Lab Lecture: M&AE 2030 - Spring 2014
1 d-o-f Vibrating Systems

M&AE 2030: Dynamics Laboratory

Characteristics and Characterizing 1 d-o-f
Vibrating Systems

® Example Systems
® Modeling; Measurements using Displacement Sensors
® Governing Equation and Solutions

® Transient Solution: Features and Application to Inverse
Problem

® Steady-state Solution: Frequency Characteristics

® Resonance Curve: Analysis and Application to Inverse
Problem
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Approximate One d-o-f Vibrating Systems:

Loudspeakers,
Headphones,
Microphones...

WSachse; 3/2014; 2




Lab Lecture: M&AE 2030 - Spring 2014
1 d-o-f Vibrating Systems

Approximate One d-o-f Vibrating Systems:

Front Suspension:

Rear Suspension:

bilizer Bar
Bracket/Bushing

Lower Control
Arm B

Tralling Arm
Bushing
Compensator Arm

Trailing Arm

Brackel — A
Trailing Arm

Stabilizer Bar
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Approximate One d-o-f Vibrating Systems:

Floating
Buoys:

Area  Force

l l Rest

— X __ position

Pendulum-based
- Clocks
o
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M&AE 2030 - Spring 2014

LVDT

Experimental
System:

M&AE 2030: One Degree-of-Freedom Oscillator:

System and Modeling:

F, (spi~ force)
= \R C’\s_x}
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Displacement Sensing

e LVDT (Linear Variable Differential
Transformer):
— Inductance-based ctromechanical sensor
— “Infinite” resolution
« limited by external electronics
— Limited frequency bandwidth (250 Hz
typical for DC-LVDT, 500 Hz for AC-LVDT)
— No contact between the moving core and
coil structure
« no friction, no wear, very long operating

— Accuracy limited mostly by linearity

¢ 0.1%-1% typical

— Models with strokes from mm’s to 1 m
available

M&AE 2030 - Lab
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Linear Variable Differential Transformer - LVDT

» Attached to Object being sensed

» Measures linear position (displacement)
* Dynamic Range: 10 in > +/-20 in
* Infinite Resolution il e
« Signal Out: Several Volts-rms == = 20

) e
AL LEFT L

Stainless Steel Housing end End Caps

- coRE rounoN
High Permeability High Density Glass Filled

Magnetic Shell Polymer Coil Farm
Coil Assembly MAGNITUDE OF
/ CAFFERENTIAL
AC cuTPuT

BCOUTRUT FROM |
Primary Winding — ELECTRONICS

L~ Secondary Windings Epoxy

. Fuc
Encapsulation

100 = % OF FULL RANGE - +100
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Governing Equation: 1 d-o-f Vibrating System

Governing equations. The two forces we consider are:

Fop(t) = k(v — ) = The spring force (1.

|
= The dashpot force (1.2)

=
[
|

From Newton's second law the equation of motion for this svstem is

{SE} o= -Fut By =mi (13)
and plugging in for spring and dashpot terms we get
mi = —ci + kag — k. (1.4)
Rearranging we get the standard form
mi -+ cir+ ke = F.(t)  with  FJ(t) = ka.(t) (1.5)

where F.(t) is the (presumably specified) “forcing function” due to the motion of the support.
In this case the forcing is from the end of the spring being displaced.
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Solution: 1 d-o-f Vibrating System:
Equation of Motion: 10 + ¢ + k= F(t)
Free-vibration case: F‘,(f) =0 - :IJ(;,(I‘,) Transient Solution
vioraionsaas F(£) = K(£) =k Auugport cosiot
-, (f) Particular Solution

General Solution: :L‘(t) = :L‘C(t) + :E})(If)

2 — 4mjk > () Overdamped motion; Non-periodic

(:2 — 4Amk = () Critically-damped motion; Non-periodic

> — Amk < (0 Under-damped motion; Periodic; Decay
... All approach > :I_?(,(t) =0
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Transient Solution Features: 1 d-o-f System

Under-damped Motion Natural Frequency:

k
Wp = —

m
Damping Ratio:

x(t)

e Damped Frequency:

: ¢ Hwg = wpy/1 = (2
Solution:

T.(t) = e O cos(wgt) + Cy sin(wgt)]
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x(t)
P Overd: d
/ s
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Damped Frequency:
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k
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2v/mk

Natural Frequency: Damping Ratio:

Transient Solution Features: 1 d-o-f System

7
t

_Cwnt
€
D =1n

e _Cw-n (t+7d)

= (W, Ty
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Solution to the Inverse Problem:

Finding the moving mass m : Using the definitions of ¢ and D and solving for m:

)
c 2vmk ¢ 2 'mk L

g o
i\

Carry ont two ring down measurements. One with the original system and measure the
quantities 7 and 2. Add a small, known mass. Am to the moving mass and repeat

the measurements. This time the measured quantities will be 7 and D', Then form the

ratio and solve for the moving mass m .

2m D

[y o

= m
Td 21

w

Ta D'
m -

WD — D

JANTT)

Finding the damping e: Using the definitions of ¢ and D and solving for e:

c 2vmk ¢

D
2vVimk —
Td\
Make a ring down measurement and extract the the
the period of the damped motion,

Finding the system stiffness k: Use the previously

moving mass 1, then use the measured logarithimic

2in D

[

T

» logarithmic decrement 1 and 74,

s obtained values of damping e and
decrement D and

L

k = 2 {l "':'_;’]

WSachse; 3/2014; 12




Lab Lecture: M&AE 2030 - Spring 2014
1 d-o-f Vibrating Systems

Steady-state Solution:1d-o-f Vibrating System:
Equation of Motion: mi + cr + kr = Fs(i)

Forced
Vibration case: Fc,(t) = kg (t) = kAgupport COSwt

— Ty (t) Particular (steady-state) Solution

will be of form ... T, (1) = Ay esponse COS (Wt — @)

A«r»m,»p(m_se : Output Amplitude of response
q5 : Phase response
W : Excitation frequency
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| Steady-state Solution: Frequency Characteristics

amplitide and its phase relative to the excitation is

; — el DENE Z===
F/k - 2 \212 or fw\12 o0 |Ewof y [0
\[l ~{&) ] t PQ (?ﬂ z;fc‘ : %

; Lo Jn 8 '
tang = swill 2\ """
j 210
Olsery| l ('—b'm) e %x | |
w/ < 1 Both the inertia and damping forces acting T~ |
n the mass are small which 1.«.1|-].\ in a small phase "“*—-Ml_ | |
|.|.--|<I |-I| tl tele of the excitation is nearly 0 ) 20 3[0 a0 - 50

Frequency ratio u"k,

N Frequency Response Curves: Magnitude and Phase

807 and the
e tl
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Analysis of the Resonance Curve:

e The maximum amplitude of the peak
oceurs approximately at frequency
W RS Wy, = 1‘Jf.';’m (where w =27 f:
X | £ is the frequency [Hz].)
Xo ! . _ _ _
I e The maximum amplitude of the peak
I Amar o has value (Fy/k)/2¢ .
| | = X .
1 e The frequency interval (ws — wy)
| :
| [ at the resonance curve amplitudes
L Amaz /3 is given by 2w,
Wy Wy

Solving the Inverse Problem: e The Quality Factor Q of the

system is then given by

1.Find resonance frequency, o, Qi G s — i) e 58
2.Use a Am, find o,". Determine m. | equivalent to @ = 1/2¢. This is
3.Use m and o, to determine k. another way of determining the
4. Measure Q tO flnd C (:m())n/Q). :lél[ll|]]]]_: of lil[':&)'hlt‘[il.

WSachse; 3/2014; 15




