4 \\
1 & -3 & -1 & -2 & 2 & -5 & -1
\end{pmatrix}$$
 is
$$\begin{pmatrix}
1 & 0 & 0 & -2 & -7/4 & -1/2 & -29/8 \\
0 & 1 & 0 & 0 & -7/4 & 3/2 & -17/8 \\
0 & 0 & 1 & 0 & 3/2 & 0 & 15/4
\end{pmatrix}$$

then the general solution of the system

$$\begin{array}{rcl} x-y+2z-2w & = & -2 \\ 2x+0y+3z-4w & = & -1 \\ x-3y-z-2w & = & -5 \end{array}$$

is

a)
$$\begin{pmatrix} -1/2 \\ 3/2 \\ 0 \end{pmatrix} + t \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$
, b) $1/2 \begin{pmatrix} -1 \\ 3 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 2 \\ 0 \\ 0 \\ 1 \end{pmatrix}$, c) $\begin{pmatrix} -2 \\ 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -7/4 \\ -7/4 \\ 3/2 \end{pmatrix}$, d) $\begin{pmatrix} 2 \\ 0 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} -1 \\ 3 \\ 0 \\ 0 \end{pmatrix}$, e) $\begin{pmatrix} 1 \\ -1 \\ 2 \\ -2 \end{pmatrix} + t \begin{pmatrix} 1 \\ -3 \\ -1 \\ -2 \end{pmatrix}$.

 $\mathbf{MATH~293} \qquad \mathbf{SPRING~1994} \qquad \mathbf{PRELIM~2} \qquad \#~4 \qquad {}_{293\mathrm{SP94P2Q4.tex}}$

1.1.22* The reduced row echelon for of
$$A = \begin{pmatrix} 1 & 0 & -1 & 3 \\ 2 & 2 & 0 & 4 \\ 1 & 4 & 3 & -1 \end{pmatrix}$$
 is

a) $\begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$, b) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$, c) $\begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$,

d) $\begin{pmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, e) $\begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

MATH 293 FALL 1994 PRACTICE 2 # 2 293FA94PP2Q2.tex 1.1.23 Find the general solution in vector form for the equations

MATH 293 FALL 1994 PRELIM 2 # 2 293FA94P2Q2.tex

1.1.24 Use Gauss-Jordan elimination to find all solutions of

in the cases that
(a)
$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix}$$
 and (b) $\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 6 \end{pmatrix}$

MATH 293 SPRING 1995 PRELIM 2 # 3 293SP95P2Q3.tex

1.1.25 Find the general solution of the wystem of equations

SPRING 1995 FINAL # 5 293SP95FQ5.tex **MATH 293**

1.1.26 Find the general solution of the system of equations

PRELIM 2 # 1 293FA95P2Q1.tex **MATH 293** FALL 1995

1.1.27* a) Find the general solution of the wystem of equations

b) Verify your solution.

FINAL **MATH 293** FALL 1995 # 3 293FA95FQ3.tex

1.1.28* a) Find the general solution, in vector form, of the equation $A\vec{x} = \vec{b}$ where

$$A = \begin{bmatrix} 0 & 1 & 2 & 1 \\ 1 & 2 & 0 & 1 \\ 1 & 4 & 4 & 3 \\ 0 & -2 & -4 & -2 \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} 1 \\ 3 \\ 5 \\ -2 \end{bmatrix}.$$

Verify your solution.

MATH 293 SPRING 1996 FINAL # 2 293SP96FQ2.tex

 $\bf 1.1.29*$ Consider the system

A solution of these equations is:

- a) The trivial soution.
- **b**) $x_1 = 9, x_2 = 0, x_3 = 0, x_4 = 1$
- c) $x_1 = 0, x_2 = 3, x_3 = 0, x_4 = 1$
- d) The system has no solution.
- e) None of the above.

MATH 293 SPRING 1996 FINAL # 3 $_{293SP96FQ3.tex}$

1.1.30* Consider the system

The value of a for which the system has infinitely many solution is:

- **a**) 2
- \mathbf{b}) 3
- c) none
- **d**) 1
- e) none of the above.

MATH 293 FALL 1996 PRELIM 2 # 2 293FA96P2Q2.tex

1.1.31* Matrix algebra. Let [A] be the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix} \text{ and let } \vec{b} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \text{ and let } \vec{c} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$$

- a) Find all solutions \vec{x} to $A\vec{x} = \vec{b}$ and check your answer by substitution.
- **b**) Find all solutions \vec{x} to $A\vec{x} = \vec{c}$ and check your answer by substitution.
- c) Give a reason why you believe that A^{-1} does or does not exist.

 $MATH~294 \qquad SPRING~1997 \qquad PRELIM~2 \qquad \#~1 \qquad {}_{\tiny 294SP97P2Q1.tex}$

1.1.32 Find the general solution of the linear system

MATH 293 SPRING 1997 PRELIM 2

1.1.33* Let
$$A = \begin{bmatrix} 9 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & 2 & 0 \end{bmatrix}$$
, $\vec{b} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, and $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$.

- a) Find the characteristic polynomial $\det(A \lambda I)$ of A, and find all eigenvalues. $(hint: \lambda - 9 \text{ is one factor of the polynomial.})$
- **b**) find an eigenvector for each eigenvalue.
- c) Write the augmented matrix for the system of equations $A\vec{x} = \vec{b}$ and solve the system by row operations.

SPRING 1997 MATH 294 FINAL # 3 294SP97FQ3.tex

1.1.34 Solve the following system for x_1, x_2, x_3, x_4 and express the general solution in parametric form.

1 **MATH 294** FALL 1997 PRELIM 1 294FA97P1O1.tex

1.1.35 a) Consider the problem $A\vec{x} = \vec{b}$, where

$$A = \begin{pmatrix} 0 & 1 & 1 & -1 \\ 1 & -1 & 0 & 2 \\ -1 & 2 & 1 & -3 \end{pmatrix}, \text{ and } \vec{b} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}.$$

Determine the general solution to this problem, in vector form.

b) Find a 2 by 2 matrix B, which is not the zero matrix, with $B^2 = 0$.

MATH 294 FALL 1997 FINAL # 1 294FA97FQ1.tex

1.1.36 Find the general solution of these equations in vector parametric form.

MATH 294 SPRING 1998 PRELIM 2 # 1 294SP98P2Q1.tex

1.1.37 a) Write the solution set of the system

in parametric form.

b) With

$$A \equiv \left[\begin{array}{ccc} 1 & -3 & -2 \\ 0 & 1 & -1 \\ -2 & 3 & 7 \end{array} \right],$$

find all solutions to the system

$$A\overrightarrow{x} = \left[\begin{array}{c} 0\\1\\-3 \end{array} \right].$$

- True or False?
- The columns of A are linearly independent. **i**)
- The solution set of $A\overrightarrow{x} = \overrightarrow{b}$ is all vectors of the form $\overrightarrow{w} = \overrightarrow{p} + \overrightarrow{v_h}$ where $\overrightarrow{v_h}$ is any solution of $A\overrightarrow{v_h} = \overrightarrow{0}$ and $A\overrightarrow{p} = \overrightarrow{b}$.

MATH 293 SPRING 1998 PRELIM 2 # 3 293SP98P2Q3.tex

1.1.38* Find all solution to the following matrix equation $A\vec{x} = \vec{b}$ where

$$A = \left[\begin{array}{rrr} 1 & 2 & 1 \\ 2 & 4 & 0 \\ 1 & 2 & 2 \end{array} \right]$$

for each of the following values of \vec{b} :

for each of the a)
$$\vec{b} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
b) $\vec{b} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$
c) $\vec{b} = \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}$

$$\mathbf{b}) \quad \vec{b} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$\mathbf{c}) \quad \vec{b} = \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}$$

MATH 294 FALL 1998 PRELIM 1 # 3 294FA98P1Q3.tex

1.1.39 a) Write the following system of equations as (i) a vector equation (ii) as a matrix equation.

b) Find all solutions to the linear system

- c) Does the above (b) have a solution for any right hand side?
- d) Let

$$ec{u}_1 = \left[egin{array}{c} 2 \ 0 \ -4 \end{array}
ight], \ ec{u}_2 = \left[egin{array}{c} 2 \ -1 \ -7 \end{array}
ight], \ ec{b} = \left[egin{array}{c} h \ -3 \ -5 \end{array}
ight]$$

For what value(s) of h is \vec{b} in the plane spanned by $\{\vec{u}_1, \vec{u}_2\}$?

MATH 293 SPRING 1996 PRELIM 2 # 1 293SP96P2Q1.tex 1.1.40 Let

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 2 & 3 & 4 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ -1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix}.$$

a) Find all \vec{x} for which $C\vec{x} = \vec{b}$, where

$$\vec{b} = \begin{bmatrix} 0\\2\\0\\1 \end{bmatrix}$$
.

MATH 294 FALL 1998 PRELIM 2 # 4 $_{294\text{FA98P2Q4,tex}}^{294\text{FAUL 1998}}$ 1.1.41* The reduced echelon form of the matrix $A = \begin{bmatrix} 3 & 3 & 2 & 3 \\ -2 & 2 & 0 & 2 \\ 1 & 0 & 1 & -2 \\ 0 & -3 & 2 & -1 \end{bmatrix}$ is

$$B = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

- a) What is the rank of A.
- **b**) What is the dimension of the column space of A?
- c) What is the dimension of the null space of A?

d) Find a solution to
$$A\vec{x} = \begin{bmatrix} 3 \\ -2 \\ 1 \\ 0 \end{bmatrix}$$
.

- e) Find the general solution to $A\vec{x} = \begin{bmatrix} 3 \\ -2 \\ 1 \\ 0 \end{bmatrix}$.
- \mathbf{f}) What is the row space of A?
- **g**) Would any of your answers above change if you changed A by randomly changing 3 of its entries in the 2nd, third, and fourth columns to different small integers and the corresponding reduced echelon form for B was presented? (yes?, no?, probaly? probaly not?,?)

MATH 294 FALL 1998 FINAL # 5 294FA98FQ5.tex

1.1.42 Consider
$$A\vec{x} = \vec{b}$$
 with $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ -1 & 2 & 5 & 8 \end{bmatrix}$ and $b = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$. The augmented matrix of this system is $\begin{bmatrix} 1 & 2 & 3 & 4 & 0 \\ 0 & 1 & 2 & 3 & 1 \\ -1 & 2 & 5 & 8 & 1 \end{bmatrix}$ which is row equivalent to

$$\left[\begin{array}{ccccc} 1 & 0 & -1 & -2 & 0 \\ 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right].$$

- a) What are the rank of A and dim nul A? (Justify your answers.)
- **b)** Find bases for col A, row A, and nul A.
- c) What is the general solution \vec{x} to $A\vec{x} = \vec{b}$ with the given A and \vec{b} ?
- d) Select another \vec{b} for which the above system has a solution. Give the general solution for that \vec{b} .

MATH 293 SPRING ? FINAL # 1 293SPUFQ1.tex

1.1.43* Find the general soliution of the following linear system and express it in vector

FINAL # 3 293UFQ3.tex **MATH 293** ???

1.1.44* a) Give all solutions of the following system in vector form.

b) What is the null space of the matrix of coefficients of the unknowns in a)?

MATH 294 SPRING 1982 PRELIM 1 # 1 294SP82P1Q1.tex

1.1.45 a) Write the system of equations

in the form $A\vec{x} = \vec{b}$.

- **b**) Find the det A for A in part (a) above.
- c) Does A^{-1} exist?
- d) Solve the above system of equations for $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$.
- e) Let $B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix}$. Find $A \cdot B$ (i.e. calculate the product AB).

MATH 293 FALL 1991 FINAL # 1 293FA91FQ1.tex

1.1.46 Write the general solution in vector form:

note: This problem is the same as MATH 293 SUMMER 1992 PRELIM 6/30 #2

 $\mathbf{MATH~293} \qquad \mathbf{SPRING~1992} \qquad \mathbf{PRELIM~2} \qquad \#~\mathbf{2} \qquad {}_{293\mathrm{SP92P2Q2.tex}}$

1.1.47 Find the general solution solution in vector form for the equations

MATH 293 SUMMER 1992 PRELIM 6/30 # 2 293SU92P630Q2.tex

1.1.48 Find the general solution of the equations

MATH 293 SUMMER 1992 FINAL # 1 293SU92FQ1.tex

1.1.49* a) Find the general solution, in vector form, of the equations $A\vec{x} = \vec{b}$ where

$$A = \begin{pmatrix} -1 & -3 & 4 & -2 \\ 0 & 2 & 5 & 1 \\ 0 & 1 & -3 & 0 \end{pmatrix}, \vec{b} = \begin{pmatrix} 5 \\ 2 \\ 4 \end{pmatrix}$$

b) Solve AX = B where

$$A = \begin{pmatrix} -1 & 2 & -3 \\ 2 & 1 & 0 \\ 4 & -2 & 5 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 3 & 2 \end{pmatrix}$$

MATH 293 SPRING 1993 PRELIM 2 # 3 293SP93P2Q3.tex

1.1.50 a) Solve the linear system:

Write the general solution in vector form as the sum of a particular solution plus the general solution of the associated homogeneous equation.

b) Check your answer, and explain what you do to check.

MATH 294 SPRING 1997 PRELIM 2 # 10 294SP97P2Q10.tex

1.1.51 Two chemicals A and B, are reacting with each other. After one second has elapsed, 90% of chemical A stays chemical A, while 10% turns into chemical B; also, 80% of chemical B stays chemical B, while 20% turns into chemical A. Suppose that the system is in equilibrium, i.e. that there is no change in the amount in grams of chemical A or B from one second to the next. If there are 10 grams of chemical A at equilibrium, how many grams of chemical B must there be?

MATH 294 FALL 1997 PRELIM 1 # 6 294FA97P1Q6.tex

1.1.52 A spaceship operator operates daily spaceship service between three planets, A, B, and C. The matrix below shows the traffic during a Monday. The numbers are fractions of the total number of spaceships that start at one location, and go to another destination. For example, the .4 means that 40% of the spaceships that start at C travel to A that day.

The distribution of spaceships at planets A, B, and C on Monday is 10,b,c. Find b and c such that the same distribution of space ships reappears the next day, on Tuesday.

MATH 294 FALL 1998 PRELIM 1 # 4 294FA98P1Q4.tex

1.1.53 Consider the chemical reaction (unbalanced as written below)

$$C_2H_6O + O_2 \to CO_2 + H_2O$$
.

Let x_1, x_2, x_3 , and x_4 be the number of molecules of each compound (in the order give above). Find integers x_1, x_2, x_3, x_4 that balance this reaction.

Hint: If you order your elements and hence equations as

$$\left(egin{array}{c} Oxygen \ Carbon \ Hydrogen \ \end{array}
ight)$$
 , or $\left(egin{array}{c} O \ C \ H \ \end{array}
ight)$,

you will minimize th number of row operations.

MATH 294 FALL 1998 FINAL # 7 294FA98FQ7.tex

- 1.1.54 The kingdom of Ferrgrad has three primary industrial sectors: iron, railroad, and coal. Suppose that:
 - To produce \$1 of steel, the steel sector consumes \$.2 of steel, \$.1 of railroad, and \$.2 of coal.
 - To produce \$1 of railroad transportation that rail sector consumes \$.1 of steel, \$.2 of rail, and \$.4 of coal.
 - To produce \$1 of coal, the coal sector consumes \$.2 of steel, \$.2 of rail, and \$.3 of coal.

Ferrograd does not use all its production in the various sectors to maintain the others. Additionally it exports

 $S_0 = \$1.2 \times 10^6 \text{ of steel},$

 $R_0 = \$0.8 \times 10^6$ of railroad transportational services,

 $C_0 = \$1.5 \times 10^6 \text{ of coal.}$

Define S, R, and C to be the \$ values of annual production of steel, rail, and coal. Set and do not solve a matrix equation that will tell you S, R, and C, the values of the annual productions of the three sectors. [Hint: first write three simultaneous equations, one for each output, which relate production to output.]