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Summary of Mechanics

0) Thelaws of mechanics apply to any collection of material or ‘body.’” This body could be the overall system of study
or any part of it. In the equations below, the forces and moments are those that show on afree body diagram. Interacting
bodies cause equal and opposite forces and moments on each other.
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I1) Angular Momentum Balance (AM B)/Moment Balance

Equation of motion

Impulse-momentum (angular)
(integrating in time)

Conservation of angular momentum
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I11) Power Balance (1st law of thermodynamics)

Equation of motion

for finitetime

Conservation of Energy
(ifQ=P=0

Statics

(if Ex isnegligible)

Pure Mechanics
(if heat flow and dissipation
are negligible)
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The total force on a body is equal (1)
to its rate of change of linear
momentum.

Net impulseisequal tothechangein (1a)
momentum.

When thereis no net forcethelinear  (1b)
momentum does not change.

If the inertial terms are zero the (Ic)
net force on system is zero.

The sum of momentsisequal tothe (1)
rate of change of angular momentum.

The net angular impulse isequa to  (11a)
the change in angular momentum.

If thereis no net moment about point (11b)
C then the angular momentum about
point C does not change.

If theinertial terms are zero thenthe  (lic)
total moment on the system is zero.

Heat flow plus mechanical power (I1)
into a system is equal to its change

in energy (kinetic + potentia +
internal).

Thenet energy flow goinginisequal  (111a)
to the net change in energy.

If no energy flows into a system, (lllb)
then its energy does not change.

If there is no change of kinetic energy (lllc)
then the change of potential and

internal energy is due to mechanical

work and heat flow.

In asystem well modeled aspurely  (l111d)
mechanical the change of kinetic

and potential energy is due to mechanical
work.



Some Definitions

(Please also look at the tables inside the back cover.)

r o Xx Position .e.q., ¥i = rijoisthepositionof apoint
i relativeto the origin, O)

- dr . . . .

DE—— d—: Velocity .e.0., vj = vj,oisthevelocity of apoint
i relativeto O, measured in anon-rotating
reference frame)

~ dv  d?r . oL .

a = e Acceleration .e.0., ai = aj o isthe acceleration of a
pointi relativeto O, measured in aNew-
tonian frame)

® Angular velocity A measure of rotational velocity of arigid
body.

a = o Angular acceleration A measure of rotational acceleration of a
rigid body.

N m; vj ISCcrete . .

v; discret
L = B _ Linear momentum A measure of asystem’s net transl ational
J vdm  continuous rate (weighted by mass).
= MiotVem
- > mia; discrete ) .
L = N _ Rate of change of linear | Theaspect of motionthat balancesthenet
Jadm  continuous momentum force on a system.
= Migtdcm
_ 2T /X m v; discrete .
H: = R R _ Angular momentum about | A measure of therotational rate of asys-
J/7,c xvdm  continuous point C tem about a point C (weighted by mass
and distance from C).
N > Fi/c x mjaj discrete .
H: = - R _ Rate of change of angular mo- | Theaspect of motionthat balancesthe net
J7¥/cxadm  continuous | mentum about point C torque on a system about a point C.
23 mv? discrete o _
Exk = Kinetic energy A scalar measure of net system motion.
3 [v2dm  continuous
Eint = (heat-like terms) Internal energy The non-kinetic non-potential part of a

system’stotal energy.

P = > Fi-vi + > M; & Power of forces and torques The mechanical energy flow into a sys-
tem. Also, P = W, rate of work.
g g
[I°M= | g,“ I w |§g‘ Moment of inertiamatrix about | A measure of how mass is distributed in

| cm | cm | cm
Xz yz 7z
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Preface

Thisisastatics and dynamics text for second or third year engineering students with
an emphasis on vectors, free body diagrams, the basic momentum balance principles,
and the utility of computation. Students often start a course like this thinking of
mechanics reasoning as being vague and complicated. Our aim is to replace this
loose thinking with concrete and simple mechanics problem-solving skills that live
harmoniously with a useful mechanical intuition.

Knowledge of freshman calculus is assumed. Although most students have seen
vector dot and cross products, vector topics areintroduced from scratch in the context
of mechanics. The use of matrices (to tidy-up systems of linear equations) and of
differential equations (for describing motion in dynamics) are presented to the extent
needed. The set-up of equations for computer solutions is presented in a pseudo-
language easily translated by a student into one or another computation package that
the student knows.

Organization

We have aimed here to better unify the subject, in part, by an improved organization.
Mechanics can be subdivided in various ways: statics vs dynamics, particlesvsrigid
bodies, and 1 vs 2 vs 3 spatial dimensions. Thus a 12 chapter mechanics table of
contents could look like this

|. Statics [1. Dynamics

A. particles C. particles
1) 1D 7) 1D
2) 2D 8) 2D
3) 3D 9 3D

B. rigid bodies D. rigid bodies
4) 1D 10) 1D
5) 2D 11) 2D
6) 3D 12) 3D

However, thesetopicsarefar fromequal intheir difficulty or inthenumber of subtopics
they contain. Further, there are various concepts and skills that are common to many
of the 12 sub-topics. Dividing mechanicsinto these bitsdistractsfrom the unity of the
subject. Although some vestiges of the scheme above remain, our book has evolved
to adifferent organization through trial and error, thought and rethought, review and
revision, and nine semesters of student testing.

The first four chapters cover the basics of statics. Dynamics of particles and
rigid bodies, based on progressively more difficult motions, is presented in chapters
five to eleven. Relatively harder topics, that might be skipped in quicker courses,
are identifiable by chapter, section or subsection titles containing words like “three
dimensional” or “advanced”. In more detail:

complexity
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Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

PREFACE

defines mechanics as a subject which makes predictions about forces and
motions using model s of mechanical behavior, geometry, and the basic balance
laws. The laws of mechanics are informally summarized.

introduces vector sKills in the context of mechanics. Notationa clarity is
emphasized because correct calculation is impossible without distinguishing
vectorsfrom scalars. Vector additionismotivated by the need to add forcesand
relative positions, dot products are motivated as the tool which reduces vector
equations to scalar equations, and cross products are motivated as the formula
which correctly calculates the heuristically motivated concept of moment and
moment about an axis.

isabout freebody diagrams. Itisaseparatechapter because, in our experience,
good use of free body diagrams is almost synonymous with correct mechanics
problem solution. To emphasize this to students we recommend that, to get
any credit for aproblem that uses balance lawsin the rest of the course, agood
free body diagram must be drawn.

makes up a short course in staticsincluding an introduction to trusses, mecha-
nisms, beams and hydrostatics. The emphasisis on two-dimensional problems
until the last, more advanced section. Solution methods that depend on kine-
matics (i.e., work methods) are deferred until the dynamics chapters. But for
the stretch of linear springs, deformations are not covered.

is about unconstrained motion of one or more particles. It shows how far
you can go using F = ma and Cartesian coordinatesin 1, 2 and 3 dimensions
in the absence of kinematic constraints. The first five sections are a thor-
ough introduction to motion of one particle in one dimension, so called scalar
physics, namely the equation F (X, v, t) = ma and special cases thereof. The
chapter includes some review of freshman calculus as well as an introduction
to energy methods. A few special cases are emphasized, namely, constant ac-
celeration, force dependent on position (thus motivating energy methods), and
the harmonic oscillator. After one section on coupled motionsin 1 dimension,
sections seven to ten discuss motion in two and three dimensions. The easy
set up for computation of trgjectories, with various force laws, and even with
multiple particles, is emphasized. The chapter ends with a mostly theoretical
section on the center-of-mass simplifications for systems of particles.

isthe first chapter that concerns kinematic constraint in its simplest context,
systems that are constrained to move without rotation in a straight line. In
one dimension pulley problems provide the main example. Two and three
dimensiona problems are covered, such as finding structural support forces
in accelerating vehicles and the slowing or incipient capsize of a braking car.
Angular momentum balance is introduced as a needed tool but without the
usual complexities of curvilinear motion.

treats pure rotation about a fixed axis in two dimensions. Polar coordinates
and base vectors are first used here in their simplest possible context. The
primary applications are pendulums, gear trains, and rotationally accelerating
motors or brakes.

treatsgeneral planar motion of a(planar) rigid body including rolling, sliding
and free flight. Multi-body systems are also considered so long as they do
not involve constraint (i.e., collisions and spring connections but not hinges or
prismatic joints).

is entirely about kinematics of particle motion. The over-riding theme is the
use of base vectorswhich changewith time. First, the discussion of polar coor-
dinates started in chapter 7 iscompleted. Then path coordinatesareintroduced.
The kinematics of relative motion, a topic that many students find difficult, is
treated carefully but not elaborately in two stages. First using rotating base
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Chapter 10

Chapter 11

Appendix A

Appendix B

vectors connected to a moving rigid body and then using the more abstract
notation associated with the famous “five term acceleration formula”

is about the mechanics of particles and rigid bodies utilizing the relative mo-
tion kinematics ideas from chapter 9. Thisis the capstone chapter for a two-
dimensional dynamics course. After thischapter agood student should be able
to navigate through and use most of the skillsin the concept map on page 582.
is an introduction to 3D rigid body motion. It extends chapter 7 to fixed axis
rotation in three dimensions. The key new kinematic tool here is the non-
trivial use of the cross product for calculating velocities and accelerations.
Fixed axis rotation is the simplest motion with which one can introduce the
full moment of inertia matrix, where the diagonal terms are analogous to the
scalar 2D moment of inertia and the off-diagonal terms have a “centripetal”
interpretation. Themain new applicationisdynamicbalance. Inour experience
going past thisistoo much for most engineering studentsin thefirst mechanics
course after freshman physics, so the book ends here.

on units and dimensions is for reference. Because students are immune to
preaching about units out of context, such as in an early or late chapter like
this one, the main messages are presented by example throughout the book (the
book may be unique amongst mechanics textsin this regard):

— All engineering cal cul ations using dimensional quantities must be dimen-
sionally ‘balanced’.

— Units are ‘carried’ from one line of calculation to the next by the same
rules as go numbers and variables.

oncontact laws(friction and collisions) isfor referencefor studentswho puzzle
over these issues.

A leisurely one semester statics course, or amore fast-paced half semester prelude
to strength of materials should use chapters 1-4. A typical one semester dynamics
course should cover most of of chapters 5-11 preceded by topics from chapters 1-4,
asneeded. A one semester statics and dynamics course should cover about two thirds
of chapters 1-6 and 8. A full year statics and dynamics course should cover most of
the book.

Organization and formatting

Each subject is covered in various ways.

Every section starts with descriptive text and short examples motivating and
describing the theory;

More detailed explanations of the theory are in boxes interspersed in the text.
For example, one box explains the common derivation of angular momentum
balance form linear momentum balance, one explains the genius of the wheel,
and another connects @ based kinematicsto ¢, and éy based kinematics;
Sampleproblems(marked with agray border) at theend of most sections show
how to do homework-like calculations. These set an example to the student
in their consistent use of free body diagrams, systematic application of basic
principles, vector notation, units, and checksagainst intuition and special cases;
Homework problems at the end of each chapter give students a chance to
practice mechanics calculations. The first problems for each section build a
student’s confidence with the basic ideas. The problems are ranked in approxi-
mate order of difficulty, with theoretical questionslast. Problems marked with
an * have an answer at the back of the book;
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@ Here are three nice older books on me-
chanics:

JP. Den Hartog's Mechanics originally
publishedin 1948 but still availableasanin-
expensive reprint (well written and insight-
ful);

JL. Synge and B.A. Giriffith, Principles of
Mechanics through page 408. Originaly
published in 1942, reprinted in 1959 (good
pedagogy but dry); and

E.J. Routh’s, Dynamics of a Systemof rigid
bodies, Vol 1 (the"elementary” part through
chapter 7. Originally published in 1905,
but reprinted in 1960 (a dense gold mine).
Routh aso has 5 other idea packed statics
and dynamics books.

PREFACE

o Reference tables on the inside covers and end pages concisely summarize
much of the content in the book. These tables can save students the time of
hunting for formulas and definitions. They also serve to visibly demonstrate
the basically simple structure of the whole subject of mechanics.

Notation

Clear vector notation helps students do problems. Students sometimes mistakenly
transcribe a conventionally printed bold vector F the same way they transcribe a
plain-text scalar F. To help minimize this error we use a redundant vector notation
in this book (bold and harpooned F).

Asfor al authors and teachers concerned with motion in two and three dimen-
sions we have struggled with the tradeoffs between a precise notation and a simple
notation. Beautifully clear notations are intimidating. Perfectly simple notations are
ambiguous. Our attempt to find clarity without clutter is summarized in the box on

page 9.

Relation to other mechanics books

This book isin some ways original in organization and approach. It also contains
some important but not sufficiently well known concepts, for example that angular
momentum balance appliesrelative to any point, not just an arcanelist of points. But
thereislittle mechanics here that cannot be found in other books, including freshman
physics texts, other engineering texts, and hundreds of classics.

Mastery of freshman physics (e.g., from Halliday & Resnick, Tipler, or Serway)
would encompass some part of this book’s contents. However freshman physics
generally leaves students with a vague notion of what mechanics is, and how it can
be used. For example many students |leave freshman physics with the sense that a
free body diagram (or ‘force diagram’) is an vague conceptua picture with arrows
for various forces and motions drawn on it thisway and that. Even the book pictures
sometimes do not make clear what force is acting on what body. Also, because
freshman physics tends to avoid use of college math, many students end up with no
sense of how to use vectors or cal culusto solve mechanics problems. Thisbook aims
to lead students who may start with these fuzzy freshman physicsnotionsinto aworld
of intuitive yet precise mechanics.

There are many statics and dynamics textbooks which cover about the same
material asthisone. These textbooks have modern applications, ample samples, lots
of pictures, and lots of homework problems. Many are good (or even excellent) in
their own ways. Most of today’s engineering professors learned from one of these
books. We wrote this book with the intent of doing still better in afew ways:
better showing the unity of the subject,
more clear notation in figures and equations,
better integration of the applicability of computers,
more clear use of units throughout,
introduction of various insights into how things work,
amore informal and lessintimidating writing style.

We intend that through this book book students will come to see mechanics as a
coherent network of basic ideas rather than a collection of ad-hoc recipes and tricks
that one need memorize or hope to discover by divine inspiration.

There are hundreds of older books with titles like statics, engineering mechan-
ics, dynamics, machines, mechanisms, kinematics, or elementary physics that cover
aspects of the material here®AIth0ugh many mechanics books written from 1689-
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1960, are amazingly thoughtful and complete, none are good modern textbooks. They
lack an appropriate pace, style of speech, and organization. They are too reliant on
geometry skills and not enough on vectors and numerical computation skills. They
lack sufficient modern applications, sample calculations, illustrations, and homework
problems for a modern text book.

Thank you

We have attempted to write abook which will help make the teaching and learning of
mechanics more fun and more effective. We havetried to present the truth asweknow
it and aswethink it ismost effectively communicated. But we have undoubtedly |eft
various technical and strategic errors. We thank you in advance for letting us know
your thoughts so that we can improve future editions.

Rudra Pratap, rp28@cornell.edu
Andy Ruina, ruina@cornell.edu
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PREFACE

To the student

Mother nature is so strict that, to the extent we know her rules, we can make reliable
predictions about the behavior of her children, the world of physical objects. In
particular, for essentially all practical purposesall objectsthat engineersstudy strictly
follow the laws of Newtonian mechanics. So, if you learn the laws of mechanics, as
this book should help you do, you will be able to make quantitative cal culations that
predict how things stand, move, and fall. You will aso gain intuition about how the
physical world works.

How to use this book

Most of you will naturally get help with homework by looking at similar examples
and samplesin the text or lecture notes, by looking up formulasin the front and back
covers, or by asking questions of friends, teaching assistants and professors. What
good are books, notes, classmates or teachers if they don’t help you do homework
problems? All the examples and sample problems in this book, for example, are
just for this purpose. But too-much use of these resources while solving problems
can lead to self deception. To see if you have learned to do a problem, do it again,
justifying each step, without looking up even one small thing. If you can't do this,
you have a new opportunity to learn at two levels. First, you can learn the missing
skill or idea. More deeply, by getting stuck after you have been able to get through a
problem with guidance, you can learn things about your learning process. Often the
real source of difficulty isn’t a key formula or fact, but something more subtle. We
have tried to bring out some of these more subtle ideas in the text discussions which
we hope you read, sooner or later.

Some of you are science and math school-smart, mechanically inclined, or are
especialy motivated to learn mechanics. Others of you are reluctantly taking this
class to fulfil arequirement. We have written this book with both of you in mind.
The sections start with generally accessible introductory material and include simple
examples. The early sample problems in each section are also easy. But we aso
have discussions of the theory and other more advanced asides to challenge more
motivated students.

Calculation strategies and skills

In this book we try here to show you a systematic approach to solving problems.
But it is not possible to reduce the world of mechanics problem solutions to one
clear set of stepsto follow. Thereisan art to solving problems, whether homework
problems or engineering design problems. Art and human insight, as opposed to
precise algorithm or recipe, is what makes engineering regquire humans and not just
computers. Through discussion and examples, we will try to teach you some of this
systematic art. Here are afew general guidelines that apply to many problems.
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Understand the question

You may be tempted to start writing equations and quoting principles when you first
see aproblem. But it is generally worth a few minutes (and sometimes afew hours)
to try to get an intuitive sense of a problem before jumping to equations. Before you
draw any sketches or write equations, think: does the problem make sense? What
information has been given? What are you trying to find? Is what you are trying to
find determined by what is given? What physical lawvs make the problem solvable?
What extra information do you think you need? What information have you been
given that you don’t need? Your general sense of the problem will steer you through
the technical details.

Some students find they can read every line of sample problems yet cannot do
test problems, or, later on, cannot do applied design work effectively. This failing
may come from following detailswithout spending time, thinking, gaining an overall
sense of the problems.

Think through your solution strategy

For the problem solutions we present in this book or in class, there was a time when
we had to think about the order of our work. You also have to think about the order
of your work. You will find some tips in the text and samples. But it is your job to
own the material, to learn how to think about it your own way, to become an expert
in your own style, and to do the work in the way that makes things most clear to you
and your readers.

What’sin your toolbox?
In the toolbox of someone who can solve lots of mechanics problems are two well
worn tools:
e A vector calculator that always keeps vectors and scalars distinct, and
e A reliable and clear free body diagram drawing tool.
Because many of thetermsin mechanics equationsare vectors, the ability to do vector
calculationsis essential. Because the concept of an isolated system is at the core of
mechanics, every mechanics practitioner needs the ability to draw a good free body
diagram. Would that we could write
“Click on WWW.MECH.TOOL today and order your own professional
vector calculator and expert free body diagram drawing tool!”,
but we can’t. After weinformally introduce mechanicsin thefirst chapter, the second
and third chapters help you build your own set of these two most-important tools.

Guarantee: if you learn to do clear correct vector algebra and to draw good
free body diagrams you will do well at mechanics.

Think hard

We do mechanics because we like mechanics. We get pleasure from thinking about
how things work, and satisfaction from doing calculations that make realistic predic-
tions. Our hopeisthat you alsowill enjoy idly thinking about mechanics and that you
will be proud of your new modeling and calculation skills. You will get thereif you
think hard. And you will get there more easily if you learn to enjoy thinking hard.
Often the best places to study are away from books, notes, pencil or paper when you
are walking, washing or resting.
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A note on computation

Mechanicsisaphysical subject. Theconceptsin mechanicsdo not depend on comput-
ers. But mechanicsisalso aquantitative and applied subject described with numbers.
Computers are very good with numbers. Thus the modern practice of engineering
mechanics depends on computers. The most-needed computer skills for mechanics
are:

o solution of simultaneous algebraic equations,
e plotting, and
e numerical solution of ODESs (Ordinary Differential Equations).

More basically, an engineer also needs the ability to routinely evaluate standard
functions (x3, cos ™16, etc.), to enter and manipulate lists and arrays of numbers, and
to write short programs.

Classical languages, applied packages, and simulators

Programming in standard languages such as Fortran, Basic, C, Pascal, or Java prob-
ably take too much time to use in solving simple mechanics problems. Thus an
engineer needsto learn to use one or another widely avail able computational package
(e.g., MATLAB, OCTAVE, MAPLE, MATHEMATICA, MATHCAD, TKSOLVER,
LABVIEW, etc). We assume that students have learned, or are learning such a pack-
age. We also encourage the use of packaged mechanicssimulators (e.g., WORKING
MODEL, ADAMS, DADS, etc) for building intuition, but none of the homework here
depends on access to such a packaged simulator.

How we explain computation in this book.

Solving a mechanics problem involves these major steps

(@) Reducing aphysical problem to awell posed mathematical problem;

(b) Solving the math problem using some combination of pencil and paper and
numerical computation; and

(c) Giving physical interpretation of the mathematical solution.

Thisbook is primarily about setup (@) and interpretation (c), which are the same, no
matter what method isused to solvethe equations. If aproblem requires computation,
the exact computer commands vary from package to package. So we express our
computer calculationsin thisbook using aninformal pseudo computer language. For
reference, typical commands are summarized in box on page xii.

Required computer skills.
Here, in alittle more detail, are the primary computer skills you need.

e Many mechanics problems are statics or ‘instantaneous mechanics problems.
These problems involve trying to find some forces or accelerations at a given
configuration of a system. These problems can generally be reduced to the
solution of linear algebraic equations of this general type: solve

3 x + 4 vy = 8
-7 x + J2 y = 35

for x and y. Some computer packages will let you enter equations almost as
written above. In our pseudo language we would write:
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set = { 3*x + 4*y
-7*X + sqrt(2)*y
solve set for x and y

Other packages may requireyoutowritethe equationsin matrix form something
like this (see, or wait for, page ?? for an explanation of the matrix form of
algebraic equations):

A= [ 3 4
-7 sqgrt(2) ]

b= [835]

solve A*z=b for z

where Aisa2 x 2 matrix, b isacolumn of 2 numbers, and the two elements of
z are x and y. For systems of two equations, like above, a computer is hardly
needed. But for systems of three equations pencil and paper work is sometimes
error prone. Most often pencil and paper solution of four or more equationsis
too tedious and error prone.

In order to see how a result depends on a parameter, or to see how a quantity
varies with position or time, it is useful to see aplot. Any plot based on more
than a few data points or a complex formulais far more easily drawn using a
computer than by hand. Most often you can organize your data into a set of
(X, y) pairs stored in an X list and a corresponding Y list. A simple computer
command will then plot x vs y. The pseudo-code below, for example, plots a
circle using 100 points

npoints = [1 2 3 ... 100]

theta = npoints * 2 * pi / 100
X = cos(theta)

Y = sin(theta)

plot Y vs X

where npoi nt s is the list of numbers from 1 to 100, t het a is a list of
100 numbers evenly spaced between 0 and 27 and X and Y are lists of 100
corresponding X, y coordinate points on acircle.

The result of using the laws of dynamicsis often aset of differential equations
which need to be solved. A simple example would be:

Findxatt=59iventhat(cjj—1( =xandthatatt =0,x = 1.

The solution to this problem can be found easily enough by hand to be €°.
But often the differential equations are just too hard for pencil and paper solu-
tion. Fortunately the numerical solution of ordinary differential equations
isalready programmed into scientific and engineering computer packages. The
simple problem above is solved with computer code analogous to this:

ODES { xdot = x}
I CS { xzero =1}
solve ODES with ICS until t=5

Examples of many calculations of these types will shown, starting on page 7.

Xi
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0.1 Summary of informal computer commands

Computer commands are given informally and descriptively inthis
book. The commands below are not as precise as any real computer
package. You should be able to use your package’'s documentation
to trandlate the informal commands below. Many of the commands
below depend on mathematical ideas which are introduced in the
text. At first reading a student is not expected to absorb this table.

u=[1 0 -1 0] Defineu and v to bethelists
v=[2 3 4 pi] shown.

t=[.1.2 .3 5] Set t to thelist of 50 numbers
implied by the expression.
y=v(3) sets y to the third value of v (in

this case 4).

50112 ]
z= A2, 3) Set z to the element of Ainthe
second row and third column.
w=[ 3 Define w to be a column vector.
4
2
5]
w=1[34 2 5] Same as above. © means
transpose.
u+v Vector addition. In this case the
resultis[333x].
u*v Element by element
multiplication, in this case
[20 —40].
sum w) Add the elements of w, inthis

case 14.

Make anew list, each element of
which isthe cosine of the
corresponding element of [w].
The square root of the sum of the
squares of the elementsin [u], in
thiscase 1.41421...

The vector dot product of
component lists[u] and [v], (we
could also write sunm( A* B) .

The vector cross product of C
and D, assuming the three
element component listsfor [C]
and [ D] have been defined.

Use the rules of matrix
multiplication to multiply [ A]

cos(w)

and [w].
eqset = (3x + 2y = 6  Define‘eqset’ to stand for the set
6x + 7y = 8} of 2eguationsin braces.

sol ve egset Solve the equationsin ‘egset’ for
for x and y xandy.
.............................. Sol vethe matrlx equatl on e
[Al[X] = [b] for thelist of
numbers x. This assumes A and
b have aready been defined.
fori =1toN Execute the commands *such and
such and such such’ N times, thefirst time with
i =1, thesecond withi = 2, etc
Assuming x and y are two lists of
numbers of the same length, plot
the y values vs the x values.
Assuming a set of ODEsand ICs
have been defined, use numerica
integration to solve them and
evauatetheresultat t = 5.

With an informality consistent with what is written above, other
commands are introduced here and there as needed.
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What 1s mechanics?

Mechanics is the study of force, deformation, and motion, and the relations between
them. We care about forces because we want to know how hard to push something
to move it or whether it will break when we push on it for other reasons. We care
about deformation and motion because we want thingsto move or not movein certain
ways. Towards these ends we are confronted with this general mechanics problem:

Given some (possibly idealized) information about the properties, forces,
deformations, and motions of a mechanical system, make useful predic-
tions about other aspects of its properties, forces, deformations, and

By system, we mean atangible thing such as awheel, agear, a car, ahuman finger, a
butterfly, a skateboard and rider, a quartz timing crystal, a building in an earthquake,
apiano string, and a space shuttle. Will awheel dlip? a gear tooth break? a car tip
over? What muscles are used when you hit akey on your computer? How do people
balance on skateboards? Which buildings are more likely to fall in what kinds of
earthquakes? Why are low pitch piano strings made with helical windingsinstead of
straight wires? How fast is the space shuttle moving when in low earth orbit?

In mechanicswetry to solve special casesof the general mechanicsproblem above
by idealizing the system, using classical Euclidean geometry to describe deformation
and motion, and assuming that the relation between force and motion is described
with Newtonian mechanics, or “Newton’s Laws’. Newtonian mechanics has held
up, with minor refinement, for over three hundred years. Those who want to know
how machines, structures, plants, animals and planets hold together and move about

1



@ The laws of classica mechanics, how-
ever expressed, arenamed for | saac Newton
because his theory of the world, the Prin-
cipia published in 1689, contains much of
the still-used theory. Newton used his the-
ory to explain the motions of planets, the
trajectory of a cannon ball, why there are
tides, and many other things.
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need to know Newtonian mechanics. In another two or three hundred years people
who want to design robots, buildings, airplanes, boats, prosthetic devices, and large
or microscopic machines will probably still use the equations and principles we now
call Newtonian mechanics®

Any mechanics problem can be divided into 3 parts which we think of asthe 3
pillars that hold up the subject:

1. the mechanical behavior of objects and materials (constitutive laws);
2. the geometry of motion and distortion (kinematics); and
3. thelaws of mechanics (F = ma, etc.).
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Let's discuss each of these ideas a little more, athough somewhat informally, so
you can get an overview of the subject before digging into the details.

Mechanical behavior

The first pillar of mechanics is mechanical behavior. The Mechanical behavior of
something is the description of how loads cause deformation (or vice versa). When
something carries aforce it stretches, shortens, shears, bends, or breaks. Your finger
tip sguishes when you poke something. Too large a force on a gear in an engine
causesit to break. Theforce of air on an insect wing makesit bend. Various geologic
forces bend, compress and break rock.

This relation between force and deformation can be viewed in afew ways. First,
it gives us a definition of force. In fact, force can be defined by the amount of
spring stretch it causes. Thus most modern force measurement devices measure
forceindirectly by measuring the deformation it causesin acalibrated spring. Thisis
onejustification for calling ‘ mechanical behavior’ thefirst pillar. It gives usanotion
of force even before we introduce the laws of mechanics.

Second, a piece of steel distorts under a given load differently than a same-sized
piece of chewing gum. This observation that different objects deform differently
with the same loads implies that the properties of the object affect the solution of
mechanics problems. The relations of an object’s deformations to the forces that are
applied are called the mechanical properties of the object. Mechanica properties
are sometimes called constitutive laws because the mechanical properties describe
how an object is constituted (at least from a mechanics point of view). The classic
example of aconstitutivelaw isthat of alinear spring which you remember from your



elementary physics classes: ‘' F = kx'. When solving mechanics problems one has
to make assumptions and idealizations about the constitutive laws applicable to the
parts of asystem. How stretchy (elastic) or gooey (viscous) or otherwise deformable
isan object? The set of assumptions about the mechanical behavior of the systemis
sometimes called the constitutive model .

Distortion in the presence of forces is easy to see on squeezed fingertips, or
when thin pieces of wood bend. But with pieces of rock or metal the deformation is
essentially invisible and sometimes hard to imagine. With the exceptions of things
like rubber, flesh, or compliant springs, solid objects that are not in the process of
breaking typically change their dimensions much less than 1% when loaded. Most
structural materials deform less than one part per thousand with working loads. But
even these small deformations can be important because they are enough to break
bones and collapse bridges.

When deformations are not of consequence engineers often idealize them away.
Mechanics, where deformation is neglected, is called rigid body mechanics because
arigid (infinitely stiff) solid would not deform. Rigidity is an extreme constitutive
assumption. The assumption of rigidity greatly simplifies many calculations while
generating adequate predictions for many practical problems. The assumption of
rigidity also simplifies the introduction of more general mechanics concepts. Thus
for understanding the steering dynamics of a car we might model it as arigid body,
whereas for crash analysis where rigidity is clearly a poor approximation, we might
model a car as highly deformable.

Most constitutive models describe the material inside an object. But to solve a
mechanics problem involving friction or collisions one a so hasto have a congtitutive
model for the contact interactions. The standard friction model (or idealization)
‘F < uN’ isan example of acontact constitutive model.

Inal of mechanics, one needs constitutive models of asystem and its components
before one can make useful predictions.

The geometry of deformation and motion

The second pillar of mechanics concerns the geometry of deformation and motion.
Classical Greek (Euclidean) geometry concepts are used. Deformation is defined
by changes of lengths and angles between sets of points. Motion is defined by the
changes of the position of pointsintime. Concepts of length, angle, similar triangles,
the curves that particles follow and so on can be studied and understood without
Newton's laws and thus make up an independent pillar of the subject.

We mentioned that understanding small deformationsis often important to predict
when things break. But large motions are also of interest. In fact many machines
and machine parts are designed to move something. Bicycles, planes, elevators, and
hearsesare designed to move people; aclockwork, to move clock hands; insect wings,
to move insect bodies; and forks, to move potatoes. A connecting rod is designed to
move a crankshaft; a crankshaft, to move atransmission; and atransmission, to move
awhedl. And wheels are designed to move bicycles, cars, and skateboards.

The description of the motion of these things, of how the positions of the pieces
change with time, of how the connections between pieces restrict the motion, of the
curves traversed by the parts of a machine, and of the relations of these curves to
each other is called kinematics. Kinematics is the study of the geometry of motion
(or geometry in motion).

For the most part we think of deformationsasinvolving small changes of distance
between points on one body, and of net motion asinvolving large changes of distance
between points on different bodies. Sometimes oneismost interested in deformation
(you would like the stretch between the two ends of a bridge brace to be small)
and sometimes in the net motion (you would like al points on a plane to travel



@ |saac Newton's original three laws are:
1) an object in motion tends to stay in mo-
tion, 2) F = ma for a particle, and 3)
the principle of action and reaction. These
could be used as a starting point for study
of mechanics. The more modern approach
we take here leads to the same end.
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about the same large distance from Chicago to New York). Really, deformation and
motion are not distinct topics, both involve keeping track of the positions of points.
The distinction we have made is for simplicity. Trying to simultaneously describe
deformations and large motions is just too complicated for beginners. So the ideas
arekept (somewhat artificially) separatein elementary mechanicscoursessuch asthis
one. As separate topics, both the geometry needed to understand small deformations
and the geometry needed to understand large motions of rigid bodies are basic parts
of mechanics.

Relation of forceto motion, the laws of mechanics

The third pillar of mechanics is loosely called Newton's laws. One of Newton's
brilliant insightswasthat the sameintuitive*‘force' that causesdeformation al so causes
motion, or more precisely, acceleration of mass. Force is related to deformation by
material properties (elasticity, viscosity, etc.) and to motion by the laws of mechanics

summarized in the front cover. In words and informally, these ae®

0) Thelaws of mechanics apply to any system (rigid or not):

a) Force and moment are the measure of mechanical interaction; and
b) Action = minusreaction appliesto all interactions, ( ‘every action hasan
equal and opposite reaction’);

I) The net force on a system causes a net linear acceleration (linear momentum
balance),
I1) The net turning effect of forces on system causes it to rotationally accelerate
(angular momentum balance), and
I11) The change of energy of a system is due to the energy flow into the system
(energy balance).

The principles of action and reaction, linear momentum balance, angular mo-
mentum balance, and energy balance, are actually redundant various ways. Linear
momentum balance can be derived from angular momentum balance and, sometimes
(see section ??), vice-versa. Energy balance equations can often be derived from
the momentum balance equations. The principle of action and reaction can also be
derived from the momentum balance equations. In the practice of solving mechanics
problems, however, the ideas are generally considered independently without much
concern for which idea could be derived from the others for the problem under con-
sideration. That is, the four assumptions in O-111 above are not a mathematically
minimal set, but they are al accepted truths in Newtonian mechanics.

A lot follows from the laws of Newtonian mechanics, including the contents of
thisbook. When theseideasare supplemented with modelsof particular systems(e.g.,
of machines, buildings or human bodies) and with Euclidean geometry, they lead to
predictions about the motions of these systems and about the forces which act upon
them. There is an endless stream of results about the mechanics of one or another
special system. Some of these results are classified into entire fields of research such
as ‘fluid mechanics, ‘vibrations, ‘seismology, ‘granular flow, ‘biomechanics, or
‘celestial mechanics!

The four basic ideas also lead to other more mathematically advanced formula-
tions of mechanics with names like ‘Lagrange’s equations,’ ‘Hamilton’s equations,
‘virtual work’, and ‘variational principles.” Should you take an interest in theoretical
mechanics, you may learn these approaches in more advanced courses and books,
most likely in graduate school.



Statics, dynamics, and strength of materials

Elementary mechanicsis traditionally partitioned into three courses named * statics,
‘dynamics’, and ‘strength of materials. These subjects vary in how much they
emphasize materia properties, geometry, and Newton’s laws.

Saticsismechanicswith theidealization that the accel eration of massisnegligible
in Newton’'slaws. Thefirst four chaptersof thisbook provide athorough introduction
to statics. Strictly speaking things need not be standing still to be well idealized
with statics. But, as the name implies, statics is generally about things that don’t
move much. Thefirst pillar of mechanics, constitutive laws, is generally introduced
without fanfare into statics problems by the (implicit) assumption of rigidity. Other
constitutive assumptionsused includeinextensibleropes, linear springs, and frictional
contact. The material properties used as examples in elementary statics are very
simple. Also, because things don’t move or deform much in statics, the geometry
of deformation and motion are al but ignored. Despite the commonly applied vast
simplifications, statics is useful, for example, for the analysis of structures, slow
machines or the light parts of fast machines, and the stability of boats.

Dynamics concerns motion associated with the non-negligible acceleration of
mass. Chapters 5-11 of this book introduce dynamics. Aswith statics, thefirst pillar
of mechanics, constitutive laws, is given a relatively minor role in the elementary
dynamics presented here. For the most part, the same library of elementary proper-
ties properties are used with little fanfare (rigidity, inextensibility, linear elasticity,
and friction). Dynamics thus concernsthe two pillarsthat are |abelled by the confus-
ingly similar words kinematics and kinetics. Kinematics concerns geometry with no
mention of force and kinetics concerns the relation of force to motion. Once one has
mastered statics, the hard part of dynamicsisthe kinematics. Dynamicsis useful for
the analysis of, for example, fast machines, vibrations, and ballistics.

Srength of materials expands statics to include materia properties and also pays
more attention to distributed forces (traction and stress). Thisbook only occasionally
touches lightly on strength of materials topics like stress (loosely, force per unit
area), strain (away to measure deformation), and linear elasticity (a commonly used
constitutive model of solids). Strength of materials gives equal emphasisto al three
pillars of mechanics. Strength of materials is useful for predicting the amount of
deformation in a structure or machine and whether or not it islikely to bresk with a
given load.

How accur ate is Newtonian mechanics?

In popular science culture we are repeatedly reminded that Newtonian ideas have
been overthrown by relativity and quantum mechanics. So why should you read this
book and learn ideas which are known to be wrong?

First off, this criticism is maybe inappropriate because general relativity and
guantum mechanics are inconsistent with each other, not yet united by a universally
accepted deeper theory of everything. But how big are the errors we make when we
do classical mechanics, neglecting various modern physics theories?

e The errors from neglecting the effects of specia relativity are on the order of
v?/c? where v is atypical speed in your problem and c is the speed of light.
The biggest errors are associated with the fastest objects. For, say, calculating
space shuittle trgjectories this leads to an error of about

<
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c ~ (m) A .000000001 ~ one millionth of one percent

3 x 108m/s
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e Inclassica mechanicswe assumewe can know exactly where somethingisand
how fast it is going. But according to quantum mechanics this is impossible.
Theproduct of theuncertainty §x in position of an object and thethe uncertainty
8 p of itsmomentum must be greater than Planck’sconstant h. Planck’sconstant
issmall; i ~ 1 x 10~34joule- s. Thefractional error so required is biggest for
small objects moving slowly. So if one measures the location of a computer
chip with mass m = 10~“kg to within §x = 10~®m ~ atwenty fifth of a
thousands of an inch, the uncertainty inits velocity v = §p/misonly

§x8p = i = sv = mh/sx ~ 107%*m/ s ~ 10~ *thousandths of an inch per year.

o Inclassical mechanicswe usually neglect fluctuations associated with the ther-
mal vibrations of atoms. But any object in thermal equilibrium with its sur-
roundings constantly undergoes changes in size, pressure, and energy, as it
interacts with the environment. For example, the internal energy per particle
of asample at temperature T fluctuates with amplitude

AE 1

_kTZ
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where kg is Boltzmann's constant, T is the absolute temperature, N is the
number of particles in the sample, and cy is the specific heat. Water has a
specific heat of 1 cal/K, or around 4 Joule/K. At room temperature of 300
Kelvin, for 1023 molecules of water, these values lead to an uncertainty of only
7.2 x 10~2 Joulein thethe internal energy of the water. Thermal fluctuations
are big enough to visibly move pieces of dust in an optical microscope, and to
generate variations in electric currents that are easily measured, but for most
engineering mechanics purposes they are negligible.

o general relativity errors having to do with the non-flatness of space are so small
that the genius Einstein had trouble finding a place where the deviations from
Newtonian mechanics could possibly be observed. Finally hepredicted asmall,
barely measurable effect on the predicted motion of the planet Mercury.

On the other hand, the errors within mechanics, due to imperfect modeling or inaccu-
rate measurement, are, except in extreme situations, far greater than the errors due to
theimperfection of mechanics theory. For example, mechanical force measurements
are typically off by a percent or so, distance measurements by a part in a thousand,
and material properties are rarely known to one part in a hundred and often not one
partin 10.

If your engineering mechanics calculations make inaccurate predictions it will
surely be because of errorsin modeling or measurement, not inaccuraciesin the laws
of mechanics. Newtonian mechanics, if not perfect, is till rather accurate whilerela-
tively much simpler to use than the theories which have * overthrown’ it. To seriously
consider mechanics errors as due to neglect of relativity, quantum mechanics, or sta-
tistical mechanics, isto pretend to an accuracy that can only be obtained in the rarest
of circumstances. You have trusted your life many times to engineers who treated
classical mechanics as ‘truth’ and in the future if you do such, your engineering
mechanics work will justly be based on classical mechanics concepts.



Vectors for mechanics

Thisbook isabout thelaws of mechanicswhichwereinformally introduced in Chapter
1. Themost fundamental quantitiesin mechanics, used to define all the others, arethe
two scalars, mass m and time t, and the two vectors, relative position 7; e and force
F. Scalars are typed with an ordinary font (t and m) and vectors are typed in bold
with aharpoon ontop (7; o, F). All of the other quantities we use in mechanics are
defined in terms of these four. A list of all the scalars and vectors used in mechanics
are given in boxes 2 and 2.2 on pages 8 and page 9. Scalar arithmetic has already
beenyour lifelong friend. For mechanicsyou al so need facility with vector arithmetic.
Lets start at the beginning.

What is a vector ?

A vector is a (possibly dimensional) quantity that is fully described by
its magnitude and direction

whereas scalars are just (possibly dimensional) single numbersD As a first vector
example, consider a line segment with head and tail ends and a length (magnitude)
of 2cm and pointed Northeast. Lets call thisvector A (seefig. 2.1).

A def 2cm long line segment pointed Northeast

Every vector in mechanics is well visualized as an arrow. The direction of the
arrow is the direction of the vector. The length of the arrow is proportional to the
magnitude of the vector. The magnitude of A isapositive scalar indicated by |A|. A
vector does not lose itsidentity if it is picked up and moved around in space (so long
asit is not rotated or stretched). Thus both vectors drawn in fig. 2.1 are A.

7

Figure 2.1: Vector A is 2cm long and
points Northeast. Two copies of A are
shown.

(Filename:tfigure.northeast)

@ By ‘dimensional’ we mean ‘with units’
likemeters, Newtons, or kg. Wedon't mean
having an abstract vector-space dimension,
asin one, two or three dimensional.



@ |n abstract mathematics they don’t even
bother with talking about magnitudes and
directions.
arithmetic.

CHAPTER 2. \ectorsfor mechanics

Vector arithmetic makes sense

We have oversmplified. We said that a vector is something with magnitude and
direction. In fact, by common modern convention, that’s not enough. A one way
street sign, for example, is not considered a vector even though is has a magnitude
(itsmassis, say, half akilogram) and adirection (the direction of most of the traffic).
A thing is only called a vector if elementary vector arithmetic, vector addition in

All they care about is vector

So, to the mathematicians, any- chapter:

thing which obeys simple vector arithmetic
is a vector, arrow-like or not. In math talk

lotsof strangethingsarevectors, likearrays
of numbersand functions. Inthisbook vec-
tors always have magnitude and direction.

particular, has a sensible meani ng® .
The following sentence summarizes centuries of thought and also motivates this

The vectors in mechanics have magnitude and direction and elementary
vector arithmetic with them has a sensible physical meaning.

This chapter is about vector arithmetic. In therest of this chapter you will learn how
to add and subtract vectors, how to stretch them, how to find their components, and
how to multiply them with each other two different ways. Each of these operations
has use in mechanics and, in particular, the concept of vector addition aways has a

physical interpretation.

2.1 Vector notation and vector addition

Facility with vectors has several aspects.
1. You must recognize which quantities are vectors (such as force) and which are

scalars (such as length).

2. You have to use a notation that distinguishes between vectors and scalars us-
ing, for example, a, or a for acceleration and a or |a| for the magnitude of

acceleration.

3. You need skillsin vector arithmetic, maybe alittle more than you have learned
in your previous math and physics courses.
In this first section (2.1) we start with notation and go on to the basics of vector

arithmetic.

2.1 The scalarsin mechanics

The scalar quantities used in this book, and their dimensions in
brackets[ ], arelisted below (M for mass, L for length, T for time,
F for force, and E for energy).

massm, [M];

length or distance ¢, w, X, 1, p, d, ors, [L];
timet, [TI;

pressure p, [F/L2] =[M/(L - T?)];

angles 6 ‘thetd, ¢ ‘phi’, y ‘gamma, and v ‘ps’,
[dimensionless];

energy E, kinetic energy Eg, potential energy Ep, [E] =
[F-LI=[M-L%/T7;

work W, [E]=[F-L]=[M-L2%/T?;
tensionT, [M-L/T? =[F];
power P, [E/T]=[M-L%/T3;

the magnitudes of all the vector quantities are also scalars,
for example

~ speed V], [L/TI;

— magnitude of acceleration |&|, [LlTZ];

— magnitude of angular momentum |H|, [M-L2/T];
the components of vectors, for example

—Ix  (where 7 =rxi +ryJ),or

~ Ly (whereL = Lyi’ +Lyj');
coefficient of friction u ‘mu’, or friction angle ¢ ‘phi’;
coefficient of regtitution e;
mass per unit length, area, or volume p;

oscillation frequency B or A.




2.1. Vector notation and vector addition

How to write vectors

A scalar is written as a single English or Greek letter. This book uses slanted type
for scalars (e.g., m for mass) but ordinary printing isfine for hand work (e.g., m for
mass). A vector is also represented by a single letter of the aphabet, either English
or Greek, but ornamented to indicate that it is avector and not ascalar. The common
ornamentations are described below.

Use one of these vector notationsin all of your work.

Various ways of representing vectorsin printing and writing are described bel ow.D.

F Putting aharpoon (or arrow) over the letter F isthe suggestive notation used inin
this book for vectors.

F Inmost textsabold F represents the vector F. But bold face isinconvenient for
hand written work. The lack of bold face pens and pencils tempts students to
transcribe abold F as F. But F with no adornment represents a scalar and
not a vector. Learning how to work with vectors and scalars is hard enough
without the added confusion of not being able to tell at a glance which terms
in your equations are vectors and which are scalars.

F Underlining or undersquiggling (F) isan easy and unambiguous notation for hand
writing vectors. A recent poll found that 14 out of 17 mechanics professorsuse
this notation. These professors would copy a F from this book by writing F.
Also, in typesetting, an author indicates that a letter should be printed in bold
by underlining.

F Itisastroke simpler to put a bar rather than a harpoon over a symbol. But the
saved effort causesambiguity sincean over-bar isoften used toindicateaverage.

@caution: Be careful to distinguish vec-
tors from scalars al the time. Clear nota-
tion helps clear thinking and will help you
solve problems. If you notice that you are
not using clear vector notation, stop, de-
termine which quantities are vectors and
which scalars, and fix your notation.

2.2 The Vectorsin Mechanics

The vector quantities used in mechanics and the notations used in
this book are shown below. The dimensions of each are shown in

A Al

e position 7 orx, [L];

e velocity vorX or 7, [L/t];

A~/
r,J ,and k for crooked cartesian coordinates,

brackets [ ]. Some of these quantities are also shown in figure ?2?. — ér and ¢, for polar coordinates,
é; and éy, for path coordinates, and

— X ‘lambda and 7 as miscellaneous unit vectors.

e acceleraiond@ or v or ¥, [L/t?];

. arlgular velocity @ ‘omega (or, if aligned with the k axis,
ok), [1/1];

e rate of change ot angularA velocity & ‘alpha or @ (or, if
aligned with the k axis, 6k), [1/t2];

o force For N, [m-L/t?] = [FJ;

o momentor torque M, [m-L2/t2] = [F - L]:

e linear momentum E [m - L/t] and its rate of change E
[m-L/t?];

¢ angular momentum 17 [m- L2/t]; and its rate of change
H, [m-LZ%/t9.
e unit vectors to help write other vectors [dimensionless]:

-i,j,and k for cartesian coordinates,

Subscripts and superscripts are often added to indicate the point,
points, body, or bodiesthe vectorsare describing. Upper caseletters
(O,A,B,C,...) areused todenotepoints. Upper casecalligraphic (or
script if you are writing by hand) letters (4, B, C...F ...) are for
labeling rigid bodiesor referenceframes. F isthefixed, Newtonian,
or ‘absolute’ reference frame (think of & asthe ground if you area
first time reader).

For example,fAB or ?B/A isthe position of the point B relative
to the point A. @ g is the absolute angular velocity of the body
called B (@ g isshort hand for @ g ¢). And H 4 ¢ istheangular
momentum of body 4 relative to point C.

Thenotationisfurther complicated whenwewant to takederiva-
tives with respect to moving frames, a topic which comes up later
in the book. For completeness: $@ ¢, /¢ isthe time derivative with
respect to reference frame B of the angular velocity of body D
with respect to body (or frame) &. If this paragraph doesn’t read
like gibberish to you, you probably already know dynamics!
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Figure 2.2: Position and forcevectorsare

W/

drawn with different scales.

(Filename:tfigure.posandforce)
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Figure 2.3:

vector addition.

(a) tip to tail addition of
A + B, (b) tip to tail additionof B + A,
(c) the parallelogram interpretation of vec-
tor addition, and (d) The associative law of

(Filename:tfigure.

tiptotail)
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There could be confusion, say, between the velocity v and the average speed v.

1 Over-hat. Putting a hat on top is like an over-arrow or over-bar. In this book we
reserve the hat for unit vectors. For example, weusei, j, and k,or é1, e, and
e, for unit vectors parallel to the X, y, and z axis, respectively. The same poll
of 17 mechanics professors found that 11 of them used no special notation for
unit vectors and just wrote them like, e.g., i

Drawing vectors

Infig. 2.1, the magnitude of A was used as the drawing length. But drawing a vector
using its magnitude as length would be awkward if, say, we were interested in vector
B that points Northwest and has amagnitude of 2m. To well contain B inadrawi ng
would require a piece of paper about 2 meters square (each edge the length of a
basketball player). This situation moves from difficult to ridiculous if the magnitude
of the vector of interest is 2km and it would take half an hour to stroll from tail to
tip dragging a purple crayon. Thus in pictures we merely make scale drawings of
vectors with, say, one centimeter of graph paper representing 1 kilometer of vector
magnitude.

The need for scale drawings to represent vectors is apparent for a vector whose
magnitude is not length. Force is a vector since it has magnitude and direction. Say
Fgr is the 700N force that the ground pushes up on your feet as you stand till. We
can't draw aline segment with length 700N for Fgr because a Newton is a unit of
force not length. A scale drawing is needed.

One often needs to draw vectors with different units on the same picture, as for
showing the position 7 at which a force F is applied (see fig. 2.2). In this case
different scalefactors are used for the drawing of the vectorsthat have different units.

Drawing and measuring are tedious and al so not very accurate. And drawingin 3
dimensionsis particularly hard (given the short supply of 3D graph paper nowadays).
So the magnitudes and directions of vectors are usualy defined with numbers and
units rather than scale drawings. Nonetheless, the drawing rules, and the geometric
descriptionsin general, still define vector concepts.

Adding vectors

The sum of two vectors A and B is defined by the tip to tail rule of vector addition
shown in fig. 2.3afor the sum C=A + 4 B. Vector A is drawn. Then vector B is
drawn with its tail at thetip (or head) of A. The sum C is the vector from the tail of
A to thetip of B.

The same sum is achieved if B is drawn first, as shown in fig. 2.3b. Putting
both of ways of adding A and B on the same picture draws a paralelogram as
shown in fig.2.3c. Hence the tip to tail rule of vector addition is also caled the
parallelogramrule. The parallelogram construction shows the commutative property
of vector addition, namely that A+ B = B+ A. Notethat you can view figs. 2.3a-c
as 3D pictures. In 3D, the parallelogram will generally be on some tilted plane.

Three vectors are added by the same tip to tail rule. The construction shown in
fig. 2.3d shows that (A+ B) +D=A+ (B +D) sothattheexpronA+ B+D
is unambiguous. Thisis the associative property of vector addition. This pictureis
also sensible in 3D where the 6 vectors drawn make up the edges of a tetrahedron
which are generally not coplanar.

With these two laws we see that the sum A+ B+ D+... canbe permuted
to D+ A+ B + ... or any which way without changing the result. So vector
addition sharesthe associativity and commultivity of scalar addition that you are used
toeg.,thaa3+ (7+n7)=@m@+3)+7.
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We can reconsider the statement ‘forceisavector’ and seethat it hides one of the
basic assumptionsin mechanics, namely:

If forces F1 and F2 are applied to a point on a structure they can be
replaced, for all mechanics considerations, with a single force F =
Fl aF F2 applied to that point

asillustrated in fig. 2.4. Theforce F issaid to be equivalent to the concurrent (acting
at one point) force system consisting of F‘l and fz.

Note that two vectors with different dimensions cannot be added. Figure 2.2 on
page 10 can no more sensibly be taken to represent meaningful vector addition than
can the scalar sum of alength and aweight, “2ft + 3N”, be taken as meaningful.

Subtraction and the zero vector 0

Subtraction is most smply defined by inverse addition. Find C — A meansfind the
vector which when added to A gives C We can draw C,draw A and then find the
vector which, when added tip to tail to A give C. Fig. 2.3ashowsthat B answers s the
question. Another interpretation comes from defining the negative of avector —A as
A with the head and tail switched. Again you can see from fig. 2.3b, by imagining
that the head and tail on A were switched that C + (- A) B. The > negative of a
vector evidently has the expected property that A+(— A) = 0, where 0 isthe vector
with no magnitude so that C + 0= C forall vectors C.

Relative position vectors

The concept of relative position permeates most mechanics equations. The position
of point B relative to point A is represented by the vector rg /A (pronounced ‘r of B
relativeto A') drawn from A and to B (asshowninfig. 2.5). An alternate notation for
this vector is 7,5 (pronounced ‘r A B’ or ‘r A to B*). You can think of the position
of B relative to A as being the position of B relative to you if you were standing on
A. Similarly ?C/B = rgc isthe position of C relative to B.

Figure. 2.5a shows that relative positions add by thetip to tail rule. That is,

Tca = T'e/a t TcB or Fac = TaB T I'ec

so vector addition has a sensible meaning for relative position vectors.

Often when doing problems we pick a distinguished point in space, say a promi-
nent point or corner of amachine or structure, and use it asthe origin of a coordinate
system O. The position of point A relativeto Ois r, /0 0r 7o but we often adopt the
shorthand notation 7, (pronounced ‘r A’) leaving the reference point O as implied.
Figure. 2.5b shows that

rg/a =Tg — T
which rolls off the tongue easily and makes the concept of relative position easier to
remember. D
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Figure 2.4: Two forces acting at a point
may be replaced by their sum for al me-
chanics purposes.

(Filename:tfigure.forcesadd)

B _
@ R c/B
B/A
C
A c/A
B
(b) Ts/A
A s
A
°0

Figure2.5; a) Relativeposition of points
A, B, and C; b) Relative position of points
O, A, and B.

(Filename:tfigure.relpos)

D For thefirst 7 chapters of this book you
can just trandate ‘relative to’ to mean ‘mi-
nus' asinenglish. ‘How much money does
Rudra haverelative to Andy? means what
is Rudra's weath minus Andy’s wealth?
What isthe position of B relativeto A?ltis
the position of B minus the position of A.
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Figure 2.6: Multiplying a vector by a

scalar stretchesit.

Figure 2.7: mienamenigur

2F,

: FAtoB)

(Filename:tfigure.stretch)
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Multiplying by a scalar stretchesa vector

Naturally enough 2F means F + F (seefig. 2.6) and 1274 means A added to itself
127 times. Similarly A/7 or 7A means a vector in the direction of A that when
added to itself 7 times gives A. By combining these two ideas we can define any
rational multiple of A. For example 9 A meansadd 29 copies of thevector that when
added 13 times to itself gives A. We skip the mathematical fine point of extending
the definition to cA for ¢ that areirrational.

We can define —174 as 17(—A), combi ning our abilities to negate a vector and
multiply it by a positive scalar.  In general, for any positive scalar ¢ we define cA
asthe vector that isin the same direction as A but whose magnitude is multiplied by
c. Fivetimesa5N force pointed Northeast isa 25N force pointed Northeast. If cis
negative the direction is changed and the magnitude multiplied by |c|. Minus5 times
a5N force pointed Northeast isa 25N force pointed SouthWest.

If you imagine stretching a vector addition diagram (e.g., fig. 2.3a on page 10)
equally in all directions the distributive rule for scalar multiplication is apparent:

C(A+B)=cA+cB

Unit vector s have magnitude 1

Unit vectors are vectors with a magnitude of one. Unit vectors are useful for indi-
cating direction. Key examples are the unit vectors pointed in the positive x, y and z
directionsi (called ‘i hat’ orjust‘i’), j, and k. Wedisti nguish unit vectors by hatting
them but any undistinguished vector notation will do (e.g., using i).
An easy way to find a unit vector in the direction of avector A isto divide A by
its magnitude. Thus .
A

An
A

is a unit vector in the A direction. You can check that this defines a unit vector by
looking up at the rules for multiplication by a scalar. Multiplying A by the scalar
1/|A| gives anew vector with magnitude |A|/|A| =1

A common situation isto know that aforce F isayet unknown scalar F multiplied
by aunit vector pointing between known points A and B. (fig. 2.7). We can then write
F as

_ R r e — T,
F = )"AB_F AB AB AA
|rAB| |rB_rA|

where we have used XAB as the unit vector pointing from A to B.

Vectorsin pictures and sketches.

Some options for drawing vectors are shown in sample ?? on page ??. The two
notations below are the most common.

Symbolic: labeling an arrow with a vector symbol. Indicate a vector, say aforce
F, by drawing an arrow and then labeling it with one of the symbolic notations
above asin figure 2.8a. In this notation, the arrow is only schematic, the mag-
nitude and direction are determined by the algebraic symbol F. Itissometimes
helpful to draw the arrow in the direction of the vector and approximately to
scale, but thisis not necessary.
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Graphical: ascalar multipliesan arrow. Indicate a vector’'s direction by drawing
an arrow with direction indicated by marked angles or slopes. The scalar
multiple with a nearby scalar symbol, say F, as shown in figure 2.8b. This
means F timesaunit vector in the direction of the arrow. (Because F might be
negative, sign confusioniscommon amongst beginners. Pleaseseesample2.1.)

Combined: graphical representation used to define a symbolic vector. The full
symbolic notation can be used in a picture with the graphical information as a
way of defining the symbol. For exampleif the arrow in fig. 2.8b were labeled
with an F instead of just F we would be showing that F isascalar multiplied
by aunit vector in the direction shown.

The components of a vector

A given vector, say F,canbe described asthe sum of vectorseach of whichisparallel
to a coordinate axis. Thus F = Fy + Fy in2Dand F = Fy + Fy + F,in 3D.
Each of these vectors canin turn be written as the product of ascalar and aunit vector
along the positive axes, e.q., Fx = Fxi (seefig. 2.9). So

F = ﬁx"‘ﬁy:in“r‘ij (2D)
or

The scalars Fy, Fy, and F; are called the components of the vector with respect to
the axes xyz. The components may also be thought of as the orthogonal projections
(the shadows) of the vector onto the coordinate axes.

Because the list of components is such a handy way to describe a vector we
have a special notation for it. The bracketed expression [ F] xyz Stands for the list of
components of F presented as a horizontal or vertical array (depending on context),
as shown below.

Fx

[ﬁ]xyz = I:y
Fz

[ﬁ]xyzz[Fx, Fy, F or

If we had an xy coordinate system with x pointing East and y pointing North
we could write the components of a 5N force pointed Northeast as [17])(y =
[5/V2N, (5/v2)N].

Notethat the componentsof avector in somecrooked coordinatesystem x’y’z are
different than the coordinatesfor the same vector in the coordinate system xyz because
theprojectionsaredifferent. Eventhough F = Fitisnottruethat [ Flxy; = [Flxyz
(seefig. 2.19 on page 25). In mechanics we often make use of multiple coordinate
systems. So to define avector by its components the coordinate system used must be
specified.

Rather than using up letters to repeat the same concept we sometimes |label the
coordinate axes x1, X2 and x3 and the unit vectors along them é1, é», and e3 (thus
freeing our minds of the silently pronounced lettersy,z,j, and k).

Manipulating vector s by manipulating components

Because a vector can be represented by its components (once given a coordinate
system) we should be able to relate our geometric understanding of vectors to their
components. In practice, when push comes to shove, most calculations with vectors
are done with components.
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Figure 2.8: Two different ways of draw-
ing avector (a) showsalabeled arrow. The
magnitude and direction of the vector is

given by the symbol F', the drawn arrow
has no quantitative information. (b) shows
an arrow with clearly indicated orientation
next tothescalar F. Thismeansaunit vec-
tor in the direction of the arrow multiplied
by the scalar F.

(b)

(Filenam.

e:tfigurel.d)

Figure 2.9: A vector can be broken into
a sum of vectors, each paralel to the axis
of a coordinate system. Each of theseisa
component multiplied by aunit vector along
the coordinate axis, e.g., Fx = Fxl.

(Filename:tfigure.vectproject)
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Adding and subtracting with components

Because avector can be broken into a sum of orthogonal vectors, because addition is
associative, and because each orthogonal vector can be written as a component times
aunit vector we get the addition rule:

[A+ Blxyz = [(Ax+ Bx), (Ay+By), (Az+ By)]

which can be described by thetricky words‘ the components of the sum of two vectors
are given by the sums of the corresponding components.” Similarly,

[A — Blyyz = [(Ax — Bx). (Ay—By), (A;— By

Multiplying a vector by a scalar using components

The vector A can be decomposed into the sum of three orthogonal vectors. If Alis
multiplied by 7 than so must be each of the component vectors. Thus

[cAlxyz = [CAx. CAy, CAJ.

The components of a scaled vector are the corresponding scaled components.

Magnitude of a vector using components
The Pythagorean theorem for right triangles (‘ A2 + B2 = C?2') tells us that

\F| = JRZ+F, (2D)
|F| = JFZ+F2+F2 (3D)

To get the result in 3D the 2D Pythagorean theorem needs to be applied twice suc-
cessively, first to get the magnitude of the sum Fx + Fy and once more to add in
F.
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SAMPLE 2.1 Drawing a vector fromits components: Draw the vector r = 3fti —
2ftj using its components.

Solution To draw 7 using its components, we first draw the axes and measure 3
units (any units that we choose on the ruler) along the x-axis and 2 units along the
negative y-axis. We mark this point as A (say) on the paper and draw aline from the
originto the point A. Wewritethedimensions*3 ft' and ‘2 ft' onthefigure. Findly,
we put an arrowhead on this line pointing towards A.

O

SAMPLE 2.2 Drawing a vector from its length and direction: A vector r is 3.6ft
long and is directed 33.7° from the x-axis towards the negative y-axis. Draw r.

Solution Wefirst draw the x and y axes and then draw r asaline from the origin at
an angle —33.7° from the x-axis (minus sign means measuring clockwise), measure
3.6 units (magnitude of ) along thisline and finally put an arrowhead pointing away
from the origin.

O

Comments. Notethat thisisthe samevector asin Sample 2.1. Infact, you can easily
verify that

r« = rcosh = 3.6ft-cos(—33.7°) = 3ft
and

ry = rsing =36ft-sin(—33.7°) = —2ft.
Thus

F o= rId+ryj= @3t —(2ft)y)

asgivenin Sample2.1.
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Figure 2.10: A vector 7 = 3fti — 2ftj
is drawn by locating its end point which is
3 units away along the x-axis and 2 units
away along the negative y-axis.

(Filename:sfigl.2.4a)

AN 33.7° X

3.6 units\

A

Figure 2.11: A vector r with a given
length (3.6ft ) and direction (slope angle
6 = —33.7°) is drawn by measuring its
length along a line drawn at angle 6 from
the positive x-axis.

(Filename:sfigl.2.4b)
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SAMPLE 2.3 Various ways of representing a vector: A vector F = 3Ni + 3Nj
is represented in various ways, some incorrect, in the following figures. The base
vectors used are shown first. Comment on each representation, whether it is correct
or incorrect, and why.

L AL

i 45°
3V2N i \ 250
3V2Ni' N t—> e ;-3x/§N 32N’
3N

@ (b) (© (d) ©
— 45 3U3NT 3Ni + 3Nj

3N l SN 3N£§ 45° VC’)«/E Nz / \

® (9 (h) 0] @)

Figure 2.12;  (ricnamerssisz vectors.ren)

Solution The given vector is a force with components of 3N each in the positive
1 and j directions using the unit vectors i and j shown in the box above. The unit
vectors?’, and j’ are also shown.

a) Correct:  3+v/2Ni'. From the picture defining i', you can see that 7’ is a unit

vector with equal componentsin the i and j directions; i.e., it isparallel to F. So
Fis given by its magnitude 1/ (3N)2 4+ (3N)2 times a unit vector in its direction, in
thiscasei’. Itisthe same vector.

b) Correct: Here two vectors are shown: one with magnitude 3N in the direction
of the horizontal arrow 7, and one with magnitude 3N in the direction of the vertical
arrow j. When two forces act on an object at a point, their effect is additive. So the
net vector isthe sum of the vectors shown. Thatis, 3NZ +3Nj. Itisthe samevector.

c) Correct: Herewe have ascalar 3+/2 N next to an arrow. The vector described is
the scalar multiplied by a unit vector in the direction of the arrow. Sincethe arrow’s
direction is marked as the same direction as i’, which we already know is parallel to
F, this vector represents the same vector F. It isthe same vector.

d) Correct: The scalar —3+/2N is multiplied by a unit vector in the direction
indicated, —i’. Soweget (—3+v/2N)(—i") whichis3+/2Ni’ asbefore. It isthe same
vector.

e) Incorrect: 3v/2Nj’. The magnitude is right, but the direction is off by 90
degrees. It isadifferent vector.

f) Incorrect: 3Ni — 3Nj. The i component of the vector is correct but the j
component is in the opposite direction. The vector is in the wrong direction by 90
degrees. It isadifferent vector.



2.1. Vector notation and vector addition

g) Incorrect:  Right direction but the magnitude is off by afactor of /2.

h) Incorrect: The magnitude is right. The direction indicated is right. But, the
agebraic symbol 3+/2 Ni takes precedence and it isin the wrong direction (7 instead
of 7). Itisadifferent vector.

i) Correct: A labeled arrow. The arrow isonly schematic. The algebraic symbols
3V/2Ni’ define the vector. We draw the arrow to remind us that there is a vector
to represent. The tip or tail of the arrow would be drawn at the point of the force
application. In this case, the arrow is drawn in the direction of F but it need not.

j) Correct: Like (i) above, the directional and magnitude information is in the
algebraic symbols 3NZ + 3Nj. The arrow isthere to indicate a vector. In this case,
it pointsin the wrong direction so is not ideally communicative. But (j) still correctly
represents the given vector. It isthe same vector.

O
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SAMPLE 2.4 Adding vectors. Threeforces, 171 =2Ni+3Nj, ﬁz = —10Nyj, and
173 =3Ni +1Nj — 5Nk, act on aparticle. Find the net force on the particle.

Solution The net force on the particleisthe vector sum of al the forces, i.e.,

Fog = F +F,+F,
= (2Ni+3Nj) + (—10Nj) + (3Ni + 1Nj — 5Nk)
2Ni + 3Nj + Ok
+ O — 10Nj + Ok
+ 3Ni 4+ 1Nj — b5k
= (2N+43N)i + BN — 10N+ 1N)j + (-5N)k
5Ni — 6Nj — 5Nk.

Froq =5Ni —6Nj — 5Nk

Comments: In general, we do not need to write the summation so elaborately. Once
you feel comfortable with the idea of summing only similar components in a vector
sum, you can do the calculation in two lines.

SAMPLE 2.5 Subtracting vectors: Two forces Fy and F, act on abody. The net
force onthebody is F, = 2Ni. If F; = 10N7 — 10N, find the other force F,.

Solution
Fg = Fi+F,
= Fz = ﬁnet — Fl

— 2Ni— (10Ni — 10Nj)
= (2N —10N)i — (—=10N)j
—8Ni + 10Nj.

F, = —8Ni 4 10Nj

SAMPLE 2.6 Scalar times a vector: Two forces acting on a particle are ﬁl =
100N7Z — 20Nj and F, = 40Nj. If F; isdoubled, does the net force double?

Solution

Frg = F;+ F,=(100Ni —20Nj) + (40N})
100Nz 4 20N
After F; is doubled, the new net force F(net)z is

Fpa, = 2F;+ F,=2(100Ni —20Nj)+ (40Nj)
200Ni — 40Nj + 40N j
200Ni # 2 (100Ni + 20N )

—_—

Fro

‘ No, the net force does not double.
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SAMPLE 2.7 Magnitude and direction of a vector: The velocity of acar is given
by v = (307 + 407) mph.

(a) Find the speed (magnitude of v) of the car.

(b) Find aunit vector in the direction of v.

(c) Writethe velocity vector as a product of its magnitude and the unit vector.

Solution

(@) Magnitude of v: The magnitude of avector isthe length of the vector. Itisa
scalar quantity, usually represented by the same | etter as the vector but without
the vector notation (i.e. no bold face, no underbar). It is also represented by
the modulus of the vector (the vector written between two vertical lines). The
length of avector is the square root of the sum of squares of its components.
Therefore, for

v = 30mphi +40mphj,
v=|v| = 1/v)%—i—v%
— /(30mphy? + (40mph)?
50mph

which isthe speed of the car.

‘speed = 50 mph

(b) Direction of v asaunit vector along v: Thedirection of avector can be spec-
ified by specifying a unit vector along the given vector. In many applications
you will encounter in dynamics, this concept isuseful. The unit vector along a
given vector is found by dividing the given vector with its magnitude. Let A
be the unit vector along v. Then,

v 30mphi +40mphj
v 50 mph
= 0.6 +0.8j. (unit vectors have no unitsl)

A, =

A, = 0.6i + 0.8j

(c) v asa product of its magnitude and the unit vector A,: A vector can be
written in terms of its components, as given in this problem, or as a product of
its magnitude and direction (given by a unit vector). Thuswe may write,

A

v = | 9|, = 50mph(0.6i + 0.8))
which, of course, isthe same vector as given in the problem.

v = 50mph(0.6i + 0.85)

19
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r
(3m,2m,1m)

3m

“ 2m

Figure 2.13: The position vector of the
particleisavector drawn from the origin of
the coordinate system to the position of the
particle.

(Filename:sfig2.vecl.6)
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4 (21.0)
Figure 2.14: The position vector of B
with respect to A is found from 7pp =
T — Ta.

(Filename:sfig2.vecl.7)

CHAPTER 2. \ectorsfor mechanics

SAMPLE 2.8 Position vector from the origin: In the xyz coordinate system, a
particle is located at the coordinate (3m, 2m, 1m). Find the position vector of the
particle.

Solution The position vector of the particle at P is a vector drawn from the origin
of the coordinate system to the position P of the particle. SeeFig. 2.13. We can write
this vector as

o @m)i+ 2m)j + Amk
(3i + 2] + k)ym.

or p

?P=3mi+2mj+1ml€

SAMPLE 2.9 Relative position vector: Let A (2m, 1m, 0) and B (0, 3m, 2m) betwo
pointsin the xyz coordinate system. Find the position vector of point B with respect
topoint A, i.e., find 7,g (Or ?B/A).

Solution From the geometry of the position vectorsshownin Fig. 2.14 and therules
of vector sums, we can write,

rg = TFa+Tag
= Tag = Tg—Tp
= (0f +3mj+2mk) — (2mi + 1mj + 0k)

= —2mi+2mj + 2mk.

N ?B/A =—2mi +2mj + 2mk
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SAMPLE 2.10 Finding a force vector given its magnitude and line of action: A
stringispulled withaforce F = 100 N asshownintheFig. 2.15. Write F asavector.

~02m Y

Solution A vector can bewritten, aswejust showed in the previous sample problem,
as the product of its magnitude and a unit vector along the given vector. Here, the
magnitude of the force is given and we know it acts along AB. Therefore, we may
write

Figure 2.15: suenamesrigr.2.2)

ﬁ: FXAB
where X og is a unit vector along AB. So now we need to find A ag. We can easily
find A ap if we know vector AB. Let us denote vector AB by 7 ag (Sometimes we

will also writeit as r g, to represent the position of B with respect to A asavector).

Then, -
A _ r AB

B — —— .
|F aB|
To find 7 ag, We note that (see Fig. 2.16)

FrA+TraB=78

where r 5 and 7 g arethe position vectors of point A and point B respectively. Hence,
Figure 2.16: ?AB = ?B — ?A.
?B/A — ?AB — ?B _ ?A (Filename:sfigl.2.2b)
= (0.2mi +0.6mj + 0.2mk) — (0.5mi + 1.0mk)

—0.3mi + 0.6mj — 0.8mk.

Therefore, A
A —0.3mi +0.6mj — 0.8mk
Apag =
V(=0.3)2 + (0.6)2 + (—0.8)2 m
= —0.29 + 0.57j — 0.77k,
and, finally,
F
N —— A
F = (100N) AaB

—29Ni + 57Nj — 77Nk.

F = —29Ni 4+ 57Nj — 77Nk
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SAMPL E 2.11 Adding vectorson computers: Thefollowingsix forcesact at different
points of a structure. F; = —3Nj, F, = 20N7 — 10Nj, F3 = 1Ni + 20Nj —
5Nk, F, = 10Ni, Fs = 5N(i + j + k), Fg = —10Ni — 10Nj + 2Nk.

(a) Writeall the force vectorsin column form.

(b) Find the net force by hand calculation.

(c) Writeacomputer program to sum n vectors, each of length 3. Useyour program
to compute the net force.

Solution
(@) The3-D vector F = Fyi + Fyj + F,k is represented as a column (or a row)
asfollows:
[F] = Fy
Fz

Xyz

Following this convention, we write the given forces as

B 0 B 20N B ~10N
[F]=| —3N JF] = —10N - [F=| —10N
0 Xyz 0 Xyz 2N Xyz

(b) Thenetforce, Foo = F; + F,+ F3+ Fy+ Fs+ Fgor

- 0 20 1 10 5 -10
[Fel = [ 3 + =10 + 20 + 0 + 5 + —10 | N
0 0 -5 0 5 2 ) 2
26
- 2 | N
2 Xyz

(c) The stepsto do this addition on computers are as follows.
e Enter the vectors as rows or columns:

F1 = [0 -3 0]
F2 = [20 -10 O]
F3 =[1 20 -5]
F4 =[10 0 O]
F5 = [5 5 5]

F6 = [-10 -10 2]

e Sum the vectors, using a summing operation that automatically does ele-
ment by element addition of vectors:

Fnet = F1 + F2 + F3 + F4 + F5 + F6
e The computer generated answer is.
Fnet = [26 2 2].

Fpe = 26Ni +2Nj + 2Nk
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2.2 Thedot product of two vectors

The dot product is used to project a vector in a given direction, to reduce a vector
to components, to reduce vector equations to scalar equations, to define work and
power, and to help solve geometry problems.

The dot product of two vectors A and B iswritten A - B (pronounced ‘A dot B’).
The dot product of A and B isthe product of the magnitudes of the two vectorstimes
a number that expresses the degree to which A and B are parallel: cosfag, where
0ap isthe angle between A and B. That is,

= = def

A-B'= |A||B|cosOag

which is sometimes written more concisely as A- B = ABcosd. One special case
is when cosfag = 1, A and B are parallel, and A - B = AB. Another is when
cosfag = 0, A and B are perpendicular, and A - B = 0.9

The dot product of two vectorsisascalar. So the dot product is sometimes called
the scalar product. Using the geometric definition of dot product, and the rules for
vector addition we have already discussed, you can convince yourself of (or believe)
the following properties of dot products.

commutative law,
AB cosf = BAcoso

adistributive law,
(aA)Bcost = A(aB) cosé

e A-(B+C)=A-B+A-C  another distributivelaw,
theprojectionof B+ C onto A isthe
sum of the two separate projections

e A-B=0 if ALB perpendicular vectors have zero for

adot product, AB cosm/2 =0

parallel vectors have the product of
their magnitudes for a dot product,
ABcosO = AB. In particular, A -
A=Aor|Al=vA-A

, The standard base vectors used with
cartesian coordinatesare unit vectors
and they are perpendicular to each
other. In math language they are‘ or-
thonormal

~ o~

A AL A~
l . .

The standard crooked base vectors

'y P = are orthonormal.

The identities above lead to the following equivalent ways of expressing the dot
product of A and B (see box 2.2 on page 24 to see how the component formula
follows from the geometric definition above):
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Figure 2.17: The dot product of A and
B isascalar andsoisnot easily drawn. Itis
givenby A - B = ABcosfag whichis A
timesthe projection of B inthe Adirection
and also B times the projection of A inthe
B direction.

(Filename:tfigurel.11)

T you don’t know, almost without
a thought, that cosO = 1,cosn/2 =
0,sn0 = 0, and sin7/2 = 1 now is as
good atime as any to draw as many trian-
gles and unit circles as it takes to cement
these special cases into your head.
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|A|| B| costiap
= AxBx + AyBy + A;B; (component formulafor dot product)
= Ay¢By + Ay/ By/ + Ay By
= |A| - [projection of B inthe A direction]

|B| - [projection of A inthe B direction]

|
>~T8

i Ux

Figure 2.18: The dot product with unit
vectors gives projection. - For example, | jgng the dot product to find components

vx = V-1I.

(Fienamentizurel.adowwrod) T find the X component of avector or vector expression one can use the dot product
of the vector (or expression) with aunit vector in the x direction asin figure 2.18. In
particular,

vy =10 -1.

Thisidea can be used for finding components in any direction. If one knows the
orientation of the crooked unit vectors i, j', k' relative to the standard bases i, j, k
then all the angles between the base vectors are known. So one can evaluate the dot
products between the standard base vectors and the crooked base vectors. In 2-D

2.3 THEORY
Using the geometric definition of the dot product to find the dot product in terms of components
Vectors are essentially a geometric concept and we have conse- AxBy(0) + AyBy(1) + AzBy(0) +
quently defined the dot product geometrically as A - B = ABcosf. AxBZ(0) + AyB,(0) + A;B;(1)

Almost 400 years ago René Descartes discovered that you could do
geometry by doing algebra on the coordinates of points.

So we should be ableto figure out the dot product of two vectors = A. E = AxBx + AyBy + A;B; (3D).
by knowing their components. The central key to finding this com- . A.B=— AxBx + AyBy (2D).
ponentformulalsthedlstrlbutlvelaw(A (B+C) A-B+A. C)

If wewnteA A+ Ayj + Azk and B = Bxi + ByJj + sz The demonstration above could have been carried out using a
then we just repeatedly use the distributive law as follows. different orthogonal coordinate system x’y’Z’ that was crooked with

R . . respect to the xyz system. By identical reasoning we would find
A-B = (Ad+Ayj+ Ak)- (Bxi + Byj + Bzk) that A - B = Ay By + Ay By + AyBy. Even though all of the
numbersinthelist[ Ax, Ay, Az]vml ght bedlfferentfromthenumbers

= (A +Ayj+ Ak) - Bii +
(A vJ 20) - B inthelist [Ay, Ay, Z/] andsmllarlyallthellst[B]XyZmlghtbe

(Axt + Ayj + Azk) - Byj + different than the list [ B],y/ 1y + SO (Somewhat remarkably),
(Axi + AyJ + AZk) - Bk AxBx + AyBy + A;B; = Ay By + Ay By + AyBy.
= ABxi-i+AyByxj i+ ABxk-T + If we call our coordinate x1, Xz, and xs; and our unit base

vectors €1,€5, and €3 wewould have A = A1é1 + Azés + Azés

AX Byl J + Ay ByJ _] + Aszk A L N
and B = Bié1 + Byéy + Bzés and the dot product has the tidy
3

J +

AxBii -k + AyB,j -k + ABk - k

= A«Bx(1) + AyBx(0) + AzBx(0) + form: A- B = A1B1 + ABy + AgB3 = ZAi Bi.
i=1
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assume that the dot products between the standard base vectors and the vector j’
(i.e,.i-j, j-j) aeknown. One can then use the dot product to find the x"y’
components (Ay, Ay) from the xy coordinates (Ax, Ay). For example, as shownin
2-D infigure 2.19, we can start with the obvious equation

A=A
and dot both sides with j’ to get:
K. j/ — K' j/
At + Ay - = (Ad+ Ay -
&—:—J \-ﬁgr\_-/
A A
Aci - J+Ay J - § = Ad-J+AGT
—— ——
0 1

Ay = AG-H+AG-T)
N e’ N——

—sind cosé

Similarly, one could find the component A, using adot product with i’.
Thistechnique of finding componentsis useful when one problem uses more than
one base vector system.

Using dot products with other than?, j, or &
It is often useful to use dot products to get scalar equations using vectors other than

i, j, and k.

Example: Getting scalar equations without dotting with z, j, or k
Given the vector equation.

—mgj + Ni = mai
whereit isknown that the unit vector 7 is perpendicular to the unit vector

A, we can get a scalar equation by dotting both sides with A which we
write asfollows

{ (-mgj + Ni) = (mad) } A
(-mgj + NA)A = (mak)i
—mgjA+Nad = maiai
— ——
0 1
—-mgjA = ma

Then we find j-A as the cosine of the angle between j and A. We have
thus turned our vector equation into a scalar equation and eliminated the
unknown N at the sametime. O

25

i j
\/'i/ L»

7

A=Ad+ Ay

A=Adi’+ Ay j

Figure 2.19: The dot product helps
find components in terms of crooked unit
vectors. For example, Ay = A- j =
AxE-j) + Ay@-j) = Ax(=sino) +
Ay(cos9).

(Filename:tfigurel.3.dotprod.a)



Figure 2.20: For any Aand, A canbe
decomposed into a part parallel to A and a
part perpendicular to A..
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Using dot productsto solve geometry problems

We have seen how a vector can be broken down into a sum of components each
parallel to one of the orthogonal base vectors. Another useful decomposition is this:
Given any vector A and aunit vector A the vector A can be written as the sum of two
parts,

A=A+ A"
whereAH isparallel toA and A isperpendicular to (seefig. 2.20). Thepart parallel
to A isavector pointed in the A direction that has the magnitude of the projection of
A inthat direction,

Al = . i
The perpendicular part of A isjust what you get when you subtract out the parallel
part, namely,

KL

—A-A'=A-(A Vi
The claimed properties of the decomposition can now be checked, namely that A=
Al At (just add the 2 equations above and see), that Al isin the direction of i

(itsascalar multiple), and that A~ is perpendicular to & (evaluate A™ - & and find 0).

<

Example. Given the positions of threepoints r, , g, and 7 what isthe
position of the point D on the line AB that is closest to C? The answer
is,
Fp = P+ Foyn!
where 7 | isthe part of 7./, that is parallel to the line segment AB.
Thus, L
rp —r
Fp = Fa+ (Fg — Fa) - —=—-.
D=Ta c—Ta 7 — Tl
a

Likewise we could find the parts of a vector A in and perpendicular to a given
plane. If the plane is defined by two vectors that are not necessarily orthogonal we
could follow these steps. First find two vectorsin the plane that are orthogonal, using
the method above. Next subtract from A the part of it that is parallel to each of the
two orthogonal vectorsin the plane. In math lingo the execution of this process goes
by the intimidating name ‘ Graham Schmidt orthogonalization.

A Given vector can bewritten asvarious sumsand products

A vector A has many representations. The equivalence of different representations
of avector is partially analogous to the case of a dimensional scalar which has the
same value no matter what units are used (e.g., the massm = 4.411bm is equal to
m = 2kg). Here are some common representations of vectors.

Scalar times a unit vector in the vector’sdirection. F = FA means the scalar F
multiplied by the unit vector A.
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Sum of orthogonal component vectors. F = Fy + Fy is a sum of two vectors
parallel tothex and y axis, respectively. Inthreedimensions, F =Fy+ Fy+
F,.

Componentstimes unit basevectors. F = Fyi + Fyj or F = Fyi + Fyj + Fzk
in three dimensions. Oneway to think of thissumistoredizethat Fy = Fyi,
Fy=Fyjand F, = Fk.

Componentstimesrotated unit basevectors. F = Fji’ + Ry’ or F = Fji' +
Fyi’ + FK’ in three dimensions. Here the base vectors marked with primes,
i’, ]/ and k’, are unit vectors parallel to some mutually orthogonal x’, y’, and
7 axes. These X/, y', and Z axes may be crooked in relation to the x, y, and z
axis. That is, the x” axis need not be parallel to the x axis, the y’ not parallél to
the y axis, and the Z' axis not parallel to the z axis.

Componentstimes other unit base vectors. If you use polar or cylindrical coordi-
nates the unit base vectors are éy and ég, soin 2-D , F = Freg + Fypép and
in3-D, F = Frég + Foég + Fk. If you use‘path’ coordinates, you will use
tge path-defined unit vectors é;, e, and ép soin 2-D F = Fé; + Fnén. IN3-D
F = Fie; + Fnén + Fpép.

A list of components. [Flxy = [Fx, Fy] or [Flxyz = [Fx, Fy, F4] in three dimen-
sions. This form coincides best with the way computers handle vectors. The
row vector [Fy, Fy] coincideswith FxZ + Fy j and the row vector [Fy, Fy, F/]
coincides with Fyi + Fyj + Fk.
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In summary:
A = A
= |Alha = Ala, whereia | A, A=|A| and |Aal =1
= Ax+Ay+A4; where Ay, Ay, A, arepardllel tothe x, y, z axis
= Ad+ Ayj + Ak, wherei, j, k are parallel to the x, y, z axis
= A+ A j + Ak, wherei, j, k ae| toskewed X,y 7 axes
= Agrég+ Agég + AZI€, using poIar coordinate basis vectors.
[Alxyz = [Ax, Ay, A7 [A]xyz stands for the component list in xyz
[Alxyz = [Av, Ay, A/l [A]xy 7 standsfor the component list in x"y’Z

Vector algebra

Vectorsare algebraic quantitiesand manipulated algebraically in equations. Therules
for vector algebraare similar to the rules for ordinary (scalar) algebra. For example,

if vector A isthe same as the vector B, A = B. For any scalar a and any vector C,

wethen

A+C = B+C,
aA = aE, and
A-C B-C,

because performing the same operation on equal quantities maintains the equality.
The vectors A, B, and C might themselves be expressions involving other vectors.
The equations above show the alowable manipulations of vector equations:
adding a common term to both sides, multiplying both sides by a common scalar,
taking the dot product of both sides with a common vector.
All the distributive, associative, and commutative laws of ordinary addition and

multiplication hold. .

@caution: But you cannot divide avector
by a vector or a scalar by a vector: 7/i
andA /C are nonsense expressions. And it
does not make sense to add a vector and a
scalar, 7+ A isanonsense expression.
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@ B isacommon notation for the trans-
pose of B, which means, inthiscase, toturn
therow of numbers B into acolumn of num-
bers.
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Vector calculations on the computer

Most computer programs deal conveniently with lists of numbers, but not with vec-
tor notation and units. Thus our computer calculations will be in terms of vector
components with the units left off. For example, when we write on the computer
F=[ 35-7]

we take that to be the plain computer typing for [F‘]Xyz =[3N, 5N, —-7N]. This
assumes that we are clear about what units and what coordinate system we are using.
In particular, at this point in the course, you should only use one coordinate system
in one problem in computer calculations.

Most computer languageswill allow vector addition by a sequence of lines some-
thing like this:

A=[ 1 2 5]
B=[ -2 419 ]
C=A+B

scaling (stretching) like this:
A= 1 2 5]

C = 3*A
and dot products like this:
A =] 1 2 5]
B =] -2 419 ]
D = A(1)*B(1) + A(2)*B(2) + A(3)*B(3).

In our pseudo code we write D = A dot B. Many computer languages have a
shorter way to write the dot product like dot ( A, B) . In alanguage built for linear
algebraD = A*B’ @ will work because the rules of matrix multi plication are then
the same as the component formula for the dot product.
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SAMPLE 2.12 Calculating dot products: Find the dot product of the two vectors
a=21+3j—2kand 7 =5mi — 2mj.

Solution The dot product of the two vectorsis

a-r = (21+3j—2k) - (5mi—2mj)
2-5mi-1 —(2-2m)1
1 0

+@3-5mj-1—-@B-2m)j-j
— ——

0 1
—2-5mk-i4+2-2mk-j
0 0
1I0m—-6m
= 4m.

Comments: Note that with just alittle bit of foresi ght we could totally ignore the
k component of @ since r has no k component, i.e., k-7 =0. Also, if we keepin
mindthati - j = j-i = 0, we could compute the above dot product in one line:

a-r=(21+3j)-5mi—2mj) = (2- 5m)z 1—3-2m)yj-j=4m.
l 1

SAMPLE 2.13 What isthe y-component of F = 5Ni + 3Nj + 2Nk ?

Solution Although it isperhapsobviousthat the y-component of F is3N, the scalar
multiplying the unit vector j, we calculate it below in a forma way using the dot
product between two vectors. We will use this method later to find components of
vectorsin arbitrary directions.

Fy = F -(aunitvector dong y-axis)
= (5Ni+3Nj+2Nk)-j
= 5Ni-j+3Nj-j+2Nk-j
—_— —= —_—
0 1 0
= 3N.
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SAMPLE 2.14 Finding angle between two vectors using dot product: Findtheangle
betweenthevectors F1 =21 + 3jand ro = 21 — j.

Solution From the definition of dot product between two vectors

Fi1-F2 = |F1||F2|cosd
F1-72

or cosfd = —
[Fallr2]

(20 +3j)- (2 - J)
W22+ 3 (V22 + 1)

4-3
= ——° —0124
V13v5

Therefore, 6 = cos 1(0.124) = 82.87°.

SAMPLE 2.15 Finding direction cosines from unit vectors: Find the angles (from
direction cosines) between F = 4Ni + 6N + 7Nk and each of the three axes.

Solution

> M
[
=7

F
4Ni 4+ 6Nj + 7Nk
VA& + 62+ 72N
= 0.4i+0.6j+0.7k.

Let the angles between A and the x, y, and z axesbe 6, ¢ and v respectively. Then

A

I-A 04
cosf = lA—A:—:04
lZ|A] 111
= 6 = cos 1(0.4) =66.4°.
Similarly,
cosp = 06 or ¢=>531°
cosyy = 0.7 or 1 =456°

|0 =664° ¢ =531° y =456° |

Comments. The components of a unit vector give the direction cosines with the
respective axes. That is, if the angle between the unit vector and the x, y, and z axes
ared, ¢ and ¥, respectively (as above), then

A = cos6 i+ cos¢ j + cosy k.
S~—— —— ——

Ax Ly Az
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SAMPLE 2.16 Projection of a vector in the direction of another vector: Find the
component of F = 5Ni + 3Nj + 2Nk along the vector 7 = 3mi — 4mj.

Solution The dot product of avector @ with a unit vector A gives the projection of
the vector a inthedirection of the uni tvector A. Therefore, to find the component of
F adong r, wefirst find aunit vector A, along 7 and dot it with F.

A r 3mi —4mj . N
A = —="—"——""""7 —060-0.8j
' 7|~ VZ+£m

F F A

(5Nf + 3Nj + 2Nk) - (0.6 — 0.8))
3.0N+ 24N =54N.

SAMPLE 2.17 Assume that after writing the equation 3" F = ma in a particular
problem, astudentfinds Y F = (20N— Py)i+7Nj— Pok and@ = 2.4m/%i +azj.
Separate the scalar equationsinthe, j, and k directions.

Solution

Y>F = ma

Taking the dot product of both sides of this equation with 7, we write

iy F = i-ma

i [(ZON —P)i+7Nj — Pk = m(2.4m/52i+asf)]
= (2N-P)i-i4+7Nj-i—P—-2k-i = mQ4m/$2i-i
( )11 +7Nj-1 l ( /S"i-1+agj-1)
Fx 1 0 0 ay 1 0
= Y Fx = ma
= 20N—P; = m24m/sd)

Similarly,
7 [Z F = mﬁ] = Z Fy = may (2.1)
) [Z F = mﬁ] = Z F, = ma,. (2.2)

Substituting the given components of F and @ intheremaini ng Egns. (2.1) and (2.2)
we get

Ed

TN = may
-P, = 0

Comments: Aslongasbothsidesof avector equationareinthesamebasis, separating
the scalar equations is trivial—simply equate the respective components from both
sides. The technique of taking the dot product of both sides with a vector is quite
general and powerful. It givesascaar equation valid in any direction that one desires.
You will appreciate this technique more if the vector equation uses more than one
basis.

31



32

[

(not afree body diagram)

Figure 2.21: On abalanced teeter totter
the bigger person gets the short end of the
stick. A sideways force directed towards
the hinge has no effect on the balance.

(Filename:tfigure.teeter)

D The ‘/" in the subscript of M reads as
‘relative to’ or ‘about’. For simplicity we
often leave the / out and just write M.
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2.3 Cross product, moment, and mo-
ment about an axis

When you try to move something you can push it and you can turn it. In mechanics,
the measure of your pushing is the net force you apply. The measure of your turning
is the net moment, also sometimes called the net torque or net couple. In this section
we will define the moment of a force intuitively, geometrically, and finaly using
vector algebra. We will do this first in 2 dimensions and then in 3. The main
mathematical tool here is the vector cross product, a second way of multiplying
vectors together. The cross product is used to define (and calculate) moment and to
calculate various quantities in dynamics. The cross product also sometimes helps
solve three-dimensional geometry problems.

Although conceptsinvolving moment (and rotation) are often harder for beginners
than force (and translation), they were understood first. The ancient principle of the
lever is the basic idea incorporated by moments. The principle of the lever can be
viewed as the root of all mechanics.

Ultimately you can take on faith the vector definition of moment (given opposite
theinside cover) anditsrolein egs. |1. But we can more or less deduce the definition
by generalizing from common experience.

Teeter totter mechanics

The two people weighing down on the teeter totter in Fig. 2.21 tend to rotate it about
its hinge, the right one clockwise and the left one counterclockwise. We will now
cook up ameasure of the tendency of each force to cause rotation about the hinge and
call it the moment of the force about the hinge.

As is verified a million times a year by young future engineering students, to
balance a teeter-totter the smaller person needs to be further from the hinge. If two
people are on one side then the teeter totter is balanced by two similar people an equal
distance from the hinge on the other side. Two people can balance one similar person
by scooting twice as close to the hinge. These proportionalities generalize to this:
the tendency of aforce to cause rotation is proportional to the size of the force and to
its distance from the hinge (for forces perpendicular to the teeter totter).

If someone standing nearby addsaforcethat isdirected towardsthe hingeit causes
no tendency to rotate. Because any force can be decomposed into a sum of forces,
one perpendicular to the teeter totter and the other towards the hinge, and because
we assume that the affect of the sum of these forcesis the sum of the affects of each
separately, and because the force towards the hinge has no tendency to rotate, we
have deduced:

The moment of aforce about a hinge is the product of its distance from
the hinge and the component of the force perpendicular to the line from
the hinge to the force.

Here then is the formulafor 2D moment about C or moment with respect to c®
M,c = |F| (|F|sing) = (|F|sing) |F|. (2.3

Here, 6 isthe angle between r (the position of the point of force application relative
to the hinge) and F (see fig. 2.22). This formula for moment has all the teeter
totter deduced properties. Moment is proportional to r, and to the part of F that is
perpendicular to 7. There-grouping as (| 7| sin®) showsthat aforce F hasthe same
effect if it isapplied at anew location that is displaced in the direction of F. Thatis,
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the force F can slide along its length without changing its M, c and is equivalent in
its effect on the teeter totter. The quantity |r| siné is sometimes called the lever arm
of the force.

By common convention we define as positive a moment that causes a counter-
clockwise rotation. A moment that causes a clockwise rotation is negative. If we
define & appropriately then eqn. (2.3) obeys this sign convention. We define ¢ asthe
angle from the positive vector 7 to the positive vector F measured counterclockwise.
Point the thumb of your right hand towards yourself. Point the fingers of your right
hand along 7 and curl them towards the direction of F and see how far you have to
rotate them. Theforce caused by the person on theleft of the teeter totter hasd = 90°
so sinf = 1 and the formula 2.3 gives a positive counterclockwise M. The force
of the person on the right has & = 270° (3/4 of arevolution) so sind = —1 and the
formula 2.3 gives anegative M.

In two dimensions moment is really a scalar concept, it is either positive or
negative. In three dimensions moment isavector. But evenin 2D wefind it easier to
keep track of signsif we treat moment as a vector. In the xy plane, the 2D moment
isavector in the & direction (straight out of the plane). So egn. 2.3 becomes

M. = || |F|sind k. (2.4)

If you curl the fingers of your right hand in the direction of rotation caused by aforce
your thumb points in the direction of the moment vector.

The 2D cross product

The expression we have found for the right side of eqn. 2.4 is the 2D cross product
of vectors r and F. We can now apply the concept to any pair of vectors whether or
not they represent force and position. The 2D cross product is defined as :
AxB € |A|B|snok. 2.5)
‘A cross B’

where 6 is the amount that A would need to be rotated counterclockwise to point in
the same direction as B. An equivaent aternative approach is to define the cross

product as
def

AxB = |A||B] snéa. (2.6)
with 6 defined to be less than 180° and 72 defined as the unit vector pointing in the
direction of the thumb when the fingers are curled from the direction of A towards
the direction of B. For the 7 and F on the right of the teeter totter this definition
forces us to point our thumb into the plane (in the negative k di rection). With this
definition sing is always positive and the negative moments come from 7 being in
the —k direction.

With a few sketches you could convince yourself that the definition of cross
product in eqn.2.5 obeys these standard algebrarules (for any 32D vectors A, B, and
C and any scalar d):

d(Ax B) = (dA)x B=A x (dB)
Xx(§+6) = AxB+AxC.
A difference between the agebra rules for scalar multiplication and vector cross
product multiplication is that for scalar multiplication AB = BA whereas for the

crossproductA x B # BxA (because the definition of 0 inegn. 25and 72 in 2.6
depends on order). In particular A x B=—-B x A.
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Figure 2.22: The moment of a force is
either the product of its radius with its per-
pendicular component or of its lever arm
and the full force. The ~ indicates that
the lower two forces and positions have the
same moment.
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Figure 2.23: The component form of the
2D moment can be found by sequentially
breaking the forceinto components, sliding
each component along its line of action to
the x and y axis, and adding the moments
of the two components.
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Because the magnitude of the cross product of A and B isthe magnitude of A
times the magnitude of the projection of B in the direction perpendicular to A (as
shown in the top two illustrations of fig. 2.22) you can think of the cross product as
ameasure of how much two vectors are perpendicular to each other. In particular

ifALB = |AxB| = |A||B| ad
ifA|B = |AxB = 0.
For example,i x j =k, j x i = —k O,andjxj=0

Component form for the 2D cross product

Just like the dot product, the cross product can be expressed using components. As
can be verified by writing A = Ay + Ayj, and B = Byi + Byj and using the
distributive rules: .

Ax B = (ABy— ByAyk. 2.7

Some people remember this formula by putting the components of Aand Bintoa

matrix and calculating the determinant } Ax If you number the components

BX By
of A and B (e.g., [A]X1X2 = [A1, A2]), the cross product isA x B = (A1By —
B2 A1)és. Thisyou might remember as “first times second minus second timesfirst.”

Example: leenthatA_11+21 andB_101+ZOJ then A x B =
(1-20—2-10)k = Ok = 0. a

For vectorswith just afew componentsit is often most convenient to use the distribu-
tive rule directly.

Example: Given that A =7iand B = 37.6i + 10j then A x B =
(71) x (37.61 +10)) = (71) x (37.61) + (71) x (10)) = 0+ 70k = 70k.
O

There are many ways of calculating a 2D cross product

You have severa options for calculating the 2D cross product. Which you choose
depends on taste and convenience. You can use the geometric definition directly,
the first times the perpendicular part of the second (distance times perpendicular
component of force), the second times the perpendicular part of the first (lever arm
times the force), components, or break each of the vectorsinto a sum of vectors and
use the distributive rule.

2D moment by components

We can use the component form of the 2D cross product to find a component form
for the moment M ¢ of eqn. 2.4. Given F = Fyi + Fyj acting at P, where Fpic =
rxi + ryj, the moment of the force about C is

M/C = (rxFy — rny))’e
or the moment of F about the axisat C is

We can derive this component formula with the sequence of vector manipulations
shown graphically in fig. 2.23.
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3D moment about an axis

The concept of moment about an axis is historicaly, theoretically, and practically
important. Moment about an axis describes the principle of the lever, which far
precedes Newton's laws. The net moment of a force system about enough different
axes determines everything needed in mechanics about a force system. And one can
sometimes quickly solve astatics or dynamics problem by considering moment about
ajudiciously chosen axis.

Letsstart by thinking about ateeter totter again. Looking from the sidewethought
of ateeter totter asa 2D system. But the teeter totter really livesin the 3D world (see
Fig. 2.24). We now re-interpret the 2D moment M as the moment of the 2D forces
about the k axis of rotation at the hi nge. It is plain that aforce F I pushing a teeter
totter parallel to the axle causes no tendency to rotate. And we already agreed that a
radial force F' causes no rotation. So we see that the moment a force causes about
an axis is the distance of the force from the axis times the part of the force that is
neither parallel to the axis nor directed towards the axis.

Now |ook at thisin the more 3-dimensional context of fig. 2.25. Hereanimagined
axis of rotation is defined as the line through C that isin the & direction. A force F
is applied at P. We can break F into asum of three vectors

F=F'+F +F*

where F!is parallel totheaxis, F' isdirected along the shortest connection between
the axis and P (and is thus perpendicular to the axis) and F* isout of the plane
defined by C, Pand &. By analogy with the teeter totter we seethat F' and F' cause
no tendency to rotate about the axis. So only the F* contributes.

Example: Try this. Stand facing a partially open door with the front
of your body paralél to the plane of the door (a door with no springs
is best). Hold the outer edge of the door with one hand. Press down
and note that the door is not opened or closed. Push towards the hinge
and note that the door is not opened or closed. Push and pull awvay and
towardsyour body and notehow easily you causethedoor torotate. Thus
the only force component that tends to rotate the door is perpendicular
to the plane of the door (which isthe plane of the hinge and line from the
hingeto your hand). Now move your hand to the middle of the door, half
the distance from the hinge. Note that it takes more force to rotate the
door with the same authority (push with your pinky if you have trouble
feeling the difference).

Thus the only potent force for rotation is perpendicular to the plane
of the hinge and point of force application, and its potence is increased
with distance from the hinge. a

We can also decompose 7 = 7p /C into two parts, one parallel to the hinge and
oneradia, as
F=rl+7.
Clearly 7!l hasno affect on how much rotation F causesabout theaxis. If for example
the point of force application was moved parallel to the axis a few centimeters, the
tendency to rotate would not be changed. Altogether, we have that the moment of the
force F about the axis A through C is given by

Myc=r" FL.

The perpendicular distance from the axis to the point of force application is |7"|
and F* isthe part of the force that causes right-handed rotation about the axis. A

35

Figure 2.24: Teeter totter with applied
forces broken into components parallel to

the axis ﬁ” radia F' , and perpendlcular
totheplane contal ni ng! theaX| sandthepoint

of force application Fr

(Filename:tfigure.3Dtecter)

Figure 2.25: Moment about an axis
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Figure 2.26: The cross product of A and

B is perpendicular to A and B in the di-
rection given by the right hand rule. The

magnitudeof A x B is ABsinéag.
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Figure 2.27: Theright hand rule for de-
termining the direction of the cross product

of two vectors. C = A x B.
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Figure 2.28: Mnemonic device to re-
member the cross product of the standard
base unit vectors.
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moment about an axis is defined as positive if curling the fingers of your right hand
give the sense of rotation when your outstretched thumb is pointing along the axis (as
infig. 2.25). Theforce of theleft person on the teeter totter causes a positive moment
about the k axis through the hinge.

So long as you interpret the quantities correctly, the freshman physicsline

“ Moment is distance (|7 |) times force (| F|)”
perfectly defines moment about an axis.
Three dimensional geometry is difficult, so a formulafor moment about an axis
in terms of components would be most useful. The needed formula depends on the
3D moment vector defined by the 3D cross product which we introduce now.

The 3D cross product (or vector product)
The cross product of two vectors A and B iswritten A x B and pronounced ‘A cross
B.” In contrast to the dot product, which gives a scalar and measures how much two
vectors are parallel, the cross product is a vector and measures how much they are
perpendicular. The cross product is also called the vector product.

The cross product is defined by:

AxB % |A)|B|sinoag i
where || =1,

nlA,

il B,

0<6ap < m,and
i isin the direction given by the right hand
rule, that is, in the direction of theright thumb
when the fingers of the right hand are pointed
inthedirection of A andthenwrappedtowards
the direction of B.

If Aand B are perpendicular then Oagism/2,sinHpg = 1, and the magnitude of the
cross product is AB. If Aand B are paralel then 6ap iSO, sSindag = 0and the cross
product is O (the zero vector). Thisiswhy we say the cross product is a measure of
the degree of orthogonalityof two vectors.

Using the definition above you should be able to verify to your own satisfaction
that Ax B=—B x A. AppIy| ng the definition to the standard base unit vectorsyou
canseethati x j —k J X k—l andk x i = j (figure 2.28).

The geometric definition above and the geometric (tip to tale) definition of vector
additionimply that the cross product followsthe distributive rule (see box 2.4 on page
41).

Ex(ﬁ%—é):ffxﬁ—i—ffxé.
Applying the distributive rule to the cross products of A = Ayi + Ayj + Azk and

B = Byi + ByJj + B,k leads to the algebraic formulafor the Cartesian components
of the cross product.

+[AZBX - AXBZ]j
+[AxBy — AyBJk
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There are various mnemonics for remembering the component formula for cross
products. The most common isto calculate a‘determinant’ of the 3 x 3 matrix with
onerow given by 7, j, k and the other two rows the components of A and B.

~

L 1] k
AxB=det| A, Ay A,

The following identities and specia cases of cross products are worth knowing
well:

(@A) x B=A x (aB) = a(A x B) (adistributive law)

e AxB=-BxA (the cross product is not commutative!)

e AxB=0 if A| B (paalle vectorshave zero cross product)

|Ax Bj=AB if ALB

e ixj=k jxk=i, kxi=]j (assumingthex,y,zcoordinatesystem
isright handed — if you use your right hand and point your fingers along the

positive x axis, then curl them towards the positive y axis, your thumb will
point in the same direction as the positive z axis. )

~ A " A ! ~ r~ ~
el'xj =k, Jxk=1, kxit=]
(assuming the x"y’Z’ coordinate system is also right handed.)

eixi=jxj=kxk=0 i'xi'=jxj=kxk=0

~

The moment vector
We now define the moment of aforce F applied at P, relative to point C as
M/C = ?P/C X ﬁ

whichweread inshort as‘M isr cross F’ The moment vector isadmittedly a difficult
ideato intuit. A look at its componentsis helpful.

M/C = (ryFz —rzFy)i + (rzFx —rxF2) j + (rxFy — rny)lg

You can recoghize the z component of the moment vector isthe moment of the force
about the k axis through C (egn. 2.8). Similarly the x and y components of MC are
the moments about the and j axisthrough C. So at |east the components of MC have
intuitive meaning. They are the moments around the X, y, and z axes respectively.

Starting with this moment-about-the-coordinate-axes interpretation of the mo-
ment vector, each of the three components can be deduced graphically by the moves
shown in fig. 2.30. The force isfirst broken into components. The components are
then moved along their lines of action to the coordinate planes. From the resulting
picture you can see, say, that the moment about the +y axis gets a positive contribu-
tion from Fyx with lever arm r; and a negative contribution from F, with lever armry.
Thusthe y component of Mis rzFx —rxFs.
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Figure 2.29: One interpretation of the
mixed triple product of A x B - C isasthe
volume (a scelar) of a parallelepiped with
A, B, and C asthe three edges emanating
from one corner. This interpretation only
worksif A, B, and C aretaken in the ap-
propriate order, otherwise A x B - C is
minus the volume which is calcul ated.

(Filename:tfigure1.13)

D In the language of linear algebra, the
mixed triple product of three vectorsiszero
if the vectors are linearly dependent.
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The mixed triple product

The ‘mixed triple product’ of A, B, and C is so called because it mixes both the dot
product and cross product in a single expression. The mixed triple product is also
sometimes called the scalar triple product because its value is a scalar. The mixed
triple product is useful for calculating the moment of a force about an axis and for
related dynamics quantities. The mixed triple product of A, B, and C is defined by
and written as
A (BxC)

and pronounced ‘A dot B cross C.' The parentheses () are sometimes omitted (i.e., .,
A-B x C) because the wrong grouping (A - B) x C isnonsense (you can’t take the
cross product of a scalar with a vector) . It is apparent that one way of calculating
the mixed triple product isto calcul ate the cross product of BandC and then to take
the dot product of that result with A. Some peopl e use the notation (A, B, C) for the
mixed triple product but it will not occur again in this book.

The mixed triple product has the same value if one takes the cross product of A
and B and then the dot product of theresult with C. ThatisA- (B x C) (A X B) C.
This identity can be verified using the geometric description below, or by looking at
the (complicated) expression for the mixed triple product of three general vectors A,
B, and C intermsof their components as calcul ated the two different ways. Onethus
obtains the string of results

A-BxC=AxB-C=-BxA-C=-B-AxC=...

The minus signsin the above expressions follow from the cross product identity that
A x B=-B x A.

The mixed triple product has various geometric interpretations, one of them is
that A- B x C is (plus or minus) the volume of the parallelepiped, the crooked shoe
box, edged by A, B and C asshown in figure 2.29.

Another way of calculating the value of the mixed triple product is with the
determinant of a matrix whose rows are the components of the vectors.

A - (B X C) = BX By Bz = +Ay(Bz(:X — BXCZ)
Cx Cy C,| +AuBCy—B,Cy)

The mixed triple product of three vectorsis zero if®
e any two of them are parallel, or
o if al three of the vectors have one common plane.

A different triple product, sometimes called the vector triple product is defined
by A x (B x C) whichisdiscussed later in the text when it is needed (see box 11.1
on page 643).

M ore on moment about an axis

We defined moment about an axis geometrically using fig. 2.25 on page 35 as M3 =

r'" FL. We can now verify that the mixed triple product gives the desired result by
guessing the formula and seeing that it agrees with the geometric definition.

Mic =1 M, (Aninspired guess..) (2.9)
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We break both 7 and F into sumsindicated in the figure, use the distributive law, and
note that the mixed triple product gives zero if any two of the vectors are parallel.
Thus,

AMc = L-FpexF
= A-F+rhx F +F' +F)
= AP X Fr A P xFl A P X F L
i Al Fr4d Fl x Fl 43 7l < F'
rMFL4+04+0+040+0
r"F+. (... and agood guesstoo.)

We can calculate the cross and dot product any convenient way, say using vector
components.

Example: Moment about an axis

Givenaforce, F1 = (5 —3j + 4k) N acti ng at apoint P whose position
isgivenby rp,0 = (31 + 2j — 2k) m, what isthe moment about an axis
through the origin O with direction A = % j+ k2

/2
M, = (Fpjox F1) -4

~ ~ 1 1 .
= [Bi+2]—2kmx (51 —3j +4k)N] - (—=j] + —k
[( J ) ( J )N] &@J VFz)

17

= ——mN.
V2

d

The power of our abstract reasoning is apparent when we consider calculating the
moment of aforce about an axis with two different coordinate systems. Each of the
vectors in egn. 2.3 will have different components in the different systems. Yet the
resulting scalar, after all thearithmetic, will bethe same no matter what the coordinate
system.

Finally, the moment about an axis gives us an interpretation of the moment vector.
The direction of the moment vector M, is the direction of the axis through C about
which F has the greatest moment. The magnitude of M is the moment of F about
that axis.

Soecial optional ways to draw moment vectors

Neither of the special rotation notations below is needed because moment (and later,
angular velocity, and angular momentum) is a vector like any other. None-the-less,
sometimes it is nice to use a notation that suggests the rotational nature of these
guantities.

Arced arrow for 2-D moment and angular velocity. In 2D problems in the xy
plane, the relevant moment, angular velocity, and angular momentum point
straight out of the plane in the z (I@) direction. A way of drawing thisisto
use an arced arrow. Wrap the fingers of your right hand in the direction of
the arc and your thumb pointsin the direction of the unit vector that the scalar
multiplies. The three representations in Fig. 2.31aindicate the same moment
vector.
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Figure2.30: Thethreecomponentsof the
3D moment vector are the moments about
the three axis. These can be found by se-
quentially breaking the force into compo-
nents, sliding each component alongitsline
of action to the coordinate planes, and not-
ing the contribution of each component to
moment about each axis.
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Figure 2.31: Optional drawing method
for moment vectors. (a) shows an arced ar-
row to represent vectors having to do with
rotationin2 dimensions. Suchvectorspoint
directly out of, or into, the page so are in-
dicated with an arc in the direction of the
rotation. (b) shows a double-headed arrow
for torque or rotation quantitiesin three di-
mensions.
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Double headed arrow for 3-D rotations and moments. Some people like to dis-
tinguish vectors for rotational motion and torque from other vectors. Two
ways of making this distinction are to use double-headed arrows or to use an
arrow with an arced arrow around it as shown in Fig. 2.31b.

Cross products and computers

The components of the cross product can be calculated with computer code that may
look something like this.

A=[ 1 2 5]
B=[ -2 419 ]
C=1[ ( A(2)*B(3) - A(3)*B(2) )

( A(3)*B(1) - A(1)*B(3) )

( A(1)*B(2) - A(2)*B(1) ) |
givingtheresult C=[ 18 -29 8] . Many computer languages have a shorter way
to write the cross product like cr oss( A, B) . The mixed triple product might be
calculated by assembling a 3 x 3 matrix of rows and then taking a determinant like
this:

A = 1 2 5]

B =1 -2 419]

C =] 32 4 5]
matrix = [A; B,; (
m xedprod = det (matri x)

giving the result m xedpr od = 500. A versatile language might well allow the
commanddot (A, cross(B, C) ) tocalculate the mixed triple product.
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4

2.4 THEORY
The 3D cross product is distributive over sums; calculation with components

Finding the component formula for the cross product from the
geometric definition depends on the geometric definition obeying
the distributive rule.

Thedistributiverule

We would like to demonstrate that the geometrically defined cross
product obeystherule

Xx(§+6)=Xx§+Xx6.
Hereisa3D construction demonstrating this fact. It isabit trickier
than the demonstration of most of the algebramanipulation rulesfor

vectors.
First we present another geometric definition of the cross prod-

uct of A and any vector V. Consider aplane Pthat is perpendicular
to A.

Now look at V the projection of V ontoP The right- hand-
rule normal of A and V isthe same as the normal of Aand V'
Also |V | = |V|sm9AV SoA xV =Ax V Now consder
V" which is the rotation of V' by ¢ 900 around A. Notethat V" is
gtill in the plane P. Finally stretch Vv’ by |A|. Theresult isavector
inthe P planethat is A x V sinceit has the correct magnitude and
direction. = R

Thus A x V is given by projecting V' onto P, rotating that
projection by 90° about A, and stretching that by |A|.

Now consider E 6 and D = E—f— 6

All three cross products
le?, Xxé and Kxﬁ
can be calculated by this projection, rotation, and stretch. But each
of these three operationsis distributive since
o the projection of asum isthe sum of the projections (5/ =
4‘/ =/
B +C);
e the /§um of two 90° rotated vectorsis the rotation of the sum
(D" =B" + C’ ); and

o stretched D is(stretched B) + (stretched C).

Thustheact of taking the cross product of A with B and add ng
that to the cross product of A with C givesthe sameresult astaking

the cross product of A with D (= B + C), demonstrating the
distributive law.

Calculation of the cross product with

components

Application of the distributive rule to vectors expressed in terms of
the standard unit base vectorsyiel ds the oft-used component expres-
sion for the cross product as follows

AxB [Axi + Ayj + Ak] x [Bxi + Byj + Bk]

= AxBxiXi-‘rAxBinj-i-Aszixié
+AyByj x i+ AyByj x j+ AyB.j x k
+Aszié X i+Aszié X j-‘rAszl} Xl}

= AxBXa+AxByk—Aszj
—AyByxk + AyBy0 + AyBji
-‘rAszj — Aszi + Aszo

+[AzBx — AxB] j
+[AxBy - AyBx]I%
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SAMPLE 2.18 Cross product in 2-D: Two vectors @ and & of length 10 ft and 6 ft,
respectively, are shown in the figure. The angle between the two vectorsis 6 = 60°.
Find the cross product of the two vectors.

Solution Both vectorsa and b arein the xy plane. Therefore, their cross product
is,
axb = |d||b|snon
(10ft) - (6t) - Sin60°%k
3.
60ft2 . %k

— 30V3ft%.

@ x b = 30v/3t% |

SAMPLE 2.19 Computing 2-D cross product in different ways:. The two vectors
shown in the figure area = 2i — j and b =4+ 2j. The angle between the two
vectorsisf = sin~1(4/5) (thisinformation can be found out from the given vectors).
Find the cross product of the two vectors

(a) usingtheangle, and
(b) using the components of the vectors.

Solution

(@) Cross product using the angle 6:
axb = |a|b|sneh

44
= |2 — j||4i + 2] -sm(sm_lg)k

4.
= (V2P +22) Ck
4. 4.
= V5.v20- k=10 -k
5 5
= 8k
(b) Cross product using components:

axb = (21—j) x 4+2))
= 2x@+2)—jxl@i+2)

= 8Ixi+4IixJ—-4]xi1-2]x%x]
\-T ;\,_'I/ L — i.I_'L
0 k —k 0
4k + 4k
8k.

The answers obtained from the two methods are, of course, the same asthey must be.

A

8k

axb
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SAMPLE 2.20 Finding the minimumdistance froma pointtoaline: A straight line
passes through two points, A (-1,4) and B (2,2), in the xy plane. Find the shortest
distance from the origin to the line.

Solution Let A, beaunit vector along line AB. Then,

Aag X Tg = Aagl || SNGA = |Fg|Sinok.
——
1

Now |rg| sin® isthe component of 7y that isperpendiculartoiAB orlineAB,i.e, it
is the perpendicular, and hence the shortest, distance from the origin (the root of
vector rg) totheline AB. Thus, the shortest distance d from the origin totheline AB
is computed from,

d = 'iABAX?EE'
- (%)x(zi+2j)‘=‘%é—&k=‘%é
4
- 4
d = 4/V10

Comments: In this calculation, rg is an arbitrary vector from the origin to some
point on line AB. You can take any convenient vector. Since the shortest distanceis
unique, any such vector will give you the same answer. In fact, you can check your
answer by selecting another vector and repeating the calculations, e.g., vector 7,.

SAMPLE 2.21 Moment of a force: Find the moment of force F = 1Ni + 20N
shown in the figure about point O.

Solution The force acts through point A on the body. Therefore, we can compute
its moment about O as follows.

Mg, ropn x F

(—2m - cos60% — 2m - sin60°j) x (1Ni 4+ 20N})

Fon F
= (—1mi—+/3mj) x (1Ni + 20N})
= —20N-mk + 1.732N-mk
= —18.268N-mk.

Mg = —18.268N-mk

A (-}y
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SAMPLE 2.22 A 2m square plate hangs from one of its corners as shown in the
figure. At the diagonally opposite end, aforce of 50N is applied by pulling on the
string AB. Find the moment of the applied force about the center C of the plate.

Solution The moment of F about point C is

So, to compute M, we need to find the vectors 7 , and F.

0
?A/C = —CAf=—72j (since OA =2 CA = /2¢)
F = F(—cosfi—singj)=—F(cosi +sindj)
Hence,
. 0 X _ )
Mc = —ﬁjx[—F(coseersneJ)]
£
= —F(cosO jxi+snbjxj
/2 ( J JAJ)
_i 0
= L Foosok
W2
2

m - R
= ——— .50N-cos45°k = —50N-mk.
NG

M = —50N-mk
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SAMPLE 2.23 Computing cross product in 3-D: Compute @ x b, where @ =
i+j—2kandb =3i+—4j +k.

Solution The calculation of across product between two 3-D vectors can be carried
out by either using a determinant or the distributive rule. Usually, if the vectors
involved have just one or two components, it is easier to use the distributive rule. We
show you both methods here and encourage you to learn both. We are given two
vectors:

i +aj+agk=1i+j— 2k,
b1i~|—b2f~|—b3]€=3i+—4f—|—l€.

S|

e Calculation using the deter minant formula: In this method, we first write a
3 x 3 matrix whose first row has the basis vectors as its elements, the second
row has the components of thefirst vector asits elements, and the third row has
the components of the second vector as its elements. Thus,

~
~

R i j k
b = ay ax ag
b1 by bz
= i(agbs — aghp) + j(agby — arbg) + k(aby — brap)
= i1-8)+j(—6—1) +k(-4-3)
—7G+j+k).

]
X

e Calculation usingthedistributiverule: Inthismethod, wecarry out the cross
product by distributing the cross product properly over the three basis vectors.
The steps involved are shown below.

@xb = (ai+apj+agk) x (byi 4 byj + bsk)
a1l x (b1l + boj + b312) +
azj x (bil +boj + b3]€) +
agk x (b1i + b2j + bsk)

0 k —-J
2 2 .2
= aib1(@ x 1) + a1bo(@ x ) + a1b3(t x k) +
—k 0 i
ab1(J x 1) + agha(j x J) + abs(j x k) +
J -1 0
— — —

agby(k x i) + agba(k x ) + agha(k x k)
= i(aghg — aghp) + j(aghy — awbs) + k(aib, — biay)
= i1-8)+ j(—6—1)+k(—4—73)
TG+ j+k)
which, of course, is the same result as obtained above using the determinant.
Making a sketch such as Fig. 2.38 is helpful while calculating cross products

thisway. The product of any two basisvectorsis positivein the direction of the
arrow and negative if carried out backwards, e.g., 7 x j =kbut j x i = —k.

axb=-7G+j+k)

45

( | x
J k
\)./
Figure 2.38: The cross product of any
two basis vectors is positive in the direc-
tion of the arrow and negativeif carried out

backwards, e.g. I x j = k but j xi = —k.

ijkeircle)
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SAMPLE 2.24 Finding a vector normal to two given vectors: Find a unit vector
perpendicular to the vectors 7 o = i — 2j + k and Fp = 3] + 2k.

Solution The cross product between two vectors gives avector perpendicular to the
plane formed by the two vectors. The sense of direction is determined by the right
hand rule.

Let N = NA bethe perpendicular vector.

ﬁ = FAX?B
= (—2j+k) x (3j+2k
= —7i—2j+3k

This calculation can be done
inany of thetwo ways shown
in the previous sample prob-
lem.

Therefore,

>>
I
zlz

—7i —2j+ 3k
/72+22+32
= —0.897 — 0.25] + 0.38k

A =—0.89 — 0.25] + 0.38k

Check:
e |A| = (0.89)2+ (0.25)2 + (0.38)2 £ 1. (it isaunit vector)
o X.Fa=1(-0.89) — 2(—0.25)+ 1(0.38) 0. (L Fp).
o i Fp=3(-025+2038 L0 @& LFg).

)2

Comments: If A isperpendicular to r, and rg, thensois — A. The perpendicularity
does not change by changing the sense of direction (from positive to negative) of
the vector. In fact, if X is perpendicular to a vector 7then any scalar multiple of A,
i.e, ak,isalso perpendicular to 7. Thisfollows from the fact that

ah - F=al-7)=a0) =0.

The case of —A isjust aparticular instance of this rulewitha = —1.
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SAMPLE 2.25 Finding a vector normal to a plane: Find aunit vector normal to the
plane ABC shown in the figure.

Solution A vector normal to the plane ABC would be normal to any vector in that
plane. In particular, if we take any two vectors, say r,z and 7, the normal to the
plane would be perpendicular to both 7,5 and 7. Since the cross product of two
vectors gives a vector perpendicular to both vectors, we can find the desired normal
vector by taking the cross product of 7,5 and 7. Thus,

N = FagXFac
= (-kbx-k

ixj—ixk—kxj+kxk
‘—\/—JR/—’R/—#R:\—’
i i %0
= i+j+k

. N

= n = —
||
Lativh
:—lJ
V3

A_LA A ~
n_@(1+1+k)

Check: Now let us check if a2 is normal to any vector in the plane ABC. It is fairly
easy toshow that 72 - rpg = i - F5c = 0. Itiis, however, not a surprise; it better be
since we found 7 from the cross product of 7,5 and 7. Let uscheck if 72 isnormal
(O
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B (1,0,0)
X

Figure 2.39: (ricname:atie vecz normat)



48 CHAPTER 2. \ectorsfor mechanics

SAMPLE 2.26 The shortest distance between two lines: Two lines, AB and CD,
in 3-D space are defined by four specified points, A(0,2m,1m), B(2m,1m,3m),
C(-1m,0,0), and D(2m,2m,2m) as shown in the figure. Find the shortest distance
between the two lines.

Solution The shortest distance between any pair of linesisthe length of theline that

B (2m,1m,3m) X i . X . .
is perpendicular to both the lines. We can find the shortest distance in three steps:

A (0,2m,1m)
/D(Z,T,me) (a) First find a vector that is perpendicular to both the lines. Thisis easy. Take

two vectors r; and r,, one along each of the two given lines. Take the cross

C(Amo0) - |

y product of the two unit vectors and make the resulting vector a unit vector 7.
ﬁ T (b) Find avector parallel to iz that connects the two lines. Thisis alittle tricky.
X We don’'t know where to start on any of the two lines. However, we can take
) any vector from one line to the other and then, take its component along 7.
Figure 2.40: uenamaatiss vecs pers) (c) Find the length (magnitude) of the vector just found (in the direction of 7).

Thisis simply the component we find in step (b) devoid of its sign.
Now let us carry out these steps on the given problem.
(a) Step-1: Find aunit vector 7 that is perpendicular to both the lines.

Fag = 2mi—1mj+2mk
Fep = 3mi+2mj+2mk
2 -1 2
3 2 2
i(—2—Hm’+ j(6— DM’ + k(4+3)m?
(—6i + 2] + Tk) m?
Therefore,
i = ‘ABXTcp
ITag X Tcpl
1 N
= —(—61+2j+ 7k).
/89 !
(b) Step-2: Find any vector from one line to the other line and find its component
along 7.
Fac = —1mi—2mj—1mk
. 1 .
Fapc-B = —(@+2j+k)m- —(—61 4+ 2]+ 7k
AC ( J +k) @( J )
1 5
= —6-4—-7)M=———m
/89 V89
(c) Step-3: Findtherequired distance d by taking the magnitude of the component
aong n.
5
d=|Fpc-f1| = |——=m| =053m
|AC | ‘ \/8_9 ‘
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SAMPLE 2.27 Themixedtripleproduct: Calculatethemixedtripleproduct A-(@ x b)
for & = %(Hj), a=230 andb=1i+j+3k.

Solution We compute the given mixed triple product in two ways here:
e Method-1: Straight calculation using cross product and dot product.

Let ¢ = axbh
= (3) x (@ +]+3k)
= 3ixi+3ix j+9ixk=-9j+3k
——

\:—/ ——
0 k -J
So, A-(@xb) = i-¢
LG4 )95 +3b) 2
= —( (= =——.
N A V2
e Method-2: Using the determinant formula for mixed product.
a ay &z 3 00
b by b, 1 13
1 1 9
= —0-0+—=0-9+0=——.
ﬁ( ) ﬁ( ) NG
A-(@xb)= -5

SAMPLE 2.28 Moment about an axis. A vertical force of unknown magnitude F
actsat point B of atriangular plate ABC shown in thefigure. Find the moment of the
force about edge CA of the plate.

Solution The moment of aforce F about an axis x-X is given by
Mxx = Agy - (F x F)

where XXX isaunit vector along the axis x-x, r isaposition vector from any point on
the axisto the applied force. Inthisproblem, the given axisis CA. Therefore, we can
take r tobe rpg Or rg. Here,

3 r (=i +]) 1, 1. X #C(300)
ACAI ACA = =__l+_] -
I7cal Vo+9 2 2 Figure 2.41: (rienamesstias vees momsso
Now, moment about point A is
MA = ?AB X ﬁ

= (=2i —3j) x Fk = 2Fj — 3F1.
Therefore, the moment about CA is

Mca = iCA‘(FAB><F)=5‘CA’MA

1 1

— i+ -—j) - (—3Fi+2Fj
(ﬁl+ﬁ1)( 1+ 2F))
3 2 5

=+ S )F=—"F.
(ﬁ+ﬁ) V2

=z
O
>
I
Sler
il
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2.4 Solving vector equations

If as an engineer you knew all quantities of interest you would not need to calculate.
But asarulein life you know less than you would like to know. And you naturally
try to figure out more. In engineering mechanics analysis you find more quantities of
interest from others that you aready know (or assume) using the laws of mechanics
(including geometry and kinematics). Because many of the laws of these laws are
vector equations, engineering analysis often requires the solving of vector equations.

The methods involved are much the same whether the problems are in geometry,
kinematics, statics, dynamicsor acombination of these. Inthissectionwewill show a
few methodsfor solving some of the more common vector equations. Inasensethere
are no new concepts in this section; if you are already adept at vector manipulations
you will find yourself reading quickly.

Vector algebra

Wewill be concerned with manipulating equations that involve vectors (like A, B, C,
and 0) and scalars (like a, b,, ¢, and 0). Without knowing anything about mechanics
or the geometric meaning of vectors, one can learn to do correct vector algebraby just
following the manipulation rules below, these are elaborations of elementary scalar
algebra to accommodate vectors and the three new kinds of multiplication (scalar
times vector, dot product, and cross product). Hereis a summary.

Addition and all threekinds of multiplication (scalar multiplication, dot prod-
uct, crossproduct) all follow theusual commutative, associative, and distribu-
tive laws of scalar addition and multiplication with the following exceptions:

a+ A isnonsense,

a/A isnonsense,

A/B isnonsense,

a- A isnonsense (unless you mean by it aff),
a x A isnonsense,

AxB =% B x X,

and the following extra simplification rules:

aA isavector,

A-Bisascaar,

A x B isavector,
XxE:—ExX(szxK:@)
A(B xC)= (A x B)-C.

Following these rules automatically enforces correct manipulations. Armed with
insight you can direct these manipul ations towards a desired end.

Example. Say you know A, B, C and D and you know that

aA+bB+cC=D
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but you don’t know a, b, and c¢. How could you find a? First dot both
sideswith B x € and then blindly follow the rules:

[ad+bB +cC = D}-(B x(£)0)
aA-(Bx C)+bB-(B xC)+cC- (B x C) D- (B x C)
0 0
D-(B x C)
a = ——0.
A- (B x ()

The two zeros followed from the general rules that A - (B x C) =

(A x B) C) and A x A = 0. Thelast line of the calculation assumes
that A- (B x C) # 0. (The linear algebra savvy reader will recognize
this thoughtless manipulation as a derivation of Cramer’srulefor 3 x 3
matrices.) Note the derivation above breaks down if the vectors A, bB,
and cC are co-planar (see box 2.5). O

Thepoint of theexampleabovewasto show thevector algebrarulesat work. However,
to get to the end took the first ‘move’ of dotting the equation with the appropriate
vector. That move could be motivated this way. We are trying to find a and not b or
c. We can get rid of the terms in the equation that contain b and c if we can dot B
and c with a vector perpendicular to both of them. B x Cis perpendicular to both
B and € so can be used to kill them off with a dot product. The Osin the example
calculation were thus expected for geometric reasons.

Count equations and unknowns.

One cannot (usually) find more unknowns than one has scalar equations. Before you
do lots of agebra, you should check that you have as many equations as unknowns.
If not, you probably can’t find all the unknowns. How do you count vector equations
and vector unknowns? A two- dimensional vector isfully described by two numbers.
For example, a2D vector isdescribed by itsx and y components or its magnitude and
theangleit makeswith the positive x axis. A three-dimensional vector isdescribed by
three numbers. So a vector eguation counts as 2 or 3 equationsin 2 or 3 dimensional
problems, respectively. And an unknown vector counts as 2 or 3 unknownsin 2 or
3 dimensions, respectively. If the direction of avector isknown but its magnitude is
not, then the magnitude is the only unknown. Magnitude is a scalar, so it counts as
one unknown.

Example: Counting equations

Say you are doing a 2-D problem where you already know the vector
A = v/2i 4+ +/2j and you are given the vector equation

Ci=a

You then have two equations (a vector equation in 2-D ) and three
unknowns (the scalar C and the vector @). There are more unknowns
than equations so this vector equation is not sufficient for finding C and
a. O
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Most often when you have as many equations as unknowns the equations
have a unique solution. When you have more equations than unknowns there
is most often no solution to the equations. When you have more unknowns
than equations most often you have awhole family of solutions.

However these are only guidelines, no matter how many equations and unknownsyou
have, you could have no sol utions, many solutionsor auniquesolution. Thegeometric
significance of some cases that satisfy and that don’t satisfy these guidelinesis given
in box 2.5 on page 63.

Vector triangles

In 2D one often wants to know all three vectorsin a vector triangle, the diagram for
expressions like

A+B=C or A—-C=B or A+B+C=0 etc.

Usually at least onevector isgiven and someinformationisgiven about theothers. The
situation ismuch likethe geometry problem of drawing atriangle given variousbits of
information about thelengths of itssidesand itsinterior angles. If enoughinformation
is given to prove triangle congruence, then enough information is given to determine
all angles and sides. A difference between vector triangles and proofs of triangle
congruence is that triangle congruence does not depend on the overall orientation,
whereas vector triangles need to have the correct orientation. Nonetheless, the tools
used to solve triangles are useful for solving vector equations.

Vector addition

We start with a problem that is in some sense solved at the start. Say A and B are
known and you want to find C given that

C=A+B.

The obvious and correct answer is that you find c by vector addition. You could
do this addition graphically by drawing a scale picture, or by adding corresponding
vector components. Suppose now that Aand B are giventoyouintermsof magnitude
and direction and that you are interested in the direction of C.
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Example: adding vector s defined by magnitude and direction

Say direction isindicated by angle measured counterclockwise form the
positive x axis and that A = 5v/2, 6o = /4, B = 4, and 6g = 277/3.

So
A = A(cosOai +Snoaj)
= 5v2(cos(m/4)i + sin(r/4)j) = 5i + 5§
B = B(cosgi +sindgj)
= 4(cos(27/3)i +sin(2r/3)j) = —2i + 2v/3f
C = E+E=(5i+5j)+(—2i+2\/§j)

= Bi+(5+2V/3)j
= 6c = tan!(Cy/Cx) =tan*((5+2V3)/3) ~ 128~ 705°

V32 + (5+2v3)2~ 898

and C

a

To find 6c we used the arctan (or tan—1) function which can be off by 7@, Tofind
the angle of C we had to convert A and B to coordinate form, add components, and
then convert back to find the angle of C. That is, even though the desired answer is
given by a sum, carrying out the sum takes a hit of effort. An aternative approach
avoids some work.

Example: Same as above, different method

Start with picture of the situation, Fig. 2.42. By adding angles,
Op=m/4+nm/3="Tr/12.

From the law of cosines (see box 2.6 on page 64),

C? = A?4+ B?-2ABcost,

\/ (5v/2)2 + 42 — 2(5v/2) - 4 - cos(Tr/12)
8.98 (asbefore)

= C

%

And from the law of sines (see box 2.6),

siné _ siné,
B =~ C

. _q{Bsing, . _1(4sn(7r/12)

9 = 1 ~ 1 _—

;‘15'”(0)5'”(8.98)
~ .445

= 6Oc = Oa+0r~mn/4+ .445~ 123 (asbefore).

This second approach is somewhat more direct in some situations.
The determination of athird vector by vector addition is analogous to the deter-
mination of atriangle in geometry by “side-angle-side”.

53

D The problem is that, measuring angles
between 0 and 27t (or equivalently between
—n and ) there are always two different
angles that have the same tangent. Thein-
verse tangent function picks one. Some
computersor calculators always pick an an-
gle between 0 and = and some always pick
a value between —z /2 and 7/2. Both of
these could be the wrong answer. So you
need to check and possibly ad r to your an-
swer, or, aternatively use one of these two
commands. 1) the two-argument inverse
tangent (arctan(x, y)) or 2) rectangular-to-
polar coordinateconversion, usingtheangle
asthe desired arctangent.

Figure 2.42: Using trig to solve vector
triangles

(Filename:tfigure.cosinetriangle)
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Vector subtraction

Say youwant tofind € given A and B andthat A, B and C addto zero. So, subtracting
C from both sides and multiplying through by -1 we get

A+B+C = 0
The problem has now been reduced to one of addition which can be done by drawing,
components, or trig as shown above.

Find the magnitude of two vector sgiven their directionsand
their sum (2D)
Often one knowsthat 2 vectors Aand B addto agiven third vector ? . Thedirections
of A and B areknown but not their magnitudes. That is, given A 4, Ag and C and that
A + B =¢C
(2.11)

o]}

Ma + Bilg =

you would like to find A and B (which you will know if you find A and B).

Example: A walk

You walked SW (half way between South and West) for a while and
NNW (half way between North and NorthWest, 22.5° West of North)
for awhile and ended up going a net distance of 200 m East. Aand B
are your displacements on the first and second parts of your walk.

So, taking xy axes aligned with East and North, the directions are

N 2 2 2 . R R
Apn = %_i— %_j and Ag = —sm(%)t +cos(%)1
and the given sum isC = 200mi. Still unknown are the distances A and
B. O
7&[ ~ Here are four ways to solve egn. (2.11) which will be illustrated with “a walk”.
NNWF ) J
. Far
S / : g Method |I: Use dot productswith 7 and j
s zeom ¢
wo¢ PR N If we take the dot product of both sides of egn. (2.11) with 7 and then again with j
. -# weget:
AL R A
o U > s i-{egn. (211)) = Alax + Bigy = Cy, and
J-{egn. (211)} = Alpay + Bigy = Cy
Figure 2.43: Anindirect walk from O to (2.12)
DviaC. A R
Fienmessigure 2 wat WhHere the components of the vectors A a, Ag, and C areknown, or easily determined,

because the vectors are known (however they are represented). Egns. 2.12 are two
scalar equationsin the unknowns A and B. You can solve these any way that pleases
you. One method would be to write the equations in matrix form

)‘-AX )\Bx A _ Cx
[)‘Ay )\By]'[B]_[Cy} =13



2.4. Solving vector equations

Example: Solving “A walk”: method I, smultaneous equations

For the walk example above we would have

Vv2/2 —sin(%) A7 [ 200m
—v2/2 cosZ) | | B] | O

which solves (on a computer or calculator) to A ~ 483m and B ~ 370
(with the total walked distance being about 852 m). O

Taking dot products of avector equation with 7 and j is equivalent to extracting the x
and y components of the equation. But we use the dot product notation to highlight
that you could dot both sides of the vector equation with any vector that pleases you
and you would get alegitimate scalar equation. Use any other vector that pleasesyou
(not parallel with the first) and you will get a second independent equation. And the
two resulting equations will have the same solution for A and B asthe x and y (or
“1" and “ j") equations above.

Method I1: pick a vector for dot product that kills terms you don't know.

Pretend for a paragraph that you only want to find A in egn. (2.11), for example that
you only wanted to know the distance walked on the first leg of the indirect walk in
the example above. It would be nice to reduce eqgn. (2.11) to asingle scalar equation
in the single unknown A. We'd like to get rid of the term with B, a quantity that we
do not know. Suppose we knew a vector fig that was perpendicular to Ag. If we
dotted both sides of egn. (2.11) we'd get:

i - {eqn. (2.11)} = ig- (Aia+Big) = ig-C

= ﬁB-<AXA>+ﬁB~<BiB = ﬁB-é

ﬁBJ_iBSOﬁB-iBZO = (AB-XA A = ﬁB~é
= A = nAB'AC.

ng-Aa

To make use of this method we have to cook up avector rig that is perpendicular to
2eD. Thevector fig = k x g servesthe purpose. So we get

A —~ — — =
(k xAB) -Aa  AByrAx — ABxAay

which, if you learned such, you may recognize as the Cramer’s rule solution of
egn. (2.19). Summarizi ng®.

To reduce egn. (2.11) to one scalar equation in the one unknown A, kill the
Ag or B term by dotting both sides of with k x Ag or k x B

Altogether you can think of this method as something like the “component”
method. But we are taking components of the vectors in the direction perpendicular
to B. Alternatively you can think of this method astaking the projection of the vector
equation onto aline perpendicular to B.

Similarly dotting both sides of egn. (2.11) with & x A gives

Q)

B:m
x

(ke x Ap) -

>

B
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O The vector k (the unit vector out of the

page) is perpendicular to XB but is unfor-
tunately not suitable because it is also per-
pendicular to A o and C so only yields the
equation 0 + 0 = 0 or the nonsense that
A =0/0.

@ |ts the modern way, kill the things you
don’t know about (and thus don't like) us-
ing the most powerful weapons at your dis-
posal.
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Figure 2.44: Method I11: Find point H as
the intersection of two known lines.

(Filename:tfigure.2.walkIIT)

Figure 2.45; Solving“A walk” using the
law of sines.

(Filename:tfigure.2.walkIV)
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Example: Solving “A walk”: method I1, judicious dot products

You should be able to derive the formulas above as needed. Dotting,
for example, both sides of egn. (2.11) with k x Ag and plugging in the
known components yields

Ea

a_ Uexde)-C
(kxAB)-Aa

)»Bny - )»Bny
AByAAx — ABxAAy
cos(r/8) - 200m — (—sin(z/8)) - 0

cos(/8) - (v/2/2) — (—sin(/8)) - (—v/2/2)
(as before)

Ea

483 m

X

Method 111, graphical solution

Onthevector triangledefined by A+ B = C wecall Othetail end of A. Thelocation
of thetip of C at G can be drawn to scale. Then the point H can be located as at the
intersection of two lines. one emanating from O and in the direction of Aa and one
emanating from H and in the direction of Ag. Oncethe point H islocated, the lengths
A and B can be measured.

Example: Solving “A walk”: method |11, graphing

Taking 100 mas drawn to scale as, say 1cm, point G is drawn 2cm to
the right of O. The location of the point H is found as the intersection
of two lines: one emanating from O and pointing 45° counterclockwise
from the —j axis, and the other emanating from G and pointing 22.5°
counterclockwise from the — j axis. The distance from O to H can be
measured as about 4.8cm yielding A =~ 480 m.

This construction can be done with pencil and paper or with a com-
puter drawing program. m]

Method IV, trigonometry

The final method, the classical method used predominantly before vector notation
was well accepted, isto treat the vector triangle as atriangle with some known sides
and some known angles, and to use the law of sines (discussed in box 2.6 ).

Because C and the directions of A and B are assumed known, the angles a
(opposite side A) and b (opposite side B) are known. Because the sum of interior
anglesin atriangleisw we know theanglec = = — a — b. Thelaw of sinestellsus
that

sina_sinc and sinb_sinc
A C B C
which we can rewrite as
Csina Csinb
A= — d B=—
sinc sinc
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Example: Solving “A walk”: method 1V, the law of sines
Referring to Fig. 2.45 we get

Csina  200m- sin(5/8)

A = . = . ~ 483 m
sinc sin(zr/8)
ad B — C§|nb _ 200rT1-sm(7r/4) ~ 370m
sinc sin(r/8)
as we have found three times already. O

The determination of two vectors by knowing their directions and their sum is
analogous to determination of atriangle by “angle-side-angle”.

The magnitudes and sum of two vectors are known (2D)

Two vectors A and B in the pl ane have known magnitudes A and B but unknown
directionsi a andAg. Their sum C isknown. So, measuring anglescounterclockwise
relative to the positive x axis, we have:

A+B =
A+ Big
A(cosOai + sindaj) + B (cosogi + sinbg j)

Il
a 6 0

(2.14)

where egn. (2.14) is one 2D vector equation in 2 unknowns: 6 and 0.

Method 1: using an appropriate dot product

This problem is really best solved with trig (see below) and getting it right with
component method is a matter of hindsight. Eqn. 2.14 can be rewritten as

C (cosbci + sinfc j) — A(costal + sindaj) = B (cosogi + sinbg j)
Taking the dot product of each side with itself gives

C? + A2 — 2AC (cosfc cosfa + Sinfc sinfp) = B?

cos(fc —0a)

C%+ A2 — B2
2AC '

Oa = 6c —arccos<

Now A is fully determined and B can be found by vector subtraction. Note that
the arccos function is always double valued (the negative of any arccos is aso a
legitimate arccos), so that the solution of this problem is not unique. Also, if the
argument of the arccos function is greater than 1 in magnitude, there is no solution;
thishappensif any two of A, B, and C isgreater than thethird (that is, if the so-called
“triangle inequality” is violated) and there is no way of making a triangle with the
given lengths.)
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Figure 2.46: For usein using the law of
cosines to solve a vector triangle.

(Filename: tfigure.cosinestriangle)



Figure 2.47: Solving a vector triangle

where vectors A and B have known mag-
nitude but unknown direction.
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Method I1: The law of cosines

Referring to Fig. 2.46, we can apply the law of cosines directly to get

B2 = A?+C?2—2ABcostg (2.15)
. C?+A?-B?
which we can solve to get 1 = arccos <+2T) . (2.16)

Thus the orientation of A isdetermined in relation to C. This method isabit quicker
than the component method above because it skips the steps where, in effect, the
component method derives the law of cosines.

Method I11: graphical construction

From thetail of C draw acirclewith radius A (see Fig. 2.47). From thetip of C draw
acirclewithradius B. For each of thetwo pointsof intersection, Py and P, asolution
has been found. Vector A goes from the tail of C to, say, Py, and B goes from Py
to the tip of C. An A and B based on P, isaso alegitimate solution. Each pair is
a legitimate solution to the problem. To get a unique solution set other information
would have to be provided.

Determining avector triangle when one vector is known and only the magnitudes
of the other two are known is analogous to determining a triangle from " side-side-
side” in geometry. It isinteresting that this, the most elementary of all geometric
constructions does not have an equally simple analytic representation.

Find the magnitude of three vectors given their directions
and their sum (3D)

This problem is close in approach to its junior 2D cousin on page 54 and to the
example on page 50. It is the most common of the 3D vector equation problems.
Assume that you know the directions of three vectors A, B and C (given, say, asthe
unit vectors A a, Ag, and Ac), aswell astheir sum D. So we have
A + B + C =D
(2.17)

Alp + Big + Cic = D

and we want to find A, B, and C from which we canfind A, B, and C (e.g., A =
Ak ). We can think of the last of egn. (2.17) as one 3D vector equation in three
unknowns.

In three dimensions the graphical approach is essentially impossible. And the
trigonometric approach is awkward to say the least, and probably only generaly
practical for people with British accentswho are long dead. The general ideasin the
first two methods still stand, however. Thus the use of vector concepts is basically
unavoidable in 3D problems.
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Method I: doting with i, j, and k.

We can dot the left and right sides of egn. (2.17) with or j or k. Thisis equivalent
to taking the x, y and z components of the equation. We get then

i-{egn. (217) = A)px + Brgx + Cicx = Dy,
k-{egn. 217)) = Araz + Brgz + Cicz = Dy
(2.18)

which can be written in matrix form as

AAx  ABx  Acx A Dx
Apz ABz Acz Cc Dz

Unless the matrix is sparse (has a lot of zeros as entries) it is probably best to solve
such aset of equationsfor A, B and C on a computer or calculator.

Method I1: pick a vector for dot product that kills terms you don't know.

The philosophy here is the same as for method 1l in 2D (page 55). Pretend for
a paragraph that you only want to find A in egn. (2.17). We can kill the terms
involving the unknowns B and C by dotting both sides of the equation with a vector
perpendicular to Ag and Ac. Such avector isig x Ac. Thus

(Ag x Ac) - {egn. (2.11)}
=  (dexic) (Ala+Big+Cic) = Asxic) D
= (isxic)-(AiA)+6+5 = (gxic)-D
D (g x A
= A = M
Aa-(AB X Ag).

If you use amatrix determinant to eval uate the mixed triple product you can recognize
this formula (like the formula solving the example on 50) as Cramer's rule. By a
judicious dot product we have reduced the vector equation to a scalar equationin one
unknown. Similarly we could get one equation in one unknown for B or for C by

doting egn. (2.17) with Aa x Ac and ia x ig, respectively@.

Parametric equationsfor lines and planes
Alinein 2D

In geometry aline on aplaneis often describe as the set of x and y pointsthat satisfy
an equation like
Ax+ By=D or y=mx+b

for given A, B, and D or m and b. However alineisa“one dimensional” object and
itisniceto describeit that way. The parametric form that is often useful is:

F=Fy+s (2.20)

where 7 are the set of points on the line, one point for each value of the scaar
parameter s. 7 is any one given point on the line and v is a vector parallel to the
line. In the special case that A isaunit vector, s is the distance from the point at r
tothe point at . If the vector v was the velocity of a point moving on the line then
s would be the time since it was at the point 7.
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@ Notethat the key to the method was dot-
ting with a vector in an appropriate direc-
tion, the magnitude of the vector did not
matter. So if, for example, you knew any

vector U in the direction of Ag and any

vector V¢ inthedirection of Ac you could
dot both sidesof egn. (2.17) with Vg x V¢
to get one scalar equation for A. This can
simplify cal culationsby avoiding thesquare
roots (which cancel inthe end) that you cal-
culate to find unit vectors.

0 N
RS .
byr'e ]p(i;:’\/tr ~ line

Figure 2.48: Parametric description of a
line using vectors.

(Filename:tfigure.parametricline)
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Figure 2.49: a) Parametric equation of a

plane. b) the plane through the points A,B,

andC

(Filename:tfigure.parametricplane)
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Example: Prametric equation of aline

A parametric equation for the line going through the pointswith position
vectors r, and rg is

F=ry+s|rg—7Fa orbetter =7, +Ska
&—\:——/
v
whereka = (Fg — 7o) / | Fa Pl O
Alinein 3D

In three dimensions a line is often described geometrically as the intersection of
two planes. But aline in three dimensions is still a one dimensional object so the
parametric form egn. (2.20), applicable in three dimensions as well as two, is nice.

Aplane

A planeinthree dimensions can be described asthe set of pointsx,y, and z that satisfy
an equation like:
Ax+By+Cz=D

for agiven A,B,C, and D. The parametric description of a plane usestwo parameters
s and s, andis
F = 7‘0+8151+8252 (2.22)

where r isatypical point ontheplane, v1 and v, areany two non-parallel vectorsthat
lieintheplaneand s; and sp are any two real numbers. Each pair (s, Sp) corresponds
to one point in the plane and vice versa. The numberss; and s, can be thought of as
in-plane distance coordinates if the vectors v1 and v, are mutually orthogonal unit
vectors.

Example: A plane

A parametric equation for the plane going through the three points r,,
rg,and ris
F= rp +51(Fg — Fa) +S2 (Fc — 7a)
N~ N — — D

L) v v,

You can check that when s; = s = 0 the point on the plane 7, isgiven.
And when one of the s valuesis one and the other zero the points r; and
rc aregiven. O

Vector s, matrices, and linear algebraic equations

Once has drawn a free body diagram and written the force and moment balance
equations oneisleft with vector equationsto solve for various unknowns. The vector
equations of mechanics can be reduced to scalar equations by using dot products.
The simplest dot product to use is with the unit vectors #, j, and k. This use of dot
products is equivalent to taking the x, y, and z components of the vector equation.
The two vector equations

ai+bj = (€c-5i+Wd+7j
@-coi+@+hyj (c+bi+@2a+oj
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with four scalar unknowns a, b, ¢, and d, can be rewritten as four scalar equations,
two from each two-dimensional vector equation. Taking the dot product of the first
equationwith i givesa = ¢ — 5. Similarly dotting with j givesb = d + 7. Repeating
the procedure with the second equation gives 4 scalar equations:

a = c-5
b = d+7
a—-c = c+b
a+b = 2a+c

These equations can be re-arranged putting unknowns on the left side and knowns on
theright side:

la + Ob + —-1c + 0d = -5
Oda + b + Oc + -1d = 7
la + -1 + -2¢ + od = 0
—la + b + -1c + od = 0

These equations can in turn be written in standard matrix form. The standard matrix
form is a short hand notation for writing (linear) equations, such as the eguations
above:

1 0 -1 0 a -5
0 1 0 -1 b | | 7
1 -1 -2 0 c| T | o
-1 1 -1 0 d 0
%/__/
[4] [x] ]
= [Al-[x] = Dyl

The matrix equation [A] - [x] = [y] isin aform that is easy to input to any of
several programsthat solvelinear equations. The computer (or ado-able but probably
untrustworthy hand cal culation) should return the following solution for [X] (&, b, c,
and d).

a -5
b | -5
c | 0

d —-12

Thatis,a = —5,b= —-5,¢c=0,andd = —12. If you doubt the solution, check it.
To check the answer, plug it back into the original equation and note the equality (or
lack thereof!). In this case, we have done our calculations correctly and

1 0 -1 0 -5 -5
0 1 0 -1 -5 | | 7
1 -1 -2 0 | 0 —| o

-1 1 -1 0 -12 0

Going back to the original vector equations we can also check that

—5i+-5] = (0-5i+(-12+7j
(-5-0i+(-5+-5j = 0O+-5i+(2--54+0)j.

‘Physical’ vectorsand row or column vectors
The word ‘vector’ has two related but subtly different meanings. Oneis a physical

vector like F = Fyi + Fyj+ F.k, a quantity with magnitude and direction. The
other meaning is alist of numberslike the row vector

[x] = [X1, X2, X3]
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or the column vector

y1
YI=1| y2
¥3
Once you have picked abasis, like z, j, and k, you can represent a physical vector
Fx
F asarow vector [FX, Fy, FZ] or acolumnvector | Fy . But the components of
F,

agiven vector depend on the base coordinate system (or base vectors) that are used.
For clarity it is best to distinguish a physical vector from alist of components using
anotation like the following:

Fx

[ﬁ]xvz = Fy
F;

The square brackets around F indicate that we are looking at its components. The
subscript XY Z identifieswhat coordinate system or base vectorsare being used. The
right side is alist of three numbers (in this case arranged as a column, the default
arrangement in linear algebra).
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2.5 THEORY
Existence, uniqueness, and geometry

As mentioned in the text, sometimes vector eguations can have
no solutions, sometimes a unique solution and sometimes multiple
solutions. In some of the common types of vector equations these
cases often have simple geometric interpretation.

Example 1
Consider avery simple equation
aﬁl = 13

where 1 and w are given and you are to find a. The left hand
side s a parametric expression for the points on aline through the
origin in the direction v1. So the equation only has a solution if w
inon thisline. In other words w bust be parallel to v 1. Thisvector
equation isequivalent to 2 scalar equations (3in 3D) with one scalar
unknown and we expect generally to find no solution. That is, two
random vectors v 1 and w are unlikely to be parallel either in 2D or
3D.

Example 2

Now consider this vector equation in two unknown scalars a andb
with all vectorsin the plane

avi+bvo=w

If ¥4 and v, are not parallel it is apparent that av1 + bv could
be any vector on the plane. So there would be a unique solution for
every possible w. Butif v and ¥, are paralle then the expression
av1+ bv, just describesaline. If w ison thisline there are many
solutions for a and b because the two vectors av 1 and v, can be
added various ways that partially cancel.

in 2D atest to seeif two vectorsare parallel isto take their cross
product. So, if

] —0

then v, and v, are parallel and there are either many solutions or
no solutions depending on whether or not w is also parallel to v
and vo.

N N V1
(V1 x V2) - k = viyvoy X

v1y

V2x

— v1yvpx = det [ vay

Example 3

Consider the same example as above
av,+bvo=w

but where v, V> and W are vectors in 3D. Now the question is
whether the vector W is in the plane described parametrically by
av1+bv,. If wecount equations(3) and unknowns (2) we seethat
solution should be unlikely. Or, given 3 random vectorsin 3D V1,
02 and w itisunlikely that w would be in the plane determined by
v 1 and v 2.

Example 4

Finally consider this common equation in 3D.

avy+bv, +cvz=w. (2.22)

where V1, v2, v3, and w are given vectors and a, b and ¢ are
unknowns. If V1, v, and 1)3 are not co-planar, then it should be
clear that any point in space w can be reached by some value of a,
b and c. On the other hand, if 1, ¥, and V3 are co-planar than
thereisonly asolution if w ison the plane and then there are many
solutions because there are many waysfor v, U2, and ¥ 3 to cancel
each other out.

We can test for coplanarity with geometric reasoning and cross
products. The vector ¥1 x V> isorthogonal to the plane of v and
V5. So, if V3 isinthesameplaneit will be orthogonal to 1 x V5.
Thusif

(V1 x Vp)-v3=0
the three vectors are co-planar. But this test can also be written as

Vix U2x U3x
det| wviy w2y v3y [=0
Viz V2z V3z

which iswhat we would expect from considering the matrix form of
eqn. (2.22)

Vix U2x  U3x a Wy
vy U2y V3y b [=] wy
Viz V2z U3z c wz

and checking to seeif the 3 x 3matrix is“singular” (alinear algebra
word meaning that the determinant is zero).
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2.6 THEORY
\ector triangles and the laws of sines and cosines

Thetiptotail ruleof vector addition definesatriangle. Givensome  Proof of the law of cosines
information about the vectors in this triangle how does one figure

out therest? Onetraditional approach isto usethelaws of sinesand

Cosines.

The proof of the law of cosinesis similar in spirit. So asto end up
with the usual lettering lets look at altitude h of the triangle.

Consider the vector sum A + B = 6 represented by the trian-
gle shown with traditionaly labeled sides A, B, and C and internal
anglesa, b, and c.

The sides and angles are related by
This is the base of two different right triangles. So by the
pythagorean theorem we have on the one hand that

sina sinb sinc . 2 )
e he=Ac—d
A B C the law of sines, and
c? = A?+B2?-2ABcosc the law of cosines. and on the other that
h? = C2 — (B +d)2
Equating these expressions and expanding the square we get
Proof of the law of sines A2_d? = C2—(B2+d?-2d@.23)
Thefirst equality, say, inthelaw of sinescan beproved by calculating = A?4+B2+2dB = C? (2.24)

the altitude from c two ways.

Butd = —Acosc so
Cc2 = A2+ B2 - 2ABcosc.

Sometimes the angle we call hereciscaled 6.

These laws, applied to various sides and angles of atriangle are
useful when you want to figure out the shape and size of atriangle
when, of the six triangle quantities (thee sides and three angles),
only are given. At least one of these three has to be alength.

On the one hand length P1P, is given by

P1P> = Bsina Asnoted, it is possible to give problems of thistypethat have no
and on the other hand by solutions. And it is possible to give problems that have either 1 or 2
solutions. No examplewas given in thetext of the” side-side-angle”

P1P; = Asinb case because it has infinitely many solutions.

so . . In this era where vector algebrais popular and so is the repre-

Bsna— Asnb = na_ sinb . sentation of vectorsin terms of their components, the laws of sines

A B and cosines are not used that often. But as shown in the section,

We could do likewise with all three altitudes thus proving the triple  there are cases where the laws of sines and cosines are the easiest
equality. approach.
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SAMPLE 229 Plain vanilla vector equation in 2-D: Three forces act on aparticle
as shown in the figure. The equilibrium condition of the particle requires that Fl +
F2 + W =0. Itis given that W =-20 NJ. Find the magnitudes of forces Fl and
F,.

Solution Weare given avector equation, F; 4+ F,+ W = 0, inwhich onevector W X
is completely known and the directions of the other two vectors are given. We need
to find their magnitudes. Let us write the vectors as

=Fily, F,=Fd,, W=-Wj,

N . _ _ Figure 2.50: (riename:sie2 4.vecean 1)
where A; and A, are unit vectors along F, and F,, respectively (their directions are

specified by the given angles in the figure), and W = 20N as given. We can write
the unit vectors in component form as

M=Ayi+r,j and Ay =ipd+ Az ]
Now we can write the given vector equation as

F1(A1,d + A1, ) + Fa(had + Az, j) = W (2.25)
Dotting both sides of egn. (2.25) with 7 and j respectively, we get

AFi+2F2 = 0 (2.26)
AyFi4+2,F0 = W (2.27)

Here, we have two equations in two unknowns (F1 and F2). We can solve these
equations for the unknowns. Let us solve these two linear equations by first putting
them into amatrix form and then solving the matrix equation. The matrix equation is

Al Ay F . 0
A.ly )\.2y F, ] \WwW /)

Using Cramer’s rule for matrix inversion, we get

F1 _ 1 Agy —A2, 0
F2 Aho, — Aha, —A1, A1, W /-

Substituting the numerical values of 11, = — cos30° = —+/3/2, Ay = —sin30° =
1/2 and similarly, A, = 1/+/2, k2, = 1/+/2,and W = 20N, we get

Fi) _ (1464
F )=\ 1793 | ™
\ F1=14.64N, Fp=17.93N

Check: We can easily check if the values we have got are correct. For example,
substituting the numerical valuesin egn. (2.26), we get

14.64N - (—?) +17.93N -
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SAMPLE 2.30 Solving for a single unknown from a 2-D vector equation Consider

the same problem asin Sample 2.29. That is, you are given that Fl + F2 +W=0
where W = —20Nj Nj and F, and F, act along the directions shown in thefigure. Find
the magnitude of F,.

Solution Once again, we write the given vector equation as
Fid, + F2d, = WJ,

where W = 20N, A = Ay @ + A1, j = —v/3/20 + 1/2f, and dy = a0 + Ao, j =
1/v/2@ + j). We areinterested in finding F> only. So, let us take a dot product of
this eguation with a vector that getsrid of the Fl term. Any such vector would have
to be perpendlcular to 4;. One such vector isk x A;. Let uscall this vector 7q, that
is, ny = k x (A, 7+ AlyJ) = A1,J — A1,i. Now, dotting the given vector equation
with 71, we get

0

—_— .
Fir(A1-A) +Fo@1-2) = W(@ay-j)
= F = thl;]
ni-

(A J — Aayd) - J
(A1 d — Ayd) - (Ao d + A2, J)
W
A1 A2, — A1y o,
—/3/2
—\/3_3/2 1/vV2-1/2-1/4/2
V6
V3+1

which, of course, is the same value we got in Sample 2.29. Note that here we
obtained one scalar equation in one unknown by dotting the 2-D vector equation with

an appropriate vector to get rid of the other unknown F;.
F, = 17.93N

= 20N = 17.93N
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SAMPLE 2.31 Solvinga3-D vector equationonacomputer: Four forces, F;, F,, Fy
and N arein equilibrium, that is, F; + F, + +F; + N = 0 where N = —100kNk
is known and the directions of the other three forces are known. F; is directed from
(0,0,0) to (1,-1,2), F, from (0,0,0) to (-1,-1,1), and F; from (0,0,0) to (0,1,1). Find
the magnitudes of Fy, F,, and Fj.

Solution Let Fy = Fiky, F, = Fody, and F; = Fadg, where &y, &, and &; are
unit vectors in the directions of F;, F,, and Fj, respectively. Then the given vector
equation can be written as

Fid, + Fody 4+ Fadg = —N = —Nk

whereN = —100kN. Dottingthisequationwithi, j and k respectively, and realizing
thati - = A1, J - M = A, €IC,, we get the following three scalar equations.

AyFi+ A Fo+ 23, F3 = 0
Ay F1+ 22 F2 + Az, F3 0
A, F1 42, Fo 4+ A3, F3 —N.

Thus we get a system of three linear equations in three unknowns. To solve for the
unknowns, we set up these equations as a matrix equation and then use a computer
to solveit. In matrix form these equations are

Al A2 A3, F1 0
A 1y )\.Zy kgy F> = 0
A, A2, A3, F3 —N

To solve this equation on a computer, we need to input the matrix of unit vector
components and the known vector on theright hand side. From the given coordinates
for the directions of forces, we haved, = (i — j 4+ k)/v/3, 4, = (—i — j + k)/+/3,
and Ay = (j + k)//2. Dwe are dso giventhat N = —100kN. Now, we use the
following pseudo-code to find the solution on a computer.

Let s2 = sqrt(2), s3 = sqrt(3)
A=[ 1/s3 -1/s3 0
-1/s3 -1/s3 1/s2
1/s3 1/s3 1/s2 ]
b=[0 0 100]"°
solve A*F = b for F

Using this pseudo-code we find the solution to be

F =[ 43.3013
43.3013
70. 7107 ]

Thatis, F1 = F, = 43.3kN and F3 = 70.7kN.
’ F1 = 43.3kN, F, =43.3kN, F3 =70.7kN
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@ These unit vectors are computed by tak-
ing avector from one end point to the other
end point (as given) and then dividing by
its magnitude. For example, we find A; by
first finding 7, = (DI + (-1)j + (Dk,
a vector from (0,0,0) to (1,-1,1), and then
A, = L1

1T
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SAMPLE 2.32 \ector operations on a computer: Consider the problem of Sam-
ple2.31 agam That is, youare given the vector equatlon Fl + F2 + +F3 +N=0
where N = —100kNk and the directions of F,, F, and F; are given by the unit
vectors iy, = (i — j+ k)/v/3. 3y = (—i — j+k)//3, and dy = (j + k)/v2,
respectively. Find F;.

Solution We can, of course, solve the problem aswe did in Sample 2.31 and we get
the answer as a part of the unknown forces we solved for. However, we would like
to show here that we can extract one scalar equation in just one unknown (F3) from
the given 3-D vector equation and solve for the unknown without solving a matrix
equation. Although we can carry out all required calculations by hand, we will show
how we can use a computer to do these operations.

We can write the given vector equation as

Flil + szQ + F35~3 = —N. (2.28)

We want to find F1. Therefore, we should dot this equation with a vector that gets
rid of both F and Fs, i.e., with a vector which is perpendlcular to both F, and F;.

One such vector is F, x F or A, x Ag. Letii = 4, x A5. Now, dotting both sides of
eqgn. (2.28) with iz, we get

Fld{['ﬁ) + Fz(iz-ﬁ) + F3(i3-ﬁ) =_-N-h

A

Sincel, - i = 0and i, - i = 0 (A isnormal to both &, and i3), we get

Fid,-8) = —N-i
—N i
= F = -
A-n

Thuswe have found the solution. To compute the expression on the right hand side of
the above equation we use the following pseudo-code which assumes that you have
written (or have access to) two functions, dot and cr oss, that compute the dot and
cross product of two given vectors.

lanmbda_1 = 1/sqrt(3)*[1 -1 1]°;
lanbda_ 2 = 1/sqrt(3)*[-1 -1 1]’
lanbda_3 = 1/sqrt(2)*[0 1 1]’;
N=[0 0 -100]";
n = cross(lanbda_2, |anbda_3);
F1 = - dot(N, n)/dot(lanbda_1, n)

By following these steps on a computer, we get theoutput F1 = 43. 3013, that is,
F1 = 43.3kN, which, of course, is the same answer we obtained in Sample 2.31.

F1 = 43.3kN
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2.5 Equivalent force systems

Most often one does not want to know the complete details of all the forces acting
on a system. When you think of the force of the ground on your bare foot you do
not think of the thousands of little forces at each micro-asperity or the billions and
billions of molecular interactions between the wood (say) and your skin. Instead you
think of some kind of equivalent force. In what way equivaent? Well, because all
that the equations of mechanics know about forcesistheir net force and net moment,
you have acriterion. You replacethe actual force system with asimpler force system,
possibly just a single well-placed force, that has the same total force and same total
moment with respect to a reference point C.

The replacement of one system with an equivalent system is often used to help
simplify or solve mechanics problems. Further, the concept of equivalent force
systems alows us to define a couple, a concept we will use throughout the book.
Here is the definition of the word equivalent®when applied to force systems in
mechanics.

Two force systems are said to be equivalent if they have the same sum (the
same resultant) and the same net moment about any one point C.

We have already discussed two important cases of equivalent force systems. On
page 11 we stated the mechanics assumption that a set of forces applied at one point
is equivalent to a single resultant force, their sum, applied at that point. Thus when
doing amechanics analysis you can replace a collection of forces at apoint with their
sum. If you think of your whole foot asa‘point’ thisjustifies the replacement of the
billions of little atomic ground contact forces with asingle force.

On page 33 we discovered that aforce applied at adifferent point is equivalent to
the same force applied at a point displaced in the direction of theforce. You can thus
harmlessly dlide the point of force application aong the line of the force.

More generally, we can compare two sets of forces. The first set consists of
F(l) F(l) F<1) etc. applied at positions F(l?c, r g)c» Fg)c, etc. Inshort hand, these

forcesare F i(l) applied at positions 7 |( 2: where each value of i describes a different

force (i = 7 refersto the seventh force in the set). The second set of forces consists
of F‘fz) applied at positions r ](f)c where each value of | describes adifferent forcein
the second set.

Now we compare the net (resultant) force and net moment of the two sets. If

FQ=F2 ad MP=mu2 (2.29)

then the two setsare equivalent. Herewe have defined the net forces and net moments

by
(1) (D (D ~(1) (D
Fig = > F, Mg = ) Fhex F
_2) all forcesi ) _ 2 all forcesi @ (2)
Foi = > F7 ad Mg = 3} #jcxF
all forces j al forces j

If you find the Y (sum) symbol intimidating see box 2.5 on page 70.
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@ other phrases used to describe the same
concept in other books include: statically
equivalent, mechanically equivalent, and
equipollent.



Example:

CHAPTER 2. \ectorsfor mechanics

Consider force system (1) with forces F, and FC and force system (2)

Fé =1Nj WItthI’CGSFO and FB asshowninfig. 2.52. Arethe systemsequivalent?
Fo—1Ni 1 First check the sum of forces.
‘A — l
A D) 2 2
A B Fip = Fiy
=1 2 (2
YR = Y
Fo+Fe 2 Fy+ Fg
Ig =2Nj INE+2Nj £ (INi+1Nj) +1Nj
E = 1Ni+1Nj
0 L+ AN iIC Then check the sum of moments about C.
1m X N )
M 2 u?

Figure 2.52: The force system F, Fc
is equivalent to the force system F, Fjg.

(Filename:tfigure.equivforcepair)

?A/C X FA + FC/C X FC

(—1mi +1mj) x 1Ni + 0 x 2Nj

-0

@ _ 5@
Z rijc % Fj

?O/C X F0+ FB/C x Fg

FA  FO
Z Fijc >

[ESEIEN)

1<

—1mNk —1mNk

So the two force systems are indeed equivalent. m|

What is so specia about the point C in the example above? Nothing.

2.7 meansadd

In mechanics we often need to add up lots of things: all the forces
on abody, all the momentsthey cause, al the mass of asystem, etc.
One notation for adding up &l 14 forces on some body is

F1+F2+f3+F4+F5+F6+F7
+F8+F9+F10+ﬁ11+ﬁ12+F13+F14-

Fnet =

whichisabit long, so we might abbreviate it as

Fnet =

But this is definition by pattern recognition. A more explicit state-
ment would be

Fnet =
whichistoo space consuming. Thiskind of summing issoimportant
that mathematicians use up awhole letter of the greek alphabet asa

short hand for ‘the sum of all’. They use the capital greek 'S (for
Sum) called sigmawhich looks like this:

When you read Z aoud you don't say ‘S or‘'sigma but rather
‘the sum of” The > (sum) notation may remind you of infinite
series, and convergence thereof. We will rarely be concerned with

infinite sums in this book and never with convergence issues. So
panic on those grounds is unjustified. We just want to easily write

Fi+F,+.. +Fy

The sum of al 14f0rc%l7i wherei =1...14

about adding things. For example we use the Z (sum) to write the
sum of 14 forces F; explicitly and concisely as

2 F
i=1
and say ‘the sum of F sub i where i goes from one to fourteen’.

Sometimes we don’t know, say, how many forces are being added.
We just want to add all of them so we write (alittle informally)

Z FI meaning ﬁl + 172 + etc,,

where the subscript i lets us know that the forces are numbered.
14

Rather than panic when you see something like Z just relax

and think: oh, we want to add up abunch of thlngsall of which look
like the next thing written. In general,

Z(thing)i trandlatesto  (thing); -+ (thing), + (thing) + etc.

no matter how intimidating the ‘thing’ is. In time you can skip
writing out the translation and will enjoy the concise notation.

See box ?? for a similar discussion of integration (f) and
addition.

(—=1mi) x (AINZ+1INj)+1mj x INj




2.5. Equivalent force systems

If two force systems are equivalent with respect to some point C, they are
equivalent with respect to any point.

For example, both of the force systemsin the example above have the same moment
of 2N mk about the point A. See box 2.5 for the proof of the general case.

Example: Frictionless wheel bearing

If the contact of an axle with a bearing housing is perfectly frictionless
then each of the contact forces has no moment about the center of the
whedl. Thusthe whole force system is equivalent to asingle force at the
center of the wheel. O

Couples

Consider a pair of equal and opposite forces that are not colinear. Such a pair is

caled a coupl e DThe net moment caused by a couple is the size of the force times
the distance between the two lines of action and doesn't depend on the reference
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Figure 2.53: Frictionless whed bearing.
All the bearing forces are equivalent to a
singleforceacting at the center of thewheel.

(Filename:tfigure2.wheelbearing)

@caution: Just because a collection of
forces adds to zero doesn’t mean the net
moment they cause adds to zero.

2.8 THEORY

. (1 =2 )

Consider two sets of forces F' |( ) and F J( ) with corresponding =
points of application Pi(l> and P}Z) a positions relative to the origin
of Ffl) and 7®. To simplify the discussion let's define the net
forces of the two systems as

= =) =(2) A(Z)
Fa=) Fi ad Fg=) Fj
and the net moments about the origin as
= (1 N (1 =2 N =2
M(()) EZri(l) x Fi() and ME,) EZrJ-(2> x Flf ),

2
M()

Two force systems that are equivalent for one reference point are equivalent for all reference points.
D (1)
MO +r0/chtot.

[ Aside. The calculation above uses the ‘move’ of
factoring a constant out of a sum. This mathematical
move will be used again and again in the devel opment
of the theory of mechanics. ]

Similarly, for force system (2)

L =(2)
My +rgc x Frg.

Using point 0 as areference, the statement that the two systems are

1 2 1 2 .
equwalentlsthean_Ft(ot) dME)) Mg)Nowconsder

point Cwithposition 7~ = Tco=—Tyrc What isthenet moment
of force system (1) about point C?

DL

S (FV-Fe) < FY

S (< FP - rex F)

S F® f“LZ? x F{*

Z FO (Z 4<1>)
(D

Mo —Tex Fig.

1
MP =

If the two force systems are equival ent for reference point O then

2
Ft%t) Ft(ot) dM(l) MO and the expressions above imply

1 2
that M(C) = M(C) Because we specified nothing special about the

point C, the systems are equivalent for any reference point. Thus, to
demonstrate equivalence we need to use areference point, but once
equivalence is demonstrated we need not name the point since the
equivalence holds for all points.

By the same reasoning we find that once we know the net force
and net moment of a force system (Fyq) relative to some point C

(call it M), we know the net moment relative to point D as
Mp =M + ?C/D x Fig.

Note that if the net force is 0 (and the force system is then called

acouple) that Mp = M so the net moment is the same for all
reference points.
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@ People who have been in difficult long
term relationships don't need a mechanics
text to know that a coupleisapair of equal
and opposite forces that push each other
round and round.

Figure 2.54: Onecouple. Theforcesadd
to zero. Then net moment they cause does
not.

(Filename:tfigure.onecouple)
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point. In fact, any force system that has F,,, = O causes the same moment about
all different reference points (as shown at the end of box 2.5).So, in modern usage,
any force system with any number of forces and with F,; = 0 iscalled acouple. A

couple is described by its net moment.@

A coupleis any force system that has atotal force of 0. Itisdescribed by the
net moment M that it causes.

We then think of A:J as representing an equivalent force system that contributes Oto
the net force and M to the net moment with respect to every reference point.

The concept of a couple (also called an applied moment or an applied torque) is
especially useful for representing the net effect of acomplicated collection of forces
that causes some turning. The complicated set of electromagnetic forces turning a
motor shaft can be replaced by a couple.

Every system of forcesisequivalent to a force and a couple

Given any point C, we can calcul ate the net moment of a system of forces relative to
C. We then can replace the sum of forceswith asingle force at C and the net moment
with a couple at C and we have an equivalent force system.

A force system is equivalent to aforce F = Fyq acti ng at C and acouple M
equal to the net moment of the forces about C, i.e., M = M.

If instead we want aforce system at D we could recal culate the net moment about D
or just use the trandation formula (see box 2.5).

Fo = Fqg and
Mp = Mc+rcppx Fg.

stays the same and the moment at D is the moment at C plus the moment caused by
F,« acting at position C relative to D. The net effect of the forces of the ground on a
tree, for example, is of aforce and a couple acting on the base of the tree.

Thetidiest representation of a force system: a “wrench”

Any force system can be represented by an equivalent force and a couple at any
point. But force systems can be reduced to ssimpler forms. That this is so is of
more theoretical than practical import. We state the results here without proof (see
problems 2.122 and 2.123 on page 731).

In 2D one of these two thingsis true:

e Thesystem is equivalent to acouple, or
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e Thereisalineof pointsfor which the system can be described by an equivalent
force with no couple.

In 3D one of these three thingsistrue:

e The system is equivalent to a couple (applied anywhere), or

e Thesystemisequivalent to aforce (applied onagivenlineparallel totheforce),
or

e Thereisaline of points for which the system can be reduced to aforce and a
couple where the force, couple, and line are al parallel. The representation of
the system of forces asaforce and aparallel moment is called awrench.

Equivalent does not mean equivalent for all purposes

We have perhaps oversimplified.

Imagine you stayed up late studying and overslept. Your roommate was not so
diligent; woke up on time and went to wake you by gently shaking you. Having read
this chapter so far and no further, and being rather literal, your roommate gets down
on the floor and presses on the linoleum underneath your bed applying aforcethat is
equivalent to pressing on you. Obviously thisis not equivalent in the ordinary sense
of theword. It isn’t even equivalent in all of its mechanics effects. One force moves
you even if you don’t wake up, and the other doesn't.

Any two force systems that are ‘equivalent’ but different do have different me-
chanical effects. So, in what sense are two force systemsthat have the same net force
and the same net moment really equivalent? They are equivalent in their contributions
to the equations of mechanics (equations 0-11 on the inside cover) for any system to
which they are both applied. But full mechanical analysis of a situation requires
looking at the mechanics equations of many subsystems. In the mechanics equations
for each subsystem, two ‘equivalent’ force systems are equivalent if they are both
applied to that subsystem.

For theanalysisof the subsystem that i syou sleeping, theforce of your roommate’s
hand on the floor isn’t applied to you, so doesn't show up in the mechanics equations
for you, and doesn’t have the same effect as aforce on you.
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Figure 2.55: It feds different if some-
one presses on you or presses on the floor
underneath you with an ‘equivalent’ force.
The eguivalence of ‘equivalent’ force sys-
tems depends on them both being applied
to the same system.

(Filename:tfigure.inbed)
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Figure 2.56: (ricname:stiez vecs pasticie)

F;=50N
1\50 F,=10N
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CHAPTER 2. \ectorsfor mechanics

SAMPLE 2.33 Equivalent forceon aparticle: Four forces F; = 2Ni —1Nj, F, =
—5Nj, F3 = 3Ni + 12Nj, and F, = 1Ni act on a particle. Find the equivalent
force on the particle.

Solution The equivalent force on the particle is the net force, i.e., the vector sum
of all forces acting on the particle. Thus,

—

Fog = Fi+F+F3+F,
= (2Ni — 1NJ) + (=5NJ) + (3Ni + 12Nj) + (LN?)
= 6Ni+6Nj.

F.q = 6N(@i + J)
Note that there is no net couple since al the four forces act at the same point. This

is always true for particles. Thus, the equivalent force-couple system for particles
consists of only the net force.

SAMPLE 2.34 Equivalent force with no net moment: In the figure shown, F; =
50N, F» = 10N, F3 = 30N, and § = 60°. Find the equivalent force-couple system
about point D of the structure.

Solution From the given geometry, we seethat thethreeforces F,, F,, and F5 pass
through point D. Thus they are concurrent forces. Since point D is on the line of
action of these forces, we can simply slide the threeforcesto point D without altering
their mechanical effect on the structure. Then the equivalent force-couple system at
point D consists of only the net force, Fnet, with no couple (the three forces passing
through point D produce no moment about D). Thisistrue for al concurrent forces.
Thus,

—

Fog = F +F,+F,
= Fi1(coséi —sinfj) — Foj + Fal
= (F1cosf + F3)i — (F1Sin6 + F2)j

1 3
= (50N > +30N)i — (50N - %_ +10N)

= B50Ni —53.3Nj,
Graphically, the solution is shown in Fig. 2.58

F1=50N
lezloN

F3=30N D! o!

D - Fi
F1 _
I:2 Fnet

Figure 2.58;  (riicasmesstisz.vecs piate.s)

F.o = 50Ni —53.3Nj, My = 0
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SAMPLE 2.35 An equivalent force-couple system: Threeforces F1 = 100N, F2 =
50N, and F3 = 30N act on a structure as shown in the figure where @ = 30°, 6 =
60°, ¢ = 1mand h = 0.5m. Find the equivalent force-couple system about point D.

Solution The net forceisthe sum of all applied forces, i.e.,

Fog = Fi+F,+F;
Fi(—sinat — cosa j) + F2(cosOi — sinb j) + Fai
(—=F1sina + F>cos0)i + (—Fpcosa — Fosind + F3)j
1 1 3 3

= (~100N - +50N - 2)i + (~100N- % _ 50N - % +30N)j

= —25Ni —99.9Nj.
Forces Fl and ﬁg pass through point D. Therefore, they do not produce any moment
about D. So, the net moment about D is the moment caused by force F»:

.

My = rgpxFp
= hj x Fp(cosfi — sind )
—F>h cosbk

— 50N O.Sm%ﬁ — —125N-mk.

The equivalent force-couple system is shown in Fig. 2.60

Frq = —25Ni — 99.9Nj and Mp = —12.5N-mk

SAMPLE 2.36 Trandating a force-couple system: The net force and couple acting
about point B on the 'L’ shaped bar shown in the figure are 100N and 20N-m,
respectively. Find the net force and moment about point G.

Solution The net force on a structure is the same about any point sinceit isjust the
vector sum of all the forces acting on the structure and is independent of their point
of application. Therefore,

Fpyq = F = —100Nj.

The net moment about a point, however, depends on the location of points of appli-
cation of the forces with respect to that point. Thus,

Mk + (=i + hj) x (=F J)
(M + Fo)k
(20N-m + 100N - 1m)k = 120N-mk.

Frq = —100Nj, and Mg = 120N-mk
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Figure 2.59: (riename:stiez vecs bar)

Figure 2.60: (Filename:sfig2.vec3.bar.a)
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SAMPLE 2.37 Checking equivalence of force-couple systems: In the figure shown
below, which of the force-couple systems shown in (b), (c), and (d) are equivalent to
the force system shown in (8)?

20N 20N
10N 10N 20N

‘ im l 1ml 1 1 S5mpi 5

10N-m —L

A B C BA B4/ C BA B C A D
10N-m

€Y (b) (9 (d)

Figure 2.63;  (Ficnamerstis2 vecs beam)

3

wle
@]

Solution The equivalence of force-couple systems require that (i) the net force be
the same, and (i) the net moment about any reference point bethe same. For the given
systems, let us choose point B as our reference point for comparing their equivalence.
For the force system shown in Fig. 2.63(a), we have,

Fy = F,+F,=—10Nj—10Nj = —20Nj
Mg, = 7o x Fp=1mix (~10Nj) = —10N-mk.

Now, we can compare the systems shown in (b), (c), and (d) against the computed
equivalent force-couple system, F and Mp.
o Figure (b) shows exactly the system we calculated. Therefore, it represents an
equivalent force-couple system.
e Figure (c): Let us caculate the net force and moment about point B for this

Fo = F.¥_20Nj

= —10N-mk +1mi x (—20Nj) = —30N-mk # Mj__.

Thus, the given force-couple system in this case is not equivalent to the force
systemin (a).
e Figure (d): Again, we compute the net force and the net couple about point B:

Fo = FyY_2Nj
Mg = rppxFp

= 05mi x (—20Nj) = —10N-mk ¥ My_.

Thus, the given force-couple system (with zero couple) at D is equivalent to
theforce systemin (a).

\ (b) and (d) are equivalent to (a); (c) is not. ]
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SAMPLE 2.38 Equivalent force with no couple: For a body, an equivalent force-
couple system at point A consists of a force F = 20Ni + 16Nj and a couple
1\71A = 10N-mk. Find a point on the body such that the equivalent force-couple
system at that point consists of only aforce (zero couple).

Solution The net force in the two equivalent force-couple systems has to be the
same. Therefore, for thenew system, F.o = F = 20Ni +15Nj. Let B bethe point
at which the equivalent force-couple system consists of only the net force, with zero
couple. We need to find the location of point B. Let A bethe origin of axy coordinate
system in which the coordinates of B are (X, y). Then, the moment about point B is,

MB = MA + FA/B X F\
= Mak + (=xi — yJ) x (Fxi + Fyj)
Since we require that Mg be zero, we must have

Loy~ By Ma
Fx Fx

_ @X_:LONm

20N 20N

= 0.75x—0.5m.

Thisisthe equation of aline. Thus, we can select any point on thisline and apply the
force F = 20Nz + 15N with zero couple as an equivalent force-couple system.

Any point on theliney = 0.75x — 0.5m. ‘

So, how or why does it work? The line we obtained is shown in gray in Fig. 2.66.
Notethat thisline hasthe same slope asthat of the given force vector (Slope= 0.75 =
Fy/Fx) and the offset is such that shifting the force F to this line counter balances
the given couple at A. To seethisclearly, let us select three points C, D, and E on the
line as shown in Fig. 2.67. From the equation of the line, we find the coordinates of
C(0,-.5m), D(.24m,.32m) and E(.67m,0). Now imagine moving the force FtoC,D,
or E. In each case, it must produce the same moment MA about point A. Let usdo a
quick check.

o Fat point C: The moment about point A is due to the horizontal component
Fx = 20N, since Fy passes through point A. The moment is Fx - AC =
20N - 0.5m = 10N-m, same as M. The direction is counterclockwise as
required.

e F at point D: Themoment about point A is|F|- AD = 25N -0.4m = 10N-m,
same as M a. The direction is counterclockwise as required.

e F at point E: The moment about point A is due to the vertical component Fy,
since Fy passes through point A. The moment is Fy - AE = 15N - 0.67m =
10N-m, same as M a. The direction here too is counterclockwise as required.

Once we check the calculation for one point on the line, we should not have to do any
more checks since we know that dliding the force along its line of action (line CB)
produces no couple and thus preserves the equivalence.
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3 Free body diagrams

The zeroth laws of mechanics

One way to understand something is to isolate it, see how it behaves on its own, and
see how it responds to various stimuli. Then, when the thing is not isolated, you till
think of it asisolated, but think of the effects of all itssurroundingsas stimuli. Wecan
also seeits behavior as causing stimulus to other things around it, which themselves
can be thought of as isolated and stimulating back, and so on.

Thisreductionist approach is used throughout the physical and social sciences. A
tobacco plant is understood in terms of its response to light, heat flow, the chemical
environment, insects, and viruses. The economy of Singapore is understood in terms
of the flow of money and goods in and out of the country. And socia behavior is
regarded as being a result of individuals reacting to the sights, sounds, smells, and
touch of other individuals and thus causing sights, sounds, smell and touch that the
othersreact to in turn, etc.

The isolated system approach to understanding is made most clear in thermody-
namics courses. A system, usually afluid, isisolated with rigid walls that allow no
heat, motion or material to pass. Then, bit by bit, as the subject is developed, the
response of the system to certain interactions across the boundariesis allowed. Even-
tually, enough interactions are understood that the system can be viewed as isolated
even when in a useful context. The gas expanding in arefrigerator follows the same
rules of heat-flow and work as when it was expanded in its ‘isolated’ container.

The subject of mechanicsis aso firmly rooted in the idea of an isolated system.
Asin elementary thermodynamics we will be solely concerned with closed systems.
A (closed) system, in mechanics, is afixed collection of material. You can draw an
imaginary boundary around a system, then in your mind paint all the atomsinside the
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@ The mechanics of open systems, where
material crosses the system boundaries, is
important in fluid mechanics and even in
some elementary dynamics problems (like
rockets), where material is allowed to cross
the system boundaries. But the equations
governing these open systems are deduced
from careful application of the more funda-
mental governing mechanics eguations of
closed systems. So we have to master the
mechanics of closed systemsfirst.

@ Why do we awkwardly number the first
law as zero? Becauseit isreally more of an
underlying assumption, a background con-
cept, than alaw. Asalaw itisalittleim-
precise sinceforce has not yet been defined.
You could take the zeroth law asan implicit
and partial definition of force. The phrase
“zeroth law” means “important implicit as-
sumption”. The second part of the zeroth
law isusually called “Newton's third law.”

®Freebody Perkins. At Cornell Uni-
versity, in the 1950's, a professor Harold
C. Perkinsearned the nick name* Free-body
Perkins' by stopping random mechanics
studentsin the hall and saying “ You! Come
in my office! Draw a free body diagram!”
Studentslearned that they should draw free
body diagrams, at least to please Free-body
Perkins. But by learning to please Perkins
they learned to get more right answers to
mechanics problems, and they learned how
to better explain their work.

Sketch

65)

Figure 3.1: A sketch of a bicycle and
a free body diagram of the braked front
wheel. A sketch of aperson and afree body
diagram of a person.

EBD

front wheel

Cis

t

(Filename:tfigure2.1)
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boundary red, and then define the system as being the red atoms, no matter whether
they crossthe origina boundary markers or not. Thus mechanics depends on bits of
matter as being durable and non-ephemeral. A given bit of matter in a system exists
forever, has the same mass forever, and is alwaysin that wstem.@

Mechanics is based on the notion that any part of a system isitself a system and
that all interactions between systems or subsystems have certain simple rules, most
basically:

The measure of mechanical interaction isforce,

and

What one system does to another, the other does back to the first.

Thus a person can be moved by forces, but not by the sight of a tree falling towards
them or the attractive smell of a flower (these things may cause, by rules that fall
outside of mechanics, forces that move a person). And when a person is moved by
the force of the ground on her feet, the ground is pushed back just as hard. The two
simple rules above, which we call the zeroth@laws of mechanics, imply that all the
mechanical effects of interaction on a system can be represented by a sketch of the
system with arrows showing the forces of interaction. If we want to know how the
systemin turn effects its surroundings we draw the opposite arrows on a sketch of the
surroundings.

In mechanics a system is often called abody and when it isisolated it is free (as
in free from its surroundings). In mechanics a sketch of an isolated system and the
forceswhich act onitiscalled afree body diagram. A more descriptive phrase might
have been “isolated system diagram”, but this latter phraseis not in common usage.

3.1 Freebody diagrams

A free body diagramis a sketch of the system of interest and the forces that act on the
system. A free body diagram precisely defines the system to which you are applying
mechanics equations and the forcesto be considered. Any reader of your calculations
needs to see your free body diagrams. To put it directly, if you want to be right and

be seen asright, then @

Draw a Free Body Diagram!

The concept of the free body diagram is simple. In practice, however, drawing
useful free body diagrams takes some thought, even for those practiced at the art.
Here are some free body diagram properties and features:

o A free body diagram is a picture of the system for which you would like to
apply linear or angular momentum balance (force and moment balance being
special cases) or power balance. It shows the system isolated (‘free’) from its
environment. That is, the free body diagram does not show things that are near
or touching the system of interest. Seefigure 3.1.



3.1. Freebody diagrams

A free body diagram may show one or more particles, rigid bodies, deformable
bodies, or parts thereof such as a machine, a component of a machine, or a
part of a component of a machine. You can draw a free body diagram of
any collection of material that you can identify. The word ‘body’ connotes a
standard object in some people’s minds. In the context of free body diagrams,
‘body’ means system. The body in afree body diagram may be a subsystem
of the overall system of interest.

Thefree body diagram of a system shows the forces and moments that the sur-
roundings impose on the system. That is, since the only method of mechanical
interaction that God hasinvented isforce (and moment), the free body diagram
shows what it would take to mechanically fool the system if it was literally
cut free. That is, the motion of the system would be totally unchanged if it
were cut free and the forces shown on the free body diagram were applied asa
replacement for all external interactions.

The forces and moments are shown on the free body diagram at the points
where they are applied. These places are where you made ‘cuts to free the
body.

At places where the outside environment causes or restricts tranglation of the
isolated system, a contact force is drawn on the free body diagram. Draw the
contact force outside the sketch of the system for viewing clarity. A block
supported by a hinge with friction in figure 3.2 illustrates how the reaction
force on the block due to the hinge is best shown outside the block.

At connections to the outside world that cause or restrict rotation of the system
a contact torque (or couple or moment) is drawn. Draw this moment outside
the system for viewing clarity. Refer again to figure 3.2 to see how the moment
on the block due to the friction of the hinge is best shown outside the block.

The free body diagram shows the system cut free from the source of any body
forces applied to the system. Body forces are forces that act on the inside of a
body from objects outside the body. It is best to draw the body forces on the
interior of the body, at the center of mass if that correctly represents the net
effect of the body forces. Figure 3.2 shows the cleanest way to represent the
gravity force on the uniform block acting at the center of mass. @,

The free body diagram shows all external forces acting on the system but no
internal forces — forces between objects within the body are not shown.

The free body diagram shows nothing about the motion @. It shows: no
“centrifugal force”, no “acceleration force”, and no “inertial force”. For statics
thisis anon-issue because inertial terms are neglected for all purposes.
Velocities, inertial forces, and acceleration forces do not show on a free body
diagram.

The prescription that you not show inertial forces is a practical lie. In the
D’ Alembert approach to dynamics you can show inertial forces on the free
body diagram. The D’ Alembert approach is discussed in box ?? on page ??.
Thislegitimate and intuitive approach to dynamicsis not followed in this book
because of the frequent sign errors amongst beginners who useiit.
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Figure 3.2: A uniform block of mass m
supported by a hinge with friction in the
presence of gravity. The free body diagram
on the right is correct, just less clear than
the one on the left.

(Filename:tfigure2.outside.loads)

@ Body Forces. In this book, the only
body forcewe consider isgravity. For near-
earthgravity, gravity forcesshow onthefree
body diagram asasingleforce at the center
of gravity, or asacollection of forces at the
center of gravity of each of the system parts.
For parts of electric motors and generators,
not covered here in detail, electrostatic or
electro-dynamic body forces also need to
be considered.

@ Caution: A common error made by be-
ginning dynamics studentsisto put velocity
and/or acceleration arrows on the free body
diagram.

How to draw a free body diagram

We suggest the following procedure for drawing a free body diagram, as shown
schematicaly infig. 3.3

(a) Defineinyour own mind what system or what collection of material, youwould
like to write momentum balance equations for. This subsystem may be part of
your overall system of interest.
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Figure 3.3: The process of drawing a

FBD isillustrated by the sequence shown.

(Filename:tfigure2. howtoFBD)
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(b) Draw a sketch of this system. Your sketch may include various cut marks to
show how it is isolated from its environment. At each place the system has
been cut free from its environment you imagine that you have cut the system
free with a sharp scalpel or with a chain saw.

(c) Look systematically at the picture at the places that the system interacts with
material not shown in the picture, places where you made ‘ cuts'.

(d) Useforcesand torquesto fool the system into thinking it has not been cut. For
example, if the system is being pushed in a given direction at a given contact
point, then show a force in that direction at that point. If a system is being
prevented from rotating by a (cut) rod, then show atorque at that cut.

(e) To show that you have cut the system from the earth’s gravity force show the
force of gravity on the system’s center of mass or on the centers of mass of its
parts.

How to draw forces on free body diagrams

How you draw aforce on afree body diagram depends on

e How much you know about the force when you draw the free body diagram.
Do you know its direction? its magnitude?; and

o Your choice of notation (which may vary from vector to vector within one free
body diagram). See page 12 for adescription of the‘symbolic’ and ‘ graphical’
vector notations.

Some of the possibilities are shown in fig. 3.4 for three common notations for a 2D
force in the cases when () any F possible, (b) the direction of F is fixed, and (c)
everything about F isfixed.

@ (b) (©
Nothing is known Direction of F isknown
about F F isknown
Symbolic / / . i+ / . R
F F_Fﬁ 10N7 + 10Ny
. . . . =i 141N
Graphical or or £
¥ \ ¢ AS" 3 | e
""""""""""""""" 64,‘*
Components x ! 10N
Fy Fq 10N

Figure 3.4: The variousways of notating aforce on afree body diagram. (a) nothing is known or everything is variable (b) the direction is known,
(c) Everything is known. In one free body diagram different notations can be used for different forces, as needed or convenient.

(Filename:tfigure.fbdvectnot)
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Equivalent force systems

The concept of ‘fooling’ a system with forces is somewhat subtle. If the free body
diagram involves ‘cutting’ a rope what force should one show? A rope is made of
many fibers so cutting the rope means cutting all of the rope fibers. Should one show
hundreds of force vectors, one for each fiber that is cut? The answer is. yes and
no. You would be correct to draw all of these hundreds of forces at the fiber cuts.
But, since the equations that are used with any free body diagram involve only the
total force and total moment, you are also alowed to replace these forces with an
equivalent force system (see section 2.5).

Any force system acting on a given free body diagram can be replaced by an
equivalent force and couple.

In the case of arope, asingle force directed nearly paralel to the rope and acting at
about the center of the rope’s cross section isequivalent to the force system consisting
of al thefiber forces. In the case of an ideal rope, the force is exactly parallel to the
rope and acts exactly at its center.

Action and reaction

For some systems you will want to draw free body diagrams of subsystems. For
example, to study a machine, you may need to draw free body diagrams of its parts;
for abuilding, you may draw free body diagrams of various structural components;
and, for abiomechanics analysis, you may ‘cut up’ a human body. When separating
asystem into parts, you must take account of how the subsystems interact. Say these
subsystems, e.g. two touching parts of amachine, are called 4 and 8. Wethen have
that

If A feelsforce F andcouple M from B,

then B fedsforce —F andcouple —M from sA.

To be precise we must make clear that F and — F have the same line of action.@

The principle of action and reaction doesn’'t say anything about what force or
moment acts on one object. It only says that the actor of a force and moment gets
back the opposite force and moment.

It is easy to make mistakes when drawing free body diagrams involving action
and reaction. Box 3.3 on page 96 shows some correct and incorrect partial FBD's of
interacting bodies 4 and 8. Use notation consistent with box ?? on page ?? for the
action and reaction vectors.

I nteractions

The way objects interact mechanically is by the transmission of aforce or a set of
forces. If you want to show the effect of body B on +4, in the most general case you
can expect a force and a moment which are equivalent to the whole force system,
however complex.

That is, the most general interaction of two bodies requires knowing

83

D The principle of action and reaction can
be derived from the momentum balance
lawsby drawing freebody diagramsof little
dliversof material. Nonetheless, in practice
you can think of the principle of action and
reaction asabasic law of mechanics. New-
tondid. Theprincipal of actionand reaction
is“Newton’s third law”.
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Figure 3.5: A rigid connection: a can-
tilever structure on a building. At the
point C where the cantilever structure is
connected to the building all motions are
restricted so every possible force needs to
be shown on the free body diagram cut at
C.
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CHAPTER 3. Free body diagrams

e six numbers in three dimensions (three force components and three moment
components)
e andthree numbersin two dimensions (two force components and one moment).

Many things often do not interact in this most general way so often fewer numbers
arerequired. You will use what you know about the interaction of particular bodies
to reduce the number of unknown quantities in your free body diagrams.

Some of the common ways in which mechanical things interact, or are assumed
tointeract, are described in the following sections. You can use these simplifications
in your work.

Constrained motion and free motion

Onegenera principle of interaction forces and moments concerns constraints. Wher-
ever amotion of + is either caused or prevented by B thereis a corresponding force
shown at the interaction point on the free body diagram of 4. Similarly if 8 causes
or prevents rotation there is a moment (or torque or couple) shown on the free body
diagram of « at the place of interaction.

The converse is aso true. Many kinds of mechanical attachment gadgets are
specifically designed to allow motion. If an attachment allows free motion in some
direction the free body diagram shows no force in that direction. If the attachment
alows free rotation about an axis then the free body diagram shows no moment
(couple or torque) about that axis.

You can think of each attachment point as having a variety of jobs to do. For
every possible direction of trandlation and rotation, the attachment hasto either allow
free motion or restrict the motion. In every way that motion is restricted (or caused)
by the connection a force or moment is required. In every way that motion is free
thereis no force or couple. Motion of body + is caused and restricted by forces and
couples which act on 4. Motion isfreely allowed by the absence of such forces and
couples.

Here are some of the common connectionsand the free body diagramswith which
they are associated.

Cutsat rigid connections

Sometimes the body you draw in afree body diagram is firmly attached to another.

Figure 3.5 shows a cantilever structure on a building. The free body diagram of
the cantilever has to show all possible force and load components. Since we have
used vector notation for theforce F and the moment M we can be ambiguous about
whether we are doing atwo or three dimensional analysis.

A common question by new mechanics students seeing a free body diagram like
in figure 3.5 is: ‘gravity is pointing down, so why do we have to show a horizontal
reaction force at C? Well, for a stationary building and cantilever a quick statics
analysisrevealsthat Fc must bevertical, so the question isreasonable. But one must
remember: this book is about statics and dynamics and in dynamics the forces on a
body do not add to zero. Infact, the building shown infigure 3.5 might be accel erating
rapidly to the right due to the motions of a violent earthquake occurring at the instant
pictured in the figure. Sometimes you know aforce is going to turn out to be zero, as
for the sideways force in this example if treated as a statics problem. In these cases
it is a matter of taste whether or not you show the sideways force on the free body
diagram (see box 3.1 on page 86).

Theattachment of the cantilever tothebuilding at Cinfigure 3.5issurely intended
to berigid and prevent the cantilever from moving up or down (falling), from moving
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sideways (and drifting into another building) or from rotating about point C. In most
of the building's life, the horizontal reaction at C is small. But since the connection
at C clearly prevents relative horizontal motion, a horizontal reaction force is drawn
on the free body diagram. During an earthquake, this horizontal component will turn
out to be not zero.

The situation with rigid connections is shown more abstractly in figure 3.6.

y o) 3D

OR OR

5

Figure 3.6: A rigid connection shown with partial free body diagramsin two and three dimensions.
One has a choice between showing the separate force components (top) or using the vector notation
for forces and moments (bottom). The double head on the moment vector is optional.

(Filename:tfigure2.rigidb)

y Partial FBDs
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Figure 3.7: A hingewith partial free body diagramsin 2D and 3-D. A hingejoint isalso called
apin joint because it is sometimes built by drilling a hole and inserting a pin.

(Filename:tfigure2.hinge)
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Cutsat hinges

A hinge, shown in figure 3.7, allows rotation and prevents translation. Thus, the free
body diagram of an object cut at a hinge shows no torque about the hinge axis but
does show the force or its components which prevent translation.

There is some ambiguity about how to model pin jointsin three dimensions. The
ambiguity is shown with reference to a hinged door (figure 3.8). Clearly, one hinge,
if the sole attachment, prevents rotation of the door about the x and y axes shown.
So, it is natural to show a couple (torque or moment) in the x direction, My, and in
the y direction, My. But, the hinge does not provide very stiff resistance to rotations
in these directions compared to the resistance of the other hinge. That is, evenif both
hinges are modeled as ball and socket joints (see the next sub-section), offering no
resistance to rotation, the door still cannot rotate about the x and y axes.

If a connection between objects prevents relative tranglation or rotation that is
aready prevented by another stiffer connection, then the more compliant connection
reaction is often neglected. Even without rotational constraints, the translational
constraints at the hinges A and B restrict rotation of the door showninfigure3.8. The
hinges are probably well modeled — that is, they will lead to reasonably accurate

How much mechanics reasoning should you use when you draw a free body diagram?

3.1 THEORY

The simple rules for drawing free body diagrams prescribe an
unknown force every place a motion is prevented and an unknown
torque where rotation is prevented. Consider the simple symmetric
truss with a load W in the middle. By this prescription the free
body diagram to draw is shown as (a). There is an unknown force
restricting both horizontal and vertical motion at the hinge at B.

However, aperson who knows some staticswill quickly deduce
that the horizontal force at B is zero and thus draw the free body
diagram in figure (b). Or if they really think ahead they will draw
the free body diagram in (c). All three free body diagrams are
correct. In particular diagram (a) is correct even though Fgy turns
out to be zero and (b) is correct even though Fg turnsout to be equal
to Fc.

Some peopl e, thinking ahead, sometimes say that the free body
diagramin (&) iswrong. But it should be pointed out that free body
diagram (a) is correct because the force Fgy is not specified and
therefore could be zero. Free body diagram (d), on the other hand,
explicitly and incorrectly assigns a non-zero value to Fgy, so it is
wrong.

A reasonable approach is to follow the naive rules, and then
later use the force and momentum equations to find out more about
the forces. That is use free body diagram (8) and discover (c) using
the laws of mechanics. If you are confident about the anticipated
results, it is sometimes a time saver to use diagrams analogous to
(b) or (c) but beware of

e making assumptions that are not reasonable, and

e wasting time trying to think ahead when the force and mo-
mentum balance equations will tell al in the end anyway.

I
B /\c
e &

(a) EBD lw

. ‘
(b) EBD lW

i- Ar.
(c) EBD lW
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calculations of forces and motions— by ball and socket jointsat A and B. In2-D , a
ball and socket joint is equivalent to ahinge or pinjoint.

Ball and socket joint

Sometimesonewishesto attach two objectsin away that allowsno relativetrandation
but for which all rotation is free. The device that is used for this purposeis called a
‘ball and socket’ joint. It isconstructed by rigidly attaching a sphere (the ball) to one
of the objects and rigidly attaching a partial spherical cavity (the socket) to the other
object.

Thehuman hipjointisaball and socket joint. At the upper end of the femur bone
isthefemoral head, asphere to within afew thousandths of aninch. The hip bone has
aspherical cup that accurately fitsthe femoral head. Car suspensions are constructed
from athree-dimensional truss-like mechanism. Some of the parts need free relative
rotation in three dimensions and thus use ajoint called a‘ball joint’ or ‘rod end’ that
isaball and socket joint.

Since the ball and socket joint allows all rotations, no moment is shown at a cut
ball and socket joint. Since aball and socket joint prevents relative tranglation in all
directions, the possibility of forcein any direction is shown.

String, rope, wires, and light chain

One way to keep aradio tower from falling over iswith wire, as shown in figure 3.10.
If the mass and weight of the wires seemssmall it iscommon to assumethey can only
transmit forces along their length. Moments are not shown because ropes, strings,
and wires are generally assumed to be so compliant in bending that the bending
moments are negligible. We define tension to be the force pulling away from afree

body diagram cut. @

Figure 3.8: A door held by hinges. One must decide whether to model hinges as proper hinges
or as ball and socket joints. The partial free body diagram of the door at the lower right neglects the
couples at the hinges, effectively idealizing the hinges as ball and socket joints. Thisidealization is
generally quite accurate since the rotations that each hinge might resist are already resisted by their
being two connection points.

(Filename:tfigure2.door)
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@ caution: Sometimes string like things
should not be treated as idealized strings.
Short wires can be tiff so bending mo-
ments may not be negligible. The mass of
chains can be significant so that the mass
and weight may not be negligible, thedirec-
tion of the tension force in a sagging chain
is not in the direction connecting the two
chain endpoints.
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Springs and dashpots

Springs are used in many machines to absorb and return small amounts of energy.
Dashpots are used to absorb energy. They are shown schematically in fig. 3.12.
Often springs and dashpots are light in comparison to the machinery to which they
are attached so their mass and weight are neglected. Often they are attached with pin
joints, ball and socket joints, or other kinds of flexible connections so only forces are
transmitted. Sincethey only haveforcesat their endsthey are ‘two-force’ bodiesand,
by the reasoning of coming section 4.1, the forces at their ends are equal, opposite,

Ball and Socket Partial FBDs

y socket

ball
z F F

Figure 3.9: A ball and socket joint alows all relative rotations and no relative translations so
reaction forces, but not moments, are shown on the partial free body diagrams. In two dimensions a
ball and socket joint isjust like a pin joint. The top partial free body diagrams show the reaction in
component form. The bottom illustrations show the reaction in vector form.

(Filename:tfigure2.ballands)

Partial FBDs
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B C Force at cut is parallel
. _ ) to the cut wire
string, rope, wire, chain
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Figure 3.10: A radio tower kept from falling with three wires. A partial free body diagram of
the tower is drawn two different ways. The upper figure shows three tensions that are parallel to the
three wires. The lower partia free body diagram is more explicit, showing the forces to be in the

directions of the Xs unit vectors parallel to the wires.

(Filename:tfigure2.string)
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and along the line of connection.

Sorings

Springs often look like the standard spring drawing in figure 3.11.

If the tension in a spring is a function of its length aone, independent of its
rate of lengthening, the spring is said to be ‘elastic.’ If the tension in the spring is
proportional to its stretch the spring is said to be ‘linear.” The assumption of linear
elastic behavior is accurate for many physical springs. So, most often if one saysone
isusing a spring, the linear and elastic properties are assumed.

The stretch of a spring isthe amount by which the spring islonger than whenitis
relaxed. Thisrelaxed length isalso called the ‘unstretched’ length, the ‘rest’ length,
or the ‘reference’ length. If we call the unstretched length, the length of the spring
when itstension is zero, £g, and the present length ¢, then the stretch of the spring is
Al = € — £o. Thetension in the spring is proportiona to this stretch. Most often
peopleusetheletter k for the proportionality constant and say ‘ the spring has constant
k. So the basic equation defining aspring is

T = KkAZ.

Dashpots

Dashpots are used to absorb, or dampen, energy. The most familiar exampleisin the
shock absorbers of acar. The symbol for a dashpot shown in figure 3.12 is meant to
suggest the mechanism. A fluid in a cylinder leaks around a plunger as the dashpot
gets longer and shorter. The dashpot resists motion in both directions.

The tension in the dashpot is usually assumed to be proportional to the rate at
which it lengthens, although this approximation is not especialy accurate for most
dampers one can buy. The relation is assumed to hold for negative lengthening as
well. So the compression (negative tension) is proportional to the rate at which the
dashpot shortens (negative lengthens).  The defining equation for alinear dashpot is:

where C is the dashpot constant.

Collisions

Two objects are said to collide when someinteraction force or moment between them
becomesvery large, so largethat other forces acting on the bodies become negligible.
For example, in a car collision the force of interaction at the bumpers may be many
times the weight of the car or the reaction forces acting on the wheels.

Theanalysis of collisionsisalittle different than the analysis of smooth motions,
as will be discussed later in the text. But this analysis still depends on free body
diagrams showing the non-negligible collision forces. See figure 3.13. Knowing
which forces to include and which to ignore in a collision problem is an issue which
can have great subtlety. Some rules of thumb:
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Figure 3.11: Spring connection. The
tensionin aspring isusually assumed to be
proportional to its change in length, with
proportionality constant k: T = kAZ.
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Figure 3.12: A dashpot. A dashpot is
shown here connecting two parts of amech-
anism. Thetensioninthedashpot ispropor-
tional to the rate at which it lengthens.

(Filename:tfigure2.dashpot)



A dlidesfrictionally on B8

Partial FBDs

Figure3.14: Object A didesontheplane
B. Thefriction force on A isin the direc-
tion that opposes the relative motion.

CHAPTER 3. Free body diagrams

o ignore forces from gravity, springs, and at places where contact is broken in
the collision, and

e include forces at places where new contact is made, or where contact is main-
tained.

Feallision \/
et o

Collision! The collision forces are
assumed to be much bigger
than all other forces on the
FBD during the collision.

Figure 3.13: Herecarsareshown colliding. A freebody diagram of theright car showsthecollision
force and should not show other forceswhich are negligibly small. Herethey are shown asnegligibly
small forces to give the idea that they may be much smaller than the collision force. The wheel
reaction forces are neglected because of the spring compliance of the suspension and tires.

(Filename: tfigure2.collisions)

Friction

When two independent solids are in contact relative slipping motion is resisted by
friction. Friction can prevent dip and resists any slip which does occur.

Theforce on body + from body 8B is decomposed into a part which is tangent to
the surface of contact F, with |F| = F,anda part which is normal to the surface N.
The relation between these forces depends on the relative slip of the bodies v a/g.
The magnitude of the frictional force is usually assumed to be proportional to the
normal force with proportionality constant i. So the deceptively simple defining
equation for the friction force F during dlip is

F=uN

where N is the component of the interaction force in the inwards normal direction.
The problem with this simple equation isthat it assumes you have drawn the friction
force in the direction opposing the slip of « relative to 8. If the direction of the
friction force has been drawn incorrectly then the formula gives the wrong answer.

If two bodies arein contact but are not sliding then the friction force can still keep
the objects from dliding. The strength of the friction bond is often assumed to be
proportional to the normal force with proportionality constant 1. Thusif thereisno
slip we have that the force is something less than or equal to the strength,

|F| < uN.

Partial FBD's for the cases of slip and no dlip are shown in figures 3.14 and 3.15,
respectively. See the appendix for a further discussion of friction. To make things
a little more precise, for those more formally inclined, we can write the friction
equations as follows:

- B . N —_
Fgatsona) = —HN= ,ifvas #0,

|F(£ actson )l = uN , if vag = 0.
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The unit vector I%% isin the direction of relative dlip. The principle of action and

reaction, discussed previously, determines the force that 4 actson 3.

The simplest friction law, the one we use in this book, uses a single constant
coefficient of friction u. Usualy .05 < u < 1.2. We do not distinguish the static
coefficient us from the dynamic coefficient g or ux. Thatisu = us = uk = ug
for our purposes. We promote the use of this simplest law for afew reasons.

e All friction laws used are quite approximate, no matter how complex. Unless
the distinction between static and dynamic coefficients of friction is essential
to the engineering calculation, using s # uk doesn’t add to the calculation’s
usefulness.

e The concept of a static coefficient of friction that is larger than a dynamic
coefficient is, it turns out, not well defined if bodies have more than one point
of contact, which they often do have.

e Studentslearning to do dynamics are often confused about how to handle prob-
lems with friction. Since the more complex friction laws are of questionable
usefulness and correctness, it seems time is better spent understanding the
simplest relations.

In summary, the simple model of friction we useis:

Frictionresistsrelativeslipping motion. During slip thefriction force opposes
relative motion and has magnitude F = wN. When there is no dip the
magnitude of thefriction force F cannot be determined from the friction law
but it cannot exceed uN, F < uN.

Sometimes people describe the friction coefficient with afriction angle ¢ rather than
the coefficient of friction (seefig. 3.16). The friction angleis the angle between the
net interaction force (normal force plus friction force) and the normal to the sliding
surface when glip is occurring. The relation between the friction coefficient © and
thefriction angle ¢ is

tang = .

The use of ¢ or u to describe friction are equivalent. Which you use is a matter of
taste and convenience.

“Smooth” and “ rough” surfaces

As amodeling simplification for situations where we would like to neglect friction
forces we sometimes assume frictionless contact and thus set © = ¢ = 0. In many
books, but never in this one, the phrase “perfectly smooth” means frictionless. It
is true that when separated by a little fluid (say water between your feet and the
bathroom tile, or oil between pieces of a bearing) that smooth surfaces slide easily
by each other. And even without a lubricant sometimes slipping can be reduced by
roughening asurface. But making asurface progressively smoother doesnot diminish
thefriction to zero. In fact, extremely smooth surfaces sometimes have anomalously
high friction. In general, thereis no reliable relation correlation smoothness and low
friction.

Similarly many books, but not this one, use the phrase “ perfectly rough” to mean
perfectly high friction (u — oo and ¢ — 90°) and hence that no dip is allowed.
This is misleading twice over. First, as just stated, rougher surfaces do not reliably
have more friction than smooth ones. Second, even when © — oo dlip can proceed
in some situations (see, for example, box 4.1 on page 120).
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A does not diderelativeto 8

Partial FBDs
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Figure 3.15: Object #4 does not slide
relative to the plane B.

(Filename:tfigure2.noslip)

Partial FBDs

N

‘¢

Figure 3.16: Two ways of characterizing
friction: the friction coefficient w« and fric-
tion angle ¢.

(Filename:tfigure2.friction.angle)
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We use the phrase frictionless to mean that there is no tangential force component
and not the misleading words “ perfectly smooth”. We use the phrase no slip to mean
that no tangential motion is allowed and not the misleading words “ perfectly rough”.

Rolling contact

An idedlization for the non-skidding contact of balls, wheels, and the like is pure
rolling.

Objects A and B areinpurerolling contact whentheir (relatively convex)
contacting points have equal velocity. They are not slipping, separating,
or inter penetrating.

Free body diagrams
B /
B F
B B

Figure 3.17: Rolling contact: Points of contact on adjoining bodies have the same velocity,
VA= V. But, @4 isnot necessarily equal to @ g.

(Filename:tfigure2.rolling.contact)

Most often, we are interested in cases where the contacting bodies have some non-
zero relative angular velocity — aball sitting still onlevel ground may be technically
in rolling contact, but not interestingly so.

The simplest common example is the rolling of a round wheel on aflat surface
in two dimensions. See figure 3.18. In practice, there is often confusion about the

FBD of Wheel

Myheetd J L

~>

ﬁAszZO

Figure 3.18: Pureroalling of around wheel on aflat Sopein two dimensions.

(Filename:tfigure2.pure.rolling.wheel)

direction and magnitude of theforce F shown inthefreebody diagramin figure 3.18.
Hereisarecipe:

1) Draw F as shown in any direction, tangent to the surface.
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2.) Solve the statics or dynamics problem and find F. (It may turn out to be a
negative force, which isfine.)

3.) Check that rolling is really possible; that is, that slip would not occur. If the
force is greater than the frictional strength, |F| > wN, the assumption of
rolling contact is not appropriate. In this case, you must assumethat F = uN
or F = —uN and that slip occurs; then, re-solve the problem.

FBD of Ball

Figure 3.19: Rolling ball in 3-D. The force F and moment M are applied loads from, say, wind,
gravity, and any attachments. N isthe normal reaction and F1 and F» arethein gl ane components of
the frictional reaction. One must check the no-slip condition, N2 > FZ + F3.

(Filename:tfigure2.3D.rolling)

Inthree-dimensional rolling contact, we have afree body diagram that againlooks
like a free body diagram for non-slipping frictional contact. Consider, for example,
the ball shown in figure 3.19. For the friction force to be less than the friction
coefficient times the normal force, we have

JFE+F? < uN o F24+F2 < u®N? no slip condition

Rolling is just a specia case of frictional contact. It is the case where bodies
contact at asingle point (or on aline, aswith cylinders) and have relative rotation yet
have no relative velocity at their contacting points. The tricky part about rolling is
the kinematic analysis. This kinematics, we take up in section 8.3 on page 467 after
you have learned more about angular velocity @.

Rolling resistance

Non-ideal rolling contact includes provision for rolling resistance. Thisresistanceis
simply represented by either moving the location of the point of contact force or by a
contact couple. Rolling resistance leads to subtle questions which we would like to
finesse here. A brief introduction is given in chapter 10.

|deal wheedls

Anidea whedl isan approximation of areal wheedl. Itisasensibleapproximationif the
mass of thewheel isnegligible, bearing frictionisnegligible, and rolling resistanceis
negligible. Free body diagrams of undriven ideal wheelsin two and three dimensions
are shown in figure 3.20. Thisidealization is rationalized in chapter 4 in box 4.1 on
page 120. Note that if the wheel is not massless, the 2-D free body diagram 1ooks
more like the one in figure 3.20b with Feyiction < #N.
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(a) Ideal massless wheel (b) Driven or braked wheel possibly

with mass

Ffricti on

1\

' T\F N

Figure 3.20: An ideal wheel is masdess, rigid, undriven, round and rolls on flat rigid ground
with no rolling resistance. Free body diagrams of ideal undriven wheels are shown in two and three
dimensions. The force F shown in the three-dimensional picture is perpendicular to the path of the
wheel. (b) 2D free body diagram of awheel with mass, possibly driven or braked. If the wheel has
mass but is not driven or braked the figure is unchanged but for the moment M being zero.

(Filename:tfigure2.idealwheel)

3.2 THEORY
Conformal contact of rigid bodies. a near impossibility

If you take two arbitrary shaped rigid objects and make them
touch without overlapping you will most often only be able to make
contact at a few points (typically 1 to 3 points in 2D, and 1 to 6
pointsin 3D). Cut out two pieces of cardboard (leaving no straight
edges) and slide them around on a table and you will see this.

2D

But machines are not made of random parts. Many parts are
made to conform, like an axle and a bearing, and many parts are
machined with flat surfaces and thus seem to conform with each
other whether or not by explicit intent. Many machined objects}em
nominally (in name) conform. But do they really conform?

Let us consider the case of two rigid objects pressed together
at their flat surfaces. We can think of arigid object as a limiting
case of stiffer and stiffer objects; and we can think of flat surfaces
as the limiting case of less and less rough surfaces. Now imagine
pressing two objects together that are not quite flat and are also not
quiterigid.

On the one hand, no matter how stiff the objects so long as
they have a little compliance, if you made them flatter and flatter,

eventually the little bit of deformation from your pressing would
make them conform and they would make contact along the contact
surfaces (where the details of the pressure distribution still would
depend on the shape of the bodies away from the contact area).

On the other hand, no matter how flat the contact surfaces (so
long as they were not perfectly flat), if you made them stiffer and
gtiffer, the deformation would be extinguished and eventually they
would only make contact at afew points (asin the figure above).

To get the idea considering two springs in paralel that have
amost equal length. Consider the limits as the lengths become
matched and as the stiffnesses go to infinity (see problem. ?? on
page ??).

That is, the meaning of the phrase ‘flat and rigid’ depends on
whether you first think of the objects as flat and then rigid, or first
rigid and then flat. In math language this dependence on the order
of limitsis called adistinguished limit. Here it means that the idea
of rigid objects touching on flat surfaces is ill-defined.

This distinguished limit is not a mathematical fine point. It
corresponds to the physical reality that things which look flat and
hard touch each other with a pressure distribution that is highly
dependent on fine details of construction and loading.

In many mechanicsproblemsone can, by meansof theequations
of elementary mechanicstaught here, find an equivalent force system
to that of the micro-contact force distribution. Using more advanced
mechanics reasoning (the theory of elasticity) and computers (finite
element programs) one can estimate certain features of the details
of the contact pressure distribution if one knows the surface shapes
accurately. But in many mechanics calculations the details of the
contact force distribution are left unknown.
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Extended contact

When things touch each other over an extended region, like the block on the plane of
fig. 3.214, it is not clear what forces to put where on the free body diagram. On the
one hand one imagines reality to be somewhat reflected by millions of small forces
asin fig. 3.21b which may or may not be divided into normal (n;) and frictional (f;)
components. But one generally is not interested in such detail, and even if interested
one cannot find it easily (see box 3.1 on page 94).

A simple approach isto replace the detail ed force distribution with asingle equiv-
alent force, asshownin fig. 3.21c broken into components. The location of thisforce
is not relevant for some probl ems. @

If one wants to make clear that the contact forces serve to keep the block from
rotating, one may replace the contact force distribution with a pair of contacts at the
cornersasin fig. 3.21d.

Summary of free body diagrams.

e Draw one or more clear free body diagrams!
e Forcesand momentsonthefreebody diagram show all mechanical interactions.
e Every point ontheboundary of abody hasaforcein every direction that motion
is either being caused or prevented. Similarly with torques.
¢ If you do not know the direction of aforce, use vector notation to show that the
direction is yet to be determined.
o Leave off the free body diagram forces that you think are negligible such as,
possibly:
— Theforce of air on small slowly moving bodies;
— Forces that prevent motion that is already prevented by a much stiffer
means (as for the torques at each of a pair of hinges);
— Non-collisional forces, such as gravity, during a collision.
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@ In3D, contact force distributions cannot
always be replaced with an equivalent force
at an appropriate location (see section 2.5).
A couple may be required. Nonetheless,
many people often make the approximation
that a contact force distribution can be re-
placed by aforce at an appropriate location.
This approximation neglects any frictional
resistance to twisting about the normal to
the contact plane.
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Figure3.21: Thecontact forcesof ablock
on a plane can be sensibly modeled in var-
ious ways.

(Filename:tfigure.conformalblock)
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3.3 Action and reaction on partial FBD’s of interacting bodies

Imagine bodies A and B are interacting and that you
want to draw separate free body diagrams (FBD'’s) of each.

Part of the FBD of each showstheinteraction force. The FBD of A
shows the force of B on A and the FBD of 8 shows the force of
A on B. Toillustrate the concept, we show partial FBD's of both
A and B using the principle of action and reaction. Items (a- d)
are correct and items (e - g) are wrong.

Correct partial FBD'’s

F
(@ \ @
-F

(@ Here are some good partiad FBD's: the arrows are equa and
opposite and the vector notations are opposite in sign.

.

(b) These FBD's are also good since the opposite arrows multi-
plied by equal magnitude F produce net vectors that are equal and

opposite.
N X
-F B

(c) The FBD’s may look wrong, and they are impractically mis-
leading and not advised. But technically they are okay because we
take the vector notation to have precedence over the drawing inac-

curacy.

(b) .
F

|

(©) X

F
(d) )
o 4

(d) The FBD's may look wrong but since no vector notation is
used, theforces should beinterpreted asin thedirection of thedrawn
arrows and multiplied by the shown scalars. Since the same arrow
is multiplied by F and —F, the net vectors are actually equal and
opposite.

Wrong partial FBD’s

@) 4\@

(e) The FBD’s are wrong because the vector notation F tokes
precedence over the drawn arrows. So the drawing shows the same

force F acting on both # and 8B, rather than the opposite force.

F
(f) .

7%

(f) Since the opposite arrow is multiplied by the negative scalars,
the FBD’s here show the same force acting on both +4 and B.
Treating a double-negative as a negative is acommon mistake.

(0) /F@

(g The FBD's are obviously wrong since they again show the
same force acting on 4 and 8. These FBD’s would represent the
principle of double action which applies to laundry detergents but
not to mechanics.
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SAMPLE 3.1 A massand a pulley. A block of mass mis held up by applying a
force F through a massless pulley as shown in the figure. Assume the string to be
massless. Draw free body diagrams of the mass and the pulley separately and as one
system.

Solution Thefreebody diagrams of the block and the pulley are shownin Fig. 3.23.
Since the string is massless and we assume an ideal massless pulley, the tension in
the string is the same on both sides of the pulley. Therefore, the force applied by the
string on the block is simply F. When the mass and the pulley are considered as one
system, the force in the string on the | eft side of the pulley doesn’t show becauseit is
internal to the system.

R R
P
A a2
S
F F F
B8
F

mg

Figure 3.23: The free body diagrams of the mass, the pulley, and the mass-pulley system. Note
that for the purpose of drawing the free body diagram we need not show that we know that R = 2F.
Similarly, we could have chosen to show two different rope tensions on the sides of the pulley and
reasoned that they are equal asisdonein the text.

(Filename:sfig2.1.02a)

<((o))>

4 F
Figure 3.22: ienamesiiz2 1.02)
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SAMPLE 3.2 Forcesinstrings. A block of massmisheldin position by strings AB
T1= B Ca~=>T2  and AC asshownin Fig. 3.24. Draw afree body diagram of the block and write the
f vector sum of all the forces shown on the diagram. Use a suitable coordinate system.

i A

m

—2m—--1m—

Figure 3.24: (Filename:sfig2.1.2a)

Solution To draw a free body diagram of the block, we first free the block. We
cut strings AB and AC very close to point A and show the forces applied by the cut
strings on the block. We also isolate the block from the earth and show the force due
to gravity. (See Fig. 3.25.)
/ T2 Towritethe vector sum of al theforces, we need to writetheforcesasvectors. To
write these vectors, we first choose an xy coordinate system with basis vectorsz and
J asshown in Fig. 3.25. Then, we express each force as a product of its magnitude
and a unit vector in the direction of the force. So,

J = A TAB
L l T1=Tikpg = Tlﬁ,
h mg AB
where Fag is avector from A to B and |Fag| is its magnitude. From the given
B geometry,
2mj G Fas = —2mi+2mj
~ 2m(—i + J) 1 .
3 = A = ———=— = —=(=i+]).
-2mi /22 1 92 h ﬁ J
Figure 3.25: Free body diagram of the  Thys
block and adiagram of the vector 7 ag. ' N 1
(Filename:sfig2.1.2b) T]_ = Tlﬁ(_i + j)
Similarly,
T T, i +2)
2 = To—(
\/E J
mg = -—-mgj.
Now, we write the sum of al the forces:
Y>F = T1+T2+mg
T1 T2>A (Tl 2T )A
——+—=)i+|—=+—"F%-mg)J.
< 2 )T\ Bt
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SAMPLE 3.3 Two bodies connected by a massless spring. Two carts A and B are
connected by amassless spring. The carts are pulled to the left with aforce F and to
the right with aforce T as shown in Fig. 3.26. Assume the wheels of the cartsto be
massless and frictionless. Draw free body diagrams of

o cart A,
e cart B, and
e carts A and B together.

Solution Thethreefreebody diagramsareshowninFig. 3.27 (a) and (b). InFig. 3.27
(a) theforce Fs is applied by the spring on the two carts. Why is this force the same
on both carts? In Fig. 3.27(b) the spring isa part of the system. Therefore, the forces
applied by the spring on the carts and the forces applied by the carts on the spring are
internal to the system. Therefore these forces do not show on the free body diagram.

Notethat the normal reaction of the ground can be shown either as separate forces
on the two wheels of each cart or as aresultant reaction.

mag
mag mBgl

' }

F <= Av \j\g—b Fs Fs(-% B —Z—bT
NAT Ng
@)
mAgI mBgi
P A Uy B ]

] !

Ng
(b)

Figure 3.27: Free body diagrams of () cart A and cart B separately and (b) cart A and B together

(Filename:sfig2.1.3b)

99

T

1

Figure 3.26: Two carts connected by a
massless spring

(Filename:sfig2.1.3a)
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/ —_friction
T . .
l A/fl‘l ctionless

o/

Figure 3.28: Two blocksheldin place on
africtionless inclined surface

(Filename:sfig2.1.4a)

- ul2
o/

Figure 3.30: Two blocks side down a
frictional inclined plane. The blocks are
connected by alight rigid rod.

(Filename:sfig2.1.15)

CHAPTER 3. Free body diagrams

SAMPLE 3.4 Sacked blocks at rest on an inclined plane. Blocks A and B with
masses m and M, respectively, rest on africtionless inclined surface with the help of
force T asshown in Fig. 3.28. Thereisfriction between the two blocks. Draw free
body diagrams of each of the the two blocks separately and a free body diagram of
the two blocks as one system.

Solution Thethree free body diagrams are shownin Fig. 3.29 (a) and (b). Note the
action and reaction pairs between thetwo blocks; the normal force N and thefriction
force F; between the two bodies A and B. If we consider the two blocks together as
a system, then the forces Na and F; do not show on the free body diagram of the
system (See Fig. 3.29(b)), because now they are internal to the system.

Na T

s X G
AR 7

mg Ns Mg Ns Mg
(€Y (b)

Figure 3.29: Free body diagrams of (a) block A and block B separately and (b) blocks A and B
together.

(Filename:sfig2.1.4b)

_SAMPLE 3.5 Two blocks slide down a frictional inclined plane. Two blocks of
identical massbut different material properties are connected by amasslessrigid rod.
The system dlides down an inclined plane which provides different friction to the two
blocks. Draw free body diagrams of the two blocks separately and of the system (two
blocks with the rod).

Solution The Free body diagrams are shown in Fig. 3.31. Note that the friction
forces on the two blocks are different because the coefficients of friction are different
for the two blocks. The normal reaction of the plane, however, is the same for each
block (why?).

J
)
L. . <
l fl f2
\
T
or.. N mgi N; mgi or..
@ (b)

Figure 3.31: Free body diagrams of (a) the two blocks and the rod as a system and (b) the two
blocks separately.

(Filename:sfig2.1.15a)
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SAMPLE 3.6 Massless pulleys. A force F is applied to the pulley arrangement
connected to the cart of mass m shown in Fig. 3.32. All the pulleys are massless and < :

frictionless. Thewheels of the cart are also massless but there is friction between the 2 - u
wheels and the horizontal surface. Draw afree body diagram of the cart, its wheels, el
and the two pulleys attached to the cart, al as one system.

Figure 3.32: A cart with pulleys

(Filename:sfig2.1.7a)

Solution Thefreebody diagram of the cart systemisshown in Fig. 3.33. Theforce
in each part of the string is the same because it is the same string that passes over all
the pulleys.

F

F{—:O_ ‘mg
F:—?;@_

F ® ®

Y

Ny N>

Figure 3.33: Free body diagram of the cart. rienamessigz.1.71)

SAMPLE 3.7 Two carts connected by pulleys. The two masses shown in Fig. 3.34

have frictionless bases and round frictionless pulleys. The inextensible massless cord y
connecting them is always taut. Mass A is pulled to the left by force F and mass B X
is pulled to the right by force P as shown in the figure. Draw free body diagrams of

F a b =]
each mass.
e

o . Figure 3.34: T t ected b
Solution LetthetensioninthecordbeT. Sincethepulleysand thecord aremassless, ma%geﬁspu“eysl o carts com Y

he tension is the same in each section of the cord. This equality is clearly shownin (Filenamesstig2.1.12)
he Free body diagrams of the two masses below.

T T
F P
] A -@j:: T g B ey
l T -~ I
ONN A0 ® | ©
T m,g T t m.g 1
Na, Na, Ng, Ng,

FIgUI’e 335 Free bOdy diagrams of the two masses. (Filename:sfig2.1.12a)

Comments. We have shown unequal normal reactions on the wheels of mass B. In
fact, the two reactions would be equal only if the forces applied by the cord on mass
B satisfy a particular condition. Can you see what condition they must satisfy for,
say, Na, = Na,. [Hint: think about the moment of forces about the center of mass
Al
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SAMPLE 3.8 Sructureswith pin connections. A horizontal force T is applied on

and the structure including the spring.

support (T is an externall lied force).
Figure 3.36: (rilcname:stiez 1.5) pport ( y P )

By By
‘4— Bx —FT
A mg mg A
T £ e | Fs<—1—>T
A c, Ay
(€Y (b)

the structure shown in the figure. The structure has pin connectionsat A and B and a
roller support at C. Bars AB and BC arerigid. Draw free body diagrams of each bar

Solution Thefreebody diagrams are shown in figure 3.37. Note that there are both
vertical and horizontal forces at the pin connections because pins restrict translation
in any direction. At theroller support at point C there is only vertical force from the

Figure 3.37: Freebody diagrams of (a) the individual bars and (b) the structure as awhole.

(Filename:sfig2.1.5a)

SAMPLE 3.9 Aunicyclistinaction. A unicyclist weighing 160 Ibs exertsaforce on

reasonable assumptions if required.

interaction at the seat.
j l“l
L. F,
1
. 30 Ibf
Figure 3.38: The unicyclist img F
(Filename:sfig2.1.8) N — 2
F 1
Ny
<
F, t = Fs
30 Ibf

0

Figure 3.39: Free body diagram of the cyclist and the cycle. ritensme:stiz2 1.52)

the front pedal with avertical component of 301bf at the instant shown in figure 3.38.
The rear pedal barely touches the other foot. Assume the wheel and the frame
are massless. Draw free body diagrams of the cyclist and the cycle. Make other

Solution Letusassume, thereisfriction between the seat and the cyclist and between
the peda and the cyclist’'s foot. Let's also assume a 2-D analysis. The free body
diagrams of the cyclist and the cycle are shown in Fig. 3.39. We assume no couple
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Figure 3.40: A four bar linkage.

(Filename:sfig2.2.1)

CHAPTER 3. Free bodv diaarams

SAMPLE 3.10 Thefour bar linkage shown in the figureis pushed to theright with a
force F asshowninthefigure. PinsA, C & D arefrictionlessbut joint B isrusty and
has friction. Neglect gravity; and assume that bar AB is massless. Draw free body
diagrams of each of the bars separately and of the whole structure. Use consistent
notation for the interaction forces and moments. Clearly mark the action-reaction
pairs.

Solution A ‘good’ pin resists any trandation of the pinned body, but allows free
rotation of the body about an axisthrough the pin. The body reacts with an equal and
opposite force on the pin. When two bodies are connected by a pin, the pin exerts
separate forces on the two bodies. Ideally, in the free body diagram , we should show
the pin, thefirst body, and the second body separately and draw theinteraction forces.
This process, however, results in too many free body diagrams. Therefore, usualy,
we et the pin be a part of one of the objects and draw the free body diagrams of the
two objects.

Note that the pin a joint B is rusty, which means, it will resist arelative rotation
of the two bars. Therefore, we show a moment, in addition to a force, at point B of
each of the two rods AB and BC.

action-reaction pairs action-reaction pairs
By r \ c// \x ~
By — C
l B T/ G cpe=
B e c
Yy

1 Ay ——t
Dx 1
A
Y D,
@
action-reaction pairs action-reaction pairs
o, \ o/ O
_By -C
Bl By l/ T o
Bx < A
‘)MB M (@ B Cy
B
F
A >
1 A - | D
Dy 1
A
Y D,
(b)

Figure 3.41: Style 1: Free body diagrams of the structure and the individual bars. The forces
shown in (a) and (b) are the same.

(Filename:sfig2.2.1b)

Figure 3.41 shows the free body diagrams of the structure and the individual
rods. In thisfigure, we show the forces in terms of their x- and y-components. The
directions of the forces are shown by the arrows and the magnitude is labeled as
Ax, Ay, etc. Therefore, aforce, shown as an arrow in the positive x-direction with
‘magnitude’ Ay, is the same as that shown as an arrow in the negative x-direction
with magnitude — Ayx. Thus, the free body diagramsin Fig. 3.41(a) show exactly the
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sameforces asin Fig. 3.41(b).

In Fig. 3.42, we show the forces by an arrow in an arbitrary direction. The
corresponding labels represent their magnitudes. The angles represent the unknown
directions of the forces.

action-reaction pair action-reaction pair

5 Sed f

B“DMB A
F o, \//‘ L

A action-reaction pair

\\\RA I\

@

action-reaction pair action-reaction pair

Re Re < / ) f
F B\‘)MB -MB}B/rRC )
—)
A\ action-reaction pair
D
N (b) RD’

Figure 3.42: Style 2: Free body diagrams of the structure and the individual bars. The forces
shownin (&) and (b) are the same.

(Filename:sfig2.2.1c)

In Fig. 3.43, we show yet another way of drawing and labeling the free body
diagrams, where the forces are labeled as vectors.

action-reaction pair action-reaction pair

C N C ! \/\-‘ch

RB -RB /fA c

%‘ F-/ o 1
A D actlon-reactl on pair

. ) y,

Rp

D

Figure 3.43: Style 3: Free body diagrams of the structure and the individual bars. The label of a
force indicates both its magnitude and direction. The arrows are arbitrary and merely indicate that a
force or amoment acts on those locations.

(Filename:sfig2.2.1d)

Note: There are no two-force bodies in this problem. Bar AB is massless but is
not a two-force member because it has a couple at its end.



106 CHAPTER 3. Free body diagrams



4 Statics

Statics is the mechanics of things that don't move. But everything does move, at
least alittle. So statics doesn't exactly apply to anything. The statics equations are,
however, a very good approximation of the more general dynamics equations for
many practical problems. The statics equations are also easier to manage than the
dynamics equations. So with little loss of accuracy, sometimes very little loss, and
a great saving of effort, sometimes a very great saving, many calculations can be
performed using a statics model instead of a more general dynamics model. Thus it
is not surprising that typical engineers perform many more statics calculations than
dynamics calculations. Statics is the core of structural and strength analysis. And
even for amoving system, say an accelerating car, statics calculations are appropriate
for many of the parts. Simply put, and perhaps painful to remember when you
complete this chapter and begin the chapters on dynamics, statics is more useful to
most engineers than dynamics.

One possible motivation for studying staticsis that the statics skillsal carry over
to dynamics which is a more general subject. But the opposite is maybe closer to
truth. Staticsisindeed aspecia case of dynamics. But for many engineersthe benefit
of going on from staticsto dynamicsisthe sharpening of the more-useful staticsskills
that ensue.

How does general mechanics simplify to statics?

The mechanics equations in the front cover are applicable to everything most engi-
neers will ever encounter. The statics equations are a special case that apply only
approximately to many things. In statics we set the right hand sides of equations |
and I to zero. The neglected termsinvolve masstimes acceleration and are called the

inertial terms. For staticswe set theinertial terms L and H ¢ tozero. Thuswereplace
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the linear and angular momentum balance equations with their simplified forms

Y F=0 and > Mc=0 (Ic,llc)
All external All external
forces torques

which are called the force balance and moment balance equations and together are
called the equilibrium equations. The forces to be summed are those that show on a
free body diagram of the system. The torques that are summed are those due to the
same forces (by means of 7; /c X 17, ) plus those due to any force systems that have
been replaced with equivalent couples. If the forces on a system satisfy egs. Ic and
Ilc the system is said to be in static equilibrium or just in equilibrium.

A system is in static equilibrium if the applied forces and moments add to
zero.

Which can also be stated as

The forces on a system in static equilibrium, considered as a system, are
equivalent to a zero force and a zero couple.

The approximating assumption that an object isin static equilibrium isthat the forces
mediated by an object are much larger than the forces needed to accelerate it. The
statics equations are generally reasonably accurate for

e Things that a normal person would call “still” such as a building or bridge on
acam day, and a sleeping person; for

e Thingsthat move slowly or with little acceleration, such as atractor plowing a
field or the arm of a person holding up a book while seated in a smooth-flying
airplane; and for

o Parts that mediate the forces needed to accelerate more massive parts, such
as gears in atransmission, the rear wheel of an accelerating bicycle, the strut
in the landing gear of an airplane, and the individual structural members of a
building swaying in an earthquake.

Quantitative estimation of the goodness of the statics approximation is not a statics
problem, so we defer it until the chapters on dynamics.

How is statics done?

The practice of staticsinvolves:

o Drawing free body diagrams of the system of interest and of appropriate sub-
systems;

e writing equations Ic and Ilc for each free body diagram; and

e using vector manipulation skills to solve for unknown features of the applied
loads or geometry.



4.1. Satic equilibrium of one body

The organization of this chapter
This whole chapter involves drawing free body diagrams and apply the force and
moment balance equations. The chapter development is, roughly, the application of
this procedure to more and more complex systems. We start with single bodiesin the
next key section. We then go on to the most useful examples of composite bodies,
trusses. The relation between statics and the prediction of structural failure is next
explained to be based on the concept of “internal” forces. Springs are ubiquitous
in mechanics, so we devote a section to them. More difficult statics problems with
composite bodies, mechanisms and frames, come next. Hydrostatics, useful for
understanding the forces of water on a structure, is next. The final section serves as
a cover for harder and three dimensiona problems associated with all of the statics
topics but has little new content.

Further statics skillswill be developed later in the dynamics portion of the book.
In particular, statics methods that depend on kinematics (work methods) are deferred.

Two dimensional and three dimensional mechanics
Theworldweliveinisthree dimensional. So two dimensional models and equations
are necessarily approximations. The theory of mechanics is a three dimensional
theory that is simplified in two dimensional models. To appreciate the smplification
one needs to understand 3D mechanics. But to understand 3D mechanics it is best
to start practicing with 2D mechanics. Thus, until the last section of this chapter,
we emphasize use of the two dimensional approximation and are intentionally casual
about its precise meaning. We will think of a cylinders and spheres as circles, of
boxes as squares, and of cars asthings with two wheels (onein front, onein back). In
the last section on three dimensional statics we will look more closely at the meaning
of the 2 dimensional approximation.

4.1 Static equilibrium of one body

A body isin static equilibrium if and only if the force balance and moment balance
equations are hold:

F=0 and > Mc=0 (Ic,lic)
All external All external
forces torques
force balance moment balance

for some point C. Is C aspecial point? No. Why? Because the statics equations say
that the net force system is equivalent to a zero force and zero couple at C. We know
from our study of equivalent force systems that this implies that the force system is
equivalent to azero force and zero couple at any and every point. So you can use any
convenient point for the reference point in the moment balance equation.

Example. Asyousit still reading, gravity ispulling you down and forces

from the floor on your feet, the chair on your seat, and the table on your

elbows hold you up. All of these forces add to zero. The net moment of

these forces about the front-left corner of your desk adds to zero. O
In two dimensions the equilibrium equations make up 3 independent scalar equations
(2 components of force, 1 of moment). In 3 dimensions the equilibrium equations
make up 6 independent scalar equations (3 components of force and 3 components
of moment).

We now proceed to consider a sequence of special loading situations. In principle

you don’t need to know any of them, force balance and moment balance spell out the
whole statics story.
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Figure4.1: A setof forcesacting concur-
rently on a particle.

(Filename:tfigure.particleequilib)
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Concurrent forces, equilibrium of a particle

The word particle usually means something small. In mechanics a particle is some-
thing whose spatial extent isignored for one reason or another. If the ‘body’ inafree
body diagram is a particle then all forces on it act at the same point, namely at the
particle, and are said to be concurrent (seefig. 4.1). Forcebalance saysthat theforces
add to zero. The moment balance equation adds no information becauseit isautomat-
ically satisfied (concurrent forces adding to zero have no moment about any point).

B J
| o 30°
~ FB k

Fa
A 1 A
< 75° /,(,450

135°

30° 14

445N

Example. A 100 pound weight hangs from 2 lines. So

L . i+ 1, V3, =
Fi=0 445N (— F Fe(—=i+—Jj) = 0.
> F = (=))+Fa 7 tFe(=5i+—-J)

This can be solved any number of waysto get Fa = 230.3N and Fg =
325.8N. a

Although the moment balance equation has nothing to add in the case of concurrent
forces, it can be used instead of force balance.

Example. Consider the same weight hanging from 2 strings. Moment
balance about point A gives

L R o 1, V3, =
ZMA =0 = rP/AX445N(_J)+rp/AXFB(_EI+7J)+O =

ol

Evaluating the cross products one way or another one again gets Fg =
325.8N. Similarly moment balance about B could be used to find Fa =
230.3N. a

If we thought of moment balance first we could have solved this problem using
moments and said the force balance had nothing to add. In either case, we only have
two useful scalar equilibrium equationsin 2D and 3in 3D for concurrent forcesystems.
The other equations are satisfied automatically because of the force concurrence.

One-force body

Letsfirst dispose of the case of a“one-force” body. Consider afinite body with only
one force acting on it. Assumeitisin equilibrium. Force balance says that the sum
of forces must be zero. So that force must be zero.

If only one force is acting on abody in equilibrium that force is zero.

That was too easy, but a count to 3 wouldn’t feel completeif it didn’t start at 1.
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Two-force body

When only two forces act on a system the situation is also ssimplified, though not
so drastically as the case with one force. To determine the simplification, we apply
the equilibrium equations of statics (Ic and lic) to the body. Consider the free body
diagram of abody B in figure 4.2a. Forces Fp and FQ are acting on B at points P
and Q. First, we have that the sum of all forces on the body are zero,

E F = 0
All external
forces

—

ﬁp+ﬁQ =0 = FPZ—FQ.

Thus, the two forces must be equal in magnitude and opposite in direction. So, thus
far, we can conclude that the forces must be parallel asshownin figure4.2b. But the
forces still seem to have a net turning effect, thus still violating the concept of static
equilibrium. The sum of all external torques on the body about any point are zero.
So, summing moments about point P, we get,

S = o
All external
torques
FopxFg = 0 (F p produces no torque about P.)
= 3 ) — B s _ Top _ _ Tepg
‘rQ/P|<lQ/PXFQ) =0 (o/p = IFoel —  ITppql

So ﬁQ hasto be parallel to the line connecting P and Q. Similarly, taking the sum of
moments about point Q, we get

—XQ/pxﬁQzﬁ

agdﬁ p aso must be paralle to theline connecting P and Q. So, not only are F p and
F g equal and opposite, they are collinear as well since they are parallel to the axis
passing through their points of action (seefig. 4.2¢). Summarizing,

If a body in static equilibriumis acted on by two forces, then those forces
are equal, opposite, and have a common line of action.

A body with only two forces acting on it is called a two-force bodies or two-force
member. If you recognize a two-force body you can draw it in a free body diagram
asin fig. 4.2c and the equations of force and moment balance applied to this body
will provide no new information. This shortcut is sometimes useful for systemswith
several parts some of which are two-force members. Most often springs, dashpots,
struts, and strings are idealized as two-force bodies as for bar BC in the example
below.
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(a) One might imagine this ...

'P 8
/ ,ﬁp

j‘Q/F’

(b)...or this... Fq

(c)...but actudly this. //Fp
Ve ;

Ao R

/P g
FE

P

Figure 4.2 (a) Two forces acting on a
body 8. (b) force balance implies that the
forces are equal in magnitude and opposite
in direction. (c) moment balance implies
that the forces are colinear. Body 8B is a
two-forcemember; thetwoforcesareequal,
opposite, and collinear.

(Filename:tfigure2.two.force)
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Example: Tower and strut

FBD's of Rods AB and BC

Consider an accelerating cart holding up massive tower AB which is
pinned at A and braced by the light strut BC. Therod BC qudifies as
atwo-force member. The rod AB does not because it has three forces
and is also not in static equilibrium (non-negligible accel erating mass).
Thus, thefree body diagram of rod BC showsthetwo equal and opposite
colinear forces at each end parallel to therod and the tower AB does not.
a

Example: Logs asbearings

(.

Consider the ancient egyptian dragging a big stone. If the stone and
ground are flat and rigid, and the log is round, rigid and much lighter
than the stonewe are led to the free body diagram of thelog shown. With
these assumptions there can’t be any resistance to rolling.  Note that
this effectively frictionless rolling occurs no matter how big the friction
coefficient between the contacting surfaces. That the egyptian got tired
comes from logs, ground, stone,not being perfectly flat (or round) and
rigid. (Also, itistiring to keep replacing the logsin the front.) ]

_>Oq_

Example: One point of support

If an object with weight is supported at just one point, that point must be
directly above or below the center of mass. Why? The gravity forcesare
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equivalent to asingle force at the center of mass. The body isthen atwo
force body. Since the direction of the gravity force is down, the support
point and center of mass must be above one another. Similarly if abody
is suspended from one point, the center of gravity must be directly above
or below that point. O

Three-force body

If abody in equilibrium has only three forces on it, again there isa general simplifi- 2D
cation that one can deduce from the general equations of statics

> F=0 and > M. =0.
All external All external
forces torques

The simplification is not as great as for two-force bodies but is remarkably useful
for more difficult statics problems. In box 4.1 on page 113 moment balance about
various axesis used to prove that

for a three-force body to be in equilibrium, the forces
(&) must be coplanar, and

(b) must either have lines of action which intersect at a single point,
or the three forces are parallel.

That is, one could imagine three random forces acting on abody. But, for equilibrium
they must be coplanar and concurrent.

Figure 4.3:  In a three-force body, the
lines of action of the forces intersect at a
single point and are coplanar. The point of
intersection does not have to lie within the

body.

Example: Hanging book box

(Filename:tfigure2.three.force)

4.1 THEORY
Three-force bodies

_Consider abody in static equilibrium with just three forceson it;  axisthrough 71 and 7'». So, the lines of action of all three forces
Fq, F, and Fyactingat 71, F», and F 3. Takingmomentbalance ~ areinthe plane defined by the three points of action and the lines of
about the axis through points at r,and r3impliesthat thelineof  action of F5 and F3 must intersect. Taking moment bal ance about
action of F1 must passthrough that axis. Similarly, for equilibrium  this point of intersection implies that F'1 has line of action passing
to hold, the line of action of F» must intersect the axis through through the same point. (The exceptional caseiswhen F1, F'», and
pointsat 71 and F 3 and the line of action of F'3 mustintersectthe  F3 are parallel and have acommon plane of action.)
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Ideal
massless pulley
Tl = T2 =T

Forces of bearing
on pulley, assuming
no friction

Round, massless,
frictionless pulley.

T

\

Figure 4.4: (a) An ideal massless pul-
ley, (b) FBD of idealized massless pulley,
detailing the frictionless bearing forces and
showing forces at the cut strings, (c) final
FBD after analysis.

(Filename:tfigure3.pulleytheoryl)
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A box with abook insideishung by two stringsso that it isin equilibrium
on when level. The lines of action of the two strings must intersect
directly above the center of mass of the box/book system. |

Example: Which way do the forces go? ‘

The maximum angle between pairs of forces can be (a) greater than, (b)
equal to, or () lessthan 180°. In case (b) force balance in the direction
perpendicular to line ADC shows that the odd force must be zero. In
case (@) force balance perpendicular to the middle force implies that the
outer two forces are both directed from D or both directed away from D.
Force balance in the direction of the middle force shows that it has to
have the opposite sense than the outer forces. If the others are pushing
inthen it is pulling away. If the outer forces are pulling away than it is
pushing in. In case (c) application of force balance perpendicular to the
force at C showsthat the other two forces must both pull away towards D
or both push in. Then force balance along C shows that all three forces
must have the same sense. All three forces are pulling away from D or
all three are pushing in. a

Theidealized massless pulley

Both real machines and mechanical models are built of various building blocks. One
of the standards is a pulley. We often draw pulleys schematically something like in
figure 4.4a which shows that we believe that the tension in a string, line, cable, or
rope that goes around an ideal pulley is the same on both sides, Ty = T, = T. An
ideal pulley is
(i.) Round,

(ii.) Hasfrictionless bearings,

(iii.) Hasnegligibleinertia, and

(iv.) Iswrapped with aline which only carries forces along its length.
We now show that these assumptions lead to theresult that Ty = T, = T. Firgt, look
at afree body diagram of the pulley with alittle bit of string at both ends. Since we
assume the bearing has no friction, the interaction between the pulley bearing shaft
and the pulley has no component tangent to the bearing.

Tofind therelation between tensions, we apply angular momentum balance (equa-

tion I1) about point O '
[ #o = Ho &

Evaluating the left hand side of egn. 4.1

S Mok =

(4.1)

R>To, — R1T1 + bearing friction
—,_J

0
R(T> — T1), sinceRi = R, = R.
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Because there is no friction, the bearing forces acting perpendicular to the round
bearing shaft have no moment about point O (see also the short example on page 71).
Becausethe pulley isround, R1 = R = R.

When mass is negligible, dynamics reduces to statics because, for example, all
the terms in the definition of angular momentum are multiplied by the mass of the
system parts. So the right hand side of egn. 4.1 reduces to Ho - k=0.

Putting these assumptions and results together gives

[> Mo =Ho| &
= R(T,—T) =0
=>T1=T

Thus, the tensions on the two lines of an ideal massless pulley are equal.

Lopsided pulleys are not often encountered, so it isusually satisfactory to assume
round pulleys. But, in engineering practice, the assumption of frictionless bearings
is often suspect. In dynamics, you may not want to neglect pulley mass.

Lack of equilibrium asa sign of dynamics

Surprisingly, statics calculations often give useful information about dynamics. If,
in a given problem, you find that forces cannot be balanced this is a sign that the
related physical system will accelerate in the direction of imbalance. If you find that
moments cannot be balanced, thisis asign of rotational acceleration in the physical
system. The first example (‘block on ramp’) in the next subsection illustrates the
point.

Conditional contact, consistency, and contradictions
Thereisanatural hope that a subject will reduce to the solution of somewell defined
equations. For staticsproblemsonewould liketo specify the object(s) theforcesonthe
them, the nature of the interactions and then just write the force balance and moment
balance equations and be sure that the solution follows by solving the equations.

For better and worse, things are not always this simple. For better because it
means that the recipes are still not so well defined that computers can easily steal the
subject of mechanics from people. For worse because it means people have to think
hard to do mechanics problems.

Many mechanics problems do have a solution, just one, that follows from the
governing equations. But some reasonable |ooking problems have no solutions. And
some problems have multiple solutions. When these mathematical anomalies arise,
they usually have some physical importance. Even for problems with one solution,
therouteto finding that solution can involve more than simple equation manipulation.

One source of these difficulties is the conditional nature of the equations that
govern contact. For example:

e The ground pushes up on something to prevent interpenetration if the pushing

is positive, otherwise the ground does not push up.

e The force of friction opposes motion and has magnitude wN if there is dlip,

otherwise the force of friction is something less than N in magnitude.

e The distance between two points is kept from increasing by the tension in the

string between them if the tension is positive, otherwise the tension is zero.
These conditions are, implicitly or explicitly, in the equations that govern these inter-
actions. One does not always know which of the contact conditions, if either, apply
when one starts a problem. Sometimes multiple possibilities need to be checked.
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Example: Robot hand

Roboticist Michael Erdmann has designed a palm manipulator that ma-
nipul ates obj ectswithout squeezing them. Theflat robot palmsjust move
around and the object consequently slides. Determining whether the ob-
ject dideson onetheother or possibly on both handsin agiven movement
isamatter of case study. The computer checks to seeif the equilibrium
equations can be solved with the assumption of sticking or dlipping at
one or the other contact. a

Sometimes there is no statics solution as the following simple example shows.

Example: Block on ramp.

450

A block with coefficient of friction © = .5isin static equilibrium sliding
steadily down a45° ramp. Not! Thetwo forcesin thefree body diagram
cannot add to zero (since they are not parallel). The assumptions are
not consistent. They lead to a contradiction. Given the geometry and
friction coefficient one could say that the assumption of equilibrium
was inconsistent (and actually the block accelerates down the ramp). If
equilibrium is demanded, say you saw the block just sitting there, then
you can pin the contradiction on amis-measured slope or amis-estimated
coefficient of friction. |

The following problem shows a case where a statics problem has multiple solutions.
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Example: Rod pushed in a channel.

FBD 1 FBD2 ...

or

A light rod is just long enough to make a 60° angle with the walls of a
channel. One channel wall isfrictionless and the other has © = 1. What
is the force needed to keep it in equilibrium in the position shown? If
we assume it is diding we get the first free body diagram. The forces
shown can be in equilibrium if all the forces are zero. Thus we have the
solution that the rod slides in equilibrium with no force. If we assume
that the block is not dliding the friction force on the lower wall can be
at any angle between +45°. Thus we have eguilibrium with the second
FBD for arbitrary positive F. Thisis a second set of solutions. A rod
like this is said to be self locking in that it can hold arbitrary force F
without dipping. That we have found freely slipping solutions with no
force and jammed solutions with arbitrary force corresponds physically
to one being able to easily dide a rod like this down a slot and then
have it totally jamb. Some rock-climbing equipment depends on such
self-locking and easy release. O

One might not at first thing of string connections as being a form of contact, but
the whether a string is taught or not is the same as whether contact is made with a
frictionless spherical wall or not.

Example: Particle held by two strings.

b— v d b—s—d

Two inextensible strings are dlightly slack when no load is applied to
the knot in the middle. When aload is applied what is the tension in
the strings? Force balance along the strings gives us one equation for
the two unknown tensions. There are many solutions. There are even
solutions where both tensions are positive. But geometry does not allow
both of the strings to be at full length simultaneously. Thus we have to
assume one of the strings has no tension when applying force balance.
If we pick the wrong string we will get the contradiction that its tension
is negative. O

Thetriviality of this example perhaps hides the problem, so hereit isagain with three
strings.
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Example: Particle held by three strings.

Three inextensible strings are just slightly slack when no load is applied
totheknotinthemiddle. When aload isapplied what isthetensioninthe
strings? Planar force balance gives us two equations for the 3 unknown
tensions. These equations have many solutions, even some with positive
tension in all three strings. But geometry does not allow all three strings
to be at their extended lengths simultaneously. So at least one string has
to be slack and have no tension. If you guess the right one you will find
positive tension in the other two strings. |f you guess the wrong oneyou
will get the contradiction that one of the strings has negative tension. O

If this example still seems too easy to demonstrate that sometimes you have to think
about which of two or more conditionals needs to be enforced, try a case with four
stringsin three dimensions.

These exampl es, and one could construct many more, show that you have to look
out for static equilibrium being not consistent with other information given. This
contradiction could arise in an il-posed problem, a problem that isreally a dynamics
problem, or as you eliminate possibilities that a given well-posed statics problem
superficialy alows.

Thegeneral case
For one body, whether in 1D,2D or 3D the equations of equilibrium are:

Y F=0 and > Mz=0 (Icllc)
All external All external

forces torques
————
force balance moment balance

Solving a statics problem means using these equations, along with any available
information about the forcesinvolved, to find various unknowns. For some problems,
the various tricksinvolving one-force, two-force, and three-force bodies can serve as
atime saver for solving these equations and can help build your intuition. For some
contact problems you may have to try various cases. But ultimately, always, statics
means applying the force balance and moment balance equations.

Linearity and superposition

For a given geometry the equilibrium equations are linear. That is: If for a given
object you know aset of forcesthat isin equilibrium and you also know a second set
of forcesthat isin equilibrium, then the sum of the two setsis also in equilibrium.
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Example: A bicycle wheel

_T. _T.
TE L

Fe, Fa,
w w

The free body diagram of an ideal massless bicycle wheel with avertical
load is shown in (&) above. The same wheel driven by a chain tension
but with no weight is shown in equilibrium in (b) above. The sum of
these two load sets (c) is therefor in equilibrium. a

Theideathat you can add two solutions to a set of equationsis called the principle of
superposition, sometimes called the principle of superimposition®. The principle
of superposition provides a useful shortcut for some mechanics problems.

119

@ Here'sa pun to help you remember the
idea. When talkative Sam comes over you
get bored. When hungry Sally comes over
youreluctantly go get asnack for her. When
Sam and Sally come over together you get
bored and reluctantly go get a snack. Each
oneof themisimposing. By the principleof
superimposition their effectsadd when they
are together and they are super imposing.
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4.2 Wheels and two force bodies

One often hears whimsical reverence for the “invention of the
wheel.” Now, using elementary mechanics, we can gain some ap-
preciation for this revolutionary way of dliding things.

Without a wheel the force it takes to drag something is about
uW. Since u ranges between about .1 for teflon, to about .6 for
stone on ground, to about 1 for rubber on pavement, you need to
pull with a force that is on the order of a half of the full weight of
the thing you are dragging.

You have seen how rolling on round logscleverly take advantage
of the properties of two-force bodies (page 112). But that good idea
has the major deficiency of requiring that logs be repeatedly picked
up from behind and placed in front again.

The simplest wheel design usesadry “journa” bearing consist-
ing of a non-rotating shaft protruding through a near close fitting
hole in the wheel. Here is shown part of a cart rolling to the right
with awheel rotating steadily clockwise.

To figure out the forcesinvolved we draw afree body diagram of the
wheel. We neglect the wheels weight because it is generally much
smaller than the forces it mediates. To make the situation clear the
picture shows too-large a bearing holer .

The force of the axle on the wheel has a norma component N and
africtional component F. The force of the ground on the wheel has
apart holding the cart up Fy and a part along the ground Fx which
will surely turn out to be negative for a cart moving to theright. If
we take the wheel dimensionsto be known and aso the vertical part
of the ground reaction force Fy we have as unknowns N, F, 6 and
Fx. To find these we could use the friction equation for the dliding
bearing contact
F= [J,N;
force balance

Fxi + Fyj 4+ N(—sinfi — cos j) + F(cosoi — sinf j) = 0,

which could be reduced to 2 scalar equations by taking components
or dot products; and moment balance which is easiest to seein terms
of forces and perpendicular distances as

Fr+ FxR=0.

Of key interest isfinding the force resisting motion Fyx. With alittle
mathematical manipulation we could solve the 4 scalar equations

above for any of Fx, N, F, and 6 interms of r, R, Fy, and u. We
follow a more intuitive approach instead.

As modeled, the whedl is a two-force body so the free body
diagram shows equal and opposite colinear forces at the two contact
points.

L

T
Thefrictionangle¢ describesthefriction betweentheaxleand wheel
(withtan¢ = ). The angle o describes the effective friction of the
wheel. Thisis not the friction angle for sliding between the wheel
and ground which is assumed to be larger (if not, the wheel would
skid and not roll), probably much larger. The specific resistance or
the coefficient of rolling resistance or the specific cost of transport
isueff = tana. (If therewas no wheel, and the cart or whatever was
just dragged, the specific resistance would be the friction between
the cart and ground pueff = i.)

Lets consider two extreme cases. one is a frictionless bearing
and the other is a bearing with infinite friction coefficient © — oo
and ¢ — 90°.

n=0

o

In the case that the wheel bearing has no friction we satisfyingly
see clearly that thereis no ground resistance to motion. The case of
infinite friction is perhaps surprising. Even with infinite friction we
have that

. r
sna = =
Thus if the axle has a diameter of 10cm and the wheel of 1 m then
sina islessthan .1 no matter how bad the bearing material. For such
small values we can make the approximation ueff = tana ~ sina
so that the effective coefficient of frictionis.1 or less no matter what
the bearing friction.

The genius of the wheel design is that it makes the effec-
tive friction less than r /R no matter how bad the bearing
friction.
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Going back to the two-force body free body diagram we can seethat

d = d
= rsing = Rsna
= shae = LRsimp. ()

From this formula we can extract the limiting cases discussed pre-
viously (¢ = O0and ¢ = 90°). We can also plug in the small angle
approximations (sine ~ tana and sing =~ tang) if the friction
coefficient islow to get

r
Meff ~ M§~
The effective friction is the bearing friction attenuated by the radius

-1
ratio. Or, we can usethetrigidentity sin = /1 +tan—2  tosolve
the exact equation (*) for

1
MeffZMr— ,
R <\/1+u2(l—r2/R2))

where the term in parenthesis is always less than one and close to
oneif the dliding coefficient in the bearing is low.

Finally we combine the genius of the wheel with the genius of
the ralling log and invent a wheel with rolling logs inside, a ball
bearing whesl.

@) ¥ .

Each ball is atwo force body and thus only transmits radial loads.
Its as if there were no friction on the bearing and we get a specific
resistance of zero, uef = 0. Of course real ball bearings are not
perfectly smooth or perfectly rigid, so itsgood to keepr /R small as
aback up plan even with ball bearings.

By this means some wheels have effective friction coefficients
aslow asabout .003. Theforceit takesto drag something on wheels
can be as little as one three hundredth the weight.




122 CHAPTER 4. Satics



4.1. Satic equilibrium of one body

SAMPLE 4.1 Concurrent forces: A block of mass m = 10kg hangs from strings
AB and AC inthevertical planeasshowninthefigure. Find thetensioninthestrings.

Solution Thefreebody diagram of the block isshownin figure4.6. Sincethe block
isat rest, the equation of force balanceis

S F=0

o Tidag + ToAac — Mgj = 0, (4.2)

where XAB and A gc areunit vectorsin the AB and AC directions, respectively. From
geometry,

~ ' AB —2mi+2mj 1 n n
X = — = =—(—l—|— )
AB |7 aB| 2v2m 2 J
~ T AC 1mi +2mj 1 . R
A = — = =—>0+2))
AC |7 acl V5m V5 /

Dotting egn. (4.2) with 7 we get

A A 12
—— —— 5
—1/v/2 1/4/5

Dotting egn. (4.2) with j and substituting T1 = /2/5 T, we get

2
\/; To(Aag-J) + T2(Apac'j) —mg = O
—— ——
T 1/4/2 2//5
3 V5
~“ To—mg=0 T, = —mg=73.12N
= NG 2 g = 2 3 g

Substituting in Ty = \/g T,, we have Ty = \/g (73.12N) = 46.24N

| T1=46.24N, T, = 73.12N

~ ~
NoOtE: we could also write eqn. (4.2) in matrix form and solve the matrix equation to find T]_ and Tz. Substituting A‘AB and )‘AC in terms

~ N A N
of U and J in eqn. (4.2) and dotting the resulting equation with L and J, we can write eqn. (4.2) as

1 1 U N
L 2 1% mg T + = mg
2 B NN
Using Cramer’s rule for the inverse of a matrix, we get
(Tl)_ m[ % —%}( 0 )_(@mg)
-y / / -
To 3 5 T mg é mg

which is, of course, the same result as we got above.
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Figure 4.5 (iename:stisz anew.1)

™S f T2
v
JLi lmg

Figure 4.6: (sucname:ssie ancw.1a)
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SAMPLE 4.2 A small block of mass m rests on africtionless inclined plane with
the help of a string that connects the mass to a fixed support at A. Find the force in
the string.

Solution Thefree body diagram of the massis shownin Fig. 4.8. The string force
Fs and the normal reaction of the plane N are unknown forces. To determine the

B

Figure 4.7: A mass-particle on an in-
clined plane.

(Filename:sfig2.1.11)

unknown forces, we write the force balance equation, " F = 0,
F;+N+mg=0

We can express the forces in terms of their components in various ways and then
dot the vector equation with appropriate unit vectors to get two independent scalar
equations. For example, let usdraw two unit vectorse; and e, along and perpendicular
to the plane. Now we write the force balance equation using mixed basis vectors é;
and ¢, and i and j:

Fsét + Nén —mgj =0 4.3)

We can now find Fs directly by taking the dot product of the above equation with é;
since the other unknown N isin the é,, direction and ¢, - é; = O:

sing

R ~ .
[egn. (43)] -t = Fs—mg(j-é1) =0 = Fs=mgsiné

y

t L] L] L]
" Note that we did not have to separate out two scalar equations and solvefor Fs and N
X simultaneously. If we needed to find N, we could do that too from a single equation

by taking the dot product of egn. (4.3) with 7:
mgcost 4f 5 mgsing
cos6
mg ~ -~
[egn. (43)]-en = N-mg(j-en)=0 = N =mgcosd
€)

Writing direct scalar equations: You are familiar with this method from your
A elementary physics courses. We resolve al forces into their components along the
0 4 desired directions and then sum the forces. Here, Fs isaong the plane and therefore,
has no component perpendicular to the plane. Force N is perpendicular to the plane
and therefore, has no component along the plane. We resolve the weight mg into two
(b) components: (1) mg cosé perpendicular to the plane (n direction) and (2) mgsiné
Figure 4.9: () Components of mg dlong aong the plane (t direction). Now we can sum the forces:
t and n directions. (b) The mixed basis dot
products: j-é; =sind and j - €, = cosf ZFt:O =

(Filename:sfig2.1.11b)

Fs—mgsing =0; and ZFnzo = N-mgcosd =0

which, of course, is essentially the same as the equations obtained above.



4.1. Satic equilibrium of one body

SAMPLE 4.3 Abar asa 2-force body: A 4 ftlong horizontal bar supports aload of
60 Ibf at one of itsends. The other end is pinned to awall. The bar isa so supported
by astring connected to the load-end of the bar and tied to the wall. Find theforcein
the bar and the tension in the string.

Solution Let us do this problem two ways — using equilibrium equations without
much thought, and using those equations with some insight.

(& Thefreebody diagram of the bar is shown in Fig. 4.11. The moment balance
about point A,Y " M, = 0, gives

0i x T(—coshi +sin6j)+0ix (—Pj) = 0
(T sinok —ePk
(Tesnd—POk = 0  (4.4)
N P 60 bf
[ean. (4.4)] = snd 3
The force equilibrium, 3° F = 0, gives
(Ax —TcosO)i+(Ay+Tsng—P)j = 0  (45)
4
[egn. (45)] -1 = Ax = T cos6 = (1001bf) - E = 801bf
[egn. 45)]-] = Ay=P—-Tsnd = 0

wherethelast equation, Ay = P —T sing = Ofollowsfrom egn. (4.4). Thus,
the force in therod is A = 801bfz, i.e., a purely compressive force, and the
tension in the string is 100 Ibf.

A = 80Ibfi, T=1mmﬂ

(b) From the free body diagram of the rod, we redlize that the rod is a two-force
body, since the forces act at only two points of the body, A and C. The reaction
force at A isasingle force A, and the forces at end C, the tension T and the
load P, sum up to asingle net force, say F. So, now using the fact that the rod
is atwo-force body, the equilibrium equation requires that F and A be equal,
opposite, and colinear (along the longitudinal axis of the bar). Thus,

A=—-F=—Fi.

Now,
F = P+T
—Fi = —Pj+4+Tsin6j—Tcosoi (4.6)
[egn. (46)]-j = P Tsing
sinf %
4
[egn. (46)]-7 = F = Tcosd = (100lbf) - 3 = 801bf.

The answers, of course, are the same.
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Figure 4.14: The free body diagram of
the ladder indicates that it is a three force
body. Since the direction of the forces act-
ing at points B and C are known (the nor-
mal, horizontal reaction at B and thevertical
gravity force at C), it is easy to find the di-
rection of the net ground reaction at A —
it must pass through point D. The ground
reaction F at A can be decomposed into a
normal reaction and a horizontal reaction
(the force of friction, Fs) at A.

(Filename:sfigd.single.ladder.a)
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SAMPLE 4.4 Wil theladder slip? A ladder of length ¢ = 4mrestsagainst awall at
6 = 60°. Assumethat thereisno friction between the ladder and the vertical wall but
there isfriction between the ground and the ladder with .« = 0.5. A person weighing
700N starts to climb up the ladder.

(a) Can the person make it to the top safely (without the ladder slipping)? If not,
then find the distance d along the ladder that the person can climb safely. Ignore
the weight of the ladder in comparison to the weight of the person.

(b) Doesthe“no dip” distance d depend on 67 If yes, then find the angle 6 which

makes it safe for the person to reach the top.

Solution

(@) The free body diagram of the ladder is shown in Fig. 4.14. Thereisonly a
normal reaction R= Ri at A since there is no friction between the wall and the
ladder. Theforceof friction at B isl?s = —Fsi where Fs < uN. To determine
how far the person can climb the ladder without the ladder slipping, we take
the critical case of impending slip. Inthis case, Fs = «N. Let the person be

(b)

at point C, adistance d along the ladder from point B.
From moment balance about point B, >~ Mz = 0, wefind

Fap X R+icpxW = 0
—RCsiNOk +Wdcosbk = 0
d cos6
R = W—
= £sing

From force equilibrium, we get
(R—uN)i+(N—-W)j=0
Dotting egn. (4.7) with j and z, respectively, we get

N = W
R = uN=uW

Substituting thisvalue of R in eqgn. (4.7) we get

AW = Wd c_ose
£sinod
= 0.5-(4m)-tan60°
= 346m

Thus, the person cannot make it to the top safely.

4.7

(4.8)
(4.9)

The*nodlip” distanced dependsontheangled viatherelationshipinegn. (4.8).
The person can climb the ladder safely up to thetop (i.e., d = ¢), if

1
tand = = = 6 =tan L(ut) =63.43°

I

Thus, any angle ® > 64° will allow the person to climb up to the top safely.



4.1. Satic equilibrium of one body

SAMPLE 4.5 How much friction doesthe ball need? A ball of mass m sits between
an incline and a vertical wall as shown in the figure. There is no friction between
the wall and the ball but there is friction between the incline and the ball. Take the
coefficient of friction to be n and the angle of incline with the horizontal to be 6.
Find the force of friction on the ball from the incline.

Solution The free body diagram of the ball is shown in Fig. 4.16. Note that the

normal reaction of the vertical wall, N, the force of gravity, mg, and the normal

reaction of the incline, R, all pass through the center C of the ball. Therefore, the

moment balance about point C, Y M- = 0, gives
= Fs = 0

Thus the force of friction on the ball is zero! Note that Fs is independent of 6,

the angle of incline. Thus, irrespective of what the angle of incline is, in the static
equilibrium condition, thereis no force of friction on the ball.
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SAMPLE 4.6 Can you balance this? A spool of mass m = 2kg restson an incline

@
(b)
(©

@

(b)

Figure 4.18:; (ricnsmestiga singte spoot.a)

(©

as shown in the figure. The inner radius of the spool isr = 200 mm and the outer
radiusis R = 500 mm. The coefficient of friction between the spool and the incline
ispu = 0.4, and the angle of incline & = 60°.

Which way does the force of friction act, up or down the incline?
What isthe required horizonta pull T to balance the spool on theincline?
Isthe spool about to dlip?

Solution

The free body diagram of the spool is shown in Fig. 4.18. Note that the spool
is a 3-force body. Therefore, in static equilibrium all the three forces — the
force of gravity mg, the horizontal pull T, and the incline reaction F — must
intersect at a point. Since T and mg intersect at the top of the inner drum
(point B), the incline reaction force F must be along the direction AB. Now
the incline reaction F is the vector sum of two forces — the normal (to the
incline) reaction N and the friction force Fs (along the incline). The normal
reaction force N passes though the center C of the spool. Therefore, the force
of friction Fs must point up along the incline to make the resultant F point
along AB.

From the moment equilibrium about point A, Y A7IA =0, we get

Fom X (—Mgj) + Fgjp x (TH) =0
Substituting the cross products
Foa X (—mgj) = mgRsinok  and  rgjp x (T3) = —T(Rcost + 1)k

and dotting the entire equation with k, we get

mgRsind = T(RcosO +r)
T sing
= N mgcos@+r/R
V3
= 2kg-9.81m/s*. —2_ =18.88N
21T Bm

T = 18.88N

Tofind if the spool is about to slip, we need to find the force of friction Fs and
seeif Fs = uN. Theforce balance on the spoal, " F = 0 gives

Ti—mgj+ FsA + Na =0 (4.10)

where & and 7 are unit vectors aong the incline and normal to the incline,
respectively. Dotting egn. (4.10) with A we get

Fs = —T(-A)+mg(j-1) =—Tcosd +mgsing
~—— )
cost sing

—18.88N(1/2) + 19.62N(+/3/2) = 7.55N
Similarly, we compute the normal force N by dotting egn. (4.10) with 7:

N = —T@-n)+mg(j-n)=Tsno + mgcosH
= 18.88N(+/3/2) + 19.62N(1/2) = 26.16N
Now we find that ©N = 0.4(26.16 N) = 10.46 N which is greater than Fs =

755N. Thus Fs < N, and therefore, the spool is not in the condition of
impending dlip.
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4.2 Elementary truss analysis

Jointwo pencils (or pens, chopsticks, or popsicle sticks) tightly together with arubber
band asinfig. 4.19a. Youcanfeel that thepencilsrotaterelativeto each other relatively
easily. But it is hard to dide one against the other. Add athird pencil to complete the
triangle (fig. 4.19b). Therelativerotation of thefirst two pencilsisnow amost totally
prohibited. Now tightly strap four pencils (or whatever) into a square with rubber
bandsasinfig. 4.19c, making 4 rubber band joints at the corners. Put the squaredown
on atable. The pencils don't stretch or bend visibly, nor do they slide much along
each-other’s lengths, but the connections allow the pencils to rotate relative to each
other so the sgquare easily distorts into a parallelogram. Because a triangle is fully
determined by the lengths of its sides and a quadrilateral is not, the triangle is much
harder to distort than the square. A triangle is sturdy even without restraint against
rotation at the joints and a square is not.

Now add two more pencils to your triangle to make two triangles (fig. 4.19d).
So long as you keep this structure flat on the table, it is also sturdy. You have just
observed the essential inspiration of atruss: triangles make sturdy structures.

A different way to imagine discovering a truss is by means of swiss cheese.
Imagineyour first initial design for abridgeisto makeit from one huge piece of solid
steel. Thiswould be heavy and expensive. So you could cut holes out of the chunk
here and there, greatly diminishing the weight and amount of material used, but not
much reducing the strength. Between these holes you would see other heavy regions
of metal from which you might cut more holes leading to a more savings of weight
at not much cost in strength. In fact, the reduced weight in the middle decreases the
load on the outer parts of the structure possibly making the whole structure stronger.
Eventually you would find yourself with a structure that looks much like a collection
of bars attached from end to end in vaguely triangular patterns. Asopposed to asolid
block, atruss

e Usesless materiad;

e Putsless gravity load on other parts of the structure;

e Leaves space for other things of interest (e.g., cars, cables, wires, people).

Real trusses are usualy not made by removing material from a solid but by
joining bars of steel, wood, or bamboo with welds, bolts, rivets, nails, screws, glue,
or lashings. Now that you are aware you will probably notice trusses in bridges,
radio towers, and large-scale construction equipment. Early airplanes were flying
trusses. D Trusses have been used as scaffol di ngsfor millennia. Birds have had bones
whose internal structure is truss-like since they were dinosaurs. Trusses are worth
study on their own, since they are a practical way to design sturdy light structures.
But trusses also are useful

e Asalfirst example of acomplex mechanical system that a student can analyze;

e Asan example showing the issuesinvolved in structural analysis;

e Asan intuition builder for understanding structures that are not really trusses
(The engineering mind often sees an underlying conceptual truss where no
physical trussis externaly visible).

What is atruss?

A truss is a structure made from connecting long narrow elements at their
ends.

The sturdiness of most trusses comes from the inextensibility of the bars, not the
resistance to rotation at the joints. To make the analysis simpler the (generally small)
resistance to rotation in the jointsis totally neglected in truss analysis. Thus
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a)

b)

©)

d)

Figure 4.19: a) Two pencils strapped to-
gether with arubber band are not sturdy. b)
A triangle made of pencils feels sturdy. c)
A sguare made of 4 pencils easily distorts
into a parallelogram. d) A structure made
of two triangles feels sturdy (if held on a
table).

(Filename:tfigure.pencil)

D The Wright brothers first planes were
near copies of the planes built a few years
earlier by Octave Chanute, aretired bridge
designer. With regard to structural design,
these early biplanes were essentialy flying
bridges. Take away the outer skin from
many small modern planesandyouwill also
find trusses.
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Figure 4.20: a) atruss, b) each bar isa
two-force body, ¢) A joint isacted on by bar
tensions and from applied loads.
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Anideal trussis an assembly of two force members.

Or, if you like, an ideal truss is a collection of bars connected at their ends with
frictionless pins. Loads are only applied at the pins. In engineering analysis, the
word ‘truss' refersto an ideal truss even though the object of interest might have, say,
welded joint connections. Had we assumed the presence of welding equipment in
your room, the opening paragraph of this section would have described the welding
of metal bars instead of the attachment of pencils with rubber bands. Even welded,
you would have found that atriangle is more rigid than a square.

Bars, joints, loads, and supports

An idedl truss is a collection of bars connected at frictionless joints at which are
applied loads as shown in fig. 4.20a (the load at ajoint can be 0 and thus not show
on either the sketch of the truss or the free body diagram of the truss). Each bar
is a two-force body so has a free body diagram like that shown in fig. 4.20b, with
the same tension force pulling away from each end. A joint can be cut free with a
conceptual chain saw, fooling each bar stub with the bar tension, as in the free body
diagram 4.20c. A trussis held in place with supports which are idealized in 2D as
either being fixed pins (asfor joint Einfig. 4.20a) or asapin on aroller (asfor joint
Ginfig. 4.20a). Theforces of the outside world on thetruss at the supportsare called
the reaction forces.

The bar tensions can be negative. A bar with atension of, say, T = —5000N is
said to bein compression.

Elementary truss analysis

In elementary truss analysis you are given a truss design to which given loads are
applied. Your goal isto ‘solve the truss' which means you are to find the reaction
forcesand thetensionsin the bars (sometimes called the* bar forces'). Asan engineer,
this allows you to determine the needed strengths for the bars.

The elementary truss analysis you are about to learn is straightforward and fun.
Youwill learnit without difficulty. However, theanalysisof trussesat amoreadvanced
level is mysteriously deep and has occupied great minds from the mid-nineteenth
century (e.g., Maxwell and Cauchy) to the present.

The method of free body diagrams

Trussesareawaysanalyzed by themethod of freebody diagrams. Freebody diagrams
aredrawn of thewholetrussand of variouspartsof thetruss, theequilibrium equations
are applied to each free body diagram, and the resulting equations are solved for the
unknown bar forces and reactions.

Themethod of freebody diagramsis someti mes subdivided into two sub-methods.

o Inthe method of joints you draw free body diagrams of every joint and apply
the force balance equations to each free body diagram. The method of joints
is systematic and complete; if atruss can be solved, it can be solved with the
method of joints.



4.2. Elementary truss analysis

¢ Inthemethod of sectionsyou draw afree body diagramsof oneor more sections
of the structure each of which includes 2 or more joints and apply force and
moment balance to the section. The method of sections is powerful tool but
is generaly not applied systematically. Rather, the method of sections is a
mostly used for determining 1-3 bar forces in trusses that have a simple aspect
to them. The method of sections can add to your intuitive understanding of
how a structure carries aload.

For either of these methods, it is often useful to first draw afree body diagram of the
whole structure and use the equilibrium equations to determine what you can about
the reaction forces.

Consider this planar approximation to the arm of a derrick used in construction
where F and d are known (see fig.4.21). This truss has joints A-S (skipping ‘F to
avoid confusion with theload). Asiscommonintrussanalysis, wetotally neglect the

force of gravity on the truss dements®. From the free body diagram of the whole

¢=8d ‘
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)

Figure 421 A trusS. (Filename:tfigure.derrick)
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structure we find that

14

(XF=0}.j = Fry = F
{> Mg =0} lf = Frx = OF

The method of joints

The sure-fire approach to solve atrussisthe brute force method of joints. For thetruss
above you draw 18 free body diagrams, one for each joint. For each joint free body
diagram you write the force balance equations, each of which can be broken down
into 2 scalar equations. You then solve these 36 equations for the 33 unknown bar
tensions and the 3 reactions (which we found already, but need not have). In genera
solving 36 simultaneous equations is really only feasible with a computer, which is
one way to go about things.

For simpletriangul ated structures, likethe oneinfig. 4.21, you can find asequence
of joints for which there are at most two unknown bar forces at each joint. So hand
solution of the joint force balance equations is actually feasible. For this truss we
could start at joint B (seefig. 4.22) where force balance tells us at a glance that
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@ To include the force of gravity on the
truss elements replace the single gravity
force at the center of each bar with a pair
of equivalent forces at the ends. The grav-
ity loads then all apply at the joints and the
truss can till be analyzed as a collection of
two-force members.

}

Figure 4.22: Free body diagram of joint
B.

Tas

(Filename:tfigure.derrickB)
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Figure 4.23: A zero force member is
sometimes indicated by writing a zero on

top of the bar.
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Figure 4.24: A tower with many zero
force members. Although they carry no

“

load they prevent structural collapse.
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Tag=0 and Tpg =0.

Just by looking at the joint and thinking about the free body diagram you could
probably pick out these zero force members. Now you can draw afree body diagram
of joint A where there are only two unknown tensions (since we just found Tag),
namely Tap and Tac. Force balance will give two scalar equations which you can
solve to find these. Now you can move on to joint C. Here, without drawing the free
body diagram on paper, you might see that bar CD is also a zero force member (its
the only thing pulling up on joint C and the net up force has to be zero). In any case
force balance for joint C will tell you Tcp and Tcg. You can then work your way
through the alphabet of jointsand find al the bar tensions, using the bar tensions you
have already found as you go on to new joints.

Zero force members

The unnecessary but useful trick of recognizing zero-force members, like we just did
for bars AB,BD and CD in the truss of fig. 4.21, can be systematized. The basic idea
isthis: if there is any direction for which only one bar contributes a force, that bar
tension must be zero. In particular:

e At any joint where there are no loads, where there are only two unknown non-
parallel bar forces, and where all known bar-tensions are zero, the two new bar
tensions are both zero (joint B in the example above).

e Atany joint whereall bars but one are in the same direction as the applied load
(if any), the one bar is a zero-force member (seejointsC, G, H, K, L, O, and P
in the example above).

In thetruss of fig. 4.21 bars AB, BD, CD, EG, IH, JK, ML, NO, and PQ are al zero
force members. Sometimesiit is useful to keep track of the zero force members by
marking them with a zero (see fig. 4.23). Although zero-force members seem to do
nothing, they are generally needed. For this or that reason there are small loads,
imperfections, or load induced asymmetries in a structure that give the ‘zero-force
bars asmall job to do, ajob not noticed by the equilibrium equations in elementary
trussanalysis, but onethat can prevent total structural collapse. Imagine, for example,
the tower of fig. 4.24 if all of the zero-force members were removed.

The method of sections

Say you areinterested in the truss of fig. 4.21, but only in the tension of bar KM. You
aready know how to find Tky using the brute-force method of joints or by working
through the joints one at time. The method of sections provides a shortcut.

You look for away to isolate a section of the structure using a section cut that cuts
the bar of interest and at most two other bars as in free body diagram 4.25. For the
method of sections to bear easy fruit, the truss must be simple in that it has a place
where it can be divided with only three bar cuts.

Because 2D statics of finite bodies gives three scalar equations we can find all
three unknown tensions. In particular:

{ZMJ=6}IE = Tkm = 4 F.
Using this same section cut we can aso find:

T = -5 F, and
Fm = 2 F.

14
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A traditional part of the shortcut in the method of sectionsisto avoid the solution of
even two or three simultaneous eguati ons by judicious choice of equilibrium equations
following this general rule.

Use equilibrium equations that don’t contain terms that you don’t know and
don’t care about.

The two common implementations of thisrule are:

o Use moment balance about points where the lines of action of two unknown
forces meet. In the free body diagram of fig. 4.25 moment balance about point
Jeliminates Ty and Ty and gives one equation for Tk .

e Use force balance perpendicular to the direction of a pair of parallel unknown
forces. In the free body diagram of fig. 4.25 force balance in the j direction
eliminates Tky and Ty and gives one equation for Tyy.

In the method of joints, as you worked your way along the structure fig. 4.21
from right to left you would have found the tensions getting bigger and bigger on the
top bars and the compressions (negative tensions) getting bigger and bigger on the
bottom bars. With the method of sections you can see that this comes from the lever
arm of the load F being bigger and bigger for longer and longer sections of truss.
The moment caused by the vertical load F is carried by the tension in the top bars
and compression in the bottom bars.

Why aren’t trusses everywhere?

Trussescan carry bigloadswith little use of material and can look nice (Seefig. 4.27).,
so why don’t engineers use them for all structural designs? Here are some reasonsto
consider other designs:

e Trusses arerelatively difficult to build and thus possibly expensive.

e They are sensitive to damage when loads are not applied at the anticipated
joints. They are especially sensitive to loads on the middle of the bars.

e Trussesinevitably depend on the tension strength in some bars. Some common
building materials (e.g., concrete, stone, and clay) crack easily when pulled.

o Trusses usualy have little or no redundancy, so failure in one part can lead to
total structural failure.

e The triangulation that trusses require can use space that is needed for other
purposes (e.g., doorways or rooms)

e Trussestendto bestiff, and sometimesmoreflexibility isdesirable(e.g., diving
boards, car suspensions).

o In some places some people consider trusses unaesthetic.

None-the-less, for situations where you want a stiff, light structure that can carry
known loads at pre-defined points, atrussis often a great design choice.

Summary

Using freebody diagramsof thewhol e structure, sectionsof thestructure, or thejoints,
you can find the tensions in the bars and the reaction forces for some elementary
trusses. There are trusses that do not yield to this analysis, however, which are
discussed in the next section.
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Figure 4.26: Many bridges are essen-
tially trusses. Here's one that is partially
obscured by the truss on a car bridge.

(Filename:tfigure.truss)

Figure 4.27: Sometimes trusses are used
only becausethey look nice. Thetensegrity
structure ‘Needle Tower’ was designed by
artist Kenneth Snelson and ison display in
the Hirshhorn Museum in Washington, DC.
Hereyou arelooking straight up themiddle.
Photograph by Christopher Rywalt.

(Filename:tfigure.Needle)
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SAMPLE 4.7 A 2-D truss. The box truss shown in the figure is loaded by three
vertical forcesacting at joints A, B, and E. All horizontal and vertical barsin thetruss
are of length 2m. Find the forcesin members AB, AC, and DC.

Solution First, we need to find the support reactions at points O and F. We do this
by drawing the free body diagram of the whole truss and writing the equilibrium
equations for it. Referring to Fig. 4.29, the force equilibrium, > F=0 implies,

Oxi+(Oy+Fy— P —P,—P3)j=0 (4.11)
Dotting eqn. (4.11) with 7 and j, respectively, we get

OX == O
Oy+F = P1+P2+Ps (4.12)

The moment equilibrium about point O, ﬂo =0, gives
(—P1t — P20 — P33¢ + Fy40)k = 0 (4.13)

1
or Fy = 7(PL+2P2 + 3P (4.14)

Solving egns. (4.12) and (4.14), we get
Fy = 45kN, and Oy = 45kN.

In fact, from the symmetry of the structure and the loads, we could have guessed
that the two vertical reactions must be equal, i.e., Oy = Fy. Then, from egn. (4.12)
it followsthat Oy = Fy = (P1 + P2 + P3)/2 = 45KkN.

Now, we proceed to find the forces in the members AB, AC, and DC. For this
purpose, we make a cut in the truss such that it cuts members AD, AC, and DC,
just to the right of joints A and D. Next, we draw the free body diagram of the left
(or right) portion of the truss and use the equilibrium equations to find the required
forces. Referring to Fig. 4.30, the force equilibrium requires that

(Fag + Fpc + Fac €0s0)i + (Oy — Py + Fac sin6)j = 0 (4.15)
Dotting eqn. (4.15) with 7 and j, respectively, we get

So far, we have two equations in three unknowns ( F g, Fpe. Fac ). We need
one more independent equation to be able to solve for the unknown forces. We now
write moment equilibrium equation about point A, i.e., > MA =0,

(—Oyt — Fpc)k = 0

We can now solve egns. (4.16-4.18) any way we like, e.g., using elimination or a
computer. The solution we get (see next page for details) is:

Fac = —25v2kN, Fpc = —45kN, and Fpg = 70kN.

Fac = —25V2kN, Fpo =—45kN, F,g = 70kN.
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Comments:

o Note that the values of F,- and F~ are negative which means that bars AC
and DC are in compression, not tension, as we initially assumed. Thus the
solution takes care of our incorrect assumptions about the directionality of the
forces.

e Short-cuts: In the solution above, we have not used any tricks or any specia
points for moment equilibrium. However, with just a little bit of mechanics
intuition we can solvefor therequired forcesin five short steps as shown bel ow.

(i) No external forceini directionimplies Ox = 0.
(i) Symmetry about the middle point B implies Oy = Fy. But,

Oy+Fy=) P =90kN = Oy=Fy=45kN.
(i) (.M, = 0) -k gives
Oyl + Fpct =0 = Fpc=—0y=—45kN.
(iv) (3 M = 0) -k gives
—Oy20+ Pl +Fpgt =0 = Fpg =20, — P =70kN.
(v) (L F =0)-jgives
Oy—Pi4+FpcSN6 =0 = Fpc = (P1—0y)/sSng = —25v2kN.
¢ Solving equations: On the previous page, we found F 5, Fp, and Fpc by

solving egns. (4.15-4.17) simultaneously. Here, we show you two ways to
solve those equations.

() By €elimination: From egn. (4.17), we have
Oy — P1 20kN — 45kN

sng 1/2
From egn. (4.18), we get

= —25V/2kN.

Fac =

and finally, substituting the values found in egn. (4.15), we get

1
Fag = —Fpc — Fac C0os8 = 45kN + 25v/2. N 7OkN.

(b) Onacomputer: We can write the three equations in the matrix form:

1 1 coso Fa 0 0

0 0 sno Fo = PpL—Oy ¢ =1 —25 ¢ kN

0 1 0 Fac -0y —45
—————

A X b

O W

We can now solvethis matrix equation on acomputer by keying in matrix
A (with 6 specified as 7 /4) and vector b asinput and solving for x.@

@ pseudocode:

A=1[11 cos(pil/4d)
0 0 sin(pi/4)
01 0]

b =[0 -25 -45]
solve A*x = b for x
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Figure 4.31; (ricnsmerstiss truss comp)

Figure 4.32; (vicnsme:stisa truss comp.)
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SAMPLE 4.8 Thetruss shown in thefigure has four horizontal bays, each of length
1 m. Thetop bars make 20° angle with the horizontal. The truss carries two loads of
40 kN and 20 kN as shown. Find the forcesin each bar. In particular, find the bars
that carry the maximum tensile and compressive forces.

Solution Since we need to find the forces in all the 15 bars, we need to find
enough equations to solve for these 15 forces in addition to 3 unknown reactions
Ax, Ay, and Ix. Thus we have atotal of 18 unknowns. Note that there are 9 joints
and therefore, we can generate 18 scalar equations by writing force equilibrium equa-
tions (one vector eguation per joint) for each joint.

Number of unknowns 15+ 3=18
Number of joints 9
Number of equations 9 x 2 =18

So, we go joint by joint, draw the free body diagram of each joint and write the equi-
librium equations. After we get all the equations, we can solve them on a computer.
All joint equations are just force equilibrium equations, i.e., >~ F = 0.

e Joint A:

(Ax + T1 + Tigcosa1)i + (Ay + T11 + TioSinay)j = 0 (4.19)

e Joint B:
(=T1+ To+ Tgcosaz)i + (Tg + Tgsinaz)j =0 (4.20)

e Joint C:
(=To+ T3+ Tgcosaz)i + (T7 + TgSinaz)j = PJ (4.22)

e Joint D:
(MTa—T3)i+T55=0 (4.22)

e Joint E:
(=T4 — T15c080)i + Ti58in6 ) = 2P (4.23)

e JointF:

(—Te cosaz+ (Tis — T14) c0S)i + (—Te Sinag+ (T — Ti5) NG —Ts) j = 0
(4.24)
e Joint G:

(—Tgcosaz + (T14 — T13) €0S6)i + ((Taz — T1a) SiNO — Tgsinaz — T7)j = 0
(4.25)
e Joint H:

(—Tio coSa1 + (T3 — Ti2) €086)i + ((T12— T13) NG — Typsina — Tg) j = 0
(4.26)

e Joint|:
(—lyx 4 T12c080)i + (—T11 — T12sin)j = 0 (4.27)

Dotting each equation from (4.19) to (4.27) with 7 and j, we get the required
18 equations. We need to define all the angles that appear in these equations
(a1, a2, @3, and 0) before we are ready to solve the equations on a computer.
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Let ¢ bethelength of each horizontal bar and let DF = h1, CG = h,, and BH = hs.
Then, hy/¢ = hy/2¢ = h3/3¢ = tand. Therefore,

tan~L(tang) = 0

hy
tanaq = 7 =tand = o

tan~1(2tan6)

h

tanay = 72 —2tanfd = a
h3 1

tanasz = 7 =3tand = a3 = tan ~(3tano)

Now, we are ready for acomputer solution. You can enter the 18 equations in matrix
form or asyour favorite software package requires and get the solution by solving for
the unknowns. Here are two examples of pseudocodes. Let us order the unknown
forcesin the form

x=[T1 T ... Tis Ax Ay L]'

so that X1—x15 = T1—T1s, X16 = Ax, X17 = Ay, and Xig = Ix
(a) Entering full matrix equation:

theta = pi/9 % specify theta in radi ans

al phal = theta % cal cul ate al phal

al pha2 = atan(2*tan(theta)) % cal cul ate al pha2 from arctan

al pha3 = atan(3*tan(theta) % cal cul ate al pha3 from arctan

C = cos(theta), S = sin(theta) % conpute all sines and cosines

Cl = cos(al phal), S1 = sin(al phal)

c2=.. ..

A=[100000000CO0OO0OO0O0OO0OZ21IO0O % enter matrix A row w se
00O0O0O0O0O0OOO0OS110000010O

000O0-1-S
00004000
r X

00000 0]
000000 %enter colum vector b

o N O

(b) Entering each equation as part of matrix A and vector b

A(1,[1 10 16]) = [1 C1 1]
A(2,[10 11 17]) = [SL 1 1]

A(18,[11 12]) =1[-1 -9]

b(6,1) = 20

b(10,1) = 40

formA and b setting all other entries to zero
solve A*x = b for x

The solution obtained from the computer is

Ty = —128.22kN, To =Tz = Ts = —109.9kN, Ts= Te =0,
T7 = 20kN, Tg= —22.66kN, To = —Tip = 13.33kN, Tq1 = —50kN,
T1p = 146.19KkN, Ti3 = 136.44kN, T14 = T15 = 116.95kN,
Ay =137.37kN, Ay =60kN, Iy = —137.37kN.
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Figure 4.33: a) a gtatically determinate
truss, b) a non-rigid truss, c) a redundant
truss, and d) a non-rigid and redundant
truss.

(Filename:tfigure.4cases)
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Figure4.34: Freebody diagramsof joints
A and B from 4.33b

Tac Tep

(Filename:tfigure.squarejoints)

@ Asacuri osity noticethat you could make
the diagonals in fig. 4.33c both sticks and
all of the outside square from cablesand the
truss would still carry all loads. Thisisthe
simplest ‘tensegrity’ structure. In atenseg-
rity structure no more than one bar in com-
pression is connected to any onejoint. (See
fig. 4.27 for amore elegant example.). The
label ‘ Tensegrity structure’ was coined by
the truss-pre-occupied designer Buckmin-
ster Fuller. Fuller is aso responsible for
re-inventing the “geodesic dome” atype of
structure studied previously by Cauchy.
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4.3 Advanced truss analysis. determi-
nacy, rigidity, and redundancy

After you have mastered the elementary truss analysis of the previous section, namely
the method of free body diagrams in its two incarnations (the method of joints and
the method of sections) you might wonder if at least one of these methods always
work. The answer isyes, if you just look at the homework problems for elementary
truss analysis, but ‘no’ if you look at the variety of real (good and bad) structuresin
the world. In this section we discuss the classification of trusses into types. In the
previous section all of the examples were from one of these types.

Deter minate, rigid, and redundant trusses

Your first concern when studying trusses is to develop the ability to solve a truss
using free body diagrams and equilibrium equations. A truss that yields a solution,
and only one solution, to such an analysisfor all possible loadingsis called statically
determinate or just determinate. The braced box supported with one pin joint and
onepinonrollers (seefig. 4.33a) isaclassic statically determinate truss. A statically
determinate trussis rigid and does not have redundant bars.

You should beware, however, that there are a few other possibilities.

Some trusses are non-rigid, like the one shown in fig. 4.33b, and can not carry
arbitrary loads at the joints.

Example: Joint equations and non-rigid structures

Free body diagrams of joints A and B of fig. 4.33b areshowninfig. 4.34.

jontB: {YF=0}-i = Tag = F

jointA: (> F,=0}-1 = Tag = O
The contradiction that Tag isboth F and 0 impliesthat the equations of
statics have no solution for a horizontal load at joint B. ad

A non-rigid truss can carry some loads, and you can find the bar tensions using the
joint equilibrium equations when these loads are applied. For example, the structure
of fig. 4.33b can carry avertical load at joint B. Engineers sometimes chooseto design
trusses that are not rigid, the simplest example being a single piece of cable hanging
aweight. A more elaborate example is a suspension bridge which, when analyzed as
atruss, isnot rigid.

A redundant truss has more bars than needed for rigidity. Asyou can tell from
inspection or analysis, the braced square of fig. 4.33aisrigid. Nonethelessengineers
will often chooseto add extraredundant bracing asinfig. 4.33cfor avariety of reasons.

e Redundancy isasafety feature. If one member brakesthewhole structure holds
up.

o Redundancy can increase a structure's strength.

e Redundancy can allow tensile bracing. In the structure of Fig. 4.33atop load
to the left puts bar BC in compression. Thus bar BC can't be, say, a cable.
But in structure fig. 4.33c both diagonal s can be cables and neither need carry

compression for any load®.,
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A property of redundant structures is that you can find more than one set of bar
forces that satisfy the equilibrium equations. Even when the loads are all zero these
structures can have non-zero locked in forces (sometimes called (‘locked in stress’,
or ‘self stress'). In the structure of fig. 4.33c, for example, if one of the diagonals got
hot and stretched both it and the opposite diagonal would be put in compression while
theoutsidewasintension. For structureswhose partsarelikely to expand or contract,
or for which the foundation may shift, this locked in stress can be a contributor to
structural failure. So redundancy is not all good.

Finally, a structure can be both non-rigid and redundant as shown in fig. 4.33d.
Thisstructure can’t carry al loads, but the loads it can carry it can carry with various
locked in bar forces.

More examples of statically determinate, non-rigid, and redundant truss are given
on pages 143 and 144.

Note, one of the basic assumptions in elementary truss analysis which we have
thus far used without comment is that motions and deformations of the structure are
not taken into account when applying the equilibrium equations. If abar is vertical
in the drawing then it istaken as vertical for all joint equilibrium equations.

Example: Hanging rope

For elementary truss analysis, a hanging rope would be taken as hanging
vertically evenif sideloads are applied to itsend. Thisobvioudly ridicu-
lous assumption manifests itself in truss analysis by the discovery that
a hanging rope cannot carry any sideways loads (if it must stay vertical
thisistrue). O

Determining determinacy: counting equations and un-

knowns

How can you tell if atrussis statically determinate? The only suretest isto write all
thejoint force balance equations and seeif they have aunique solution for all possible
joint loads. Because thisis an involved linear algebra calculation (which we skip in
this book), it is nice to have shortcuts, even if not totally reliable. Here are three:

e See, using your intuition, if the structure can deform without any of the bars
changing length. You can see that the structures of fig. 4.33b and d can distort.
If astructure can distort it is not rigid and thus is not statically determinate.

e See, using your intuition, if there are any redundant bars. A redundant bar is
onethat preventsastructural deformation that already isprevented. Itiseasy to
seethat the second diagonal in structuresof fig. 4.33c and dis clearly redundant
so these structures are not statically determinate.

e Count the total number of joint equations, two for each joint. Seeif thisis
equal to the number of unknown bar forces and reactions. If not, the structure
isnot statically determinate.

The counting formulain the third criterion aboveiis:

2j =b+r (4.28)

where j isthe number of joints, including joints at reaction points, b isthe number of
bars, and r isthe number of reaction components that shows on afree body diagram
of the whole structure (2 from pin joints, 1 from apin on aroller).
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DA non-rigid truss is sometimes called
‘over-determinate’ because there are more
equations than unknowns. However, the
term ‘over-determinate’ may incorrectly
conjure up the image of there being too
many bars (which we call redundant) rather
than too many joints. So we avoid use of
this phrase.

@ In the language of mathematics we
would say that satisfaction of the counting
equation2j = b-++r isanecessary condition
for static determinacy but it isnot sufficient.

CHAPTER 4. Satics

If 2] > b+ r the structure is necessarily not rigid because then there are more
equationsthan unknowns@. For such astructure there are some loadsfor which there
isno set of bar forces and reactionsthat can satisfy thejoint equilibrium equations. A
structure that is non-redundant and non-rigid alwayshas 2j > b+ r (seefig. 4.33b).

If 2j < b+r the structure is redundant because there are not as many equations
as unknowns; if the equations can be solved there is more than one combination of
forcesthat solvethem. A structurethat isrigid and redundant alwayshas2j < b+r
(seefig. 4.33b).

But the possibility of structures that are both non-rigid and redundant makes the
counting formulas an imperfect way to classify structures@. Non-rigid redundant
structurescanhave2j < b+r,2j =b+r,or2j > b+r. Theredundant non-rigid
structurein fig. 4.33dhas2j = b +r.

The discussion above can be roughly summarized by this table (refer to fig. 4.33
for asimple example of each entry and to pages 143 and 144 for several more exam-

ples).

TrussType || Rigid | Non-rigid |
Non-redundant a2j=b+r b) 2j>b+r
(Statically determinate)
2 <b+r,
Redundant C)2j <b+r d 2j=b+r, or
2j >b+r

A basic summary isthis:

- 2j=b+rand
— you cannot see any ways the structure can distort, and
— you cannot see any redundant bars

thenthetrussislikely statically determinate. But the only way you can know
for sureisthrough either a detailed study of the joint equilibrium equations,
or familiarity with similar structures.

On the other hand if

—2j>b+r,or

—2j<b+r,or

— you can see away the structure can distort, or
— YOu can see one or more redundant bars,

then the trussis not statically determinate.

Example: The classic statically determinate structure

A triangulated truss can be drawn as follows:
(a) draw onetriangle,
(b) then another by adding two bars to an edge,
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(c) then ancther by adding two barsto an existent edge

(d) and so on, but never adding a triangle by adding just one bar, and

(e) you hold this structure in place with a pin at one joint and one pin

on roller at another joint

then the structure is statically determinate. Many elementary trusses are
of exactly thistype. (Note: if you violate the ‘but’ in rule (d) you can
make atruss that looks ‘triangulated’ but is redundant and therefore not
statically determinate.) O

Floating trusses

Sometimes one wants to know if a structure is rigid and non-redundant when it is
floating unconnected to the ground (but still in 2D, say). For example, atriangleis
rigid when floating and a square is not. The truss of fig. 4.35aisrigid as connected
but not when floating (fig. 4.35b). A way tofind out if afloating structureisrigidisto
connect one bar of the trussto the ground by connecting one end of the bar with apin
and the other with apin on aroller, asinfig. 4.35c. All determinations of rigidity for
the floating truss are the same as for atruss grounded thisway. The counting formula
eqn. 4.28, is reduced to
2j=b+3

because this minimal way of holding the structure down usesr = 3 reaction force
components.

The principle of superposition for trusses

Say you have solved atrusswith acertain |oad and have also solved it with adifferent
load. Thenif bothloadswereapplied thereactionswoul d bethesumsof thepreviously
found reactions and the bar forces would be the sums of the previously found bar
forces.

This useful fact follows from the linearity of the equilibrium equations®.

Example: Superposition and a truss

a) b) lzoo Ibf 9 lzoomf
B 1001bf B B 100bf

A / A A /

If for the loading (a) you found Tag = 501bf and for loading (b) you
found Tag = —1401bf then for loading (c) Tag = 501bf — 1401bf =
—90|bf O

141
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Figure 4.35: a) a determinate two bar
truss connected to the ground, b) the same
truss is not rigid when floating, which you
cantell by seeing that c) itisnot rigid when
one bar isfixed to the ground.

(Filename:tfigure.rigidonground)

@ A careful derivation would also show
that the linearity depends on the nature of
thefoundation. Linearity holdsfor pinsand
pinsonrollers, but not for frictional contact.
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4.3 Theory: Rigidity, redundancy, linear algebra and maps

This mathematical aside is only for people who have had a course
in linear algebra. For definiteness this discussion is limited to 2D
trusses, but the ideas also apply to 3D trusses.

For beginnerstrussesfall into two types, those that are uniquely
solvable (statically determinate) and those that are not. Statically
determinate trusses are rigid and non-redundant. However, a truss
could be non-rigid and non-redundant, rigid and redundant, or non-
rigid and redundant. These four possibilities are shown with asim-
ple example each in figure 4.33 on page 138, as a simple table on
page 140, and as a big table of examples on pages 143 and 144. The
table below, which we now proceed to discuss in detail, is a more
abstract mathematical representation of this same set of possibilities.

We can number the bars of the truss followed by the reaction com-

ponents1, 2, ..., n,wheren = b+r. The bar tensions and support
reaction forces can be put in avertica list [F1, Fo, ..., Fn]’. The
set of listsof all conceivable tensions and reaction forceswe call the
“vector space” V (itisaso R").

We can also make a list of all possible applied loads. Ina2D
truss there can be a horizontal or vertical load at each joint. So, we
canwritealist of m = 2j numbersto represent the load. If thereis
only an applied load at afew joints most of the elements of thisload
vector will be zero. The set of all possible loads we call the vector
space W.

If we use the method of joints we can write two scalar equilib-
rium equations for each joint. These are linear algebraic equations.
Thus we can write them in matrix form as:

[Al[v] = [w] (4.29)

where [v] isthe list of bar tensions and reaction forces, and [w] is
the list of applied loads to the joints. The matrix [A] is determined
by the geometry of the truss. The classification of trussesis really
a statement about the solutions of egn. 4.29. This classification
follows, in turn, from the properties of the matrix [ A].

Another point of view isto think of egn. 4.29 as afunction that
maps one vector space onto another. For any [v] egn. 4.29 maps
that [v] to some [w]. That is, if one were given all the bar tensions
and reactions one could uniquely determine the applied loads from
egn. 4.29. Thismap, fromV toW wecall T.

We can now discuss each of the truss categorizations in turn, with
reference to the table at the end of this box.

Thefirst column of the table correspondstorigid trusses. These
trusses have at least one set of bar forces that can equilibrate any
particular load. This meansthat for every [w] thereis some [v] that
maps to (whose image is) [w]. In these casesthe map T is onto.
And the columns space of [ A] isW. Thus[A] needsto have at least
as many columns as the dimension of W which is the number of
rows of [ A].

On the other hand if the structure is not rigid there are some
loads that cannot be equilibrated by any bar forces. This is the

second column of thetable. Thereisat least some [w] with no pre-
image [v]. Thusthemap T is not onto and the column space of [ A]
islessthan all of W.

The first row of the table describes trusses which are not-
redundant. Thus, any loads which can be equilibrated can be equi-
librated with a unique set of bar tensions and reactions. Thus the
columns of [A] are linearly independent and the map T is one to
one. The matrix [ A] must have at least as many rows as columns.

If atrussis redundant, as in the second row of the table, then
there are various ways to equilibrate loads which can be carried.
Pointsin W in the image of one, and the columns of A are linearly
dependent.

We can now look at the four entries in the table. The top left case

is the statically determinate case where the structure is rigid and
non-redundant. Themap T isoneto oneand onto, V = W, and the
matrix [ A] is square and non-singular.

The bottom left case corresponds to a truss that is rigid and
redundant. The map to is onto but not one to one. The columns of
[A] are linearly dependent and it has more columns than rows (it is
wide).

The top right case is not rigid and not redundant. Some
loads cannot be equilibrated and those that can be are equilibrated
uniquely. T isone to one but not onto. The columns of [A] are
linearly independent but they do not span W. The matrix [A] has
more rows than columns and is thus tall.

The bottom right case is the most perverse. The structureis not
rigid but is redundant. Not all loads can be equilibrated but those
that can be equilibrated are equilibrated non-uniquely. The matrix
[ A] could have any shape but its columns are linearly dependent and
do not span W. Themap T is neither one to one nor onto.

Rigid Not rigid
« T isonto T isnot onto
col(A) =W col(A) zW
Aissquareand invertible Aistall
Not redundant bar & react. bar & react.
« T isonetoone forces Loads forces Loads
« columnsof A are . N .
linearly v W v S
independent * e . e

T isoneto oneand onto T isoneto one but not onto

Aiswide A can bewide, square, or tall
Redundant
« Tisnot onetoone | bar & react. bar & react.
« columnsof A are forces Loads forces Loads
linearly dependent vi® c
"
: =Wyl . w

T isonto but not one to one T isneither oneto onenor onto
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2D TRUSS
CLASSIFICATION
(page 1)

Rigid
 Not overdeterminate
* |loads can be equilibriated with bar forces

Not redundant

Statically deter minate, a) b)
rigid and not redundant,
b+r=2j,

One and only one set of bar

* Not indeterminate forces can equilibriate any given load. j=3,b=3,r=3 j=3,b=2,r=4
« If there are bar forces that
can equilibriate the loads
they are unique
» No locked in stresses C)
d
U CI ) 10| nt
E R
- <
9, b=15, r=3 j=6,0=9,r=3
=8, b=8, r=8 179, 0=15,1
b+r>2j, "toofew equations', rigid and redundant,

Redundant
* indeterminate
* locked in stress possible
* solutions not unique
if they exist

Every possible load can be equilibrated
but the bar forces are not unique.

)} m) n)
& m
i=2,b=1, r=4 L2

j=4, b=6, r=3 j=7,b=12,r=3
)
il
flans=l
j=4, b=4,r=5 =3, b=3, r=4 i=4, b=6, r=3

Figure 4.36: Examples of 2D trusses. These two pages concern the 2-fold system for identifying trusses. Trusses can be rigid or not rigid (the
two columns) and they can be redundant or not redundant (the two rows). Elementary truss analysisis only concerned with rigid and not redundant
trusses (statically determinate trusses). Notethat the only difference between trusses (b) and (s) is a change of shape (likewise for the far more subtle
examples (e) and (u)). Truss (€) isinteresting as arare example of a determinate truss with no triangles.

(Filename:tfigure.trussclassl)
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2D TRUSS
CLASSIFICATION
(page 2)

CHAPTER 4. Satics

Not rigid

* 'overdeterminate

Not redundant
» Not indeterminate
« |If there are bar forces that
can equilibriate the loads
they are unique
* No locked in stresses

b+r <2, notrigidand not redundant, "too many equations’
Unique bar forces for some loads,
no solution for other loads.

U = 9
Te L

j=4,b=4,r=3

h)

j=3,b=3,r=2

) k)

) I o
g |
£

j=3,b=2, r=3 Q i-6, b5, r=3

j=8, b=8, r=7

Redundant
* indeterminate
* locked in stress possible
* solutions not unique
if they exist

Not rigid and redundant

b+r>2 b+r<2 b+r=2

) t) .
j=3,b=2,r=4 @ a r=3

r) w)

=8 i=8 u) regular hexagon v
“ b=14 “ be1z | 9" ag no ) =6
r=3 r=3 joint b=9
X) 2) r=3
j=5 =4 “ a
b=4 =3 )
= = y
r=7 r=4 j=6, b=9, r=3
=4
b=3
r=5

Figure 4.37: (Second page of atwo pagetable.) (ricname:tsigure. crusselass2)
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SAMPLE 4.9 An indeterminate truss. For the truss shown in the figure, find all
support reactions.

Solution The free body diagram of the trussis shown in Fig. 4.39. We need to find
the support reactions Ay, Ay, By, and Dx.
Theforce equilibrium, > F = 0, gives
(Ax + Dx + F3cos61)i + (Ay 4 By — Fasind; — Fo — F1)j = 0 (4.30)
[egn. (4.30)] -7 = Ax+ Dy =—F3c0s6; (4.31)
[egn. (430)] -] = Ay+By=F +F+Fzsing, (4.32)

Now we apply moment balance about point A, > MA = 0. Let A bethe origin of
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our xy-coordinate system (so that we can write 7 A= rp, €tc.). O N\ 9 {4 F1
Dxl V4 Fy
Fox Dy +Fe X Fa+ Fex Fy+7ex Fo+7g x By =0 D c
D x trex g+ regxIqp+rextytrg y
where, 14 JI_,
I . . ~ AcCIA ¢ B ;
o x Dy = (€] x Dxi = —Dxlk m—>
Fex F3 = (Fp+ Feip) x F3=[€] + €(sinfai + cos6yj)] x Fa(cosfii — sinby ) 1/\, TBy
Fat cosfuk — Fatk = —Fal(1+ costpk Figure 4.39: (ricumesisa.iruss.over.a

rgx Fy = (g d+rg,J) x (=F1j) = —rg, Fik

= —F10(1+ sinfy + cosfo)k
Fex F, = —Fa(t+€sinfik = —Ft(1+sin6pk

Adding them together and dotting with & we get
—Dyf — F3¢(1+ cosf1) — F1€(1+ sin6y + cosér) — Fal(1+4sindy) + Byl =0

= By—Dx = Fi(1+4sin6y+ cosby)
+ F2(1+ sinfy) + F3(1 + cosbq). (4.33)

We have three equations (4.31-4.33) containing four unknowns Ay, Ay, By, and Dy.
So, we cannot solve for the unknowns uniquely. This was expected as the truss is
indeterminate. However, if we assume avalue for one of the unknowns, we can solve
for the rest in terms of the assumed one. For example, let Dy = «. For simplicity
let the right hand sides of egns. (4.31, 4.32, and 4.33) be C4, Cp, and C3 (computed
values), respectively. Then, weget Ay = C; — o, Ay = Co —C3 —«, and By =
Cs+a. Theequilibriumissatisfied for any value of «. Thusthereareinfinite number
of solutions! Thisistruefor all indeterminate systems. However, when deformations
of structures aretaken into account (extraconstraint equations), then solutionsdo turn
out to be unique. You will learn about such things in courses dealing with strength
of materials.

O
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Figure 4.40: a) Two people pulling on a
ropethat islikely to break in the middle, b)
A free body diagram of the rope.

(Filename:tfigure.ropeexternal)
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4.4 |Internal forces

“ Take one”

Consider two people pulling on the frayed rope of fig. 4.40a. A free body dia
gram of the rope is shown in fig. 4.40b. The laws of mechanics use the external
forces on anisolated system. These are the forces that show on afree body diagram.
For the rope these are the forces at the ends. The free body diagram does not include
internal forces. Thus nothing about the ‘internal forces' at the fraying part of therope
shows up in the mechanics equations describing the rope.

Mechanics has nothing to say about so called ‘internal forces and thus nothing
to say about the rope breaking in the middle. ‘Internal forces are meaningless in
mechanics. End of section.

“Cut! There'sgot to be moreto it than that. Let'stry again”
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4.4 | nternal forces

“ Take two!”

On page 1 we advertised mechanics as being useful for predicting when things will
break. And our intuitions strongly tell us that there is something about the forcesin
the rope that make it break. Yet mechanics equations are based on the forces that
show on free body diagrams. And free body diagrams only show external forces.
How can we use mechanics to describe the ‘forces’ inside a body? We use an idea
whose simplicity hides its utility and depth:

You cut the body, and what wasinsideit is now the outside of asmaller body.

In the case of the rope, we cut it in the middle. Then we fool the rope into
thinking it wasn't cut using forces (remember, ‘forces are the measure of mechanical
interaction’), one force, say, at each fiber that is cut. Then we get the free body
diagram of fig. 4.41a. We can simplify this to the free body diagram of fig. 4.41b
because we know that every force system is equivalent to a force and couple at any
point, in this case the middle of the rope. If we apply the equilibrium conditions to
this cut rope we see that

Sum of vertical forcesis zero = Fy = 0
Sum of horizontal forcesis zero = Fx = -T
Sum of moments about the cut is zero = M = 0.

Thuswe get the ssimpler free body diagram of fig. 4.41c asyou probably already knew
without using the equilibrium equations explicitly.

Tension

We have just derived the concept of ‘tension in a rope’ also sometimes called the
‘axial force’. Thetension isthe pulling force on afree body diagram of the cut rope.
If we had used the same cut for a free body diagram of the left half of the rope we
would see the free body diagram of fig. 4.41d. Either by the principle of action and
reaction, or by the equilibrium equations for the left half of the rope, you see also a
tension T. The force vector is the opposite of the force vector on the right half of
the rope. So it doesn’'t make sense to talk about the tension force vector in the rope
since different (opposite) force vectors manifest themselves on the two sides of the
cut (—T7 on the left end of the right half and T on the right end of the left half).
Instead we talk about the scalar tension T which expresses the force vector at the cut
as
F=Ti

where X is a unit vector pointing out from the free body diagram cut. Because A
switches direction depending on which half rope you are looking at, the same scalar
T works for both pieces.

The tension in arope, cable, or bar is the amount of force pulling out on a
free body diagram of the cut rope, cable, or bar. Tension is a scalar.
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Figure 4.41: a) free body diagram of the
right part of the rope, b)the same free body
diagram, with the force distribution at the
cut replaced with an equivalent force cou-
ple system, c) further ssimplified by using
the laws of mechanics, and d) a free body
diagram of the left portion of the rope.

(Filename:tfigure.ropeinternal)
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@ Calling tension a scalar is one of the
practical lies we tell you for relative sim-
plicity. The clearest representation of ‘in-
ternal forces' iswith tensors. But that idea

istoo advanced for this book.
@ SIme
® tal FBD
parti S
T\MO;/.\
©
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Figure 4.42: a) A piece of a structure,
loads not shown; b) a partial free body dia-
gram of theright part of the bar; c) apartial
free body diagram of theleft part of the bar.

(Filename:tfigure.signs)

()"

Figure 4.43: The smiling beam sign con-
vention for bending moment. For a hori-
zontal beam, moments which tend to make
the beam smile (curve up) are called posi-
tive.

(Filename:tfigure.smilingbeam)
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Note our abuse of language: force is a vector, tension is an ‘internal force' and
tension isascalar. What we call ‘internal forces' are not really forces. We can't talk
about the internal force vector at a point in the string because there are two different
vectors for each cut, one for each string half. An ‘internal force’ isn’t aforce unless
it is made external by afree body diagram cut, in which case it is not internal. We
use this confusing language because of its strong place in engineering practice and
its constant reinforcement by our intuitions which sense ‘internal forces'. Whenever
you see the phrase ‘internal force’ you should substitute in your mind ‘a scalar with
dimensions of force from which you can find the force on a free body diagram cut’
@

For atwo force body the tension is aconstant along the length (because we found
T without ever using information about the location of the free body diagram cut).
We used thisideawithout comment in trusses when we included a small stub of each
bar in the free body diagrams of the joints and showed atension force along the stub.

Getting back to the question of whether or not the rope will break, we can now
characterize the rope by the tension it can carry. A 10kN cable can carry atension
of 10, 000N all along its length. This means a free body diagram of the rope, cut
anywhere along its length, could show forces up to but not bigger than 10, 000N. If
the rope is frayed it make break at, say, a tension of 2, 000N, meaning a free body
diagram with a cut at the fray can only show forces up to 2, 000 N.

As noted in the context of trusses, tension is not always positive. A negative
tension (negative pulling out from the ends) is aso called a positive compression
(positive pushing in at the ends).

Shear force and bending moment

To characterize the strength of more than just 2-force bodies. we need to generalize
the concept of tension. The main idea, which was emphasized in chapter 2, isthis:

You can make afree body diagram cut anywhere on any body no matter how
it isloaded.

As for tension, we define interna forces in terms of the forces (and moments) that
show up on afree body diagram cut. Again we consider things (bars) that are rather
longer than they are wide or thick because

e Long narrow piecesare commonly used in construction of buildings, machines,
plants and animals (not just in trusses).

o Internal forces in long narrow things are easier to understand than in bulkier
objects, and so are studied first.

For now we limit ourselvesto 2D statics. At an arbitrary cut we break the force into
two components (seefig. 4.42).

e Thetension T isthe scalar part of the force directed along the bar assumed
positive when pulling away from the free body diagram cut.

e Theshear force V istheforce perpendicular to the bar (tangent to the free body
diagram cut. Our sign convention is that shear is positive if it tends to rotate
the cut object clockwise. An equivalent statement of the sign convention isthat
shear is positive if down on cuts at the right of a bar and positive if up on acut
on the left of bar (and to the right on top and to the left on the bottom).

Since we are just doing 2D problems now, the moment is always in the out of plane
(typicaly k) direction.
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Internal forces

e The bending moment M is the scalar part of the bending moment. The sign

convention is that for a smiling beam (Fig. 4.43): A clockwise (—I@) coupleis
positive on a left cut and a counterclockwise (k) couple is positive on a right

cut®.

The tension T, shear V, and bending moment M on fig. 4.42 follows these sign
conventions.

(b)

Example: Internal forcesin abent rod

Theinternal forces at B can be found by making a free body diagram of
aportion of the structure with acut at B.

Sum of vertical forcesis zero
Sum of horizontal forcesis zero

Sum of moments about the cut at B is zero
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@ Notethat neither V nor T changesif you
rotate your paper until the pictureis upside
down. However, this definition for the sign
convention for M has the disadvantage that
the bending moment does changes sign if
you turn your paper upside down. Hereis
amore precise definition which getsrid of
thisflaw. Choosethe x and  directionto be
aong the bar. Bending moment is positive
for a cut with normal in the —7 direction
if clockwise. Bending moment is positive
for acut with anormal in the 7 direction if
counterclockwise. More concisely, if 71 is
the normal to the cut, bending moment is
positiveinthenz x j direction.

= V. = (100/+/2)N

= T = (100/+/2)N

= M = —100v/2Nm.
O

Tension, shear force, and bending moment diagrams

Engineers often want to know how the internal forces vary from point to point in a
structure. If you want to know theinternal forcesat avariety of pointsyou can draw a

variety of free body diagrams with cuts at those points of interest. Another approach,
which we present now, isto |eave the position of the free body diagram cut avariable,
and then calculate the internal forces in terms of that variable.

Example: Tension in arod from itsown weight.

The uniform 1 cm? steel square rod with density p = 7.7gm/ cm® and
length ¢ = 100m has total weight W = mg = pLAg (see fig. 4.44).
What is the tension a distance xp from the top? Using the free body

diagram with cut at xp we get:

(=0}

= T pAg( — Xp)

= (7.7gm/cm®)(1cm?)(9.8N/ kg)(100m — Xp)

= 7.7.9890Nm(

cmkg

— 7.5(100- %) N.

1kg

100cm
_ X
100 m)<10009m)< 1m )

1 1

So, at the bottom end at xp = 100m weget T = 0 and at the top end
wherexp = Omweget T = 750N and in the middle at xp = 50 m we

get T = 375N.

a

Cross .
secion - upA(z-xD)

Figure4.44: a) Rod hangingwith gravity.
b) free body diagram with cut at xp.

(Filename :tfigure.tensioncu t)
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Because the free body diagram cut location is variable, we can plot the internal
forces as a function of position. Thisis most useful in civil engineering where an
engineer wants to know the internal forces in a horizontal beam carrying vertical
loads. Common examples include bridge platforms and floor joists.

Example: Cantilever M and V diagram

A cantilever beam is mounted firmly at one end and has various loads
orthogonal to its length, in this case a downwards load F at the end
(fig. 4.459). By drawing afree body diagram with a cut at the arbitrary
point C (fig. 4.45b) we can find the internal forces as a function of the
position of C.

(ZF=0}j = v = F
{>F=0}i = T = 0

[(M.=0}-k = M®X

F(X —0).

That the tension is zero in these problems is so well known that the
tension is often not drawn on the free body diagram and not cal cul ated.
We can now plot V (x) and M(x) as in figs. 4.45c and 4.45d. In this
case the shear forceis aconstant and the bending moment variesfromiits
maximum magnitude at thewall (M = —F¢) to O at theend. Itisthebig
value of |M| at the fixed support that makes cantilever beams typically

Figure 4.45; a) Cantilever beam, b) free

body diagram, c) Shear force diagram, d)
Bending moment diagram

break there.

0O

Often oneisinterested in distributed |oads from gravity on the structure itself or from
adistribution (say of people on afloor). The method isthe same.

@

(Filename:tfigure.bendandsheardiag)

w = force per unit length
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Figure 4.46: a) Cantilever beam, b) free

Example: Distributed load

A cantilever beam has a downwards uniformly distributed load of w per
unit length (fig. 4.464). Using the free body diagram shown (fig. 4.46b)
we can find:
(XF=0}.j = {veoj  + [dF}-j=0
= VX f)f wdx’
= w-({—X)

= M (X) = ff(x’ — X)wdx’

= w- (x’2/2— x’x)‘

= (£2/2—¢x) — (x272 )

= —w-(l—x)?%/2.

The integrals were used because of their general applicability for dis-
tributed loads. For this problem we could have avoided the integrals
by using an equivalent downwards force w - (£ — X) applied a distance
(£ — x)/2 to theright of the cut. Shear and bending moment diagrams
are shown in figs. 4.46a and 4.46b. |

{M(x)(—lé) n ff/cxdﬁ}-lézo

body diagram, c) Shear force diagram, d)
Bending moment diagram

(Filename:tfigure.uniformcant)

As for al problems based on the equilibrium equations and a given geometry, the

principle of superposition applies.
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Example: Super position

Consider a cantilever beam that simultaneously has both of the loads
from the previous two examples. By the principle of superposition:

vV = F + w-—x)
Mx) = Fx—0 + —w(—x)?/2

The shear force at every point is the sum of the shear forces from the

previous examples. The bending moment at every point is the sum of
the bending moments. O

If there are concentrated loads in the middle of the region of interest the calculation
gets more elaborate; the concentrated force may or may not show up on the free body
diagram of the cut bar, depending on the location of the cut.

Example: Simply supported beam with point load in the middle

@ IF ©
IS % -
— 02— 012 —
(b) F X
[ ‘ ] =7 ) S
* F/2 F/2 *
© C
F\}) M U
F/2
X< 012 Fer2
F
@ I x
|:‘<_>L) M
* F/2 x-ZIZN
X>0/2

Figure 4.47: a) Simply supported beam, b) free body diagram of whole beam, ¢) free body diagram
with cut to theleft of the applied force, d) free body diagram with cut to the right of the applied force
€) Shear force diagram, f) Bending moment diagram

(Filename:tfigure.simplesup)

A simply supported beam is mounted with pivotsat both ends (fig. 4.47a).
First we draw a free body diagram of the whole beam (fig. 4.47a) and
then two more, one with a cut to the left of the applied force and one
with acut to the right of the applied force (figs. 4.47c and 4.47d). With
the free body diagram 4.47c we can find V (x) and M(x) for x < ¢£/2
and with the free body diagram 4.47d we can find V (x) and M (x) for

X>1£/2.
{XF=0}j = V = F)2 for x < /2
= —F/2 forx > ¢£/2
{ZMCZG}"E = Mx) = Fx/2 forx < ¢/2

= F(-x/2 forx>¢/2

These relations can be plotted as in figs. 4.47e and 4.47f. Some obser-
vations. For this beam the biggest bending moment isin the middle, the
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place where simply supported beams often break. Instead of the free
body diagram shown in (c) and (d) we could have drawn a free body
diagrams of the bar to the right of the cut and would have got the same
V (x) and M(x). We avoided drawing a free body diagram cut at the
applied load where V (x) has a discontinuity. m|

Howtofind T, V,and M

Here are some guidelines for finding internal forces and drawing shear and bending
moment diagrams.

e Draw afree body diagram of the whole bar.
Using the free body diagram above find the reaction forces .
e Draw afree body diagram(s) of the cut bar of interest.

— For each region between concentrated | oads draw one free body diagram.

— Show the piece from the cut to one or the other end (So that al but the
internal forces are known).

— Don't make cuts at intermediate points of connection or oad application.

e Use the equilibrium equations to find T, V, or M (Moment balance about a
point at the cut is agood way to find M.)
Use the results above to plot V (x) and M (x) (T (x) israrely plotted).

— Use the same x scale for this plot as for the free body diagram of the
whole bar.

— Put the plots directly under the free body diagram of the bar (so you
can most easily relate features of the loads to features of the V and M
diagrams).

Stressisforce per unit area

€) For a given load, if you replace one bar in tension with two bars side by side you
A=cross  Wouldimaginethetension in each bar would go down by afactor of 2. Thusthe pair
sectionarea of bars should be twice as strong as asingle bar. If you glued these side by side bars
together you would again have one bar but it would be twice as strong as the original
bar. Why? Because it has twice the cross sectional area.

What makes a solid break is the force per unit area carried by the material. For
(b) T an applied tension load T, the force per unit area on an interior free body diagram
cutis T/A. Force per unit areanormal to an internal free body diagram cut is called

tension stress and denoted o (lower case ‘'sigma’, the Greek Ietter s).

Q
I
>

o=T/A

Figure 4.48: a) Tension on a free body
diagram cut is equivalent to b) uniform ten-
sion stress.

(Filename:tfigure.tension)
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Example: Stressin a hanging bar

Look at the hanging bar in the example on page 149. We can find the
tension stressin this bar as a function of position along the bar as:

_ T _pgAl-%

= A = pg(£ — X).

Note that the stress for this bar doesn’t depend on the cross sectional
area. The bigger the areathe bigger the volume and hence the load. But
also, the bigger the area on which to carry it. O

For reasons that are beyond this book, the tension stress tends to be uniform in
homogeneous (all one material) bars, no matter what their cross sectional shape, so
that the average tension stress % is actually the tension stress all across the cross
section.

We can similarly definethe average shear stress e (‘tau’) on afreebody diagram
cut as the average force per unit area tangent to the cut,

\%
Tave = K

For reasons you may learn in a strength of materials class, shear stress is not so
uniformly distributed across the cross section. But the average shear stress taye does
give an indication of the actual shear stressin the bar (e.g., for arectangular elastic
bar the peak shear stressis 50% larger than tae).

The biggest stresses typically come from bending moment. Motivating formulas
for these stresses here is too big a digression. The formulas for the stresses due to
bending moment are akey part of elementary strength of materials. But just knowing
that these stressestend to be big, gives you the important notion that bending moment
is acommon cause of structural failure.

Internal force summary

‘Internal forces are the scalars which describe the force and moment on potential
internal free body diagram cuts. They are found by applying the equilibrium equa-
tionsto free body diagramsthat have cuts at the points of interest. Theinternal forces
are intimately associated with the internal stresses (force per unit area) and thus are
important for determining the strength of structures.

“Cut. OK it'satake. Lets quit for the day”
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SAMPLE 4.10 Support reactions on a simply supported beam: A uniform beam
of length 3 mis simply supported at A and B as shown in the figure. A uniformly
distributed vertical load g = 100N/m acts over the entire length of the beam. In
addition, aconcentrated load P = 150N actsat adistanced = 1 mfrom theleft end.
Find the support reactions.

Solution Since the beam is supported at A on apin joint and at B on aroaller, the
unknown reactions are

The uniformly distributed load q can be replaced by an equivalent concentrated load
W = q¢ acting at the center of the beam span. The free body diagram of the beam,
with the concentrated load replaced by the equivalent concentrated load is shown in
Fig. 4.50. The moment equilibrium about point A, >~ M, = 0, gives

Y2 N N
(=Pd — W + By)k =0

d 1

= By = Po43W

N

1
= 150N~§+§-300N=200N

The force equilibrium, Y F = 0, gives
A+Byj—Pj-Wj=0
= A = (-By+P+W)j
(—200N + 150N + 300N)j = 250N j

—

A =250Nj, B =200Nj

SAMPLE 4.11 Support reactions on a cantilever beam: A 2 kN horizontal force
actsat thetip of an’L’ shaped cantilever beam as showninthefigure. Find the support
reactionsat A.

Solution The free body diagram of the beam is shown in Fig. 4.52. The reaction
force at A is A and the reaction moment is M = Mk. Writing moment balance
equation about point A, >~ M, = 0, we get

M+FgpaxF = 0
M+ {+hj)x(—Fi) = 0
= M = -Fhk
= —2KN-05mk
= —1kN-mk

The force equilibrium, > F = 0, gives
= 0
—F = —(—2kN i) =2kN i

+

N )

A
=

A =2kN1i,

M=—1kN- mk
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SAMPLE 4.12 Net force of a uniformly distributed system: A uniformly distributed
vertical load of intensity 100 N/macts on a beam of length £ = 2m as shown in the
figure.

(a) Find the net force acting on the beam.

(b) Find an equivalent force-couple system at the mid-point of the beam.

(c) Find an equivalent force-couple system at the right end of the beam.

Solution

(@) The net force: Since the load is uniformly distributed along the length, we
can find the total or the net load by calculating the load on an infinitesimal
segment of length dx of the beam and then integrating over the entire length
of the beam. Let the load intensity (Ioad per unit length) be q (g = 100N/m,
asgiven). Then the vertical load on segment dx is (see Fig. 4.54),

dF = qdx(—j).
Therefore, the net forceiis,

¢
Fg = /qu(—j):qﬁj:—lOON/QOj:—200Nj.
0

Fpq = —200Nj

(b) Theequivalent system at the mid-point: We have already calculated the net
forcethat can replace the uniformly distributed load. Now we need to calculate
the couple at the mid-point of the beam to get the equivalent force-couple
system. Again, consider a small segment of the beam of length dx located at
distance x from the mid-point C (see Fig. 4.55). The moment about point C due
to theload on dx is (q dx)x(—l@). But, we can find a similar segment on the
other side of C with exactly the same length dx, at exactly the same distance
X, that produces amoment of (q dx)x(+l€). Thetwo contributions cancel each
other and we have anet zero moment about C. Now, you can imaginethewhole
beam made up of these pairs that contribute equal and opposite moment about
C and thus the net moment about the mid-point is zero. You can also find the
same result by straight integration:

N +£/2 N T RS
M. = / gxdx(—k) = - (—=k)=0.
2

Frq = —200Nj,and M = 0

(c) Theequivalent system at the end: The net force remains the same as above.
We compute the net moment about the end point B, referring to Fig. 4.56, as

follows.
— l g A
My = /(—xi)x(—quj)z_qf x dxk
0 0
2. 100N/m - 4m? . A
= _%k=_wk=—200N-mk.

Fpgq = —200Nj and Mg = —200N-mk
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SAMPLE 4.13 For the uniformly loaded, simply supported beam shown in the
figure, find the shear force and the bending moment at the mid-section c-c of the
beam.

Solution To determine the shear force V and the bending moment M at the mid-
section c-c, wecut thebeamat c-cand draw itsfreebody diagram asshowninFig. 4.58.
For writing force and moment bal ance equations we use the second figure where we
have replaced the distributed load with an equivalent singleload F = (q¢)/2 acting
vertically downward at distance ¢/4 from end A.

Theforcebalance, 3" F = 0, impliesthat

Adi+Aj-Vj—Fj=0

Dotting with 7 and j, respectively, we get

AX - 0

V = A—F (4.34)

£
- A ¥ (4.35)

2

From the moment equilibrium about point A, " M, = 0, we get
~ qf ¢\ A ~
Mk—|—--)k—Vek=0
(53)
52

M = q? Ve (4.36)

Thus, to find V and M we need to know the support reaction A. Fromthefree body
diagram of the beam in Fig. 4.59 and the moment equilibrium equation about point
B,Y Mg =0, weget

l N
(—AyE+at ok = 0
£

Thus A = 500N . Substituting A in egns. (4.35) and (4.36), we get

V = 500N —-500N=0
4 2
M = 250n. AT g
= 500N-m

\vzo, M = 500N-m




4.4. Internal forces

SAMPLE 4.14 The cantilever beam AD is loaded as shown in the figure where
W = 2001bf. Find the shear force and bending moment on a section just left of point
B and another section just right of point B.

Solution To find the desired internal forces, we need to make a cut at a section just
totheleft of B and onejust to theright of B. Wefirst take the onethat isto theright of
point B. Thefree body diagram of theright part of the cut beamisshownin Fig. 4.61.
Notethat if we selected the | eft part of the beam, we would need to determine support
reactions at A. The uniformly distributed load 2W of the block sitting on the beam
can be replaced by an equivalent concentrated load 2W acting at point E, at distance
a/2 from the end D of the beam.

Let us denote the the shear force by V* and the bending moment by M+ at the
section of our interest. Now, from the force equilibrium of the part-beam BD we get

Vtj—2Wj = 0
- Vvt = 2w
400 Ibof

The moment equilibrium about point B, >~ Mg = 0, gives

~ 3a ~ IR
—M+k—2W-?ak )
—~ Mt = —3Wa
—12001bt

Now, we determine the internal forces at a section just to the left of point B. Let the

shear and bending moment at this section be V~ and M, respectively, as shown in

the free body diagram (Fig. 4.62). Note that load W acting at B is now included in

the free body diagram since the beam is now cut just ateeny bit left of thisload.
From the force equilibrium of the part-beam, we have

V' j—Wj—2wj = 0
= V- = 3W
600 | bf
and, from moment equilibrium about point B, ) MB =0, we get
. 3a ~
—M‘k—2W~?ak _ 0
= M~ = —-3Wa
—12001b-ft
M+ =M~ = —12001lb-ft, VT =400Ibf, VT = 600Ibf

Note that the bending moment remains the same on either side of point B but the
shear forcejumpsby V+* — V~ = 2001bf = W aswe go from right to the left. This
jumpisexpected because aconcentrated load W actsat B, in between the two sections
we consider. Concentrated external forces cause a jump in shear, and concentrated
external moments cause a jump in the bending moment.
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SAMPLE 4.15 Asimpleframe: A 2m highand 1.5 mwiderectangular frame ABCD
2kN isloaded with a1.5 kN horizontal forceat B and a2 kN vertical force at C. Find the
internal forces and moments at the mid-section e-e of the vertical leg AB.

Solution To find the internal forces and moments, we need to cut the frame at the
specified section e-e and consider the free body diagram of either AE or EBCD. No
matter which of the two we select, we will need the support reactions at A or D to
determine the internal forces. Therefore, let us first find the support reactions at A
and D by considering the free body diagram of the whole frame (Fig. 4.64). The
moment balance about point A, > MA = 0, gives

FBXﬁl+?CXﬁ2+?DX5 = 6
hj x F1i + (hj +€i) x (~F2j) +tixDj = 0
—F1hk — Fotk + Dtk 0

h

2

= L5KN- = 1 2kN
15"

— 4kN

From force equilibrium, " F = 0, we have

= —Fii+Fj—-Dj
F|gure 464 (Filename:sfigd.intern.frame.a) = _15 kNi — 2kNj

Now we draw the free body diagram of AE to find the shear force V, axia (tensile)
force T, and the bending moment M at section e-e.

; T From the force equilibrium of part AE, we get
v A-Vi+Tj = 0

A M E
JL, (Ax=V)i+(Ay+T)j = 0
; = V=A = —-15kN
A T=—Ay = 2kN

F| ure 465 (Filename:sfigd.intern.frame.b) . . . — =
g From the moment equilibrium about point A, >~ M, = 0, we have

MI€+gjx(—Vi) - 0
Mi+v i = 0
h
= M = _VE
— —(—1.5kN)~27m
= 1.5kN-m

V =15kN, T =2kN, M = 15kN-m




4.4. Internal forces

SAMPLE 4.16 Shear force and bending moment diagrams. A simply supported
beam of length ¢ = 2m carries a concentrated vertical load F = 100N at a distance
a fromitsleft end. Find and plot the shear force and the bending moment along the
length of the beam for a = £/4.

Solution We first find the support reactions by considering the free body diagram
of the whole beam shown in Fig. 4.67. By now, we have developed enough intuition
to know that the reaction at A will have no horizontal component since there is no
external forcein the horizontal direction. Therefore, wetakethereactionsat A and B
to be only vertical. Now, from the moment equilibrium about point B, > MB =0,
we get

F(e—ak— Atk = 0

= Ay=

a
= F(1-7)
and from the force equilibrium in the vertical direction, (3 F=0)- J, weget

a

Now we make a cut at an arbitrary (variable) distance x from A where x < a (see
Fig. 4.68). Carrying out the force balance and the moment balance about point A, we
get, for 0 < X < a,

\Y

A=F(1-3) (4:37)

M

Vx=F(1- %) X (4.39)

Thus 'V isconstant for all x < a but M varieslinearly with x.
Now we make a cut at an arbitrary x to the right of load F, i.e,a < x < ¢.
Again, from the force balance in the vertical direction, we get

V=—F+F<l—%)=—F% (4.39)

and from the moment balance about point A,

M = Fa+Vx
= Fa—ng
14

Fa (1 - %) (4.40)

Although egn. (4.38) is strictly valid for x < a and egn. (4.40) is strictly valid for
X > a, sustituting X = a in these two equations gives the same value for M (=
Fa(l — a/¢)) asit must because there is no reason to have a jump in the bending
moment at any point along the length of the beam. The shear force V, however, does
jump because of the concentrated load F at x = a.

Now, weplugina = ¢/4 = 0.5m, and F = 100N, in egns. (4.37)—(4.40) and
plot V and M aong thelength of the beam by varying x. Theplotsof V (x) and M (x)
are shownin Fig. 4.69.

O
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Figure 4.68: (ricnamesigs incern sevm.1)
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SAMPLE 4.17 Shear force and bending moment diagrams by superposition: For
the cantilever beam and the loading shown in the figure, draw the shear force and the
bending moment diagrams by

(@) considering all the loads together, and
(b) considering each load (of one type) at atime and using superposition.

Solution

(@ V(x) and M(x) with all forces considered together: The horizontal forces
acting at the end of the cantilever are equal and oppositeand, therefore, produce
acouple. So, we first replace these forces by an equivalent couple M applied =
100N - 1 m = 100N-m. Since we have acantilever beam, we can consi der the
right hand side of the beam after making a cut anywhere for finding V and M
without first finding the support reactions.

Let uscut the beam at an arbitrary distance x from theright hand side. Thefree
body diagram of the right segment of the beam isshownin Fig. 4.71. From the
force balance, 3 F = 0, we find that

~Vj+aqxj = 0
= V = gx (4.41)
= (50N/m)x

Thus the shear force varies linearly aong the length of the beam with

Vix=0 = 0
and V(x=3m) = 150N

The moment balance about point C, 3" M = 0, gives

~ —

N X A

where the moment due to the distributed load is most easily computed by
considering an equivalent concentrated load gx acting at x/2 from the end B.
Thus,
%2
= M = Mgylied — q? (4.42)
x2
= 100N-m—50N/m- 5

(4.43)

Thus, the bending moment varies quadratically with x along the length of the
beam. In particular, the values at the ends are

M(x=0) = 100N-m
and M(Xx=3m) = -125N-m
The shear force and the bending moment diagrams obtained from eqgns. (4.41)

and (4.42) are shown in Fig. 4.72. Notethat M = 0 at X = 2m as given by
eqn. (4.42).
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(b)

(N)|150

Internal forces

V (x) and M (x) by superposition: Now we consider the cantilever beam with
only one type of load at atime. That is, we first consider the beam only with
the uniformly distributed load and then only with the end couple. We draw
the shear force and the bending moment diagrams for each case separately and
then just add them up. That is superposition.

So, first let us consider the beam with the uniformly distributed load. The free
body diagram of a segment CB, obtained by cutting the beam at a distance x
fromthe end B, isshown in Fig. 4.73. Once again, from force balance, we get

V=gx for0<x<? (4.44)

and from the moment balance about point C, Y~ M = 0, we get

X x2
M:—qx-zz—q7 for0<x =</ (4.45)
Figure 4.74 showsthe plots of V and M obtained from egns. (4.44) and (4.45),
respectively, with the values computed from x = 0to x = 3m with g =

50N/m as given.

Now we take the beam with only the end couple and repeat our analysis. A cut
section of the beam is shown in Fig. 4.75. In this case, it should be obvious
that from force balance and moment balance about any point, we get

V =0
and M = Mgyplied
Thus, both the shear force and the bending moment are constant along the
length of the beam as shown in Fig. 4.75.
Now superimposing (adding) the shear force diagrams from Figs. 4.74 and
4.75, and similarly, the bending moment diagrams from Figs. 4.74 and 4.75,
we get the same diagrams asin Fig. 4.76.

M
100N-m

M
(N-mé'

-225

Figure4.76: (ricname

o:sfigd.intern.cantvmx.f)
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Figure 4.77: An ideal spring with rest
length ¢ and stretched length 0+ A¢. The
tension in the spring is T and the vector
forcesat theendsare Fy and Fg.

(Filename:tfigure2.spring2)
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4.5 Springs

In the same way that machines and buildings are built from bricks, gears, beams,
bolts and other standard pieces, e ementary mechanics models of the world are made
from afew elementary building blocks. Conspicuousso far, roughly categorized, are:

e Special objects: e Specia connections:
— Point masses. — Hinges,
— Rigid bodies: — Welds,
* Two force bodies, — Sliding contact, and
x Threeforce bodies, — Roalling contact.
x Pulleys, and
* Whedls,

Each of these things has a dua life. On the one hand a mechanical hinge corre-
spondsto aproduct you can buy in ahardware store called ahinge. On the other hand
a hinge in mechanics represents a constraint that restricts certain motions and freely
allowsothers. A hingein amechanics model may or may not correspond to hardware
called a hinge. When considering a box balanced on an edge, we may model the
contact as a hinge meaning we would use the same equations for the forces of contact
as we would use for a hinge. We might buy a pulley, but we might model a rope
sliding around a post as arope on a pulley even though there was no literal pulley in
sight. We might buy a brick becauseit isfairly rigid, and model it in mechanicsasa
rigid body. But arigid body model might well be used for human body parts that we
know deform noticeably. Thusthe mechanics model for these things may correspond
more or less with the properties of physical objects with the same names.

Thissectionisdevotedto anew building block that similarly hasadual personality:
aspring.

Springs, in variousforms but most characteristically ashelicesmade of steel wire,
can be purchased from hardware stores and mechanical parts suppliers. Springs are
used to hold things in place (a clothes pin), to store energy (a clock or toy spring),
to reduce contact forces (spring bumpers), and to isolate something from vibrations
(a car suspension spring). You will find springs in most any complicated machine.
Take apart adisposable camera, an expensive printer, agas|awn mower, or awashing
machine and you will find springs.

On the other hand, springs are used in mechanical ‘models of many things that
are not explicitly springs. For much of this book we approximate solids as rigid.
But sometimes the flexibility or elasticity of an object is an important part of its
mechanics. The simplest way of accounting for this is to use a spring. So atire
may be modeled as a spring as might be the near-surface-material of abouncing ball,
astrut in a truss, the snap-back of the earth’s crust in an earthquake, your achilles
tendon, or the give of soil under a concrete slab. Engineer Tom McMahon idealized
the give of arunning track as that of a spring when he designed the record breaking
track used in the Harvard stadium.

In this section we consider an ideal spring (see also page 88 in section 3.1). You
may view an ideal spring asan approximationto ahardware product or asanidealized
building block for mechanical models.
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Anideal spring is amassless two-force body characterized by itsrest length

£p (also called the ‘relaxed length’, or ‘reference length’), its stiffness k, and

defining equation (or constitutive law):
T=k-((—4£g o T=k-At

where ¢ is the present length and A¢ isthe increase in length or stretch (see

Fig. 4.77). This model of a spring goes by the name Hooke's law.

This spring is linear because of the formula kA ¢ and not, say, k(A¢)3. It iselastic
because the tension only depends on length and not on, say, rate of extension. The
spring formulais sometimes quoted as‘ F = kx D. A plot of tension verses length
for an ideal springisshownin Fig. 4.78a.

A comment on notation. Often in engineering we write A(something) to mean
the change of ‘something.” Most often one also hasin mind asmall change. In the
context of springs, however, A¢ is alowed to be a rather large change. We use the
notation 8¢ for small increments to avoid confusion. A useful way to think about
springs is that increments of force are proportional to increments of length change,
whether the force or length is aready large or small:

5T se 1
° =k

§T =ké¢ or = =z
Y4

STk
The reciprocal of stiffness % is called the compliance. A compliant spring stretches
alot when the tension is changed. A compliant spring is not stiff. A stiff spring has
small stretch when the tension is changed. A stiff spring isnot compliant.

Because the spring force is along the spring, we can write a vector formula for
the force on the B (say) end of the spring as ( see Fig. 4.77)

_ . 7
Fg =Kk (IFagl — €o) <|FAB|>.
N————’ AB

Al —

(4.46)

j'AB
where XAB isaunit vector along the spring. This explicit formulais useful for, say,
numerical calculations.

Zero length springs

A specia case of linear springs that has remarkable mechanical consequences is a
zero-length spring that has rest length ¢o = 0. The defining equations in scalar and
vector form are thus simplified to

T=kt and Fg=Kk-Fpp.

The tension verses length curve for a zero-length spring is shown in Fig. 4.78b.

At first blush such aspring seems non-physical, meaning that it seemsto represent
something which is not a reasonable approximation to any real thing. If you take a
coil spring al the metal gets in the way of the spring possibly relaxing to the point
of the ends coinciding. In fact, however, there are many ways to build things which
act something like zero length springs. For example, the tension verses length curve
of a rubber band (or piece of surgical tubing) looks something like that shown in
Fig. 4.78c. Over some portion of the curve the zero-length spring approximation may
bereasonable. For other physical implementations of zero-length springs see box 4.5
on page 164.
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D The form ‘F = kx' can lead to sign
errors because the direction of the force is
not evident. The safest way to avoid sign
errors when dealing with springsisto

e Draw afree body diagram of the spring;
e Write the increase in length A¢ in terms
of geometry variablesin your problem;

e Use T = kA to find the tension in the
spring; and then

o Usethe principle of action and reaction to
find the forces on the objects to which the
spring is connected.

@

(b) T

Figure 4.78: a) Tension verseslength for
an ideal spring, b) for a zero-length spring,
and c) for astrip of rubber.

(Filename:tfigure.tensionvslength)
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Here and there throughout the rest of the book you will see how springs are put
together with others of the basic building blocks in mechanics. Here we see how

In short, the result of attaching springs to each other in various ways is a new
spring with a stiffness that depends on the stiffnesses of the components and on how

164
Assemblies of springs
@ Ky
T T
S PRV |
‘ ' Kz ‘ springs are put together with other springs.
| |
© g, —
T AL T the springs are connected.
=l Looouad T
— K2 it
(©) Ky
= ij>_i Springsin parallél
\XJUR/UJV
2

Two springs that share aload and stretch the same amount are said to be in

Figure 4.79: a) Schematic of paral-
lel springs, b) genuinely parallel springs,
c) a reasonable approximation of parallel
springs.

parallel.

(Filenamoe:thigure. parallclsprings)

The mathematicsin many mechanics problemsis simplified by the
zero-length spring approximation. When isit reasonable?

Rubber bands. As shown in Fig. 4.78c straps of rubber be-
have like zero-length springs over some of their length. If thisis
the working length of your mechanism then the zero-length spring
approximation may be good.

A stretchy conventional spring. Some springs are so
stretchy that they are used at lengths much larger than their rest

lengths. Thus the approximation that k(¢ — £g) = k¢ ( — ZT(’) A
k¢ may be reasonable.

A pre-stressed coil spring. Some door springs and many
springs used in desk lamps are made tightly wound so that each coil
of wireis pressed against the next one. It takes some tension just to
start to stretch such aspring. Thetension verseslength curvefor such
springs can look very much like a zero-length spring once stretch
has started. In fact, in the original elegant 1930's patent, which
commonly seen present-day parallelogram-mechanism lamps imi-
tate, specifies that the spring should behave as a zero-length spring.
Such a pre-stressed zero-length coil spring was a central part of the
design of the long period seismometer featured on a 1959 Scientific
American cover.

4.4 Examples of zero length springs

lllllllllllllllll
Illllllll

~

Lo 14

A spring, string, and pulley. If aspring is connected to a
string that is wrapped around a pulley then the end of the string can
feel like a zero force spring if the attachment point is at the pulley
when the spring is relaxed.

}_Af
MWJB—@'\
P \T

A string pulled from the side.  If ataught string is pulled
fromthe sideit actslike azero-length spring in the plane orthogonal
to the string.

A ‘U’ clip. Ifaspringy pieceof metal isbent sothat itsunl oaded
shapeisapinched ‘U’ thenit actsvery muchlikeazerolength spring.
Thisis perhaps the best example in that it needs no anchor (unlike
the pulley) and can be relaxed to almost zero length (unlike a pre-
stressed coil).

metal wire

|-
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The standard schematic for this is shown in Fig. 4.79a where the springs are visibly
paralel. Thisschematic isanon-physical cartoon since applied tension would cause
the end-bars to rotate unless the attachment points A and B are located carefully.
What is meant by the schematic in Fig. 4.79a is the somewhat clumsy constrained
mechanism of Fig. 4.79b. Inengineering practice onerarely buildssuch astructure. A
simpler partial constraint against rotationsis provided by thetriangle of cables shown
in Fig. 4.79c¢; rotations are quite limited if the triangles are much longer than wide.
For the purposes of discussion here, we assume that any of Fig. 4.79abc represent a
situation where the springs both stretch the same amount.

The stretches and tensions of the two springsare A¢1, Aéo, T1, and T». For each
spring we have the defining constitutive relation:

T1=kiAl1 and T = kpAdo. (4.47)

As usual, they key to understanding the situation is through appropriate free body
diagrams (see Fig. 4.80). Force balance for one of the end supports shows that

T=T1+To (4.48)

showing that the load is shared by the two springs. Springs in parallel stretch the
same amount thus we have the kinematic relation:

Al = Al = AL. (4.49)

Determining the relation between T and A¢ is amatter of manipulating these equa-
tions:

T Ty + To
= kiAat;  + koAlo
= KkiAL + ko AL

= (k+kyAl .
—_——
k

Thus we get that the effective spring constant of the pair of springs in parallel is,
intuitively:

k =ki + ko. (4.50)
Theloads carried by the springs are
k1 I(2
T = T ad To= —-T
Ttk Tkt ke

whichadd up to T asthey must.

Example: Two springsin parallel.

Takek; = 99N/ cmand ko, = 1N/ cm. The effective spring constant of
the parallel combination is:

k=ki+ ks =99N/cm+ LN/ cm = 100N/ cm.

T
<=

165
T T T, T T
- < -> <=
- o <
T, T, T, Ty

Figure 4.80: Free body diagrams of the
components of a parallel spring arrange-

ment.

(Filename:tfigure.parallelfbds)
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Figure 4.81: A mechanics joke to make
apoint. The barsin the open square above
arerigid. The deformation into a diamond
isresisted by the two springs shown. They
share the load and they have stretches that
are linked by the kinematics. Thus these
two perpendicular springs are ‘in paralel.
(By theway, you are not expected to be able
to analyze the compliance of this structure
at this point.)

(Filename:tfigure.paralleljoke)
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Figure 4.82: Schematic of springsin se-
ries.

(Filename:tfigure.seriessprings)
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Notethat T1/ T = .99 so even though the two springs share theload, the
stiffer one carries 99% of it. For practical purposes, or for the design of
this system, it would be reasonabl e to remove the much less stiff spring.
O

Thereasoning above with two springsin parallel iseasy enough to reproduce with
3 or more springs. Theresultis:

kit = ki +ko+ks+... and Ti1=Tky/kot, To=Tko/kict...

Thatis,

e Thenet spring constant is the sum of the constants of the separate springs; and
e Theload carried by springsisin proportion to their spring constants.

Some commentson parallel springs

Once you understand the basic ideas and calculations for two side-by-side springs
connected to common ends, there are afew things to think about for context.

For the purposes of drawing pictures (e.g., Fig. 4.79a) parallel springs are drawn
side by side. But in the mechanics analysis we treated them as if they were on top
of each other. A pair of parallel springsis like a two bar truss where the bars are
on top of each other but connected at their ends. With 2 bars and 2 joints we have
2j < b+ 3, and aredundant truss. Infact thisis the simplest redundant truss, as one
spring (read bar) does exactly the samejob asthe other (carriesthe sameloads, resists
the same motions). With statics a onewe can not find the tensionsin the springs since
the statics equation Ty + T2 = T has non-unigue solutions.

In the context of trusses you may have had the following reasonable thought:
The laws of statics allow multiple solutions to redundant problems. But abar in a
real physical structure has, at one instant of time, some unique bar tension. What
determines this tension? Now we know the answer: the deformations and material
properties. Thisisthefirst, and perhaps most conspicuous, occasion in this book that
you see a problem where the three pillars of mechanics are assembled in such clear
harmony, namely, material properties (eq. 4.47), the laws of mechanics (eq. 4.48),
and the geometry of motion and deformation (eq. 4.49). In strength of materials
calculations, where the distribution of stressis not determinable by statics alone, this
threesome (geometry of deformation, material properties and statics) clearly come
together in ailmost every calculation.

Finaly, in the discussion above ‘in parallel’ corresponded to the springs being
geometrically parallel. In common mechanics usage the words ‘in parallel’ are more
general and mean that the net load is the sum of the loads carried by the two springs,
and the stretches of thetwo springsarethe same (or inaratio restricted by kinematics).
You will see cases where ‘in parallel’ springs are not the least bit parallel (e.g., see
Fig. 4.81).

Springsin series

Two springs that share a displacement and carry the same load are in series.

A schematic of two springs in series is shown in Fig. 4.82a where the springs are
aligned serialy, one after the other. To determine the net stiffness of this simple
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spring network we again assembl e the three pillars of mechanics, using the free body
diagram of Fig. 4.82b.

Constitutivelaw: Ty = k1(£1 — £1y), T2 =ko(€2 — £2),
Kinematics: Lo = L1y + L2y, =101+ ¢, (4.51)
Force Balance: T.=T, and T, =T.

(wheree.g., £1, reads ‘ell sub one zero’ and is the rest length of spring 1). We can
manipul ate these equations much as we did for the similar equations for springs in
paralel. The manipulation differsin structure the same way the equations do. For
springs in parallel the tensions add and the displacements are equal. For springsin
series the displacements add and the tensions are equal .

Al = V4 — Lo
= (l1+4L2) — (L1p+1L2)
= (l1—4Ly) + (2—14L2)
= Alq + Ao
- F B
[
ke ko
_ (1, 1)
ki ko '
—_—
1
5

Thus we get that the net compliance is the sum of the compliances:
1 1 1 1 kik
—=—+4+— o k= =12

k ki ko 1/k1 +1/ko ki + ko

which you might compare with springsin parallel (Egn. 4.50). The sharing of the net
stretch isin proportion to the compliances:

1k
© 1/Ki+ 1/ke
which add up to A¢ asthey must.

1/k
Al and Alp = /ke

AL __ Yk
! 1/ki + 1/ko

Example: Two springsin series.

Take1/k; =99cm/ N and 1/k; = 1cm/ N. The effective compliance
of the parallel combinationiis:
1 1 1
—=—+—=99cm/N+ 1cm/N = 100cm/ N.
k ki ko
Note that A¢1/A¢ = .99 so even though the two springs share the
displacement, themore compliant onehas99% of it. For design purposes,
or for modeling this system, it would be fair to replace the much more
stiff spring with arigid link. |
Much of what you need to know about the words ‘in parallel’ and ‘in series’ follows
easily from these phrases:

Inparallel, forces and stiffnesses add.
In series, displacements and compliances add.
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a) series

I'e

b) parallel

| SSSEELNUNER

Figure 4.83: a) The two springs shown
arein seriesbecausethe carry the sameload
and their displacements add. b) These two
springs are in paralel because the have a
common displacement and their forces add.

(Filename:tfigure.parallelconfusion)
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-500,000N

Figure 4.84: a) asted rod in tension, b)
tension verses length curve, ¢) zoom in on
the tension verses length curve

(Filename:tfigure.steelrodspring)

@ Because it is hard to picture steel de-
forming, your intuition may be helped by
thinking of all solids as being rubber, or,
if you want to look inside, like a chunk of
Jello. (Jellois colored water held together
by long gelatine molecules extracted from
animal hooves. Those who are Kosher or
vegetarian may substitute a sea-weed based
Agar jell in their imagined deformation ex-
periments. )
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Rigid bodies, springsand air

Asthe previoustwo examplesillustrate, springs can sometimes be replaced with ‘air’
(nothing) or with rigid links without changing the system or model behavior much.
One way to think about thisisthat in the limit ask — oo a spring becomes arigid
bar and in the limit k — 0 a spring becomes air.

These ideas are used by engineers, often intuitively or even subconsciously and
with no substantiating cal culations, when making a model of a mechanical system.
If one of several piecesin seriesis much stiffer than the others it is often replaced
with arigid link. If one of several piecesin parallel is much more compliant than the
othersit is often replaced with air. For example:

e When a coil spring is connected to a linkage, the other pieces in the linkage,
though undoubtedly somewhat compliant, aretypically modelled asrigid. They
are stiffer than the spring and in series with it.

e A single hinge resists rotation about axes perpendicular to the hinge axis. But
adoor connected at two points along its edge is stiffly prevented against such
rotations. Thus the hinge stiffness is in parallel with the greater rotational
stiffness of the two connection points and is thus often neglected (see the
discussion and figuresin section 3.1 starting on page 86).

e Welded joints in a determinate truss are modeled as frictionless pins. The
rotational stiffness of the welds is ‘in parallel’ with the axial stiffness of the
bars. To see thislook at two bars welded together at an angle. Imagine trying
to break thisweld by pulling the two far bar ends apart. Now imaginetrying to
break the weld if the two far ends are connected to each other with athird bar.
Thethird bar is‘in paralel’ with the weld material. Seethefirst few sentences
of section 4.2 for ado-it-yourself demonstration of the idea.

o Human bones are often modeled as rigid because, in part, when they interact
with the world they are in series with more compliant flesh.

Note, again, that the mechanics usage of the words ‘in parallel’ and ‘in series
don’'t always correspond to the geometric arrangement. For example the two springs
in Fig. 4.83aarein series and the two springsin Fig. 4.83b arein paralel.

Solid barsarelinear springs

When a structure or machine is built with literal springs (e.g., a wire helix) it is
common to treat the other parts asrigid. But when a structure has no literal springs
the small amount of deformation in rigid looking objects can be important, especially
for determining how |oads are shared in redundant structures.

Let’s consider a 1 m (about a yard) steel rod with a’5cm square (about (2in)2)
cross section (Fig. 4.84a). If we plot the tension verses length we get a curve like
Fig. 4.84b. Thelengthjust doesn’t visibly change (unlessthetension got so large asto
damage the rod, not shown.) But, when you pull on anything, it does deform at |east
alittle. If we zoom in on the tension verses length plot we get Fig. 4.84c. To change
the length by one part in a thousand we have to apply atension of about 500, 000N
(about 60 tons). Nonetheless the plot reveas that the solid steel rod behaves like a
(very dtiff) linear spring.

Surprisingly perhaps this little bit of compliance isimportant to structural engi-
neers who often like to think of solid metal rods as linear springs. How does their
stiffness depend on their shape and composition?®.

Let'stake areference bar with cross sectional area Ag and rest length £¢ and pull
it with tension T and measure the elongation A¢g (Fig. 4.85ab). The stiffness of this
reference rod is kg = To/A€g. Now put two such rods side by side and you have
parallel springs. You might imagine this sequence: two bars are near each other,
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then side by side, then touching each other, then glued together, then melted together
into one rod with twice the cross section. The same tension in each causes the same
elongation, or it takes twice the tension to cause the same elongation when you have
twice the cross sectional area. Likewise with three side by side bars and so on, so for

bars of equal length
A

On the other hand we could put the reference rods end to end in series. Then the
same tension causes twice the elongation. We could be three or more rods together
in series thus for bars with equal cross sections:

Lo
k = —kp.
Eko

Putting these together we get:

(R ()2

Now presumably if we took arod with agiven material, length, and cross section the
stiffness would be k, no matter what the dimensions of the reference rod. So (%)

has to be a material constant. It is called E, the modulus of elasticity or Young's
modulus. For all steels E ~ 30 - 1081bf/in® ~ 210 - 10° N/ m? (consistent with
Fig. 4.84c). Aluminum has about a third this stiffness. So, a solid bar is a linear
spring, obeying the spring equations:

_EA or M_Tf or T_MEA
T T EA T

k

Strength and stiffness

Most often when you build astructure you want to make it stiff and strong. Theideas
of stiffness and strength are so intimately related that it is sometimes hard to untangle
them. For example, you might examine a product in discount store by putting your
hand on it, applying small forces and observing the motion. Then you might say:
“pretty shaky, | don’t think it will hold up” meaning that the stiffnessis low so you
think the thing may break if the loads get high.

Although stiffness and strength are often correlated, they are distinct concepts.
Something is stiff if the force to cause agiven motion is high. Something is strong if
the force to cause any part of it to break is high. Infact, it is possible for a structure
to be made weaker by making it stiffer.

Example: Stiffer but weaker.

@ 0T oo ® o)
F F
Tt ~
== A O wieim

Say dl springs have tiffness kg and break when the tension in them
reaches To. Because of the mixture of parallel and series springs, the net
stiffness of the structure in (a) is knet = ko. Its strength is 2T because
none of the springs reaches its breaking tension until F = To.
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d)

L
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ﬁT

)
L

Figure 4.85: a) reference rod, b) refer-
ence rod in tension, c) two reference rods
side by side, d) and €) two reference rods
glued end to end.

(Filename:tfigure.steelparallel)
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By doubling up one of the springsin (b) the structure is made 16%
stiffer (knet = 7ko/6. But spring AB now reaches its breaking point Tg
when the applied load F = 21Tp/12, a 12.5% lower load than the 2Ty
the structure could carry before the stiffening.

Thestructureismade stiffer by reducing thedeflection of point A. But
this causes spring AB to stretch more and thus break at asmaller load. In
some approximate sense, theload isthus concentrated in spring AB. This
concentration of load into one part of structureisonereason that stiffness
and strength need to be considered separately. Load concentration (or
stress concentration) is amajor cause of structural failure. m|

Why aren’t springsin all mechanical models?

All things deform a little under load. Why don't we take this deformation into
account in al mechanics calculations by, for example, modeling solids as elastic
springs? Because many problems have solutions which would be little effected by
such deformation. In particular, if aproblem is statically determinate then very small
deformationsonly haveavery small effect onthe equilibrium equationsand calculated
forces.

Linear springsarejust oneway to model ‘give

If it isimportant to consider the deformability of an object, the linear spring model
is just one simple model. It happens to be a good model for the small deformation
of many solids. But the linear spring model is defined by the two words *linear’ and
‘elastic’. For some purposes one might want to model the force due to deformation as
being non-linear, like T = ki(A£) + ko(A£)3. And one may want to take account of
the dissipative or in-elastic nature of something. The most common example being
alinear dashpot T = cf. Various mixtures of non-linearity and inelasticity may be
needed to model the large deformations of ayielding metal, for example.
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4.5 A puzzlewith two springs and three ropes.

Thisisatricky puzzle.

Consider a weight hanging from 3 strings (BD,BC, and AC)
and 2 springs (AB and CD) as in the left picture below. Point B is
above point C and all ropes and springs are somewhat taught (none
isslack).

a)?

b? 2

When rope BC is cut does the weight go (a) down?, (b)
up?, or (c) stay put?

If you have the energy and curiosity you should stop reading and try
thinking, experimenting, or calculating when you see three dots.

In 15 minutes or so you can set up this experiment with 3 pieces of
string, 2 rubber bands and a soda bottle. Hang the partialy filled
soda bottle from a door knob (or the top corner of adoor, or aruler
cantilevered over the top of arefrigerator). Adjust the string lengths
and amount of weight so that no strings or rubber bandsareslack and
make sure point B is above point C. The two points A can coincide
as can the two points D. You might want to separate them a little
with, say, asmall wad of paper so you can seewhich stringiswhich.

Looking at your experimental setup, but not pulling and poking at
it, try to predict whether your bottle will go up down or not move
when you cut the middle string.

The answer is, by experiment, that: When you cut the middle string the weight goes up a
litle. This violates many people'sintuitions. In fact, this puzzle was
published as one of aclass of problems for which people have poor
intuitions.

Now try to figure out why the experiment comes out the way it does?
Also, try to figure out the error in your thinking if you got it wrong
(like most people do).

All simple explanations are based on the assumption that the lengths
of the strings AC and BD are constant at 1.

To simplify the reasoning let's assume that springs AB and CD
are identical and carry the same tension Ts and that the ropes AC
and BD carry the same tension T,. As usual, we need free body
diagrams. (With the symmetry we have assumed diagrams (a) and
(c) provide identical information.) The three free body diagrams
can be considered before and after the middle string removal by
having Ty > Oor Tg = O, respectively. Vertical force balance gives
(approximating Ty as vertical):

Te+Tr =W and 2T +Tg=W = Ts=W+Tg)/2.

Because we approximate AC asrigid with length £1, the downwards
position of the weight is the string length £1 plus the rest length of
the spring ¢o plus the stretch of the spring Ts/ k:

=01+ Lo+ Ts/k=121+ Lo+ (W + Tq)/(2k).

In the course of this experiment ¢4, £g9, W and k are constants. So
as the tension Ty goes from positive to zero (when the rope BC is
cut) £ decreases. So the weight goes up.

More intuitively, start with the configuration with the rope aready
cut and apply a small upwards force at C. It has no effect on the
tension in spring CD thus the weight does not move. Now apply a
small downwards force at B. This does stretch spring AB and thus
lower point B, thus lowering the weight since ¢4 is constant. Ap-
plying both simultaneously is like attaching the middle rope. Thus
attaching the middle rope lowers the weight and cutting the middle
rope raisesit again.

Here is another intuitive approach. Point C can't move. Point B
moves up and down just as much as the weight does. Point B is
adistance d above point C. Since the rope BC is taught, releasing
it will allow B and C to separate, thus increasing d and raising the
weight.

What about springsin parallel and series? Hereisaquick but wrong
explanation for the experimental result, though it happensto predict
the right answer, or at least the right direction of motion.

“BeforeropeBCiscut thetwo springsaremoreor
less in series because the load is carried from spring
through BC to spring. Afterwards they are more or
less in parallel because they have the same stretch
and share the load. Two springs in paralel have 4
times the stiffness of the same two springsin series.
So in the parallel arrangement the deflection is less.
So the weight goes up when the springs switch from
seriesto parallel”

What is the error in this thinking? The position of the weight
comes from spring deflection added to the position when there is
no weight. For the argument just presented to make sense, the rest
position of the mass (with gravity switched off) would have to be
the same for the supposed ‘series’ and ‘parallel’ cases, which it is
not (¢1 + £o # Lo + d + o).

Ts

B 1T, Tr1€ 1T,

| |
‘ W ‘ W
Another way to see the fallacy of this ‘parallel verses series
argument isthat theincremental stiffness of the systemis, assuming
inextensible ropes, infinite. That is, if you add or subtract a small
load to the bottle it doesn’t move until one or another rope goes
slack. (The small deformation you do see has to do with the stretch
of the ropes, something that none of the simple explanations take
into account.) If the springs were in series or parallel we would
expect an incremental stiffnessthat was related to spring stretch not
rope stretch.
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Figure 4.86: (richame:stiss 26prings)
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Figure 4.87: Free body diagram of point
A.

(Filename:sfigd.2springs.a)
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Figure 4.88: Free body diagrams
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SAMPLE 4.18 Springs in series versus springs in parallel: Two springs with
spring constantsk; = 100N/m and ko = 150 N/m are attached together as shownin
Fig. 4.86. Incase (a), avertical force F = 10N isapplied at point A, and in case (b),
the same force is applied at the end point B. Find the force in each spring for static
equilibrium. Also, find the equivalent stiffness for (a) and (b).

Solution Instatic equilibrium, let Ay bethe displacement of the point of application
of theforcein each case. We can figure out the forces in the springs by writing force
balance equationsin each case.

e Case(a): Thefreebody diagram of point A isshowninFig. 4.87. Aspoint A
isdisplaced downwardsby Ay, spring 1 gets stretched by Ay whereas spring 2
getscompressed by Ay. Therefore, theforcesapplied by thetwo springs, k1 Ay
and Akoy, are in the same direction. Then, the force balance in the vertical
direction, j - (. F = 0), gives:

F = F+F=(k +ky)Ay
F 10N
Ay = = =0.04m
= &Y ki+k» _ (100+ 150)N/m
= F1 = kiAy=100N/m-0.04m=4N
= F» = kpAy=150N/m-0.04m = 6N

The equivalent stiffness of the system isthe stiffness of asingle spring that will
undergo the same displacement Ay under F. From the equilibrium equation
above, it is easy to see that,

F
= —k ko = 250N/ m.
ke Ay 1+ ko /m

|[F1=4N, F;=6N, ke=250N/m |

e Case (b): The free body diagrams of the two springs is shown in Fig. 4.88

alongwiththat of point B. Inthiscaseboth springsstretch aspoint B i sdisplaced

downwards. Let the net stretch in spring 1 be y; and in spring 2 be y». y; and
y2 are unknown, of course, but we know that

yi+Yy2=Ay (4.52)

Now, using the free body diagram of point B and writing the force balance
equation in the vertical direction, we get F = koy» and from the free body
diagram of spring 2, we get koy> = k1y1. Thus the forcein each spring is the
same and equals the applied force, i.e.,

F1=k1y1=F=10N and F2=k2y2=F=10N.
The springs in this case are in series. Therefore, their equivalent stiffness, ke,
is
1 1\1* 1 1 \1
Y = =60N/m.

e <k1+dq> (100N/m_+150N/m> /m
Note that the displacements y; and y» are different in this case. They can be
easily found fromy; = F/ky and y» = F/ko.

|Fi=F;=10N, ke=60N/m |

Comments. Although the springs attached to point A do not visually seemto bein
parallel, from mechanics point of view they are paralel. Springsin parallel havethe
samedisplacement but different forces. Springsin serieshavedifferent displacements
but the same force.
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SAMPLE 4.19 Siffness of three springs. For the spring networks shown in
Fig. 4.89(a) and (b), find the equivalent stiffness of the springs in each case, given
that each spring has a stiffness of k = 20N/m.

Solution

(a) InFig. 4.89(a), all springs are in parallel since al of them undergo the same
displacement Ax in order to balance the applied force F. Each of the two
springs on the left stretches by Ax and the spring on the right compresses by
AX. Therefore, the equivalent stiffness of the three springsis

Kp = K + Kk + 2k = 4k = 80kN/m.

Pictorially,

k |_>AX 2k |_’A2Xk 4k 'Ai
|Z:Z;Zkgiiilhm“lw hYW‘ih’WYI - hmd

Figure 4.90:  (ricnamesstist seprings.a)

‘kequiu=80kN/m‘

(b) In Fig. 4.89(b), the first two springs (on the left) are in paralel but the third
spring isin series with the first two. To see this, imagine that for equilibrium
point A movesto theright by Axa and point B movestotheright by Axg. Then
each of thefirst two springs hasthe same stretch Axa whilethethird spring has
anet stretch = Axg — Axa. Therefore, to find the equivalent stiffness, we can
first replace the two parallel springs by a single spring of equivalent stiffness
kp = k+ k = 2k. Then the springs with stiffnessesk, are 2k are in series and
therefore their equivalent stiffness ks is found as follows.

1_ 1,1 1,1 1
ks ko 2k 2k 2k K

= ks = k=20kN/m.
Axp Axg Axp Axg A%g
‘ : :k: : [| 2Kk H N 2k 2k N ‘ k ﬂ

Figure4.91: (Filename:sfigd.3springs.b)

‘kequiU=20kN/m‘

@

(b)

173

K F
K 2k
k
F
—
K 2k

Figure 4.89: (ricnsme:stizs eprings)
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SAMPL E 4.20 Stiffnessvsstrength: Which of thetwo structures (network of springs)
shown in the figure is stiffer and which one has more strength if each spring has
stiffnessk = 10kN/m and strength F; = 10kN.

i k  k
k F

ke

3

@ (b)

Figure 4.92;  (ricnamesstisa manysprings)

Solution In structure (a), all the three springs are in parallel. Therefore, the equiv-
aent gtiffness of the three springsis

ka = K + Kk + k = 3k = 30kN,/ m.

For figuring out the strength of the structure, we need to find the force in each spring.

Fa ke From the free body diagram in Fig. 4.93 we see that,
= WA —> Ty
F/ k KAX +kAX+kAX = F = AX—F
(3_. —VNN—L —> F/g - T3k
Therefore, the force in each spring is

b «—¢ 763 F

; 5"—7: Fs = kAX = §

F

. é“‘ But the maximum force that a spring can take is (Fs)max = Fo = 10kN. Therefore,
e " PR the maximum force that the structure can take, i.e., the strength of the structure, is
Fmax = 3Fg= 30kN.

Figure 4.93; (ricnsmestist manysprings.2)

| Stiffness = 30kN/m, Strength = 30kN

Now we carry out asimilar analysis for structure (b). There are four parallel chains
in this structure, with each chain containing two springs in series. The stiffness of
each chain, k¢, isfound from

1 1 1 2

k

So, the stiffness of the entire structureis
kp = ke + ke + ke + ke = 4ke = 20kN/ m.

We find the force in each spring to be F/4 from the free body diagram shown in

E [EVIV VSN /AR SV VT Sy A . . .
4 ! 4 ‘] Fig. 4.94. Therefore, the maximum force that the structure can take is
F/q — ¢ NMN—F > f/4 —en—s—> ':/4 (——f—_,F

y:/4 PEEPIYVV VS Fa AN >

%

F/‘} PV VIV F/«; s> By e

\ Stiffness = 20kN,/m, Strength = 40kN ]

FIQUre 4.94: wuemumestst mansaprings Thus, the structure in Fig. 4.92(a) is stiffer but the structurein (b) is stronger (more
strength).
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SAMPLE 4.21 Compliancematrix of astructure: For thetwo-spring structureshown
in the figure, find the deflection of point C when

(@ F = 1N,

(b) F =1Nj,

(c) F =30Ni+ 20Ny,
The spring stiffnesses are ky = 10kN/m and ko = 20kN/m.

Solution

FIQUre 4.95] Guensmssties.cornescomsiy (a) Deflections with unit force in the x-direction: Let AF = Axi + Ayj be the
displacement of point C of the structure due to the applied load. We can figure
out the deflectionsin each spring asfollows. Let A5 ¢ and Az betheunit vectors

along AC and BC, respectively. Then, the change in the length of spring AC
L due to the displacement of point Cis

) Anc
:—W—)b—) = - (AXI + Ay)) =
1
' Similarly, the change in the length of spring BC is

Figure 4.96: (rinamestist springs. compl )
Agc = dnc-AF
= (cosfi —sindj) - (AXi + AyJ) = AXcost — Aysing.

Now we can find the force in each spring since we know the deflection in each
spring.

Forceinspring AB =F1 = KkjAX (4.53)
ForceinspringBC=F, = ky(Axcosd — Aysing).  (4.54)

The forces in the springs, however, depend on the applied force, since they
must satisfy static equilibrium. Thus, we can determine the deflection by first
finding F1 and F» in terms of the applied load and substituting in the equations
above to solve for the deflection components.

Let F = fyi = 1Ni, (we have adopted a special symbol fy for the unit load).
Then, from the free body diagram of the springs and the end pin shown in
Fig. 4.97 and the force equilibrium (3 F = 0), we have,

fxi — F1i + Fa(— cos@i +singj) = 0
Ax

>‘Ac

Dotting with j and 7 we get,
Figure 4.97: (ricname:stiss springs complb)
F, = 0

F1 = fx=1N.

Substituting the values of F1 and F» from above in egns. (4.53 and 4.54), and
solving for Ax and Ay we get,

1
AX _ K
( Ay >F:in = ( k—1100t9 ) fy. (4.55)

Substituting the given values of 6 and k; and fy = 1N, we get

AF = AXi + Ayj = (100f + 173j) x 10~®m.

AF = (100i 4+ 173j) x 10°%m




4.5. Sorinas 177

(b) Deflectionswithunitforceinthey-direction: Wecarry out asimilar analysisfor
thiscase. Weagainassumethedisplacement of point Ctobe Ar = Axi+Ayj.
Since the geometry of deformation and the associated results are the same,
egns. (4.53) and (4.54) remain valid. We only need to find the spring forces
from the static equilibrium under the new load. From the free body diagramin
Fig. 4.98 we have,

(—F1— F2c0860)i + (F2sinf + F)j = 0 F
F . ko
Fo=———
= 2 siné I—j
and Fp=—F,cos0 = F cot6. F2 TF
«'—\L)\M/—'»eb'
Substituting these values of F1 and F; intermsof fy inegns. (4.53) and (4.54), Fy Ky F, C
we get
. Figure 4.98: (ricname:ssiss springs.compl.c)
fycotd = kiAx = Ax= k—ycote
1
fy _ ko(AX COSO — AySing)
sng ' ? y
S oAy = =t (AX oSO + fy )
Y= Sne koSinG
1 ., 1
= fy( - cot?0 + = csc?0
k1 ko
Thus,
1
AX > k; Coto
= fy. (4.56)
~ 1 ~nf2 1 ~qe2 y
(Ay F=t,j (k_1COt6+k_2CS(:0

Substituting the values of 6, ky, and ko, and fy = 1N, we get

AF = AXi + Ayj = (173% 4+ 5005) x 10~°m.

| AF = (1731 +500§) x 106m

(c) Deflection under general load: Since we have aready got expressions for
deflectionsin the x and y-directions under unit loadsin the x and y-directions,
we can how combine the results to find the deflection under any general load
F = Fyi + Fyj asfollows.

. AX AX AX
Ar = = Fy- N +F,- R
< Ay ) * ( Ay )F:li g ( Ay )F:lj
B kit k;*cote Fx
| k;tcotd kitcot?6 + k;tesc?o Fy )
Once again, substituting all given values and Fx = 30N and Fy = 20N, we

get
AF = (6.4 +15.2)) x 10~ 3m.

AF = (6.47 +15.3j) x 103m

Note: The matrix obtained above for finding the deflection under genera load is
called the compliance matrix of the structure. Its inverse is known as the stiffness
matrix of the structure and is used to find forces given deflections.
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Figure 4.100: (rienamessiss zorospring.a)
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SAMPLE 4.22 Zero length springs are special! A rigid and massless rod AB of
length 2m supports aweight W = 100 kg hung from point B. Therod is pinned at O
and supported by a zero length (in relaxed state) spring attached at mid-point A and
point C on the vertical wall. Find the equilibrium angle 6 and the force in the spring.

Solution The free body diagram of the rod is shown in Fig. 4.100 in an assumed
equilibrium state. Let A = —sin®i + coso j be aunit vector along OB. The spring
force can be written as Fs = k7, . We need to determine 6 and 5.

Let us write moment equilibrium eguation about point O, i.e., , 3" Mg = 0,

?B/OXW+FA/OXI7\S:6

Noting that
N a N TN
rB/O = El, rA/O = 5)\.,
VN
= k(hj—=x
(hj =32,
we get,
. ot R _
Elx(—W])—{-Ekxk(hJ—ék) =0
~ ? A N
~Wed x ) +khzGx ) = 0

Dotting this equation with (A x J), we get,

—W¢e + khg =0
Thustheresult isindependent of 6! Aslong asthe spring stiffnessk and the height of

point C, h, are such that their product equals 2W, the system will be in equilibrium
at any angle. Thisiswhy zero length springs are special.

Equilibrium is satisfied at any angle if kh = 2W




4.6. Sructures and machines
4.6 Structuresand machines

The laws of mechanics apply to one body shown in one free body diagram. Yet
engineers design things with many pieces each of which may be thought of asabody.
One class of examples are trusses which you learned to analyze in section 4.2.

We would now like to analyze things built of pieces that are connected in amore
complex way. Thesethingsinclude various structureswhich are designed to not move
and various machines which are designed to move. Our general goal hereisto find
the interaction forces and the ‘internal’ forces in the components.

The secret to our success with trusses was that all of the pieces in a truss are
two-force members. Thus free body diagrams of joints involved forces that were in
known directions. Because now the pieces are not all two-force bodies, we will not
know the directions of the interaction forces a priori and the method of joints will be
nearly useless.

Example: An X structure

| DV

Two barsarejoined inan ‘X’ by apin at J. Neither of the barsis atwo-
force body so afree body diagram of the*joint” at J, made by cutting and
leaving stubs as we did with trusses, has 12 unknown force and moment
components. O

Instead of drawing free body diagrams of the connections, our approach here is to
draw free body diagrams of each of the structure or machine's parts. Sometimes, as
was the case with trusses, it is aso useful to draw a free body diagram of a whole

structure or of some multi-piece part of the structure®.

Example: Stamp machine

Pulling on the handle (below) causes the stamp arm to press down
with a force N a D. We can find N in terms of F, by draw-
ing free body diagrams of the handle and stamp arm, writing
three equilibrium equations for each piece and then solving these
6 equations for the 6 unknowns (Ax, Ay, Fc, N, By, and By).
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D vou might wonder why we didn’t ana-
lyze trusses thisway, by drawing free body
diagrams of each of the bars. This seldom
used approach to trusses, the ‘method of
barsand pins’ isdiscussedinbox 4.60n187.
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B

v d — By

‘ f,

For this problem, the answer can be found more quickly with ajudicious
choice of equilibrium equations.

~

For the handle, {Zﬂ/B =0}-
For the stamp arm, [Z M =0

h(d + w)
R
de. "

Note that the stamp force N can be made very large by making d small
and thusthe handle nearly vertical. Oftenin structural or machinedesign
oneor another forcegetsextremely large or small asthedesignischanged
to put piecesin near alignment. ]

eiminatingFc = N =

Static deter minacy

A statically determinate structure hasasolution for all possible applied |oads, hasonly
one solution, and this solution can be found by using equilibrium equations applied
to each of the pieces. Asfor trusses, not all structures are statically determinate. The
simple counting formula that is necessary for determinacy but does not guarantee
determinacy is:

number of equations = number of unknowns

Where, in 2D, there are three equilibrium equations for each object. There are
two unknown force components for every pin connection, whether to the ground
or to another piece. And there is one unknown force component for every roller
connection whether to the ground or between objects. Applied forces do not count in
this determinacy check, even if they are unknown.

k - —hFh+dF; =0
yé =  —[d+wFc+¢N =0
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Example; "X’ structure counting

Inthe ‘X’ structure above we can count as follows.

number of equations number of unknowns

(3 egs per bar) - (2 bars) (2 unknown force comps per pin) - (3 pins)

1SS TENIN| N

6 egs 6 unknown force components

So the ‘X' structure passes the counting test for static determinacy. O

| ndeter minate structures are mechanisms

An indeterminate structure cannot carry all loads and, if not also redundant, has more
equilibrium equations than unknown reaction or interaction force components. Such
astructure is also called a mechanism. The stamp machine above is a mechanism if
there is assumed to be no contact at D. In particular the equilibrium equations cannot
be satisfied unless F, = 0. Mechanisms have variable configurations. That is, the
constraints still allow relative motion.

An attempt to design arigid structure that turns out to be amechanismisadesign
failure. But for machine design, the mechanism aspect of a structure is essential.
Even though mechanisms are caled ‘staticaly indeterminate’ because they cannot
carry al possible loads, the desired forces can often be determined using statics. For
the stamp machine above the equilibrium equations are made solvable by treating
one of the applied forces, say N, as an unknown, and the other, F in this case, asa
known. Thisisacommon situation in machine design where you want to determine
theloadsat one part of amechanismintermsof |oadsat another part. For the purposes
of analysis, atrick is to make a mechanism determinate by putting a pin on rollers
connection to ground at the location of any forces with unknown magnitudes but
known directions.

Example: Stamp machinewith roller

Putting aroller at D, the location of the unknown stamp force, turns the
stamp machine into a determinate structure.
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Figure 4.101: A lever can havethe pivot
in various places. The free body diagram
looks the same in any case.

(Filename:tfigure.lever)
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Redundant structures

A redundant structure can carry whatever loads it can carry in more than one way.
If not also indeterminate, a redundant structure has fewer equilibrium equations than
unknown reaction or interaction force components.

We generaly avoid trying to find those force components which cannot
be found uniquely from the equilibrium equations. Finding them depends on
modeling the deformation, a topic emphasized in advanced structural courses.

C D)

Example: Overbraced ‘X’

The structure above is evidently redundant because it has a bar added to
astructurewhich was already statically determinate. By counting we get
number of equations 2 number of unknowns
3. (number of bars) 2
_ﬁ_/
3 5
9egs < 10 unknown force components

2 - (number of joints)
N— —_—

thus demonstrating redundancy. a

Some common mechanical designs

Rigid bodies can be connected in various arrangements for various purposes. Here
we describe several basic machine fragments.

A lever

Maybe the simplest machine, and one we have mentioned several times, is a lever
(fig. 4.101). Anided lever isarigid body held in place with africtionless hinge and
with two other applied loads. The hinge could be at point A, B or C and the free
body diagram of fig. 4.101 is the same. The study of the lever precedes the change
of mechanics from a taxonomic to a quantitative subject. So there is specialized
antiquated vocabulary of levers, classifying them depending on where the pivot is
located, and on which force you think of as input and which you think of as output.
For historical curiosity: A ‘classone’ lever hasthe pivot in the middle; a‘ class two'
lever hasthe pivot at one end and the input force at the other; and a“ classthree’ lever
has the pivot at one end and the input force in the middle.

Lots of things can be viewed as levers including, for example, a wheelbarrow, a
hammer pulling anail, aboat oar, one half of apair of tweezers, abreak lever, agear,
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and, most generally, any three-force body. Using the equilibrium relations on the free
body diagram in fig. 4.101 you can find that

FA  FB _Fc
a b ¢
from which you can find the relation between any pair of the forces. In practice
it is undoubtedly easier to use moment balance about an appropriate point than to

memorize this formula.

Gears

A transmission is used to ‘transmit’ motion caused at one place to motion at another
and, generally to also speed it up or low it down. Simultaneously force or moment
is transmitted from one point to another, generaly being attenuated or amplified.
One type of transmission is based on gears (Fig. 4.102a). If we think of the input
and output as the moments on the two gears, we find from the free body diagram in
Fig. 4.102b that

For gear A, ZZVIi/Azﬁ}'I} = —RaAF+Ma =0
For gear B, ZIVIi/Bzﬁ}-I} = —RgF+Mgp =0
L R R
diminating F = MB=—BMA or MA=—AMB

Ra Rs

depending on which you want to think of input and which as output. The force
amplification or attenuation ratio isjust the radius ratio, just like for alever.

Because the spacing of gear teeth for both of a meshed pair of gearsisthe same,
a gears circumference, and hence its radius is proportional to the number of teeth.
And formulas involving radius ratios can just as well be expressed in terms of ratios
of numbers of teeth. Thetooth ratio isnot just used as an approximation to the radius
ratio. Averaged over the passage of several teeth, it is exactly the reciprocal ratio of
the turning rates of the meshed gears.

Two gears pulled out of abigger transmission are shown in Fig. 4.102c. Gear A
has an inner part with radius Rp, welded to an outer part with radius Ra,. Gear B
also has an inner part welded to an outer part.

Moment balance about A in the first free body diagram in Fig. 4.102d gives
that Ra, FA = Ra, F. You can think of the one gear as a lever (see Fig. 4.103).
Moment balance about B in the second free body diagram givesthat Rg, F = Rg, Fg.
Combining we get

— A TB

Fg =
Ra, Re,

or Fa=—"

depending on which force you want to find in terms of the other. The transmission
attenuates theforceif you think of Fa astheinput and amplifiestheforceif you think
of Fg astheinput. If theinner gears have one tenth the radius of the outer gearsthan
the multiplication or attenuation is a factor of 100.

An ideal wedge

Wedges are kind of machine. For an ideal wedge one neglects friction, effectively
replacing dliding contact with rolling contact (see Fig. 4.104ab). Although this ap-
proximation may not be accurate, it is helpful for building intuition. For the free
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Reo

Figure 4.102: a) Two gear pairs pulled
out of a transmission with forces on the
teeth, b) Free body diagrams, c) The same
gear pair, but loaded with tooth-forcesfrom
unseen gears, d) the consequent free body
diagrams.

(Filename:tfigure.gears)

Figure 4.103: One gear may be thought
of asalever.
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Figure 4.104: a) A wedge, b) treated as
frictionless in the idea case, c) free body
diagrams

(Filename:tfigure.wedge)

a) lFA
Nay
F
LAV

b) lFA i TNB

T

Figure 4.105: Free body diagrams of a
wedge &) assuming A slides down, b) as-
suming A slides up

(Filename:tfigure.wedgefriction)
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body diagrams of Fig. 4.104c we have not fussed over the exact location of the con-
tact forces since the key idea depends on force balance and not moment balance.
Neglecting gravity,

For block A, ZEz@ -] = —Fa+Fsng =0
For block B, {>" F, =0} -¢ = —Fg+Fcosd =0
eimnatingF = Fg= 1 F

g B= o A

To multiply the force Fa by 10 takes a wedge with a taper of & = tan~10.1 ~ 6°.
With thistaper, an ideal wedge could also be viewed as adeviceto attenuate the force
Fg by afactor of 10, although wedges are never used for force attenuation in practice,
aswe now explain.

A wedge with friction

In the real world frictionless things are hard to find. Nonetheless the concept of a
frictionless bearing can be a reasonable idealization because of rollers, grease, and
the big lever-arm that the wheel periphery has compared to the axle radius. In the
case of wedges, neglecting friction is not generally an accurate model.

Consideration of friction qualitatively changes the behavior of the machine. For
simplicity we still take the wall and floor interactions to be frictionless.

Figure 4.105 shows free body diagrams of wedge blocks. We draw separate free
body diagramsfor the case when (&) block A isdliding down and block B to theright,
and (b) block A isdliding up and block B to theright. In both casesthefriction resists
relative slip and obeys the diding friction relation

Ff =tangy N
——
w

where Fig. 4.105 showsthe resultant contact force (normal component plusfrictional
component) and its angle ¢ to the surface normal.
Assuming block A is dliding down we get from free body diagram 4.105a that

Forblock A, { F;=0}-j =  —Fa+Fsn@+¢) =0
For block B, {3" F; = 0} - ¢ =  —Fg+Fcosf+¢) =0
diminaingF = Fg= S (4.57)
o "o+ |

If we take a taper of 6° and a friction coefficient of © = .3 (= ¢ ~ 17°) we get
that Fg/Fa ~ 2.5 instead of 10 as we got when neglecting friction. The wedge
still serves as a way to multiply force, but substantially less so than the frictionless
idealization led us to believe. Now lets consider the case when force Fg is pushing
block B to the left, pinching block A, and forcing it up. The only change in the
calculation is the change in the direction of the friction interaction force. From free
body diagram 4.105b

ForblockA,{ZIj:@ -7 = —Fa+Fsn@@—-¢) =0
For block B, {}" F;, = 0} - i = —Fg+ Fcos(@ —¢) =0
gimnatingF = Fa=tan(® — ¢)Fs. (4.58)

Againusingf = 6° and ¢ = 17° we seethat if Fg = 1001bf that Fp = tan(—11°) -
1001bf ~ —201bf. That is, the 100 pounds doesn’'t push block A up at all, but even
with no gravity you need to pull up with a 20 pound force to get it to move. If we
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insist that the downwards force Fa is positive or zero, that the pushing force Fg is
positive, and that block A is sliding up then there is no solution to the equilibrium
equations whenever ¢ > 6. (Actually we didn’'t need to do this second calculation at
al. Egn 4.57 shows the same paradox when 6 + ¢ > 90°. Trying to squeeze block
B to theright for large 6 is exactly like trying to squeeze block A up for small 6.)

Thisself locking situation isintuitive. Infact it's hard to picture the contrary, that
pushing a block like B would lift block A. If you view this wedge mechanism as a
transmission, it is said to be non-backdrivable whenever ¢ > 6. That is, pushing
down on A can ‘drive’ block B to the right, but pushing to the left on block B cannot
push block A ‘back’ up. Non-backdrivability is a feature or a defect depending on
context.

The borderline case of backdrivability iswhen 6 = ¢ and Fg =
Assuming 6 isafairly small angle we get

Fa/tan26.

F FA 1Fa 1
Fg A N AN TA ~ 3 - (the value of Fg had there been no friction).

T tan20 20 2tand
Thus the design guideline: non-back-drivable transmissions are generally 50% or
less efficient, they transmit 50% or less of the force they would transmit if they were
frictionless.

To use a wedge in this backwards way requires very low friction. A rare case
where a narrow wedge is back drivable is with fresh wet watermelon seed squeezed
between two pinched fingers.

Pulley and chain drives

Chain and pulley drives are kind of like spread out gears (Fig. 4.106). The rotation
of two shaftsis coupled not by the contact of gear teeth but by abelt around a pulley
or achain around a sprocket. For ssimple analysis one draws free body diagrams for
each sprocket or pulley with alittle bit of chain asin Fig. 4.106b. Notethat T; # T,
unlike the case of an ideal undriven pulley. Applying moment balance we find,

For gear A, ZZVIVA:@]JG = —Ra(M—=T))+Ma =0
For gear B, ZAZ/Bzﬁ}J} = Re(Ti—T2)—Mg =0
L R R
diminaing (T, —T)) = Mg=—2Ma o Ma= Mg

Ra Rs

exactly as for a pair of gears. Note that we cannot find T, or T1 but only their
difference. Typicaly in design if, say, Ma is positive, one would try to keep Ty as
small as possible without the belt slipping or the chain jumping teeth. If T; grows
then so must T, to preserve their difference. This increase in tension increases the
loads on the bearings as well as the chain or belt itself.

4-bar linkages

Four bar linkages often, confusingly, have 3 bars, the fourth piece is the something
bigger. A planar mechanism with four pieces connected in aloop by hingesis a
four bar linkage. Four bar linkages are remarkably common. After a single body
connected at a hinge (like a gear or lever) afour bar linkage is one of the simplest
mechanisms that can move in just one way (have just one degree of freedom).

A reasonable model of seated bicycle pedaling uses a4-bar linkage (Fig. 4.1073).
The whole bicycle frame is one bar, the human thigh is the second, the calf is the
third, and the bicycle crank is the fourth. The four hinges are the hip joint, the knee
joint, the pedal axle, and the bearing at the bicycle crank axle. A more sophisticated
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sprockets/
ﬁ pulleys

Q chain/belt

Figure 4.106: a) A chain or pulley drive
involving two sprockets or pulleys and one
chain or belt, b) free body diagrams of each
of the sprockets/pulleys.

(Filename:tfigure

o.chainpulley)

Figure 4.107: Four bar linkages. a) A
bicycle, thigh, caf, and crank, b) a door
closer, ¢) a folding ladder, d) a generic
mechanism, e) free body diagrams of the
parts of a generic mechanism.

(Filename:tfigure.fourbar)
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model of the system would include the ankle joint and the foot would make up afifth
bar.

A standard door closing mechanism is part of a4-bar linkage (Fig. 4.107b). The
door jamb and door are two bars and the mechanism pieces make up the other two.

A standard folding ladder design is, until locked open, a 4-bar linkage
(Fig. 4.107c).

An abstracted 4-bar linkage with two loadsis shown in Fig. 4.107d with free body
diagramsin Fig. 4.107e. If one of the applied loads is given, then the other applied
load along with interaction and reaction forces make up nine unknown components
(after using the principle of action and reaction). With three equilibrium equations
for each of the three bars, all these unknowns can be found.

Sider crank

A mechanism closely related to afour bar linkage isasdlider crank (Fig. 4.108a). An
umbrellais one example (rotated 90° in Fig. 4.108b). If the diding part is replaced
by abar, asin Fig. 4.108c, the point C movesin acircle instead of astraight line. If
the height h is very large then the arc traversed by C is nearly a straight line so the
motion of the four-bar linkage is almost the same asthe slider crank. For thisreason,
dlider cranks are sometimes regarded as a special case of a four-bar linkage in the
limit as one of the bars getsinfinitely long.

m Summary of structures and machines
The basic approach to the statics of structures and machinesin 2D is straightforward

and involves no tricks:

(a) Draw free body diagrams for each of the components.
. (b) On the free body diagram use the principle of action and reaction to relate the
X forces on interacting components.
I T (c) Write three independent equilibrium equations for each piece (Sgy, force_ bal-
[+ ance and moment balance, or moment balance about three non-colinear points).
(d) Solve these equations for the desired unknowns.

Figure4.108: ) aslider crank, b)anum-  |f you arelazy and resourceful, you can sometimes save work by

brella has a slider-crank mechanism, c) the
equivalent four-bar linkage, at least when
h — oo.

o drawing afreebody diagram of thewhol e structure or some collection of pieces,
or

(Filenamestfigure slidercrant) e using appropriate equilibrium equations that avoid variables that you don't

know and don’t care about.
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4.6 The ‘method of barsand pins' for trusses

A statically determinatetrussisaspecial caseof thetypeof structure
discussedinthissection. Sothemethodsof thissection should work.
They do and the resulting method, which is essentially never used
in such detail, we will call ‘the method of bars and pins'.

In the method of bars and pins you treat a truss like any other
structure. You draw afreebody diagram of each bar and of each pin.
You usethe principle of action and reactionto relatetheforcesonthe
different bars and pins. Then you solve the equilibrium equations.

Assuming africtionlessround pin at the hinge, all the bar forces
on the pin pass through its center.

| t 1

=\ 1—>
W
° =

Thus, in 2D, you get two equilibrium equationsfor each pin and
three for each bar. If you apply the three bar equations to a given
bar you find that it obeys the two-force body relations. Namely, the
reactions on the two bar ends are equal and opposite and along the
connecting points. Now application of the pin equilibrium equations
is identical to the joint equations we had previously. Thus, the
‘method of barsand pins’ reduces to the method of jointsin the end.

Another approachistoignorethepinsand just think of atrussas
barsthat are connected with forcesand no moments. Draw free body
diagrams of each piece, use the principle of action and reaction, and
write the equilibrium equations for each bar. Thisis the approach
that is used in this section for other structures.

However thisapproach leadsto adifficulty if morethan two bars
are connected at one hinge. The law of action and reaction is stated
for pair-wiseinteractions not for triples or quadruples. Nonetheless,
one can proceed by the following trick.

At each joint where say bars A, B, and C are connected, brake
the connection into pair-wise interactions. For example, imagine
a frictionless hinge connecting A to B and one connecting B to C
but ignore the connection of A with C. That the two connections are
spatially coincident isconfusing but not aproblem. Onthefreebody
diagram of A aforcewill show from B. On the free body diagram of
B forceswill show from A and C. And on thefree body diagram of C
aforcewill show from B. (Beware not to assume that the force from
B onto A or Cisalong B.) The truss is thus analyzable by writing
the equilibrium equations for these bars in terms of the unknown
interaction forces.

Patid Structure

RS

Patid FBD's
SR
. V'
Fs Fa
The trick above can aso be used for the analysis of structures
and machines that have multiple pieces connected at one point. In
the machines treated in this section we have avoided the difficulty
aboveby only considering connectionsbetween pairsof bodies. This
covers many mechanisms and structures but unfortunately does not

cover many trusses. For trusses thistrickiness can be avoided by use
of the method of joints.




188

Ax

Figure 4.110: (rienamesstistmech.stidor.a)

Figure 4.111: (rucname:stigtmecn stider.b)
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SAMPLE 4.23 Adlider crank: A torque M = 20N-m is applied at the bearing end
A of the crank AD of length £ = 0.2m. If the mechanism isin static equilibrium in
the configuration shown, find the load F on the piston.

Solution The free body diagram of the whole mechanism is shown in Fig. 4.110.
From the moment equilibrium about point A, >~ M, = 0, we get

M+rgpx(B+F) = 0
—Mk 4 2¢cosbi x (Byj—Fi) = 0
(—M + 2Byt cos®)k = O
M
B =
- 5 2¢ cos6

The force equilibrium, " F = 0, gives

(Ax—F)i+(Ay+By)j=0
AXZF

Note that we still need to find F or Ax. So far, we have had only three equations
in four unknowns (Ax, Ay, By, F). To solve for the unknowns, we need one more
equation. We now consider the free body diagram of the mechanism without the
crank, that is, the connecting rod DB and the piston BC together. See Fig. 4.111.
Unfortunately, we introduce two more unknowns (the reactions) at D. However, we
do not care about them. Therefore, we can write the moment equilibrium equation
about point D, > MD = 0 and get the required equation without involving Dy and
Dy.

g X (—Fi+Byj) = 0
¢(cosbi —sindj) x (~Fi +Byj) = 0
By/{ cosfk — Fesnok = 0

Dotting the last equation with k we get

cosé

sing
. M cos6
~ 2¢cosf sné
_ M
© 2¢sing
B 20N-m
©2.02m-4/3/2
= b57.74N.

F =57.74N

Note that the force equilibrium carried out above is not really useful since we are not
interested in finding the reactions at A. We did it above to show that just one free
body diagram of the whole mechanism was not sufficient to find F. On the other
hand, writing moment equations about A for the whole mechanism and about D for
the connecting rod plus the piston is enough to determine F.
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SAMPLE 4.24 Thereismoreto it than meetstheeyel A flyball governor isshownin
the figure with all relevant masses and dimensions. The relaxed length of the spring
is0.15 m and its stiffnessis 500 N/m.

(a) Find the static equilibrium position of the center collar.
(b) Findtheforceinthe strut AB or CD.
(c) How does the spring force required to hold the collar depend on 67

Solution Let £,(= 0.15m) denote the relaxed length of the spring and let ¢ be the
stretched length in the static equilibrium configuration of the flyball, i.e., the collar
is at a distance ¢ from the fixed support EF. Then the net stretch in the spring is
8 = Al = £ — £, We need to determine ¢, the spring force ks, and its dependence
on the angle 6 of the ball-arm.

The free body diagram of the collar is shown in Fig. 4.113. Note that the struts
AB and CD aretwo-force bodies (forces act only at the two end points on each strut).
Therefore, the force at each end must act along the strut. From geometry (AB = BE
=d), then, the strut force F on the collar must act at angle 6 from the vertical. Now,
the force balance in the vertical direction, i.e., [> F =0]-j,gives

— 2F cosf + ké = mg (4.59)

Thusto find § we need to find F and 6. Now we draw the free body diagram of arm
EBG as shown in Fig. 4.114. From the moment balance about point E, we get

2dA x (—2mgj) + dA x F(—singi +cosfj) = 0O
—4mgd(A x j) + Fd[—sinf(A x i) + cosd(A x j)] = O

~—— \s(—j ——

—sinok cosok —sinok
4mgd sinfk + Fd(— sind cosbk — cosf singk) = 0
(4mgdsing — 2Fdsinfcos®)k = 0

Dotting this equation with k and assumi ng that 6 # 0, we get
2F cos6 = 4mg (4.60)

Substituting eqgn. (4.60) in egn. (4.59) we get

k8 = mg+ 2F cosé = mg + 4mg = 5mg
5mg 5-2kg-9.81m/s?
= K 500N/m 0.196m

(@) Theequilibrium configurationisspecified by the stretched length ¢ of the spring
(which specifies 6). Thus,

£=43+6=0.15m+0.196m = 0.346m

Now, from £ = 2d cos6, we find that & = 30.12°.
(b) Theforceinstrut AB (or CD) is

F =2mg/cosf = 45.36N

(c) Theforceinthe spring ké = 5mg as shown above and thus, it does not depend
on 6! Infact, the angle 6 is determined by the relaxed length of the spring.

(@ £=0346m, (b)F =4536N, (ks f(0) |
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Figure 4.112: rienamestist mech.sov)

Figure 4.113: (ricnamesstistmech.zov.a)

Figure 4.114: (rucname:stigtmech.gov.b)
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Figure 4.116: (ricnamessiist mechmotor.a)
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SAMPLE 4.25 : A motor housing support: A dotted arm mechanism is used to
support a motor housing that has a belt drive as shown in the figure. The motor
housing is bolted to the arm at B and the arm is bolted to a solid support at A. The
two bolts are tightened enough to be modeled as welded joints (i.e., they can also
take sometorque). Find the support reactions at A.

Solution Although the mechanism looks complicated, the problem is straightfor-
ward. We cut the bolt at A and draw the free body diagram of the motor housing plus
the slotted arm. Since the bolt, modeled as a welded joint, can take some torque, the
unknowns at A are A(= AxZ + Ayj) and MA. The free body diagram is shown in
Fig. 4.116. Note that we have replaced the tension at the two belt ends by asingle
equivaent tension 2T acting at the center of the axle. Now taking moments about
point A, we get R . .

Mp +rcp x 2T + 15 xmg =0

where
Fom x 2T = (6 +hj) x 2T (—cosi + sing j)
= 2T(¢sind + hcosd)k
rgp xmg = [(¢+d)i+ (anything)j] x (—mgj)
= —mg(t +d)k
Therefore,
My = —Fgpx 2T —Fgp x Mg

—2T(€siné + hcoso)k + mg(t + d)k
—2(5N)(0.1m - sin60° + 0.04m - cos60°)k
+2kg - 9.81m/s? - (0.1 + 0.01) mk

= 1.092N-mk

Thereaction force A can be determined from the force balance, Y° F = 0 asfollows.

A+2T+mg = 0

1 3
= —10N(~5i + %_j) — (~=19.62NJ)

= 5Ni+10.96Nj

M, = 1.092N-mk and A = 5Ni + 10.96Nj
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SAMPLE 4.26 A gear train: In the compound gear train shown in the figure, the
various gear radii are: R, = 10cm, Ry = 4cm, R, = 8cmand Ry = 5¢cm. The
input load F; = 50N. Assuming the gearsto bein static equilibrium find the machine
load Fo.

Solution You may be tempted to think that a free body diagram of the entire gear
train will do since we only need to find F,. However, it is not so because there
are unknown reactions at the axle of each gear and, therefore, there are too many
unknowns. On the other hand, we can find the load F, easily if we go gear by gear
from the left to theright.

The free body diagram of gear A isshownin Fig. 4.118. Let F1 be the force at
the contact tooth of gear A that meshes with gear B. From the moment balance about
the axle-center O, 3" Mg = 0, we have

?MXE+?NXF1 = 6
~FiRpk+FiRyk = 0
= Fk = F

Similarly, from the free body diagram of gear B and C (together) we can write the
moment balance equation about the axle-center P as

FiRgk + F2Rck =

= k =

PP PP

Finally, from the free body diagram of the last gear D and the moment equilibrium
about its center R, we get
—F2Rpk + FoRpk = 0
= F =k
R
= —BFR

Re

_ AOM N = 25N
8cm
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Figure 4.117: (ricnnmestiss mech gear)

Figure 4.119: (ricname:stist mech gear.»)



cb=DE=0=15
L=5’
h =1

Figure 4.120: (ricnamestig meen pushup)
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Figure 4.121: (rienamestist meeh pushup.a)

Figure 4.122: (rienamestiss mech.pushup.)
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SAMPLE 4.27 Push-up mechanics: During push-ups the body, including the legs,
usually moves as a single rigid unit; the ankle is almost locked, and the push-up is
powered by the shoulder and the elbow muscles. A simple model of the body during
push-upsis afour-bar linkage ABCDE shown in the figure. In this model, each link
isarigidrod, joint B isrigid (thus ABC can be taken asasinglerigid rod), joints C,
D, and E are hinges, but there is a motor at D that can supply torque. The weight
of the person, W = 1501bf, acts through G. Find the torque at D for §; = 30° and
0> = 45°.

Solution The free body diagram of part ABC of the mechanism is shown in
Fig. 4.121. Writing moment balance equation about point A, >~ M, = 0, we get

Letre =rg i +rc jandrg =rg i +rg jfor now (wecanfigureit out later).
Then, the moment equation becomes
(re i +1¢, ) x (Cud + Cyj) + (g i +1g,J) x (~Wj) =0
[1-k =

We now draw free body diagrams of the links CD and DE separately (Fig. 4.122) and
write the moment and force balance equati ons for them.
For link CD, the force equilibrium )~ F = 0 gives

(—=Cx + Dy)i+ (Dy —Cy)j =0

Dotting with 7 and j gives

gi _ gi (4.62)
and the moment equilibrium about point D, gives
Mk — a(cosbai + sinfzj) x (—Cxi —Cyj) = O
Mk + (Cyacost, — Cxasing)k = 0 (4.63)
Similarly, the force equilibrium for link DE requires that
Ex = D
Ei _ Di (4.64)
and the moment equilibrium of link DE about point E gives
— M + Dyasinf; + Dyacosé, = 0. (4.65)
Now, from egns. (4.62) and (4.65)
— M + Cyasinf; + Cyacosf, = 0 (4.66)

Adding egns. (4.63) and (4.66) and solving for Cy we get

€0s0; + coso
Cy = BT
sinfd, — sinéq
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For simplicity, let
COS61 + Cosb1

f(61,00) = —————
(01, 62) sinfp — sinfy

so that
Cx = f(61,62)Cy (4.67)
Now substituting egn. (4.67) in (4.61) we get

r
Cy= o

re, — e, f
Now substituting Cy and Cy into egn. (4.66) we get

rg, a(cosoy + f singq)

M =
rcx—rcyf
where
rs, = (/2)cos —hsing
re, = ¢tcosd —hsno
rc, = £sin6+hcose

Now plugging all the given values: W = 1601bf, #; = 30°, 6, = 45°, ¢ = 5ft,h =
1ft, a = 1.5ft, and, from simple geometry, = 9.49°,

f = 760
re, = 477ft ro =181ft rg =230ft
= M = -269.12Ibft

M = —269.121b-ft
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F gure 4.123: (Filename:sfigd.mech.buckling)

Figure 4.124: (icname:stist.mee

h.buckling.a)
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SAMPLE 4.28 A spring and rod buckling model: A simple model of sideways
buckling of arod can be constructed with a spring and arod as shown in the figure.
Assumetherod to bein static equilibrium at some angle 6 from the vertical. Find the
angle @ for agiven vertical load P, spring stiffness k, and bar length £. Assume that
the spring is relaxed when the rod is vertical.

Solution When the rod is displaced from its vertical position, the spring gets com-
pressed or stretched depending on which side the rod tilts. The spring then exerts a
force on the rod in the opposite direction of the tilt. The free body diagram of the
rod with a counterclockwisetilt 6 is shown in Fig. 4.124. From the moment balance
3" Mg = 0 (about the bottom support point O of the rod), we have

?Bxﬁ+?BxﬁS=6

Noting that
s €A,
P = —Pj,
and Fy, = K(Fy — Fg)
= k(tj—th),
we get

€A x (PJ) 4+ €A x ke(j — X)
—PL( x j) + k€24 x j)

ol o

Dotting this equation with (A x j) we get

— Pt + ke? 0
= P = ke

Thus the equilibrium only requires that P be equal to k¢ and it is independent of 6!
That is, the system will bein static equilibrium at any 6 aslong as P = k¢.

If P = k¢, any 6 isan equilibrium position.
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4.7 Hydrostatics

Hydrostatics is primarily concerned with finding the net force and moment of still
water on a surface. The surfaces are typically the sides of a pool, dam, container, or
pipe, or the outer surfaces of afloating object such asaboat or of asubmerged object
like atoilet bowl float, or the imagined surface that separates some water of interest
from the other water. Although the hydrostatics of air hel psexplain the floating of hot
air balloons, dirigibles, and chimney smoke; and the hydrostatics of oil isimportant
for hydraulics (hydraulic breaks for example), often the fluid of concern for engineers
iswater, and we will use the word ‘water’ as an informa synonym for ‘fluid.

Besides the basic laws of mechanics that you aready know, e ementary hydro-
staticsis based on the following two constitutive assumptions:

1) Theforce of water on asurfaceis perpendicular to the surface; and
2) The density of water, p (pronounced ‘row’) is a constant (doesn’t
vary with depth or pressure),

The first assumption, that all static water forces are perpendicular to surfaces on
which they act, can be restated: still water cannot carry any shear stress. For near-
till water this constitutive assumptionisabnormally good (intheworld of constitutive
assumptions), approximately as good as the laws of mechanics.

The assumption of constant density is called incompressibility because it cor-
responds to the idea that water does not change its volume (compress) much under
pressure. Thisassumptionisreasonablefor most purposes. At the bottom of the deep-
est oceans, for example, the extreme pressure (about 800 atmospheres) only causes
water to increase its density about 4% from that of water at the surface. That water
density does depend measurably on salinity and temperature is, however, important
for some hydrostatic calculations, in particul ar for determining which water floats on
which other water. Sometimes instead of talking about the mass per unit of volume
o we will use the weight per unit volume y = gp (‘gammuh = geerow’).

Surface area A, outward normal », pressure p, and force F
We are going to be generalizing the high-school physics fact

force = pressure x area

to take account that force is a vector, that pressure varies with position, and that not
al surfaces are flat. So we need a clear notation and sign convention. The area of
a surface is A which we can think of as being the sum of the bits of area A A that

compose it:
A= f dA.

Every bit of surface area has an outer normal 7 that points from the surface out into
the fluid. The (scalar) force per unit area on the surface is called the pressure p, so
that the force on asmall bit of surfaceis

AF = p(AA) (—h),

pointing into thesurface, assuming positive pressure, and with magnitude proportional
to both pressure and area. Thusthe total force and moment due to pressure forces on
asurface:
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Figure 4.125: A nit of area AA onasur-
face onwhich pressure p acts. The outward
(intothewater) normal of thgwrfaceisﬁ so

theincrement of forceis AF = —pRAA.

(Filename:tfigure.deltaA)
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Figure 4.126: A small prism of water
isisolated from some water in equilibrium.
The free body diagram does not show the
forcesin the z direction.

(Filename:tfigure.waterprism)

D That pressure has to be the same in any
pair of directions could aso be found by
drawing a prism with a cross section which
is an isosceles triangle. The prism is ori-
ented so that two surfaces of the prism have
equal areaand havethe desired orientations.
Force balance along the base of the triangle
gives that the pressures on the equal area
surfaces are equal. The argument that pres-
sure must not depend on direction is aso
sometimes based on equilibrium of asmall
tetrahedron.
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F = [dF = —[,padA
R ~ (4.68)
MC = /AdM/C = _fA?/CX(pﬁ) dA

Hydrostatics is the evaluation of the (intimidating-at-first-glance) integrals 4.68 and
their rolein equilibrium equations. In the rest of this section we consider avariety of
important special cases.

Water in equilibrium with itself

Before we worry about how water pushes on other things, lets first understand what
it means for water to be in static equilibrium. These first important facts about
hydrostatics follow from drawing free body diagrams of various chunks of water and
assuming static equilibrium.

Pressure doesn’t depend on direction

We assume that the pressure p does not vary in wild ways from point to point, thus
if we look at a small enough region we can think of the pressure as constant in that
region. Now if we draw a free body diagram of a little triangular prism of water
the net forces on the prism must add to zero (see Fig. 4.126). For each surface the
magnitude of the force is the pressure times the area of the surface and the direction
is minus the outward normal of the surface. We assume, for the time being, that the
pressure is different on the differently oriented surfaces. So, for example, because
the area of the left surface is a cosdw and the pressure on the surface is py, the net
forceisacosfwpgi. Calculating similarly for the other surfaces:

0 = Y F
. . A . a’cosfsnbw
= (acost)w pxt + (@sind)w pyj—aw pn — fpg.]
—
pressure terms weight
= aw | cosd pxi +sin6 py j — p(cosbi +singj) — eSS g
— —
A
If a is arbitrarily small, the weight term drops out compared to the pressure terms.

Dividing through by aw we get
0 = cosOpxi+sing pyj— p(cosi +sing) j.

Taking the dot product of both sides of this equation with 7 and j givesthat p =
px = Py. Since @ could be anything, force balance for the free body diagram of a

small prism tellsus that for afluid in static equilibrium®

pressure is the samein every direction.
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Pressure doesn't vary with side to side position

Consider the equilibrium of a horizontally aligned box of water cut out of a bigger
body of water (Fig. 4.1274). Theforcesontheend capsat A and B aretheonly forces
along the box. Therefor they must cancel. Since the areas at the two ends are the
same, the pressure must be also. This box could be anywhere and at any length and
any horizontal orientation. Thus for afluid in static equilibrium

pressure doesn’t depend on horizontal position.
If wetakethe j or y direction to be up, then we have
P(X, Y, 2) = p(y).

Pressure increases linearly with depth

Consider the vertically aligned box of Fig. 4.127b.

[XF=0}.j = pya2—py+ha®—pgath = 0
——
pressure terms weight
= Poottom — Prop = pgh.

Sothepressureincreaseslinearly with depth. If thetop of alake, say, isat atmospheric
pressure p, then we have that

P=pPa+pgh=pa+yh=pa+(H-y)y

where h isthe distance down from the surface, H isthe depth to some reference point
underwater and v is the distance up from that reference point (sothat h = H — ).
Neglecting atmospheric pressure at the top surface we have the useful and easy to
remember formula:

Because the pressure at equal depths must be equal and because the pressure at
the top surface must be equal to atmospheric pressure, the top surface must be flat
and level. Thus waves and the like are a definite sign of static disequilibrium as are
any bumps on the water surface even if they don’t seem to move (asfor abumpin the
water where a stream goes steadily over arock).

The buoyant force of water on water.

In a place under water in a still swimming pool where there is nothing but water,
imagine a chunk of water the shape of aseamonster. Now draw afree body diagram
of that water. Because your seamonster isin equilibrium, force balance and moment
balance must apply. The only forces are the complicated distribution of pressure
forces and the weight of water. The pressure forces must exactly cancel the weight
of the water and, to satisfy moment balance, must pass through the center of mass of
the water monster. So, in static equilibrium:
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a)
gl B
A
b)
p(y+h)
y+h
h

D(y)

Figure 4.127: Free body diagram of a
horizontally aligned box of water cut out of
abigger body of water.

(Filename:tfigure.waterbox)
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@ I there is no column of water from the
point up to the surface it is still true that
the pressure is yh, as you can figure out
by tracking the pressure changes along on a
staircase-like path from the surface to that
point.
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The pressure forces acting on a surface enclosing avolume of water is equiv-
alent to the negative weight passing through the center of mass of the water.

Theforce of water on submerged and floating objects

The net pressure force and moment on a still object surrounded by still water can be
found by aclever argument credited to Archimedes. The pressure at any one point on
the outside of the object does not depend onwhat’sinside. The pressureisdetermined
by how far the point of interest is below the surface by egn. 4699, soif you can
find the resultant force on any object that is the shape of the submerged object, but
replacing the submerged object, it tells you what you want to know.

The clever ideaisto replace your object with water. I1n this new system the water
isin equilibrium, so the pressure forces exactly balance the weight. We thus obtain
Archimedes’ Principle:

The resultant of all pressure forces on a totally submerged object is minus
the weight of the displaced water. The resultant acts at the centroid of the
displaced volume:

[ FodV

The result can aso be found by adding the effects of al the pressure forces on the
outside surface (see box 4.7 on page 201).

For floating objects, the same argument can be carried out, but since the replaced
fluid has to be in equilibrium we cannot replace the whole object with fluid, but only
the part which is below the level of the water surface.

Displaced fluid

Sometimes people discuss Archimedes' principle in terms of the displaced fluid. A
floating object in equilibrium displaces an amount of fluid with the same weight as
the object; thisis aso the amount of volume of the floating object that is below the
water level. On the other hand an object that is totally under water, for whatever
reason (it is resting on the bottom, or it is being held underwater by a string, etc),
occupies exactly as much space as it occupies. Putting these two ideas together one
can remember that

A floating object displaces its weight, a submerged object displaces its vol-
ume.
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Theforce of constant pressure on a totally immer sed object

When there is no gravity, or gravity is neglected, the pressure in a static fluid is
the same everywhere. Exactly the same argument we have just used shows that the
resultant of the pressure forces is zero. We could derive this result just by setting
y = 0inthe formulas above.

Theforce of constant pressure on aflat surface

The net force of constant pressure on one flat surface (not al the way around a
submerged volume) is the pressure times the area acting normal to the surface at the
centroid of the surface: N
Foo = [p—pidA
= —pAa.
That this force acts at the centroid can be checked by cal culating the moment of the
pressure forces relative to the centroid C.

Mcoe = [oTjcx (—pidA)

(/A?/CdA> « (~pi)

0

= 0

where the zero follows from the position of the center of mass relative to the center
of mass being zero.

Theforce of water on arectangular plate

Consider arectangular plate with width into the page w and length ¢. Assume the
water-side normal to the plate is 2 and that the top edge of the plate is horizontal.
Take j to be the up direction with y being distance up from the bottom and the total
depth of the water is H. Thusthe area of the plateis A = ¢w. If the bottom and top
of the plate are at y; and y» the net force on the plate can be found as:

— [apAdA

= —[av(H—yndA

—w [ y(H — y(9)ii ds

~w oy (H—(1+a-js)nds

—wy (HE—yit — - j€2/2)h

= —wly(H—(y1+ai-jt/2)n

—wly (H—(y1+ (Y2 —yn/2)n

—wl(y(H —y1)/2+y(H —Yy2)/2)h

= —wﬁw n.

— (area) (average pressure) (outwards normal direction)

Fnd

The net water force is the same as that of the average pressure acting on the whole
surface. To find where it actsit is easiest to think of the pressure distribution as the
sum of two different pressure distributions. One is a constant over the plate at the
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Figure 4.128: Theresultant force froma

constant pressure p on aflat plate is F =
— pAn acting at the centroid of the plate.

(Filename:tfigure.centroidpressure)

‘ /N R N
a
" Ve,

Figure 4.129: The resultant force from
a constant depth-increasing pressure on a
rectangular plate.

(Filename:tfigure.plateunder)



200

CHAPTER 4. Satics

pressure of the top of the plate. The other varies linearly from zero at the top to
v (Y2 — y1) at the bottom.

p=y(H=-y)=y(H-y2)+y(2—-Y)
— — ————

\

Constant pressure, the pres- Varies linearly from O at the
sure at the top edge. top to y (y2 — y1) at the bot-
tom.

The first corresponds to a force of wéy (H — y») acting at the middle of the plate.
The second correspondsto aforce of wly % acting athird of theway up from the
bottom of the plate.
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4.7 THEORY
Adding forces to derive Archimedes' principle

Archimedes' principle follows from adding up al the pressure
forceson the outer surfaces of an arbitrarily shaped submerged solid,
say something potato shaped.

First we find the answer by cutting the potato into french fries.
Thisapproachiseffectively aderivation of atheoreminvector cal cu-
lus. After that, for those who have the appropriate math background,
we quote the vector calculus directly.

First cut the potato into horizontal french-fries (horizontal
prisms) and look at the forces on the end caps (there are no wa-
ter forces on the sides since those are inside the potato).

The pressure on two ends is the same (because they have the
samewater depth). The areas on thetwo ends are probably different
because your potato is probably not box shaped. But theareaisbig-
ger at oneend if the normal to the surfaceis more oblique compared
to the axis of the prism. If the cross sectional area of the prism is
A Ag then the area of one of the prism capsis

AA= AN/ (R ~X) where A isalong the axis of the prism and
isthe outer unit normal to the end cap (Note AA > A Ag because

n
n-A<1).

Sothenet forceonthecapis— pA Agit /(7 -A.). Thecomponent
of the force along the prism is [— pPAAoR/ (1 - i)] - X which is

—pAAg. Anidentical calculation at the other end of the french fry
gives minus the same answer. So the net force of the water pressure
along the prism is zero for this and every prism and thus the whole
potato. Likewise for prisms with any horizontal orientation. Thus

the net sideways force of water on any submerged object is zero.
To find the net vertical force on the potato we cut it into vertical
french fries. The net forces on the end caps are calculated just as
in the above paragraph but taking account that the pressure on the
bottom of the french fry is bigger than at the top. The sum of the
forces of the top and bottom caps is an upwards force that is

ApPAAg
(yh)AAg
y(hAAg)

y AVp

net upwards force on vertical french fry

where AV} is the volume of the french fry. Adding up over al the
french fries that make up the potato one gets that the net upwards
forceisy V Thenet result, summarized by thefigurebel ow, isthat the
resultant of the pressure forces on a submerged solid is an upwards
force whose magnitude is the weight of the displaced water. The
location of the force is the centroid of the displaced volume. (Note
that the centroid of the displaced volume is not necessarily at the
center of mass of the submerged object.)

NC B
&ﬁ@rv

A vector calculus derivation

Here is a derivation of Archimedes principle, at least the net
force part, using multi-variable integral calculus. Only read on if
you have taken amath classthat coversthe divergence theorem. The
net pressure force on a submerged object is

Fbuoyancy = - p ’? dA
= —Js p n ds
= _fs (H-2y n ds
= —J V(H=-2y) dv
= _fv k) y dv
= fv y dv k
(weight of displaced water) k.

In this derivation we first changed from calling bits of surface area
d Ato d S because that is a common notation in calculus books. The
depth from the surface, of a point with vertical component z from
the bottom, is H — z. The V symbol indicates the gradient and its
placein this equation is from the divergence theorem:

/(anyscalar)ft dS:/ ¥ (the same scalar) dV.
s v

The gradient of (H — 2)y is ,]}y because H and y are constants.

Note, where we write |, < Some books would write /7. o and where

we write fv some books would write fffv
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Figure 4.131: (ricnamesstisthyaro.forcer.)
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SAMPLE 4.29 The force dueto the hydrostatic pressure: The hydrostatic pressure
distribution on the face of awall submerged inwater uptoaheight h = 10misshown
in the figure. Find the net force on the wall from water. Take the length of the wall
(into the page) to be unit.

Solution Since the pressure varies across the height of the submerged part of the
wall, let us take an infinitesimal strip of height dy along the full length ¢ of the wall
as shown in Fig. 4.131. Sincethe height of the strip isinfinitesimal, we can treat the
water pressure on this strip to be essentially constant and to be equal to po%. Then
the force on the string due to the water pressureis

dF = p(y)-y-ti

= po% dyi

The net force due to the pressure distribution on the whole wall can now be found by
integrating d ' along the wall.

F /dﬁ

F = 500kNi

Alternatively, the net force can be computed by calculating the area of the pressure
triangle and multiplying by the unit length (¢ = 1m), i.e.,

1 R
F = (5-h-poi)t

= %~10m~100kN

. 1mi
m
— 500kN
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SAMPLE 4.30 The equivalent force due to hydrostatic pressure: Find the net force
and itslocation on each face of the dam due to the pressure distributions shown in the
figure. Take unit length of the dam (into the page).

Solution We can determine the net force on each face of the dam by considering
the given pressure distribution on one face at atime and finding the net force and its
point of action.

On the l€eft face of the dam we are given atrapezoidal pressure distribution. We
break the given distribution into two parts— atriangular distribution given by ABE,
and a rectangular distribution given by EBCD. We find the net force due to each
distribution by finding the area of the distribution and multiplying by the unit length
of the dam.

L1 .
F, = (areaofABE)wz:E(pz—pl)h|£z

1
= é(60kPa— 10kPa) - 5m- 1mi

= 125kNi
F, = (areaof EBCD)-{i = p;h¢i
10kPa-5m-1mi
= 50kNi

The two forces computed above act through the centroids of the triangle ABE and
the rectangle EBCD, respectively. The centroid are marked in Fig. 4.133. Now the
net force on the left face is the vector sum of these two forces, i.e.,

F_ = F; + F, = 175kNi

The net force FL acts through point G which is determined by the moment balance
of the two forces F,; and F, about point G:

FGI/GXﬁl = _F\GZ/GXﬁZ
- hy .
Fi(hg — g)k = _FZ(E —hg)(=k)
L oh _ Flh—g' + thj'
G Fi+F
_ 125kN - 1.667m + 50kN - 2.5m
N 175kN
= 1.905m

Similarly, we compute the force on the right face of the dam by calculating the area
of the triangular distribution shownin Fig. 4.134.

. 1 . A o
Fr = Epo(hr/smg)(—sm@z —cos@l)
d —i

1 . .
= —20(i +/3))kN

and this force acts though the centroid of the triangle as shown in Fig. 4.134.

F_ = 175kNi, and Fg = —20(i + /37 kN
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Figure 4.133; (sitenamesstisa hydro forcez.2)

Figure 4,134 (Filename:sfig4.hydro.force2.b)
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Figure 4.136: (rienamestist hyaro.sate.n)
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Figure 4.137: (ricoamesstigs hydrogate 1)
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SAMPLE 4.31 Forceson a submerged sluice gate: A rectangular plateisused as a
gate in atank to prevent water from draining out. The plate ishinged at A and rests
on africtionless surface at B. Assume the width of the plate to be 1 m. The height of
the water surface above point A ish. Ignoring the weight of the plate, find the forces
onthe hinge at A asafunction of h. In particular, find the vertical pull on the hinge
forh=0andh=2m.

Solution Lety = pgbetheweight density (weight per unit volume) of water. Then
the pressure duetowater at pointAisp, = yhandatpointBis pg = y (h+£sing).
The pressure acts perpendicul ar to the plate and varieslinearly from p, at A to pg at
B. The free body diagram of the plate is shown in Fig. 4.136. Let A be a unit vector
along BA and 7 be aunit vector normal to BA. For computing the reaction forces on
the plate at points A and B, we first replace the distributed pressure on the plate by
two equivalent concentrated forces F1 and F» by dividing the pressure distribution
into arectangular and atriangular region and finding their resultants.

¢ 1 5.
Fi=ppl=vhe, Fo=(pg— pA)é = Eﬂ sing

Now, we carry out moment balance about point A, > MA = 0, which gives

fb/A X 1?'+ ?b/A X ﬁ2-+-Fb/A X ﬁz = O
N . 24 . N . =
—kaBnn—glx(—Fln)—EXx(—an) = 0
A 20 ~ £ A N
o o= P2y Ysng
nT T3 Ty TYHETy

and, from force balance, 3" F = 0, we get
A = —Bni+ Fiii + Foit

= 6(2h+1£sin9)+ h£+1 ?sing |
- - " - = n
YH3Tg v 27

- (2 he + 1 0?sing | i = £(1h+ 1£sin9)A

- 3Ty TEVHEIT S "
The force A computed above is the force exerted by the hinge a A on the plate.
Therefore, the force on the hinge, exerted by the plate, is — A asshownin Fig. 4.137.
From the expression for thisforce, we see that it varies linearly with h.

Let the vertical pull on the hinge be Ahingey. Then

coso
—

~ 1 1 . —— 1 1
Ahingey = —A-j= —)/Z(éh + Eésm@)n = Zyésmze + (éyﬁ cosd)h
Now, substituting y = 9.81kN/ m3, ¢ = 2m, 6 = 30°, the two specified values of
h, and multiplying the result (which is force per unit length) with the width of the
plate (1 m) we get,

Ahingey|h:0 = 4.25kN, Ahingey|h:2m = 15.58kN
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SAMPLE 4.32 Tipping of a dam: The cross section of a concrete dam is shown in
the figure. Take the weight-density y (= pg) of water to be 10kN/ m? and that of
concrete to be 25kN/ mS3. For the given design of the cross-section, find the ratio
h/H that is safe enough for the dam to not tip over (about the downstream edge E).

Solution Let usimaginethe critical situation when the damisjust about to tip over
about edge E. In such a situation, the dam bottom would almost lose contact with the
ground except along edge E. In that case, there is no force aong the bottom of the
dam from the ground except at E.Dwith this assumption, the free body diagram of
the dam is shown in Fig. 4.139.

To compute all the forces acting on the dam, we assume the width w (into the
paper) to be unit (i.e., w = 1 m). Let y,, and y denote the weight-densities of water
and concrete, respectively. Then the resultant force from the water pressureis

F= %ywh-howz %ywhzu)
This is the horizontal force (in the -7 direction) that acts through the centroid of
triangle ABC.
To compute the weight of the dam, we divide the cross-section into two sections
— the rectangular section CDGH and the triangular section DEF. We compute the
weight of these sections separately by computing their respective volumes:

— 2. . = 2
Wy = aH% w-yc=ycaHw
volume
1 9 202
W, = §.3aH.3aHtan9.w.yC:§yca H“w tan6
volume

Now we apply moment balance about point E, > ME = 0, which gives
?61XW1+?GZXW2+?G3XF = 6

0

1 .2 . h_-
~(BaH + s H)Wak — 2 (3 H)Wak + ZFk

Dotting this equation with k, we get

h 1 2 9
~F = @aH+ ZaH) - yeaH?w + Z(BaH) - ~yca®H?wtand
3 2 3 2
1 hd 7
Eyu,? = 9yca3H3tan9+§yca2H3
h\® Yc 3 2
= —) = ZGadltans + 21a?)
H Yw
= 25(54-0.13.4/3+21.0.1% = 0.7588
h
— = 091
~ H

Thus, for the dam to not tip over, h < 0.91H or 91% of H.
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Figure 4.138: (Filename:sfigd.hydro.dam1)

@ This assumption is valid only if water
does not leak through the edge B to the bot-
tom of the dam. If it does, there would be
some force on the bottom due to the water
pressure. See the following sample where
we include the water pressure at the bottom
in the analysis.

Figure 4.139: (sicommesstisa bydrodami.a)
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Fi gure 4.140: (Filename:sfigd.hydro.dam2.a)
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SAMPLE 4.33 Damdesign: You are to design a dam of rectangular cross section
(b x H), ensuring that the dam does not tip over even when the water level h reaches
the top of the dam (h = H). Take the specific weight of concrete to be 3. Consider
the following two scenarios for your design.
(@) The downstream bottom edge of the dam is plugged so that there is no leakage
underneath.
(b) Thedownsteram edgeisnot plugged and thewater |eaked under the dam bottom
has full pressure across the bottom.

Solution Let y; and y,, denote the weight densities of concrete and water, respec-
tively. We are given that y¢/y, = 3. Also, letb/H = o sothat b = o H. Now we
consider the two scenarios and carry out analysis to find appropriate cross-section of
the dam. In the calculations below, we consider unit length (into the paper) of the
dam.

(@) No water pressure on the bottom: When there is no water pressure on the
bottom of the dam, then the water pressure acts only on the downstream side of
the dam. The free body diagram of the dam, considering critical tipping (just
about to tip), is shown in Fig. 4.140 in which F is the resultant force of the
triangular water pressure distribution. The known forces acting on the dam are
W = yeaH2, and F = (1/2)y,,h?. The moment balance about point A gives

e _owoeH
3 2
1 hd a?H3
EVU)? = Y 2
= o = /)w/ro)(/H)?

Considering the case of critical water level up to the height of the dam,
i.e.,, h/H =1, and substituting y¢/y, = 3, we get

a>=1/9 = «=1/3=0333

Thus the width of the cross-section needsto be at least one-third of the height.
For example, if the height of the dam is 9m then it needs to be at least 3m

wide.

(b) Full water pressureonthebottom; Inthiscase, thewater pressure onthe bottom
isuniformly distributed and itsintensity isthe same asthe lateral pressure at B,
i.e., p=ywh. Thefreebody diagramdiagramisshowninFig. 4.141 wherethe
known forcesare W = ycaH?, F = (1/2)y,h?, and R = y,ahH. Again,
we carry out moment balance about point A to get

gD (W—R) ah
3 2
ywh® 3(yeaH? — yyahH)aH

2

(h/H)?
S(VC/Vw - h/H)

Once again, substituting the given valuesand h/H = 1, we get
a>=1/6 = «=0.408

Thusthewidth in this case needsto be at least 0.41 timesthe height H, slightly

wider than the previous case.
b/H > 0.41
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4.8 Advanced statics

We now continue our study of statics, but with the goal of developing facility at some
harder problems. One way that the material is expanded here is to take the three
dimensionality of theworld alittle more seriously. Each subsection here corresponds
to one of the six previous sections, namely, statics of one body, trusses, internal forces,
springs, machines and mechanisms, and hydrostatics.

Primarily, the subject of 3D staticsisthe same asfor 2D. However, generally one
needs to take more care with vectors when working problems.

Statics of one body in 3D

The consideration of statics of one body in 3D follows the same general principlesas
for 2D.

e Draw afree body diagram.
e Using the forces and moments shown, write the equilibrium equations

— force balance (one 3D vector equation, three scalar equations), and
— moment balance (one 3D vector equation, three scalar equations).

As for the case in 2D when one could use moment balance about 3 non-colinear
points and not use force balance at al, in 3D one can use moment balance about 6
sufficiently different axes. If a isadistance, then one such set is, for example: thei,
7, and k axisthrough 7 = 0, the j axisthrough 7 = ai, the k axisthrough 7 = aj,
and the i axis through 7 = ak. Other combinations of force balance and moment
balance are also sufficient. One can test the sufficiency of the equations by seeing if
they imply that, if aforce at the origin and a couple are the only forces applied to a
system, that they must be zero.

For 2D problems we used the phrase ‘moment about a point’ to be short for
‘moment about an axisin the z direction that passes through the point. 1n 3D moment
about a point is avector and moment about an axisis ascalar.

Two- and three-force bodies

The concepts of two-force and three-force bodies are identical in 3D. If there are
only two forces applied to a body in equilibrium they must be equal and opposite
and acting along the line connecting the points of application. If there are only three
force applied to a body they must al be in the plane of the points of application and
the three forces must have lines of action that intersect at one point.

What doesit mean for a problemto be ‘2D’ ?

The world we livein is three dimensional, al the objects to which we wish to study
mechanically are three dimensional, and if they are in equilibrium they satisfy the
three-dimensional equilibrium eguations. How then can an engineer justify doing 2D
mechanics? There are a variety of overlapping justifications.

e The 2D equilibrium equations are a subset of the 3D equations. In both 2D
and 3D, Y. Fx =0, Y. Fy = 0,and Y M, - k = 0. So, if when doing 2D
mechanics, one just neglects the z component of any applied forces and the x
and y components of any applied couples, oneis doing correct 3D mechanics,
just not al of 3D mechanics. If the forces or conditions of interest to you
are contained in the 2D equilibrium equations then 2D mechanicsisreally 3D
mechanics, ignoring equations you don’t need.
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Figure 4.142: A tripod is the simplest

rigid 3D truss.

(Filename:tfigure.tripod)

CHAPTER 4. Satics

o If the xy planeis a plane of symmetry for the object and any applied loading,
then the three dimensional equilibrium eguations not covered by the two di-
mensional equations, are automatically satisfied. For acar, say, the assumption
of symmetry impliesthat the forcesin the z direction will automatically add to
zero, and the moments about the x and y axiswill automatically be zero.

o If the object isthin and there are constraint forces holding it near the xy plane,
and these constraint forcesarenot of interest, then 2D staticsisalso appropriate.
Thislast caseis caricatured by all the poor mechanical objectsyou have drawn
so. They are constrained to liein your flat paper by invisible slippery glassin
front of and behind the paper. The 2D equations describe the forces between
the slippery glass plates.

Trusses

Thebasictheory of trussesisthesamein 3D as2D. Themethod of jointsisthe primary
basic approach. In idea 3D truss theory the connections are ‘ball and socket’ not
pins. That is the joints cannot carry any moments. For each joint the force balance
equation can be reduced to three (rather than two for 2D trusses) scalar equations.
For thewhol e structure and for sections of the structure, the equilibrium equations
can bereduced to two (rather than three for 2D trusses) scalar equations. The method
of sectionsislesslikely to be as useful a short-cut asin 2D because it is unlikely to
find a section cut and equilibrium equation where only one bar force is unknown.
The counts for determinacy by matching the number of equations and number of
unknowns change as follows. Instead of the 2D eqn. 4.28 from page 139 we have

3j=b+r (4.70)

where j isthe number of joints, including joints at reaction points, b isthe number of
bars, and r isthe number of reaction components that shows on afree body diagram
of the whole structure.

Example: A tripod

A tripodisthesimplest rigid 3D structure. Withfour joints(j = 4), three
bars (b = 3), and nine unknown reaction components (r = 3 x 3 = 9),
it exactly satisfies the equation 3] = b + r, acheck for determinacy of
rigidity of 3D structures.

A tripod isthe 3D equivalent of the two-bar truss shown in Fig. 4.35a
on page 141. O

The check for determinacy of afloating (unattached) structureis
3j=b+6. (4.71)

Therearevariouswaysto think about the number six in the equation above. Assuming
the structure is more than a point, six is the number of ways a structure can movein
three dimensional space (three translations and three rotations), six is the number of
equilibrium equations for the whole structure (one 3D vector moment, and one 3D
vector force, and six isthe number of constraints needed to hold a structure in place.
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Example: A tetrahedron

The simplest 3D rigid floating structureisatetrahedron. With four joints
(j = 4) and six bars (b = 6) it exactly satisfiestheequation 3j = b+ 6
which is acheck for determinacy of rigidity of 3D structures.

A tetrahedron is thus, in some sense the 3D equivalent of atriangle
in2D. a

Internal forces

At afree body diagram cut on along narrow structural piecein 2D there showed two
force components, tension and shear, and one scalar moment. 1n 3D such acut shows
aforce F and amoment M each with three components. If one picks a coordinate
system with the x axis aligned with the bar at the cut, the concept of tension remains
the same. Tension is the force component aong the bar.

T=F=F-i

The two other force components, Fyx and Fy, are two components of shear. The net
shear force is avector in the plane orthogonal to . .
The new concept, often called torsion is the component of M along the axis:

~

torsion = My = M - 1

Torsion isthe part of the moment that twists the shaft.
The remaining part of the M, in the yz plane, is the bending moment. It has two
components My and M.

Springs

Ideal springs are simple two force bodies, whether in 2D or 3D. The equation de-
scribing the force on end B of a spring, in terms of the relative positions of the ends
7, g, therest length of the spring £, and the spring constant k is still egn. 4.46 from
page 163, namely,

. - F
FB:k.(|rAB|—£0)<|?AB|>. (4.72)
— AB

Al —

j‘AB

M achines and structures

The approach to analysis of general machines and structuresin 3D isthe same asin
2D. One should draw a free body diagrams of the whole machine and of each of its
parts, taking advantage of the principle of action and reaction. For each free body
diagram the two vector equilibrium equations now lead to 6 scalar equations. Thus,
for any but the simplest of 3D structures and machines one either triesto make atwo
dimensional model or one must resort to numerical solution.

Hydrostatics
The basic results of hydrostatics are 3D results.
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Figure 4.143: A tetrahedron is the sim-
plest rigid trussin 3D that does not depend

on grounding.

(Filename:tfigure.tetrahedron)
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SAMPLE 4.34 Can a stack of three balls be in static equilibrium? Three identical
spherical balls, each of mass m and radius R, are stacked such that the top ball rests
on the lower two balls. The two balls at the bottom do not touch each other. Let the
coefficient of friction at each contact surface be . Find the minimum value of © so
that the three balls are in static equilibrium.

Solution Let usassumethat the three balls are in eguilibrium. We can then find the
forces required on each ball to maintain the equilibrium. If we can find a plausible
value of thefriction coefficient u from the required friction force on any of the balls,
then we are done, otherwise our initial assumption of static equilibrium iswrong.

The free body diagrams of the upper ball and the lower right ball (why the right
ball? No particular reason) are shown in Fig. 4.145. The contact forces, F and Fp,
act ontheupper ball at pointsE and D, respectively. Each contact forceisthe resultant
of atangential friction force and a normal force acting at the point of contact. From
the free body diagrams, we seethat each ball isathree-force-body. Therefore, al the
three forces— the two contact forces and the force of gravity — must be concurrent.
This requires that the two contact forces must intersect on the vertical line passing
through the center of the ball (the line of action of the force of gravity). Now, if we
consider the free body diagram of the lower right ball, we find that force Fp hasto
pass through point B since the other two forces intersect at point B. Thus, we know
the direction of force Fp,.

Let o bethe angle between the contact force Fp, and thenormal to the ball surface
at D. Now, from geometry, /C3DO+ /C30D + OC3D = 180°. But,« = /C3DO =
/C30D. Therefore,

1 1
a = 5(1800 — /0CgD) = E(ZGC3D)
1
= -30°=15°
2

where /GC3D = 30° followsfrom the fact that C;C,Cg3 isan equilateral triangle and
C3G bisects / C1C3Co.
Now, from Fig. 4.146, we see that

Fs
tana = —
N

But, the force of friction Fs < wN. Therefore, it follows that
W > tana = tan15° = 0.27

Thus, thefriction coefficient must be at least 0.27 if the three balls haveto bein static

equilibrium.
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SAMPLE 4.35 A simple 3-D truss: The 3-D truss shown in the figure has 12 bars

and 6 joints. Nine of the 12 bars that are either horizontal or vertical have length F1 F_Fs F2
¢ = 1m. Thetrussis supported at A on a ball and socket joint, a B on a linear /[N
roller, and at C on a planar roller. The loads on the truss are F; = —50Nk, F, = » S
—60Nk, and F3 = 30Nj. Find all the support reactions and theforcein the bar BC. (
X L
Solution Thefreebody diagram of theentirestructureisshowninFig. 4.148. Letthe % c
supportreactionsat A, B,andChe A = Axi+Ayj+Azk, B = Byi+Bsk, andC = A o 4D B
Ck. Then the moment balance about point A, 3" M, = 0 gives A %\ x %
~ o = R o Ball & Cock
rgjn X B+ Teyp X C+rgp X Fp+rgjp x F3 =0 (4.73) et ;;M“Zw
TolleA
Note that ﬁl passes through A and, therefore, produces no moment about A. Now we FigUre 4.147: emmmestes st
compute each term in the equation above. R
Faa X B = €j x (B + Bz = —Bylk + Byti,
FoaxC = £(cos60°f — sin60%) x Cok = Clhi+C Foooe _Fop
Feg/m X F, = (Lj+th) x (—Fk) = —Fuli, 1, «L\
P x Fy = [(c0S60°f — Sin60%) + tk] x Faj = —Fati — F3¥3'k P &
Substituting these products in egn. (4.73), and dotting the resulting equation with
J, k, and z, respectively, we get C
cC, = 0 Ay f < TCz ;} .
3
By — —g Fs = —15v3N Ax/ 12 Bx T52
1
B, = _ECZ+ Fo + F3 = 90N

Figure 4.148: (ricnamesstisa sd trussr o)

Thus, B = Byi + Bzk = —15¢/3Ni + 30Nk and C = 0. Now from the force
balance, Y F = 0, wefind A as

= —(—15V3Ni + 90Nk) — (—50Nk) — (—60Nk) — (30N})
= 15v3Ni — 30Nj + 20Nk

To find the forcein bar BC, we draw afree body diagram of joint B (which connects
BC) as shown in Fig. 4.149. Now, writing the force balance for the joint in the

x-direction, i.e., [Y" F = 0] - i, gives Ty B
e 5
Toc - i N
BX + TBC -1 = 0 TBA <
By :
= Tac —=
. sin60° Figure 4.149: umensr st
~15/3N
— _4“/— — 30N
V3/2

Thustheforcein bar BCis Ty = 30N (tensile force).

A = 15V/3Ni — 30Nj 4+ 20Nk, B = —15V/3Ni + 90Nk, C = 0, Ty = 30N
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Figure 4.150: (sienamesstisa.sd truss
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SAMPLE 4.36 A 3-D truss solved on the computer: The 3-D truss shown in the
figure is fabricated with 12 bars. Bars 1-5 are of length ¢ = 1m, bars 6-9 have
length £/+/2(~ 0.71m), and bars 1012 are cut to size to fit between the joints they
connect. Thetrussissupported at A on aball and socket, at B on alinear roller, and at
Conaplanarroller. A load F = 2kN isapplied at D as shown. Write all equations
required to solvefor all bar forces and support reactions and solve the equationsusing
acomputer.

Solution Thereare 12 barsand 6 jointsin the given truss. The unknowns are 12 bar
forcesand six support reactions (3at A (Ax, Ay, A;),2at B (By, B;), and1at E(E;)).
Therefore, we need 18 independent equations to solve for al the unknowns. Since
the force equilibrium at each joint gives one vector equation in 3-D, i.e., three scalar
equations, the 6 joints in the truss can generate the required number (6 x 3 = 18) of
equations. Therefore, we go joint by joint, draw the free body diagram of the joint,
write the force equilibrium equation, and extract the 3 scalar equations from each
vector equation.

At each joint we use the following convention for force labels. At joint A, the
forcefrom bar AB is Fpg = T1Aag and at joint B, the force from the same bar AB is
Fgp = Tidgp = Ti(—Ang) = —Fapg. We switch from the |etters to denote the bars
in the force vectors to numbersin its scalar representation (T1, To, etc.) to facilitate
computer solution.

Joint A:
Y F=0 = Fyg+Fpc+Fap+Fpe+A=0
T1i+%(i+1€)+%(i+2j+/€)+w+Axi+ij+A21€:6(4.74)
Joint B:
Y F=0 = Fga+Fac+Fop+FgetB = 0
T+ L+ T+ i )+ B BE = 819
Joint C:
> F=0 = Fep+Fp+Fg+Fp = 0
S b - Lt +Tsi B2 -k = 0(476)
V2 V2 V6
Joint D:
Y F=0 = Fpg+Fpc+Fog+Fpe+F = 0
—sz—%(sz—é)—ﬁw%(—wé)—Flé = 0 (477)
Joint E:
> F=0 = Fp+Fg+Fp+Fe+E = 0
—T4j+%(i—j)+T3i+%(i+1€)+Ezlé = 0 (478)
Joint F:
> F=0 = Fec+Fe+Fa+Fp = 0
i Raah - a2 1h - Livh = 0479
V2 V6 V2
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Now we can separate out 3 scalar equations from each of the vector equations from
eqn. (4.74)—egn. (4.79) by dotting them with z, j, and k.

Eqn. [Ean] -7 [Ean] - J [Egn.]

-k

1

D T+ HTe+ ZTo+A=0, ZTo+Ta+Ay=0,  5Te+ ZTo+A =0

2 -T1— %'ﬁ sz12 0, T+ %le + By =0, %ﬁ +B:=0
3) ﬁTﬁ + }T7 + JETH =0, Ts + JETH 0, }FzTe, + %ﬁ + %Tll =0
(5 %T12+T3+ %Tg:O, —Ta— szlz—O %TS‘F E.=0
(6) —%21—8 j_T10+ ZTo=0, —T5 — JéTlO =0, }T8+ fT10+ 1e=0

Thus, we have 18 required equations for the 18 unknowns. Before we go to the
computer, we need to do just one more little thing. We need to order the unknowns
in some way in aone-dimensional array. So, let

X = [Ax Ay AZ Bx By EZ Tl e T12]

ThUSXl = Ay, Xo = Ay, .., X7 =Tq, Xg=To, ..., X18 = T12. Now we are
ready to go to the computer, feed these equations, and get the solution. We enter each
equation as part of amatrix [A] and avector {b} suchthat [ A] {x} = {b}. Hereis
the pseudocode:

sq2i = 1/sqrt(2) % defi ne a const ant
sq6i = 1/sqrt(6) % def i ne anot her const ant
F=2 % specify given | oad

A(L,[1 7 12 16]) =[1 1 sq2i sq6i]
A(2,[2 10 16]) =1 1 2*sq6i]

A(18,[14 15 16]) = [sQg2i sq2i sQ6i]

b(12,1) = F

formA and b setting all other entries to zero
solve A*x = b for x

The solution obtained from the computer is the one-dimensional array x which after
decoding according to our numbering scheme gives the following answer.

A)(:Ayzo, AZZ—ZkN, By:O, BZZZKN, EZZZkN,

T1=Tz3=—-2kN, T =Ts=Ts=—4kN, T =0,
T7=Tg=—283kN, To=0, Tip=Ti1 =4.9kN, Ti2 =5.66kN,

213



214

D
z T
D T o

D c 7!"
J
Ax A B —
b
A‘/v’/

Figure 4.153; (rienamesstist sd plate.a)

CHAPTER 4. Satics

SAMPLE 4.37 Anunsolvable problem? A 0.6 m x 0.4 m uniform rectangular plate
of massm = 4kg isheld horizontal by two strings BE and CF and linear hingesat A
and D as shown in thefigure. The plateisloaded uniformly with books of total mass
6kg. If the maximum tension the strings can takeis 100 N, how much more load can
the plate take?

Solution The free body diagram of the plate is shown in Fig. 4.153. Note that we
model the hinges at A and D with no resistance in the y-direction. Since the plate
has uniformly distributed load (including its own weight), we replace the distributed
load with an equivalent concentrated load W acting vertically through point G.

The various forces acting on the plate are

W =—Wk, T, = Tihge, T, = Tohgp. A = Axi + Ak, D = Dyi + Dk

Here Agg = Acp = — cos6i + sindk = A(let). Now, we apply moment equilibrium
about point A, i.e., )" M, = 0.

Fgx T+ FexTy+rgx W+ipx D=0 (4.80)
where,
g xT, = aixTih=—-aTisingj
FoxT, = (ai+bj)x Tk = Tobsingi — Trasingj + Tobcosok
R N 1 . R N Wa, Wa,
erW = E(al—i_b‘])X(_Wk):_Tl_'_?J
ip x D = bj x (Dxi+ Dzk) = Dsbi — Dbk

Substituting these products in eqn. (4.80) and dotting with 7, j and &, we get

W

TocosO — Dy = O (4.82)
W

(Ti+Ty)sing = > (4.83)

The force equilibrium, > F = 0, gives
A+D+T+T,+W=0

Adgain, substituting the forcesin their component form and dotting with 7 and k (there
areno j components), we get

Ax+ Dy —(T1+To)cosd = 0
= Acx—Ticos6 = O (4.84)
Az"r‘ Dz+(T1+T2)Sn9 0
. W
= A;+Tisng = 5 (4.85)

These are all the equations that we can get. Now, note that we have five independent
equations (egns. (4.81) to (4.85)) but six unknowns. Thus we cannot solve for the
unknowns uniquely. This is an indeterminate structure! No matter which point we
use for our moment equilibrium equation, we will always have one more unknown
than the number of independent equations. We can, however, solve the problem with
an extra assumption (see comments below) — the structure is symmetric about the
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axis passing through G and parallel to x-axis. From this symmetry we conclude that
T1 = To. Then, from egn. (4.84) we have

W
2 = Zsino

We can now find the maximum load that the plate can take subject to the maximum
allowable tension in the strings.

W = 4Tsing

1
4(100N) - 5= 200N
The total load as given is (6 + 4) kg - 9.81m/s> = 98.1N a 100N. Thus we can

double the load before the strings reach their break-points. Now the reactions at D
and A follow from egns. (4.81), (4.82), (4.84), and (4.85).

W .
DZ=AZ=7—TS|n0 =

Dy =Ax=Tcosfd = coto

LIS

Comments.

(@) We got only five independent equations (instead of the usual 6) because the
force equilibrium in the y-direction gives a zero identity (0 = 0). There are no
forcesin the y-direction. The structure seemsto be unstable in the y-direction
—if youpushalittle, it will move. Remember, however, that it isso becausewe
choseto model the hingesat A and D that way keeping in mind the only vertical
loading. The actual hinges used on a bookshelf will not allow movement in
the y-direction either. If we model the hinges as ball and socket joints, we
introduce two more unknowns, one at each joint, and get just one more scalar
equation. Thus we are back to square one. There is no way to determine Ay
and Dy from equilibrium equations alone.

(b) Theassumption of symmetry and the consequent assumption of equality of the
two string tensions is, mathematically, an extra independent equation based
on deformations (strength of materials). At this point, you may not know any
strength of materia calculations or deformation theory, but your intuition is
likely to lead you to make the same assumption. Note, however, that this
assumption is sensitive to accuracy in fabrication of the structure. If the strings
weredlightly different inlength, theangleswere dlightly off, or thewall was not
perfectly vertical, the symmetry argument would not hold and the two tensions
would not be the same.

Most real problems are like this — indeterminate. Our modelling, which
requires understanding of mechanics, makes them determinate and solvable.
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Figure 4.154: (sicnamesstist.intern.cancan)

(5 of

Figure 4.155: (ricnamesstist.intern.cantsn)

CHAPTER 4. Satics

SAMPLE 4.38 3-D moment at the support: AT’ shaped cantilever beam isloaded
as shown in thefigure. Find al the support reactions at A.

Solution The free body diagram of the beam is shown in Fig. ??. Note that the
forces acting on the beam can produce in-plane as well as out of plane moments.
Therefore, we show the unknown reactions A and MA as general 3-D vectors at A.
The moment equilibrium about point A, 3~ M, = 0, gives

MA+FC/A X (ﬁ1+ﬁ2)+?D/A X F3:6

= My = (Fgjp+Tcp) x (Fi+ Fy) + (Fgja + Fpyp) x Fa
= (ti +aj) x (—F1k — Fai) + (¢i — aj) x Fai

But F3 = —F, = F (say). Therefore,

= (i +aj) x (—F1k — Fk) + (¢i — aj) x Fi
Fi(j — Fiai — 2Fak

301bf - 3ftj — 301bf - 1fti — 2(301bf - 1ft)k
= (=307 + 90 — 60k) Ib-ft

The force equilibrium, ) F=0, gives

A = F F2—F3
= —F+F
= —(—Flk)zFlk
= 30Ibfk

A = 30Ibfk, and M, = (—30i + 90j — 60k) Ib-ft




Dynamics of particles

We now progress from statics to dynamics. Although we treated statics as an inde-
pendent topic, staticsisreally a special case of dynamics. In statics we neglected the
inertial terms (the terms involving acceleration times mass) in the linear and angular
momentum balance equations. In dynamics these terms are of central interest. In
statics all the forces and moments cancel each other. In dynamics the forces and
moments add to cause the acceleration of mass. As the namesimply, staticsis gen-
erally concerned with things that don’t move, or at least don’t move much, whereas
dynamics with things that move a lot. How to quantify what is ‘still’ (statics) vs
‘moving’ (dynamics) isitself adynamics question.

A big part of learning dynamicsis learning to keep track of motion, kinematics.
In addition, kinematic analysisis a so useful for work and energy methodsin statics.
We are going to devel op our understanding of dynamics by considering progressively
harder-to-understand motions.

This chapter islimited to the dynamics of particles. A particleisasystem totally
characterized by its position (as a function of time) and its (fixed) mass. Often one
imagines that a particle is something small. But the particle idealization is used, for
example, to describe a galaxy in the context of its motion in a cluster of galaxies.
Rather, a particle is something whose spatial extent is neglected in the evaluation
of mechanics equations. An object’s spatial extent might be neglected because the
object issmall compared to other relevant distances, or because distortion and rotation
happen to be of secondary interest.

In this chapter we further limit our study of the dynamics of particles to cases
where the applied forces are given as a function of time or can be determined from
the positions and velocities of the particles. The time-varying thrust from an engine
might be thought of as aforce given as afunction of time. Gravity and springs cause
forceswhich arefunctions of position. And the drag on a particle asit movesthrough
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air or water can be model ed asaforce depending on velocity. Discussion of geometric
constraints, as for particles connected with strings or rods, where some of the forces
depend on finding the accelerations, begins in chapter 6.

The most important equation in this chapter is linear momentum balance applied
to one particle. If we start with the general form in the front cover, discussed in
general termsin chapter 1, we get:

Y F = L Linear momentum balance for any system
= ) mg for asystem of particles
= ma for one particle

If we define F to be the net force on the particle (F = Y F) then we get

F =ma (5.1)

which is sometimes called ‘ Newton's second law of motion.” In hiswords,

“ Any change of motion is proportional to the force that acts, and it is
made in the direction of the straight line in which that forceis acting”

In modern language, explicitly including the role of mass, the net force on a particle
isits masstimesits acceleration. Intuitively people think of thislaw as saying force
causes motion, and, more precisely, that force causes accel eration of mass. Actualy,
what causes what, causality, is just a philosophical question. The important fact
is that when there is a net force there is acceleration of mass, and when there is
acceleration of massthereisanet force. When acar crashesinto apolethereisabig
force and abig deceleration of the car. You could think of the force on the bumper as
causing the car to dlow down rapidly. Or you could think of therapid car deceleration
as necessitating a force. It is just a matter of personal taste because in both cases
equation 5.1 applies.

Acceleration is the second derivative of position

What is the acceleration of a particle? Lets assume that 7 (t) is the position of the
particle as afunction of time relative to some origin. Then its acceleration is

~ _ d— _ d/d=z _ d=
a = mv = a(mr) = dtzr
= v = m(r) = r

where one or two dots over something is a short hand notation for the first or second
time derivative.

Newton’s laws are accurate in a Newtonian reference frame

When the acceleration is calculated from position it is calculated using a particular
coordinate system. A referenceframeis, for our purposes at the moment, acoordinate
system. The calculated acceleration of a particle depends on how the coordinate
system itself ismoving. So the simple equation

F =ma
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has as many different interpretations as there are differently moving coordinate sys-
tems (and there are an infinite number of those). Sir Isaac was standing on earth
measuring position relative to the ground when he noticed that his second law accu-
rately described things like falling apples. So the equation F = ma is valid using
coordinate systems that are fixed to the earth. Well, not quite. I1saac noticed that the
motion of the planets around the sun only followed his law if the acceleration was
calculated using a coordinate system that was still relative to ‘the fixed stars’” With
a fixed-star coordinate system you calculate very dightly different accelerations for
things like falling apples than you do using a coordinate system that is stuck to the
earth. And nowadays when astrophysiciststry to figure out how the laws of mechan-
ics explain the shapes of spiral galaxiesthey realize that none of the so-called ‘fixed
stars' are so totaly fixed. They need even more care to pick a coordinate system
where egn. 5.1 is accurate.

Despite al this confusion, it isgenerally agreed that there exists some coordinate
system for which Newton’slaws are incredibly accurate. Further, once you know one
such coordinate system there are rules (which we will discuss in later chapters) to
find many others. Any such reference frame is called a Newtonian reference frame.
Sometimes people also call such aframe a Fixed frame, asin ‘fixed to the earth’ or
‘fixed to the stars'.

For most engineering purposes, not counting, for example, trgjectory control of
interplanetary missions, a coordinate system attached to the ground under your feet
is good approximation to a Newtonian frame. Fortunately. Or else appleswould fall
differently. Newton might not have discovered his laws. And this book would be

much shorter. . x

o> U =XI

The organization of this chapter —— g =01 =X

)

In the first four sections of this chapter we give a thorough introduction to the one- Figure 5.1: Oned onal positi

. . . . . . . . . L. ne-dimensional position,
dimensi Qnal mechanics 01_‘ single particl e Thls isareview and degpenl ng qf material velocity, and accelerationin thexx direction.
covered in freshman physics. These sectionsintroduce you to thetime-varying nature (Filomamestfigared.d.1)
of dynamics without the complexity of vector geometry. The later sections concern ()
dynamics with more particles or more spatial dimensions or both.

5.1 Forceand motionin 1D

We now limit our attention to the special case where one particle moves on a given 0
straight line. We postpone until Chapter 6 issues about what forces might be required

to keep the particle on that line. For problems with motion in only one direction, the v(®)
kinematicsis particularly simple. Although we use vectors here because of their help
with signs, they are really not needed.

Position, velocity, and acceleration in one dimension

If, say, we call the direction of motion thez direction, then we can call x the position
of the particle we study (see figure 5.1). Even though we are neglecting the spatial
extent of the particle, to be precise we can define x to be the x coordinate of the
particle’s center. We can write the position 7, velocity v and acceleration @ as

o o dx. .  dv. d?x. __ Figure5.2: Graphsof x(t) andu(t) = §¥
r=xi and V=vi=—I=XI and a=al=—_1=—-1=Xi, versustime. Theslopeof thepositioncurve
dt dt dt dx/dt at t* isv(t*). And the slope of the

Figure 5.2 shows example graphs of x(t) and v(t) versustime. When we don’'t use  Velocity curvedv/dt at t* isa(t™).
vector notation explicitly we will take v and a to be positive if they have the same (Flenmetfigures A1)
direction asincreasing x (or y or whatever coordinate describes position).
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Figure 5.3: One-dimensional kinematics
of aparticle: (a) isagraph of the accelera-
tion of aparticle a(t); (b) is agraph of the
particlevelocity v(t) andtheintegral of a(t)
fromtg = Otot*, the shaded areaunder the
acceleration curve; (c) isthe position of the
particle x(t) and the integral of v(t) from
tg = 0to t*, the shaded area under the ve-
locity curve.

(Filename:tfigure3.4.1b)

@ To cover the range of calculus problems
you need to be a very good rider, however,
able to ride frontwards, backwards, at zero
speed and infinitely fast.
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Example: Position, velocity, and acceleration in one dimension

If position is given as x(t) = 3e*/Sm then v(t) = dx/dt =
12e™/S(m/s) and a(t) = dv/dt = 48e*/S(m/s?). So at, say, time
t = 2sthe acceleration is ali—ps = 48e*2%/S(m/s?) = 48 - B m/s? ~
1.43-10° m/s2. o

We can also, using the fundamental theorem of calculus, look at the integral
versions of these relations between position, velocity, and acceleration (see Fig. 5.3).

t
x@t) = xo+/ v(r)dt with Xo = X(tp), and
fo
t
v(t) = vo+/ a(r)dr with vo = v(tg).
to

With more informal notation, these equations can also be written as:

x = [vdt
v = [adt.

So one-dimensional kinematics includes almost all elementary calculus problems.
You are given a function and you have to differentiate it or integrate it. To put it
the other way around, almost every calculus question could be phrased as a question
about your bicycle speedometer. On your bicycle speedometer (which includes an
odometer) you can read your speed and distance travelled asfunctions of time. Given
one of those two functions, find the other. DAs of this writi ng, common bicycle
computers don't have accelerometers. But acceleration as a function of timeis also
of interest. For example, if you are giventhe (scalar part of) velocity v(t) asafunction
of time and are asked to find the accel eration a(t) you haveto differentiate. If instead
you were asked to find the position x(t), you would be asked to calculate an integral
(seefigure 5.3).

If acceleration is given as afunction of time, then position isfound by integrating
twice.

Differential equations

A differential equation is an equation that involves derivatives. Thus the eguation
relating position to velocity is

d—X = or, more explicitl w =v(t)
at ¥ ' praty a0

isadifferential equation. Anordinary differential equation (ODE) isonethat contains
ordinary derivatives (as opposed to partial differential equations which we will not
use in this book).

Example: Calculating a derivative solvesan ODE

Given that the height of an elevator as afunction of time onits5 seconds
long 3 meter trip from the first to second floor is

(1 - cos(5y))

y(® = @m) 5
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we can solve the differential equation v = % by differentiating to get

_ cos(mt
_dy_d [(3m)(1 005(55)):| _ 3_”gn<”_t) m/s

T odt T dt 2 10 5s

(Note: thiswould be considered a harsh elevator because of the jumpin

the acceleration at the start and stop.) O
A little less trivial is the case when you want to find a function when you are given
the derivative.

Example: Integration solvesa simple ODE

Given that you start at home (x = 0) and, over about 30 seconds, you
accel erate towards asteady-state speed of 4 m/saccording tothefunction

v(t) = 41— e /09 mys

and your whol e ride lasts 1000 seconds (about 17 minutes). You can find
how far you travel by solving the differential equation

X = v(t) withtheinitia condition x(0) =0
which can be accomplished by integration. Say, after 1000 seconds
X(t = 10009 = [3°0%u(t) dt = 37041 — e t/@9)(m/9) dt

1000s
0 m

(4t + (120s)e7t/(309)| /s

((4-1000s+ (1209)e~199/3) — (0 + (1209)€%)) m/s

(4000 — 120 + 120e~1%0/3)) m

~ 3880m (to within an angstrom or so)

The distance travelled is only 120 m less than would be travelled if the
whole trip was travelled at a steady 4m/s (4m/s x 1000s = 4000 m).
a

Unlike the integral above, many integrals cannot be evaluated by hand.

Example: An ODE that leadsto an intractableintegral

If you were told that the velocity as a function of time was

4

YO = evmss ™

you would, as for the previous example, be describing a bike trip where
you started at zero speed and exponentially approached a steady speed
of 4m/s. Thusyour position asafunction of time should be similar. But
what isit? Let's proceed as for the last example to solve the equation

X = v(t) withtheinitial condition x(0) =0
and the given v(t). We can set up the integral to get

X(t = 10005) = OlOOOSv(t) dt = olOOOS,H_e_fW m dt

(5.2)
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@ We do not concern ourselves with an-
gular momentum balance in this section.
Assuming we pick an origin on the line of
travel, all terms on both sides of all angular
momentum balance equationsarezero. The
angular momentum balance equations are
thus automatically satisfied and have noth-
ing to offer here.

CHAPTERS5. Dynamics of particles

whichisthekind of thing you have nightmares about seeing on an exam.
Thisisanintegral that you couldn’t doif your lifedepended onit. No-one
could. Thereisno formulafor x(t) that solves the differential equation
X = v(t), withthegivenv(t), unlessyou regard egn. 5.2 asaformula. In
daysof old they would say ‘the problem has been reduced to quadrature’
meaning that all that remained was to evaluate an integral, even if they
didn’t know how to evaluate it. But you can always resort to numerical
integration. One of many ways to evaluate the integral numericaly is
by the following pseudo code (note that the problem is formulated with
consistent units so they can be dropped for the numerics).

ODE = { xdot =4t /| (t+er(-t/30)) }

IC ={ x(0) =0 }

solve ODE with I C and eval uate at t=1000
The result is x ~ 3988m which is also, as expected because of the
similarity with the previous example, only dlightly shy of the steady-
speed approximation of 4000 m. m]

The equations of dynamics
Linear momentum balance

For a particle moving in the x direction the velocity and acceleration are v = vi and
a = ai. Thusthe linear momentum and its rate of change are

Thus the equation of linear momentum balance®, egn. | from the front inside cover,
or equation 5.1 reduces to:

Fi=mai o F=ma (5.3)

where F isthe net force to theright and a is the acceleration to the right.

Now the force could come from a spring, or afluid or from your hand pushing
the particle to the right or left. The most general case we want to consider here is
that the force is determined by the position and velocity of the particle as well asthe
present time. Thus

F=f(v,t).
Special cases would be, say,
F = f(x) = —kx for alinear spring,
F = f(v) = —Cv for alinear viscous drag,
F = f() = Fosin(Bt) for an oscillating load, and
F = fxuvt) =-kx—cv+ Fgpsin(gt) for al threeforcesat once.

So al elementary 1D particle mechanics problems can be reduced to the solution of
this pair of coupled first order differential equations,

@& = fxut/m (@
—————™
a(t) (5.9
de = ) (b)

where the function f (x, v, t) isgiven and x(t) and v(t) areto be found.
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Example: viscousdrag

If the only applied force is a viscous drag, F = —cv, then linear mo-
mentum balance would be —cv = ma and Eqgns. 5.4 are

ale

= —cv/m
a = v

where ¢ and m are constants and x(t) and v(t) are yet to be determined
functions of time. Because the force does nothing but slow the particle
down there will be no motion unless the particle has some initia veloc-
ity. In general, one needs to specify the initial position and velocity in
order to determine asolution. So we complete the problem statement by
specifying the initial conditions that

X(0) =x9 and v(0) =vg

where Xg and vg are given constants. Beforeworrying about how to solve
such aset of equations, on should first know how to recognize a solution
set. In this case the two functions

v(t) = wvoe"/m and
X(t) = Xo+ mug(l—e/M/c

solvethe equations. You can check that theinitial conditionsare satisfied
by evaluating the expressionsat t = 0. To check that the differential
equations are satisfied, you plug the candidate sol utionsinto the equation
and seeif anidentity results. O

Just like the case of integration (or equivalently the solution for x of X = v(t)), one
often cannot find formulas for the solutions of differential equations.

Example: A dynamics problem with no pencil and paper solution

Consider the following case which models a particle in a sinusoidal
force field with a second applied force that oscillatesin time. Using the
dimensional constantsc, d, Fo, 8, and m,

& = (csinx/d) + Fosin(At)) /m

with initial conditionsx(0) =0 and v(0) =0.
Thereis no known formulafor x(t) that solves this ODE. a

Just writingtheordinary differential equationsand initial conditionsisquiteanal ogous
to setting up an integral in freshman calculus. The solution is reduced to quadrature.
Because numerical solution of sets of ordinary differential equations is a standard
part of all modern computation packages you are in some sense done when you get
to thispoint. You just ask your computer to finish up.
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Special methods and special casesin 1D mechanics

In some problems, the accel eration can be found as afunction of position (as opposed
to time) easily. In this case, one can find velocity as a function of position by the
following formula (see Box 5.1:

X
W(x)2 = (W(x0)2+2 [ a(x*) dx*. (5.5)
Xo

An especialy simple case is constant acceleration. Then we get the following kine-
matics formulas which are greatly loved and hated in high school and freshman
physics:

a=const = X =Xg+ vot+ at?/2

a=const= v =uvp+at

a=const = v =,/v3+ 2ax.

Some of these equationsare a so discussed in box 5.2 about the sol ution of the simplest
ordinary differential equations on page 226.

Example: Ramping up the acceleration at the start

If you get a car going by gradually depressing the ‘accelerator’ so that
its acceleration increases linearly with time, we have

a = ct (take t = 0 at the start)
= o) = fé adtr +vg = fé ctdt = ct?/2
(sincevg = 0)
= x(t) = [fivdt4+x = [jctZ/adr = ct3/6
(since xp = 0).

The distance the car travels is proportional to the cube of the time that
has passed from dead stop. =]
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5.1 THEORY
Finding v(x) froma(x)

Equation 5.5 for velocity asafunction of position can bederivedas  Derivation 2:
follows. Two derivations are given.

Derivation 1.
dv
dv a a
at a dv dx
dv dt _ 1 dt T i a - @
~ U4t dx & S'”Ce(;:d—x) Svdv = adx,
d 1 2 v X
i[&(év )]dt adx, = vidvt = /a(x*)dx*,
X0

1, 1,
:>§U —EUO

gnce(g(} 2)— —
at (2" ) = Ve

X
/ a(x™)dx*.
X0

X
/ a(x™)dx*.
X0
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5.2 Thesimplest ODEs, their solutions, and heuristic explanations

Sometimes differential equations you want to solve are sim-
ple enough that you might quickly find their solution. This table
presents some of the simplest ODEs for u(t) and their general so-
lution. Each of these solutions can be used to solve one or another
simple mechanics problem. In order to make these simplest ordi-
nary differential equations (ODE's) feel like more than just agroup
of symbols, we will try to make each of them intuitively plausible.
For this purpose, we will interpret the variable u as the distance an
object has moved to the right of its “home’, the origin a 0. The
velocity of motion to the right is thus U and its acceleration to the
rightisd. If U < 0 the particleis moving to the left. If G < O the
particle is accelerating to the left.

Inall caseswe assumethat A and B are constants and that A is
a positive constant. Cq, Cp, Cg, and C4 are arbitrary constants in
the solutions that may be chosen to satisfy any initial conditions.

a y

zero velocity

a) ODE:u=0 = Soln: u=C;.

U = 0 means that the velocity is zero. This equation would arisein
dynamicsif aparticle hasno initial velocity and no force is applied
toit. The particle doesn't move. Its position must be constant. But
it could be anywhere, say at position C1. Hencethe general solution
u = C1, as can be found by direct integration.

b) u constant velocity

Cy

b) ODE:U= A = Soln: u= At + Cy.
U = Ameanstheobject has constant speed. Thisequation describes
the motion of a particle that startswith speed vg = A and because it
has no force acting on it continues to move at constant speed. How
far doesit gointimet? It goes vot. Wherewasit at timet = 0?
It could have been anywhere then, say C1. So whereisit at timet?
It'sat itsoriginal position plus how far it has moved, u = vgt + C1,
as can also be found by direct integration.

o u zero acceleration

c) ODE:li=0 = Soln: u=Cyt + Co.
U = 0 meansthe acceleration is zero. That is, the rate of change of
velocity is zero. This constant-velocity motion is the general equa-
tion for a particle with no force acting on it. The velocity, if not
changing, must be constant. What constant? It could be anything,
say C1. Now we have the same situation as in case (b). So the
position as a function of time is anything consistent with an object
moving at constant velocity: u = Cit + Cp, where the constants
C1 and C, depend on the initial velocity and initial position. If you
know that the position at t = 0 isug and the velocity att = Ois g,
then the position isu = ug + vot.

constant acceleration

d ODE: ii=A
= Soln: u = At?/2 4 Cyt + Co.

This constant acceleration A, constant rate of change of velocity,
is the classic (all-too-often studied) case. This situation arises for
vertical motion of an object in a constant gravitationa field as well
asin problems of constant acceleration or deceleration of vehicles.
The velocity increases in proportion to the time that passes. The
change in velocity in a given time is thus At and the velocity is
v = U = vg + At (given that the velocity was vg at t = 0). Because
the velocity isincreasing constantly over time, the average velocity
in atrip of length t occurs at t/2 and is vg + At/2. The distance
traveled is the average velocity times the time of travel so the dis-
tance of travel ist - (vg + At/2) = vot + At2/2. The position is
the position at t = 0, up, plus the distance traveled since time zero.
So U = Ug + ot + At2/2 = Cp + Cqt + At2/2. Thissolution can
also be found by direct integration.
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exponentia growth

| t
i

e) ODE:u=Au = Soln: u = CieM.

The displacement u grows in proportion to its present size. This
equation describes the initial faling of an inverted pendulum in a
thick viscous fluid. The bigger the u, the faster it moves. Such
situations are called exponential growth (asin population growth or
monetary inflation) for agood mathematical reason. The solution u
is an exponential function of time; u(t) = C1e*, as can be found
by separating variables or guessing.

fy u
Cy
exponential decay
Clle— - -
| t
Ur

f) ODE: U= —Au = Soln: u = Cie*.

The smaller u is, the more slowly it gets smaller. u gradualy ta-
pers towards nothing: u decays exponentially. The solution to the
equationis: u(t) = Cre~*!. Thisexpression isessentially the same
equation asin (e) above.

1 =Cs

g) ODE: i = A%u
= Soln: :u=Ciet!t + Crett
= U= Czcosh(At) + Cssinh(At).

Note, sinh and cosh are just combinations of exponentials. For
{i = A2u, the point accelerates more and more away from the origin
inproportion to thedistancefromtheorigin. Thisequation describes
the falling of a nearly vertical inverted pendulum when there is no
friction. Most often, the solution of this equation gives roughly
exponential growth. The pendulum accelerates away from being
upright. Thereason thereis also an exponentially decaying solution
to this equation is alittle more subtle to understand intuitively: if a
not quite upright pendulum is given just the right initial velocity it
will slowly approach becoming just upright with an exponentially
decaying displacement. This decaying solution is not easy to see
experimentally because without the perfect initial condition the ex-
ponentially growing part of the solution eventually dominates and
the pendulum accelerates away from being just upright.

hy u
C,.
_1C4
1

harmonic oscillator

h) ODE:ii=-A%u or i+A%2u=0

= Soln: u=Cysin(a t) + C,cos(A t).
Thisequation describesamassthat isrestrained by aspringwhichis
relaxed whenthemassisat u = 0. When u ispositive, U isnegative.
That is, if the particleis on the right side of the origin it accelerates
to the left. Similarly, if the particle is on the left it accelerates to
theright. In the middle, where u = 0, it has no acceleration, so it
neither speeds up nor slows down in its motion whether it ismoving
to the left or the right. So the particle goes back and forth: its po-
sition oscillates. A function that correctly describes this oscillation
isu = sin(At), that is, sinusoidal oscillations. The oscillations are
faster if A isbigger. Another solutionisu = cos(At). The general
solutionisu = Cysin(at) + Cocos(At). A plot of this function
reveals a sine wave shape for any value of C1 or Cp, athough the
phase depends on the relative values of C1 and C,. The equation
U = —A2u or U + A2u = Oiscalled the ‘ harmonic oscillator’ equa-
tion and isimportant in aimost all branches of science. The solution
may be found by guessing or other means (which are usually guess-
ing in disguise).

i) Thereare afew other not-too-hard ODESs besides those listed
in the box. For example, the general second order, constant coeffi-
cient ODE with sinusoidal forcing: Al + Bu + Cu = F sin(Dt).
But the solution is alittle more complicated and not quite so easily
verified. Sowesaveit for chapter 10 on vibrations. Most engineers,
when confronted with an equation not on this list, will resort to a
numerical computer solution.
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SAMPLE 5.1 Timederivatives: Theposition of aparticlevarieswithtimeas r (t) =
(C1t + Cot?)i, where C; = 4m/sand C, = 2m/s2.
(a) Find the velocity and acceleration of the particle as functions of time.
(b) Sketch the position, velocity, and acceleration of the particle against time from
t=0tot =5s
(c) Find the position, velocity, and acceleration of the particleat t = 2s.

Solution

(@) We are given the position of the particle as afunction of time. We need to find
the velocity (time derivative of position) and the acceleration (time derivative

of velocity).
F = (Cit+ Cot?i = (dm/st +2m/St?)i (5.6)
. dr _d -
v = H = a(Clt + CZt )l
= (C14Cat)i = @m/s+2m/S t)i (5.7)
. dv_d .
a = a = a(Cl + Czt)l
= Co = (2m/)i (5.8)

5 = @dm/s+ 2/ 0i, @ = 2m/Di.

Thus, we find that the velocity is alinear function of time and the acceleration
istime-independent (a constant).

r(t)=(4 m/s) t+ (2 m/sd) £ v =4(m/s) +2(2m/s’) t a(t)=2(2 m/s)

_ Displacement r (m)_
Velocity v (m/s)

Acceleration a (m/s’)

S I e ER e
Time ¢ (sec) Time 7 (sec) Time 7 (sec)

Figure5.4:  (ricname:sties 1.vrapior)

(b) We plot egns. (5.6,5.7, and 5.8) against time by taking 100 points between
t =0andt = 5s, and evaluating 7, v and a at those points. The plots are
shown below.

(c) We can find the position, velocity, and acceleration at t = 2s by evaluating
their expressions at the given time instant:

Ft=29) =[(4m/s) - (25 + (2m/) - (29)?)i
= (16m)i

v(t =29 =[(4m/9) 4+ (2m/) - (29)]i

= (8m/9)i

att=2s) =@2m/Hi=a(alt

Att =2s 7= (16m)i, v = (8m/9)i, @ = (2m/S)i.




5.1. Force and motionin 1D

SAMPLE 5.2 Mathreview: Solving simple differential equations. For the following
differential equations, find the solution for the given initial conditions.

@ 4 =a, v(t = 0) = vo, wherea isaconstant.
(b) 9% —a, x(t =0) = xo, X(t = 0) = %o, where a isa constant.

o=
Solution
@
dv
— = a dv = adt
at = v
or /dv = /adt:a/dt
or v = at+C, whereCisaconstant of integration

Now, substituting the initial condition into the solution, v(t = 0) = vg =
a-0+C = C =ug. Therefore,

v = at + vg.

Alternatively, we can use definite integrals:
v t
/ dv:/ adt = wv—y=at = v=1vg+at.
vo 0

(b) Thisisasecond order differential equation in x. We can solve this equation by
first writing it as afirst order differential equation in v = dx/dt, solving for v
by integration, and then solving again for x in the same manner.

d?x dv
W - a or pri a
or [dv = [adt
= v=Xx = at+C; (5.9)
but,vz(;—)t(, = /dx = /atdt+/C1dt
or X = %at2 + Cat + Co, (5.10)

where C1 and C, are constants of integration. Substituting theinitial condition
for x in Egn. (5.9), we get

Xt=0=%=a-0+C; = Ci=Xop.
Similarly, substituting the initial condition for x in Egn. (5.10), we get
1 ;
Xt =0 =x= 5a~0+x0~0—|—C2 = Co=Xo.

Therefore, L
X(t) = Xo + Xot + Eat2.

X(t) = Xo + Xot + 3at?
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~[2m| 15m |

Figure 5.5: (iensme:stiss1.newn)

CHAPTERS. Dynamics of particles

SAMPLE 5.3 Constant speed motion: A ship cruisesat aconstant speed of 15 knots
per hour due Northeast. It passes a lighthouse at 8:30 am. The next lighthouse is
approximately 35 knots straight ahead. At what time does the ship pass the next
lighthouse?

Solution Weare given the distance s and the speed of travel v. We need to find how
long it takes to travel the given distance.

s = vt
S 35 knots

v 15 knots'hour
Now, thetime at t = 0 is 8:30 am. Therefore, the time after 2.33 hrs (2 hours 20

minutes) will be 10:50 am.
10: 50 am

= t = = 2.33 hrs.

SAMPLE 5.4 Constant velocity motion: A particle travels with constant velocity
v = 5m/si. Theinitia position of the particle is ro = 2mi + 3mj. Find the
position of the particleat t = 3s.

Solution Here, we are given the velocity, i.e., the time derivative of position:

d7
d—: = vol, where vg = 5m/s.

Weneedtofind ratt = 3s,giventhat r att = 0is ro.

v

dr = woidt

0] t t

= /A dr = / vordt = Uoi/ dt
r 0 0
rit) —ro = pit
rt) = Fo+ votl
r(3s) = (2mi+3my)+ (5m/s)- (39)i
17mi + 3myj.

r=17mi +3mj
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SAMPLE 5.5 Constant acceleration: A 0.5kg mass starts from rest and attains a
speed of 20m/s in 4s. Assuming that the mass accelerates at a constant rate, find
the force acting on the mass.

Solution Here, we are given the initial velocity v(0) = 0 and the final velocity o
aftert = 4s. Wehaveto find theforce acting on the mass. The net force on aparticle
isgivenby F = ma. Thus, weneed to find the acceleration @ of the massto calculate
the force acting on it. Now, the velocity of a particle under constant acceleration is
given by

v(t) = vo + at

. Therefore, we can find the acceleration a as

_ v(t) — v(0)
N
_ 20m/si—0
o 4s
= 5m/s%i.

Theforce on the particleis

F =ma = (0.5kg) - (5m/s%) = 2.5Ni.

SAMPLE 5.6 Timeof travel for a given distance: A ball of mass 200 gm falsfreely
under gravity from aheight of 50 m. Find the time taken to fall through a distance of
30m, given that the acceleration due to gravity g = 10m/s?.

Solution The entire motion is in one dimension — the vertical direction. We
can, therefore, use scalar equations for distance, velocity, and acceleration. Let y
denote the distance travelled by the ball. Let us measure y verticaly downwards,
starting from the height at which the ball starts falling (see Fig. 5.6). Under constant
acceleration g, we can write the distance travelled as

1 2
y(t) = Yo + vot + Egt .

Notethatatt = 0, yo = 0 and vg = 0. We are given that at some instant t (that we
need to find) y = 30m. Thus,

12
= gt
y 29

2y  [2x30m
= [Z= |22 = —24
t g 10m/s? oS

y (t=0) <t

9] 30m

yo &+

Figure 5.6: (riename:stiss. 2 news)
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Nonlinear Oscillator

80 100 120 140 160 180 200

Figure 5.7: Numerical solution of the
nonlinear ODE X +cx2 +kx3 = Owithini-
tial conditions x(0) = 0 and x(0) = 0.1.

(Filename:sfig5.1.nonlin)

008 Linear Oscillator 4

180 200

o 20 20 60 8 100 120 140 160

Figure5.8: Numerical solution of thelin-
ear ODE X +cx2 + kx = Owithinitial con-
ditions x(0) = 0 and x(0) = 0.1.

(Filename:sfig5.1.lin)
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SAMPLE 5.7 Numerical integration of ODE’s:

(@) Writethe second order linear nonhomogeneous differential equation, X 4+ cX +
kx = apsinwt, asaset of first order equations that can be used for numerical
integration.

(b) Writethe second order nonlinear homogeneous differential equation, %4 cx?+
kx3 = 0, as a set of first order equations that can be used for numerical
integration.

(c) Solvethe nonlinear equation given in (b) by numerical integration taking ¢ =
0.05, k =1, x(0) = 0, and x(0) = 0.1. Compare this solution with that of
the linear equation in () by setting ag = 0 and taking other values to be the
same asfor (b).

Solution

@

If welet X =Y,
then y = X=-cX—kx+asnhwt
—cy — kx + agsinwt

S F B Y [ B (NS

Equation (5.11) iswritten in matrix form to show that it is a set of linear first-
order ODE’s. In this case linearity means that the dependent variables only
appear linearly, not as powers etc.

(b)

(5.11)

If X =y
then y = Xx=cx—kx®=—cy—kx®

> H} B {—cyy—k3}'

Equation (5.12) is a set of nonlinear first order ODE’s. It cannot be arranged
as Egn. 5.11 because of the nonlinearity in x and x. It is, however, in an
appropriate form for numerical integration.

(c) Now we solvethe set of first order equations obtained in (b) using a numerical
ODE solver with the following pseudocode.

(5.12)

ODEs = {xdot =y, ydot =-cvy - k x"3}
IC = {x(0) =0, y(0) = 0.1}
Set k=1, ¢=0.05

Solve CDEs with I C for
Pl ot x(t) and y(t)

The plot obtained from numerical integration using a Runge-Kutta based in-
tegrator is shown in Fig. 5.7. A similar program used for the equation in (a)
withag = 0 givesthe plot shownin Fig. 5.8. Thetwo plots show how asimple
nonlinearity changes the response drastically.

t=0 to t=200
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5.2 Energy methodsin 1D

Energy is an important concept in science and is even a kind of currency in human
trade. But for us now, an energy equations is primarily a short-cut for solving some
mechanics problems.

The work-energy equation

On the inside cover the third basic law of mechanics is energy balance. Energy
balance takes a number of different forms, depending on context. The kinetic energy
of aparticleisdefined as
1
Ex = Emtotvz.
The power balance equation is thus, in rate form,

d /1 ,
P=—|2
dt (2mv )
where P = Fu isthe power of the applied force F. Integrating in time we get, using
that v = dx/dt,

LRt = [ (mda
o [Fdx = A(m?). (5.19
= W = AEk

Theintegr W = [ Fdx is caled the work. The derivations above, from the
general eguationsto the particle equations, are the opposite of historical. AsBox 5.1
on page 225 shows, in this case the work-energy eguation can be derived from the
momentum-balance equation. In fact it isthis one-dimensiona mechanical case that
first led to the discovery of energy asaconcept. But now that we know that F = ma
implies that work is change in kinetic energy, we can use the result without deriving
it every time.

Conservation of energy

One of the most useful intuitive concepts for simple mechanics problemsis conserva-
tion of energy. So far we know that the work of aforce on aparticle givesits change
of energy (egn. 5.13). But some forces come from a source that has associated with
it apotentia energy. If, for example, the force to the right on a particleis afunction
of x (and not, say, of X) then we have aforcefield. In one dimension we can define a
new function of x that we will call Ep(x) asthe integral of the force with respect to
X:

X
Ep(X) = — /o F(x)dx' = —(Work done by the force in moving from 0 to x.)

(5.14)
Note a so, by the fundamental theorem of calculus, that given Ep(x) wecanfind F (x)

as
dEp(X)

dx

Now let’s consider the work done by the force on the particle when the particle moves
from point X1 to xo. Itis

F(x)=—

Work done by force from x; to x = —(Epo — Ep1) = —AEp.
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That is, the decrease in Ep is the amount of work that the force does. Or, in other
words, Ep represents a potential to do work. Because work causes an increase in
kinetic energy, Ep is called the potential energy of the force field. Now we can
compare this result with the work-energy equation 5.13 to find that

—AEp=AEk = 0=A(Ep+ Ek).
—_——
Er

The total energy Et doesn’t change (AEt = 0) and thus is a constant. In other
words,

asaparticle movesinthe presence of aforcefield with apotential energy,
the total energy Et = Ex + Ep is constant.

Thisfact goes by the name of conservation of energy.

Example: Falling ball

Consider the ball in the free body diagram 5.9. If we define gravitational
potential energy as minusthework gravity doeson aball whileitislifted
from the ground, then

h mg y /
j Ep= —/0 (—mg) dy’ = mgy = mgh.
i For vertical motion
Figure5.9: Freebody diagram of afalling K=5 y-.
ball, assuming gravity istheonly significant . .
external force acting on the ball. So conservation of energy saysthat in free fal:

(Filename:tfigurel.falling.ball)

Constant = Ep + Ex = mgy + my?

which you can also derive directly from my = —mg. Alternatively, we
could start with conservation of energy and differentiate to get

Et = congtant = 0 = %ET

ai (Ep+ E7)
= §(mgy +my?/2)
= (mgy + myy)

= my = -—-mg

where we had to assume (and thisisjust atechnical point) that y # Oin
one of the cancellations. Thus, for this problem, energy balance can be
used to derive linear-momentum balance.

We could also start with the power-bal ance equation,

power of gravity force rate of change in particle's kinetic energy

d
P = E(EK)
_ d
F.7 = —(E
v dt( K)

(—mgj) - (Vj) = d[lmz]
—mgy)-(yj) = aév
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—mgy =

my = —mg,
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and again get the sameresult. Thus, for onedimensiona particle maotion,
momentum balance, power balance, and energy balance can each be

derived from either of the others.

|

5.3 THEORY
Derivation of the work energy equation

Because F = ma, all our kinematics calculations above turn into
dynamics cal culations by making the substitution F/m every place
that a appears. Equation 5.5, for example, becomes

2 X
WX)? = (v(x)? + = / F(x*) dx*.

X0
In box 5.1 on page 225 we found that
1 1 X
“v2 = —vg = a(x*)dx*.
2 2 .
0

If we multiply both sides of all equationsin the above derivation by
m and substitute F for ma the derivation above shows that

« ma(x*)
1 1 [t
Zm? — —mvg = F(x*) dx*
2 2 0
—_—
— ———
AEk

work done by aforce

For straight-line motion with a force in only one direction on a
particle, we have no heat flow, dissipation, or internal energy to fuss
over so that the energy equation (111) from the inside front cover has
been derived.

Alternatively, if you can remember the work-energy equation
(‘The positive work of a force on a particle is the positive change
in kinetic energy’), you can use it to recall the related kinematics
equation. For example, if F and a are constant, and x is the total
displacement,

FAx, and

1
A(Emvz)

1,
= AGY) = aax.
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SAMPLE 5.8 How much time doesit take for acar of mass 800 kg to go from 0 mph
to 60 mph, if we assume that the engine delivers aconstant power P of 40 horsepower
during this period. (1 horsepower = 745.7 W)

Solution

At =

dw

P = W=_"—
dw = Pdt
t1
Wp = / Pdt = P(t1 — tg) = PAt
t

dt

0

Wi,
Ve

Now, from Il1ain the inside front cover,

Wiz

Therefore,

(Exk)2 — (Ex)1

%m(v% — vf)

800 kg[ (60 mph)2 — O]
2

mi 1.61x 103m

1
=, k —.
2 800kg <60 hr Imi

288.01 x 10° kg- m- m/s?
288 KJoule.

288 x 103J
At =

= 20x7a57w ~ %S

1lhr 2
3600s

Thus it takes about 10 s to accelerate from a standstill to 60 mph.

Note 1: Thismodel givesaroughly realistic answer but it is not arealistic model,
at least at the start, at timetg. Inthemodel here, the accelerationisinfinite
at the start (the power jumps from zero to afinite value at the start, when
the velocity is zero), something the finite-friction tires would not allow.

Note 2: We have been alittle sloppy in quoting the energy equation. Since there
are no external forces doing work on the car, somewhat more properly we
should perhaps have written

0= Ex + Eint + Ep

and set —(Ejny + Ep) = ‘the engine power’ where the engine power is
from the decrease in gasoline potential energy (—Ep is positive) lessthe
increasein ‘heat’ (Ejn;) from engine inefficiencies.
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SAMPLE 5.9 Energy of a mass-spring system. A mass m = 2Kkg is attached to
a spring with spring constant k = 2kN/ m. The relaxed (unstretched) length of the
spring is £ = 40cm. The mass is pulled up and released from rest at position A 1| A
shown in Fig. 5.10. The massfalls by adistance h = 10 cm before reaching position

B, which isthe relaxed position of the spring. Find the speed at point B.

f
h
B |
( %
Solution Thetotal energy of themass-spring system at any instant or position consists T

of the energy stored in the spring and the sum of potential and kinetic energies of the

mass. For potential energy of the mass, we need to select adatum where the potential

energy is zero. We can select any horizontal plane to be the datum. Let the ground Figure 5.10; emamesiszon
support level of the spring be the datum. Then, at position A,

1 1
Energy inthespring = E|< (stretch)? = EkhZ
1 2
Energy of themass = Ek + Ep=_-m vy +mg( + h) = mg(¢ + h).
2 \f-/

0

Therefore, the total energy at position A
1.2

Let the speed of the mass at position B be vg. When the massis at B, the spring is
relaxed, i.e., thereis no stretch in the spring. Therefore, at position B,

1
Energy inthespring = Sk (stretch)? =
1 -
Energy of themass = Ex + Ep= EmvB + mg¢,

and the total energy

1 2
EB = émUB + mgﬁ

Because the net change in the total energy of the system from position A to position
Bis

0 = AE
1
= EA—EE;——kh2+mg(€+h)——mvB mg¢
= E(khz—mvB)+mgh
= v = kh%m+2gh
1/2
=~  |vg| = (khz/m+29h)

12
- ((2000 N/m- (0.1m)%/2kg) + 2 - 9.81m/s2 - o.1m)
= 3.46m/s.

‘|UB| = 3.46m/s ]
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SAMPLE 5.10 Which is the best bicycle helmet? Assume a bicyclist moves with
speed 25 mph when her head hits a brick wall. Assume her head is rigid and that
it has constant deceleration as it travels through the 2 inches of the bicycle helmet.
What is the deceleration? What force is required? (Neglect force from the neck on
the head.)

Q
N
v=0
| . g
d=2in « d
}—,

Figure 5.11:  (ricname:stigs..ouchie)

Solution 1 — Kinematics method 1: We are given the initial speed of Vp, a final
speed of 0, and a constant acceleration a (which is negative) over a given distance of
travel d. If we call t¢ the time when the helmet is fully crushed,

te
v(t) = g +/ a(t"dt’
0
= v “+ atc
O = U(tc) = Vo =+ atc = tc = —vo/a (515)
tc
Xt) = Xo +/ v(t)Hdt’
0

tc
= 0+ (vo + at)dt
0

d=x(tt) = O+ votc+at?/2
_ —v0 v0\2 _ —_vg .
d = ”0<?>+a<3) /2 = d= 2 (using (5.15))
2
]
= 2= 9
_ —(25mph)?
T 2.(2in)

=282 mi2 (5280ft\* ( 1hr \? (12in 1g
4 h?.in mi 3600 ft 32.2ft/2

—_— —
1 1 1 1

—25 52802 1

— 2227 1o
2 36002 3229

a = —125¢g

To stop from 25mph in 2 inches requires an acceleration that is 125 times that of
gravity.
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Solution 2 —Kinematics method 2:

% = a = dv=adt
= vdv = avdt = vdv= a((jj—i(dt
= wvdv = adx
= /vdv = /adx
= Av—z = ax (since a = constant)
= 0-— v—g = ad = a= _—US (as before)
2 2d

Solution 3 — Quote formulas.

v = Vad
2

:>a—v
T2

Solution 4 — Work-Energy:
Constant acceleration =

whichisright if you know how to interpret it!

constant force

Workin = AEk
2
my
“Fd = o0-%
2
Fo_ Mg
2d
But F=ma = -—-Fi=-mai
~F
= a=—
m
—v(z)
Soa = — ain
>d (again)
Assuming a head mass of 8lbm, the force on the head during impact is
2
IF| = 0 = ma = 8lbm-125g
[[F| = 1000Ibf |

During a collision in which an 8Ibm head decelerates from 25mph to 0 in 2
inches, the force applied to the head is 1000 | bf.

Note 1: The way to minimize the peak acceleration when stopping from a given
speed over a given distance is to have constant acceleration. The ‘best’
possible helmet, the onewe assumed, causes constant deceleration. There
isno helmet of any possible material with 2in thickness that could make
the deceleration for this collision less than 125g or the peak force less
than 1000 I bf.

Note 2: Collisionswith head decel erationsof 250g or greater are oftenfatal. Even
1259 usually causes brain injury. So, the best possible helmet does not
insure against injury for fast riders hitting solid objects.

Note 3: Epidemiological evidence suggests that, on average, chances of serious
brain injury are decreased by about afactor of 5 by wearing a helmet.
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Figure 5.12: F istheforce of the helmet
on the moving head.

(Filename:sfig3.2.ouchie.fbd)

more redistic
F helmet model
IF| e

the helmet
we assumed

./

0] d

Figure 5.13: (siename:stiss.2.onchic.araph)
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Figure 5.14: A spring mass system.

(Filename:tfigure3.MS)
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5.3 Theharmonic oscillator

Most engineering materials are nearly elastic under working conditions. And, of
course, all real things have mass. These ingredients, elasticity and mass, are what
make vibration possible. Even structureswhich arefairly rigid will vibrate if encour-
aged to do so by the shaking of a rotating motor, the rough rolling of atruck, or the
ground motion of an earthquake. The vibrations of amoving structure can also excite
oscillations in flowing air which can in turn excite the structure further. This mutual
excitement of fluidsand solidsisthe cause of thevibrationsin aclarinet reed, and may
have been the source of the wild oscillations in the famous collapse of the Tacoma
Narrows bridge. Mechanical vibrations are not only the source of most music but
also of most annoying sounds. They are the main function of a vibrating massager,
and the main defect of asqueaking hinge. Mechanical vibrationsin pendulaor quartz
crystalsare used to measuretime. Vibrations can causeamachineto go out of control,
or a buildings to collapse. So the study of vibrations, for better or for worse, is not
surprisingly one of the most common applications of dynamics.

When an engineer attempts to understand the oscillatory motion of a machine or
structure, she undertakes a vibration analysis. A vibration analysisis a study of the
motions that are associated with vibrations. Study of motion is what dynamicsis all
about, so vibration analysisisjust apart of dynamics.

A vibration analysis could mean the making of adynamical model of the structure
oneis studying, writing equations of motion using the momentum balance or energy
equations and then looking at the solution of these equations. But, in practice, the
motions associ ated with vibrations have features which are common to awide class of
structures and machines. For thisreason, aspecial vocabulary and special methods of
approach have been developed for vibration analysis. For example, one can usefully
discuss resonance, normal modes, and frequency response, concepts which we will
soon discuss, without ever writing down any equations of motion. We will first
approach these concepts within the framework of the differential equations of motion
andtheir solutions. But after the concepts have been learned, we can use them without
necessarily referring directly to the governing differential equations.

The unforced oscillations of a spring and mass is the basic model for all
vibrating systems.

So it isworth knowing well.

We start with a free body diagram of a mass which is cut from a spring in an
extended state, as shown in figure 5.14. The mass slides on a frictionless surface.
The spring is relaxed at x = 0. The spring is thus stretched from £g to o + A¢, a
stretch of A¢ = x. Thefree body diagram at the bottom shows the force on the mass.
Gravity is neglected.

Linear momentum balance in the x direction ({3_ F = i} - 1) gives:

ZFX = I;x
—kx

= mX.

Rearranging this equation we get one of the most famous and useful differential
equations of al time:
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k
X+ —x=0. (5.16)
m

This equation appears in many contexts both in and out of dynamics. In non-
mechanical contexts the variable x and the parameter combination k/m are replaced
by other physical quantities. In an electrical circuit, for example, X might represent a
voltage and the term corresponding to k/ m might be 1/L C, where C isa capacitance
and L an inductance. But even in dynamics the equation appears with other physical
guantities besides k/m multiplying the x, and x itself could represent rotation, say,
instead of displacement. In order to avoid being specific about the physical system
being modeled, the harmonic oscillator equation is often written as

X + A2x = 0. (5.17)

The constant in front of the x is called A2 instead of just, say, 2 (‘ Iambda’)@, for two
reasons:

(@) This convention shows that A2 is positive,
(b) Inthe solution we need the square root of this coefficient, so it is convenient to

have vA2 = .

For the spring-block system, 22 is k/m and in other problems 12 is some other
combination of physical quantities.

Solution of the harmonic oscillator differential equation

Finding solutions to the harmonic oscillator differential equation 5.17 from first prin-
ciplesis atopic for a math class. Here we content ourselves with remembering its
general solution, namely

X(t) =
or x(t) =

A cos(A t)
Cpcos(At)

+ B sn@At),

+ Cosin(rt). (5.18)

This sum of sine waves@is a solution of differential equation 5.17 for any values of
the constants A (or C1) and B (or Cy).

What does it meansto say “u = Cysin(A t) + Cycos(A t) solves the equation:
i = —A2u?’ Thesolutionisafunction that has the property that its second derivative
is the same as minus the original function multiplied by the constant 2. That is, the
function u(t) = Cysin(x t) + C,cos(a t) hasthe property that its second derivative
is the original function multiplied by —12. You need not take this property on faith.
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@ caution: Most booksuse p2 or w? inthe
place we have put 22, Using o (‘omega’)
can lead to confusion because we will later
use o for angular velocity. If oneis study-
ing vibrations of arotating shaft then there
would betwo very different ’sin the prob-
lem. One, the coefficient of a differential
equation and, the other, the angular veloc-
ity. To add to the confusion, this coinci-
dence of notation is not accidental. Simple
harmonic oscillations and circular motion
have a deep connection. Despite this deep
connection, the w in the differential equa-
tion is not the same thing as the w describ-
ing angular motion of aphysical object. We
avoid this confusion by using A instead of
. Note that this A is unrelated to the unit
vector A that we use in some problems.

@ A cosine function is also a sine wave.
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Figure 5.15: Position versus time for
an undamped, unforced har monic oscil-

lator. x is the position of the mass, t is
time.
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To check if afunction isasolution, plug it into the differential equation and seeif an
identity is obtained.

Isthisequality correct for the
proposed u(t)?

d2

2
a2 —u

u =
d2

iz [C18inG 1) + Co o0 1] 2 _22[Cysn(r t) + Cpoos(i 1]

u(t) u(t)

(%[Cl sin(x t) + Czcos(x t)]) 2

d

0t —A?[C1sin(A t) + Cycos(it)]

—A?[C1sin(A t) + Cacos(i t)]

-0

%[Clk cos(A t) — Corsin(a t)]

—CiA2sin(i) — CoaZcos(h ) L —22[Cysin(At) + Cpcos(i t)]

u u(t)
Theequation i = —A2u does
hold with the given u(t)

This calculation verifies that, no matter what the constants C; and Cy, the proposed
solution satisfies the given differential equation.

Although we have checked the solution, we have not proved its uniqueness. That
is, there might be other solutionsto the differential equation. Therearenot. Weleave
discussion of uniqueness to your math classes.

I nter preting the solution of the harmonic oscillator equation

The solution above means that if we built a system like that shown in figure 5.14
and watched how the mass moved, it would move (approximately) so that x(t) =
Acos() t) + Bsin(a t), as shown in the graph in figure 5.15.

Thisback and forth motioniscalled vibration. One might think that vibrationsare
fast oscillations. But in mechanics anything that oscillates avibration. For example,
the slow rocking of a ship might be called a vibration.

Angular frequency, period, and frequency

Three related measures of the rate of oscillation are angular frequency, period, and
frequency. Thesimplest of theseisangular frequency A = /(k/m), sometimescalled
circular frequency. The period T isthe amount of time that it takes to complete one
oscillation. One oscillation of both the sine function and the cosine function occurs
when the argument of the function advances by 27, that iswhen

2T 2
AT = 27, o) T=—-= ,
A v/ (k/m)

formulas often memorized in elementary physics courses. The natural frequency f
isthe reciprocal of the period

A Jk/m)

1
T 21 21
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Typically, natural frequency f is measured in cycles per second or Hertz and the an-
gular frequency A in radians per second. Mechanical vibrations can have frequencies
from millions of cycles per second, for the vibrations of a microscopic quartz timing
crystal, to thousandths of a cycle per second (i.e. thousands of seconds per cycle),
say, for the free vibrations of the whole earth.

The amplitude of the sine wave that results from the addition of the sine function
and the cosine function is given by the square root of the sum of the squares of thetwo
amplitudes. That is, the amplitude of the resulting sine wave is +/ A2 + B2. Another
way of describing this sum is through the trigonometric identity:

Acos(At) + Bsin(At) = Rcos(A t — ¢), (5.19

where R=+/A? + B2andtang = B/A. So,

the only possible motion of aspring and massisasinusoidal oscillation which
can be thought of either as the sum of a cosine function and a sine function
or as asingle cosine function with phase shift ¢.

What arethe constants A and B in the solution?

The general motion of the harmonic oscillator, equation 5.18, has the constants A
and B which could have any value. Or, equivalently, the amplitude R and phase
¢ in equation 5.19 could be anything. They are determined by the way motion is
started, the initial conditions. Two specia initial conditions are worth getting a feel
for: release from rest and initial velocity with no spring stretch.
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5.4 THEORY

Hereisademonstration that the sum of acosinefunction and asine
functionisanew sinewave. By sinewavewemean afunctionwhose

Visualization of Acos(At) + Bsin(At) = Rcos(At — ¢)

A cos(\t) | B sin(At)

shape is the same as the sine function, though it may be displaced
along the time axis. First, consider the line segment A spinning
in circles about the origin at rate A; that is, the angle the segment
makes with the positive x axisis At. The projection of that segment
onto the x axisis Acos(it). Now consider the segment labeled B
inthefigure, glued at aright angleto A. Thelength of its projection
on the x-axisis B sin(it). So, the sum of these two projections is A
Acos(Ait) + Bsin(at). Thetwo segments A and B make up aright

triangle with diagonal R = \/ A2 + B2, At

At- ¢

The projection or ‘shadow’ of R on the x axisis the same as
the sum of the shadows of A and B. The angle it makes with
the x axis is At — ¢ where one can see from the triangle drawn
that ¢ = arctan(B/A). So, by adding the shadow lengths, we see

Acos(At) + Bsin(at) = / A2 + B2 cos(At — ¢).

—|/AZ 4 B2 cog[At — ¢] -—
¢ =tan~1(B/A)
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Figure 5.16: The position of a mass as
a function of time if k = 50N/m, m =
0.5kg, x(0) = 1cmand v(0) = 0.

(Filename:tfigurel2.cosine)

Dcaution: It is tempting, but wrong, to
evaluate x(t) att = 0 and then differentiate
to get v(0). This procedure is wrong be-
cause x(0) isjust anumber, differentiating
it would always give zero, even when the
initial velocity is not zero.

Icm

t

(27/10) sec

Slem pooe S

Figure 5.17: The position of a mass as
a function of time if k = 50N/m, m =
0.5kg, x(0) = 0and v(0) = 10 cm/s.

(Filename:tfigurel2.sine)
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Release from rest

The simplest motion to consider is when the spring is stretched a given amount and
the mass is released from rest, meaning the initial velocity of the massis zero. For
example, if the massin figure 5.14 is 0.5 kg, the spring constant isk = 50N/m, and
theinitial displacement is 2 cm, we find the motion by looking at the general solution

X(t) = Acos(y/(k/m)t) + Bsin(y/(k/m) t).

Att = 0, thisgeneral solution hasto agreewith theinitial condition that the displace-
ment is1cm, so

X(0) = Acos(0) +Bsin(0) = A = A=2cm.
~—— ~——
1 0

The initial velocity must also match, so first we find the velocity by differentiating
the position to get

v(t) = X(t) = —Ay/(k/m) sin(y/(k/m) t) + By/(k/m) cos(y/(k/m) t).

Now, we evaluate thisexpression at t = 0 and set it equal to the given initial velocity
which in this case was zero: @

v(0) = — A/ (k/m)sin(0) +B/(k/m) cos(0) = B,/(k/m) = B =0.
T ;\]T_/

Substituting in the valuesfor k = 5N/m and m = 0.5kg, we get

X(t) = 2cos ( 0.5kg

50N/m

0.01s1

)t cm = 2cos(0.1t/ s) cm

which is plotted in figure 5.16.

Initial velocity with no spring stretch

Another simple case is when the spring has no initial stretch but the mass has some
initial velocity. Such might be the case just after a resting massis hit by a hammer.
Using the same 0.5kg mass and k = 50N/m spring, we now consider an initial
displacement of zero but an initial velocity of 10cm/s. We can find the motion for
this case from the general solution by the same procedure we just used. We get

X(t) = Bsin(y/(k/m) t)

with B,/(k/m) = 10cm/s = B = 1cm. The resulting motion, x(t) =
(Lem) - sin(22, is shown in figure 5.17.

Work, energy, and the harmonic oscillator

Variousenergy conceptsgive another viewpoint for |ooking at the harmonic oscill ator.
We can derive energy balance from momentum balance. Or, if we already trust
energy balance, we can use it instead of momentum balance to derive the governing
differential equation. Energy balance can be used as a check of a solution. Energy
accounting gives an extra intuitive way to think about what happensin an oscillator.
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The work of a spring

Associated with the force of a spring on a mass is a potential energy. Because the
force of aspring on amassis —kx, and the work of aforceonamassis f(;( F(x)dx’
we find the potential for work, measured from the relaxed state x = 0, on the mass
to be

X X 1
Ep = —/ F(x')dx — / —kx' dx’ = Zkx2.
0 0 2

Conservation of energy

Because there is no damping or dissipation, the total mechanical energy of the har-
monic oscillator isconstantintime. That is, thesum of thekineticenergy Ex = %mv2

and the potential energy Ep = 1k(AL)? is constant.
Etr = Ex + Ep = constant.

Asthe oscillation progresses, energy isexchanged back and forth between kinetic and
potential energy. At the extremes in the displacement, the spring is most stretched,
the potential energy is at a maximum, and the kinetic energy is zero. When the mass
passes through the center position the spring is relaxed, so the potential energy is at
aminimum (zero), the massis at its maximum speed, and the kinetic energy reaches
its maximum value.

Although energy conservation is a basic principle, thisis a case where it can be
derived, or more easily, checked. Using the special case where the motion startsfrom
rest (i.e., x(t) = Acos(y/k/mt)), we can make sure that the total energy really is
constant.

Er = Ex+Ep

1 1
:_kZ _m2
2X+2v

= }k(Acos(,/k/mt))z + }m(A,/k/msin(,/k/mt))z
2 VTS
X v

- %kAz{cosz(,/k/mt)—|—sin2(~/k/mt)}

1

1
= ZKA? =
2

which does not change with time.

initial energy in spring

Using energy to derive the oscillator equation

Rather than just checking the energy balance, we could use the energy balance to
help us find the equations of motion. Asfor al one-degree-of-freedom systems, the
equations of motion can be derived by taking the time derivative of the energy balance
equation. Starting from Et = constant, we get

d

“E
dt '

d
= —(E E
dt( p+ Ex)

0 =

d 1 1
- —(Zk 2 - 2
dt(2 X< 4+ 2mv )
= kx X 4+mv v
—— ~——

v a

245

spring is relaxed
when Pishere at x=0
X

c b,d

a .
o B
oJlp A

Velocity  Position

Acceleration

Energy

T ‘ 't
Ex = kinetic energy
Ep = potential energy
Er =Eroa =Ex + Ep

d
_\
Position
b

Cross plot or phase plane portrait

Figure 5.18: Various plots of the motion
of the harmonic oscillator. Points a,b,c,d
show what is happening at different parts
of the motion. The spring is relaxed at
x = 0. Some things to note are the follow-
ing: The acceleration curveis proportional
to the negative of the displacement curve.
The displacement is at a maximum or min-
imum when the velocity is zero. The ve-
locity is at @ maximum or minimum when
the displacement is zero. The kinetic and
potential energy fluctuate at twice the fre-
quency as the position. The motion is an
elipse in the cross plot of velocity vs. po-
sition.

(Filename:tfigurel2.oscplots)
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Figure 5.19: uenamest.ox2.7.1)

datum: Ep (dueto gravity) = 0

Figure 5.20: Spring and mass with grav-

ity.
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kxy + myf&
p

0 = kx+mX

which is the differential equation for the harmonic oscillator. (A technical defect of
this derivation isthat it does not apply at the instant when v = 0.)

Power balance can a so be used as a starting point to find the harmonic oscillator
equation. Referring to the FBD in figure 5.14, the equation of energy balance for the
block during its motion after releaseis:

P = Ex
—~— ——

/ \

Power in | Rate of change of internal en-
ergy
_ ~ d L
Fspring - va = a(éva'UA)
d 1
—KkXal - Xpl = E(mei)
—kXAXA = mxaXa

Dividing both sides by xa (assuming it is not zero), we again get
—kxa = mXa or mXa + kxa =0,
the familiar equation of motion for a spring-mass system.

We can now talk through a cycle of oscillation in terms of work and energy. Let's
assume the block isreleased fromrest at X = xp > 0.

After the massisreleased, the mass beginsto moveto the left and the spring does
positive work on the mass since the motion and the force are in the same direction.
After the block passes through the rest point x = O, it does work on the spring until
it comes to rest at its left extreme. The spring then commences to do work on the
block again asthe block gains kinetic energy in itsrightward motion. The block then
passes through the rest position and does work on the spring until its kinetic energy
isall used up and it isback in itsrest position.

A spring-mass system with gravity

When amassis attached to a spring but gravity also acts one has to take some care to
get things right (see fig. 5.20). Once a good free body diagram is drawn using well
defined coordinates, al else follows easily.
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SAMPLE 5.11 Math review: Solution of a second order ODE: Solve the equation:
X +k®x = 0, withinitial conditions X(0) = Xg, X(0) = up. (5.20)
Solution Let us guess a solution. We need a function x(t) whose second derivative

is equal to —k? times the function itself. We know at least two such functions: sine
and cosine. To check, let

X(t) = sinkt
= X = —k%sinkt=—k?x.
Similarly, let
X(t) = coskt
= X = —k®coskt = —k?x.

Thus both functions satisfy the equation. Because Eqgn. (5.20) isalinear differential
equation, alinear combination of the two solutionswill also satisfy it. Therefore, let

x(t) = Asinkt + B coskt. (5.21)
Substituting in Egn. (5.20), we get
% + k®x = —Ak?sinkt — Bk? coskt + k?(Asinkt + B coskt) = 0,

which shows that the solution in Eqgn. (5.21) satisfies the given differential equation.
Now we evaluate the two constants A and B using the given initial conditions.

= B = X
X(0) =up = (Akcoskt — Bksinkt)|i=o
= Ak-1-Bk-0
Uo
A = —.
= k

Therefore, the solution is

Up .
X(t) = rosmkt + Xp coskt.

X(t) = {2 sinkt + xo coskt

Alternatively, you could also guess x(t) = €'t, plug it into the given equation, and
find that you must haver = +ik satisfy the equation. Now take alinear combination
of the two solutions, say x(t) = A€k + Be 'K and find the constants A and B
from the given initial conditions.



5.3. The harmonic oscillator 249

SAMPLES.12 A block of massm = 20 kg isattached to two identical springseach
with spring constant k = 1kN/m. The block slides on a horizontal surface without
any friction. }4‘

(a) Find the equation of motion of the block. k

(b) What isthe oscillation frequency of the block? X

(c) How much time does the block take to go back and forth 10 times?

static equilibrium position

Figure 5.21: rienamesicro1.1.1)

Solution
(& The free body diagram of the block is shown in Figure 5.22. The linear mo-
mentum balance, Y F = ma, for the block gives KX g
—2kxi + (N —mg)j = ma

N ~
Dotting both sides with i we have, !

Figure 5.22: ricaamestigio s

—2kx =may = mX (5.22)
oo mx+2kx = 0 (5.23)
2k
oo X+—x = 0. (5.24)
m
X+ Zx=0

(b) Comparing Egn. (5.24) with the standard harmonic oscillator equation, X +
A2x = 0, where A isthe oscillation frequency, we get

2 2k
s
L= B
m
_ 2-(1kN/m)
N 20kg
= 10rad/s.

A =10rad/s
2 2

(c) Time period of oscillation T = 5 = orads = £ S. Since the time period

represents the time the mass takes to go back and forth just once, the time it
takesto go back and forth 10 times (i.e., to complete 10 cycles of motion) is

t = 10T :lO-%S:ZnS.
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o . SAMPLE 5.13 A spring-mass system executes simple harmonic motion: X(t) =
qugbnum position Acos(At — ¢). The system starts with initial conditions x(0) = 25mm and x(0) =
160 mm/ s and oscillates at the rate of 2 cycles/sec.
(@) Find thetime period of oscillation and the oscillation frequency A.
(b) Find the amplitude of oscillation A and the phase angle ¢.
(c) Find the displacement, velocity, and acceleration of themassatt = 1.5s.
Figure 5.23: rucnamesnerors) (d) Find the maximum speed and acceleration of the system.

(e) Draw an accurate plot of displacement vs. time of the system and label all
relevant quantities. What does ¢ signify in this plot?

Solution

(@) Wearegiven f = 2 Hz. Therefore, the time period of oscillation is

1 1
Z?:Z—HZIOSS,

and the oscillation frequency A = 27 f = 4z rad/s.
| T=05s x=4rrad/s |

(b) Thedisplacement x(t) of the massis given by
X(t) = Acos(it — ¢).
Therefore the velocity (actually the speed) is
X(t) = —Arsin(At — ¢)

Att = 0, we have

x(0) = Acos(—¢) = Acos¢ (5.25)
X(0) = —Arsin(—¢) = ALsing (5.26)
By squaring Egn (5.25) and adding it to the square of [Eqgn (5.26) divided by
A], we get
AZ)28§n? x2(0
A% cos? ¢ + T¢ AZ — x2(0) + 12)
(160mm/ s)2
— 2
= A= \/ (25mm)< + (47 rad/s)?

= 28.06mm.
Substituting the value of A in Egn (5.25), we get

1 X(0)

A
_ cost 25mm
o 28.06 mm
0.471rad ~ 27°.

¢ = cos”

A=28.06mm. ¢ = 0.471rad.
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(c) Thedisplacement, velocity, and acceleration of the mass at any timet can now
be calculated as follows

X(t) = Acos(At — ¢)
= Xx(1.55) = 28.06 mm-cos(6xr — 0.471)
= 25mm.
Xt) = —Arsin(it —¢)
= X(1.58 = 28.06mm-(4x rad/s)-sin(éxr — 0.471)
= 160mm/s.
() = —ArZcos(it — ¢)
= X158 = 28.06mm-(4x rad/s)2~ cos(6r — 0.471)

—3.95 x 10°mm/ &
= —3.9m/s.

@ @ We can find the displacement and veloc-
- - ity at t = 1.5swithout any differentiation.
X(1.55) = 25mm. X(1.5s) = 160mm/s. %(1.5s) = —3.93m/ . Notethat the system completes 2 cyclesin 1

second, implying that it will complete 3 cy-

(d) Maximum speed: clesin 1.5 seconds. Therefore, att = 1.5,
it has the same displacement and velocity
[Xmax| = Al = (28.06mm)-(4x rad/s) = 0.35m/s. asithadatt = 0Os,

Maximum accel eration:

I%max] = ALZ = (28.06mm)-(4x rad/s)® = 4.43m/<.

| = 0.35M/S,  [Smma| = 443/, |

(e) The plot of x(t) versust isshown in Fig. 5.24. The phase angle ¢ represents
the shift in cos(1t) to the right by an amount 2.

x(t)

(mm), | T=05sec |
30} | \
20t
A
Acosp 15l
0 02 0 06 08 1

t (sec)

-10}+

-20}+

-30L

Figure 5.24;  (ricnamesstigio1.30)



252

k1

ky ;
A m
ko
ko
B
@ (b)
Figure 5.25; (ricname:sties.1.2)

kiy T

T
m|o
L

koy T

Figure 5.26: Free body diagram of the
mass.

(Filename:sfig3.4.2a)
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Figure 5.27: Free body diagrams

(Filename:sfig3.4.2b)
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SAMPLE 5.14 Springsin series versus springsin parallel: Two massless springs
with spring constants k; and ky are attached to mass A in parallel (although they
look superficialy asif they arein series) as shown in Fig. 5.25. Anidentical pair of
springsis attached to mass B in series. Taking ma = mg = m, find and compare the
natural frequencies of the two systems. Ignore gravity.

Solution Let us pull each mass downwards by a small vertical distance y and then
release. Measuring y to be positivedownwards, we can derive the equations of motion
for each mass by writing the Balance of Linear Momentum for each as follows.

e MassA: Thefreebody diagram of mass A isshown in Fig. 5.26. Asthe mass
is displaced downwards by y, spring 1 gets stretched by y whereas spring 2
gets compressed by y. Therefore, the forces applied by the two springs, k1y
andkoy, areinthe samedirection. The LMB of massA inthevertical direction

gives:
Y F = ma
or —kiy—koy = my

ki + k
or y+<—1; 2>y

Let the natural frequency of this system be wp. Comparing with the standard
simple harmonic equation % + A2x = 0 we get the natural frequency (1) of the

system:
ki + ko
wp =,/ - (5.27)
@p =/ e

e MassB: The free body diagram of mass B and the two springs is shown in
Fig. 5.27. Inthis case both springs stretch as the massis displaced downwards.
Let the net stretch in spring 1 be y; and in spring 2 be y». y1 and y» are
unknown, of course, but we know that

0.

Yi+Y2=Y (5.28)
Now, using thefreebody diagram of spring 2 and then writing linear momentum
balance we get,
keyz—kiyr = m, a=0
0
k
Y= v (529)
1

Solving (5.28) and (5.29) we get

ki + ko

Y2 y.

Now, linear momentum balance of mass B in the vertical direction gives:

—koy2 =may = my
Y2
—_—~—
.. 1
or my + k: = 0
y 2k1+k2y
kik
or J+——2 y = 0 (5.30)

m(ki + ko)



5.3. The harmonic oscillator 253

Let the natural frequency of this system be denoted by ws. Then, comparing
with the standard simple harmonic equation asin the previous case, we get

Kiko
_ Kk 31
“s =\ ks + ko) .3

— [_kiko
@Ws = 4/ Mk +k2)

From (5.27) and (5.31)
wp _ kitke
ws  Jkikz

Let ky = ko = k. Then, wp/ws = 2, i.e., the natural frequency of the system
with two identical springs in paralel is twice as much as that of the system
with the same springsin series. Intuitively, the restoring force applied by two
springs in paralel will be more than the force applied by identical springsin
series. In one case the forces add and in the other they don’'t and each spring
is stretched less. Therefore, we do expect mass A to oscillate at a faster rate
(higher natural frequency) than mass B.

Comments:

(a) Although the springs attached to mass A do not visually seem to be in
parallel, from mechanics point of view they are parallel. You can easily
check this result by putting the two springs visualy in parallel and then
deriving the equation of mass A. You will get the same equations. For
springs in parallel, each spring has the same displacement but different
forces. For springs in series, each has different displacements but the
same force.

(b) When many springs are connected to a mass in series or in parallel,
sometimes we talk about their effective spring constant, i.e., the spring
constant of a single imaginary spring which could be used to replace
all the springs attached in parallel or in series. Let the effective spring
constant for springsin parallel and in series be represented by Kpe and kse
respectively. By comparing egns. (5.27) and (5.31) with the expression
for natural frequency of a simple spring mass system, we see that

1 1 1
Kpe = k1 + k d —=—+ —.
pe 1+K an Keo k1+k2

These expressions can be easily extended for any arbitrary number of
springs, say, N springs:
1 1 1 1

kpe=kKi+ko+...+Kk d —=—+—+...+—.
pe 1+Ko+...+Ky an Ko k1+k2+ +kN
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SAMPLE5.15 Figure5.28 shows two responses obtai ned from experiments on two
spring-mass systems. For each system

(i) J” (ii)
X (cm) gz

04 P T=1s

0.2 2 /i 7\
0 0 ‘

0.2

05 1 15 25 3\ 35 5 1 5
04 2 \_/(3)

-06 t(9) (Note change of scale)
-0.8

A

Figure 5.28:  (icnamesssigiora)

(a) Find the natural frequency.
(b) Findtheinitial conditions.

Solution

(8 Natural frequency: By definition, the natural frequency f is the number of
cycles the system completes in one second. From the given responses we see
that:

Case(i): the system completes% acycleinls.
1
f == Hz
- 2

Case(ii): the system completes 1 cycleinls.

It is usually hard to measure the fraction of cycle occurring in ashort time. It
is easier to first find the time period, i.e., the time taken to complete 1 cycle.

D 10 estimate the frequency of some re- @ Then the natural frequency can be found by the formula f = % From the
peated motion in an experiment, it is best given responses, we find the time period by estimating the time between two

to measure the time for a large number of e . : ;
cycles, say 5, 10 or 20, and then divide that successive peaks (or troughs): From Figure 5.28 we find that for

time by the total number of cyclesto get an Case (i):
average value for the time period of oscil-
lation. f=1=i=}Hz
T 2s 2
Case (ii):

1 1
T 1s

case (i) f = 3 Hz. case(ii) f = 1Hz

(b) Initial conditions: Now weareto find the displacement and velocity att = 0s
for each case. Displacement is easy because we are given the displacement
plot, so wejust read the value at t = O from the plots:

Case (i): x(0) =0.
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Case(ii): x(0) =1cm.

The velocity (actually the speed) is the time-derivative of the displacement.
Therefore, we get theinitial velocity from the slope of the displacement curve
at=0.

Case(i): %(0) = ¥t =0 =22 =314cm/s
Case(ii): x(0)= ¥t =0 =M = 1885cm/s.
Thustheinitial conditions are

\ Case(i) x(0) =0, x(0) = 3.14cm/s. Case(ii) x(0) = 1cm, X(0) = 18.85cm/s. \

Comments. Estimating the speed from the initial slope of the displacement
curveat t = 0isnot avery good method because it is hard to draw an accu-
rate tangent to the curve at t = 0. A dlightly different line but still seemingly
tangential to the curve at t = 0 can lead to significant error in the estimated
value. A better method, perhaps, is to use the known values of displacement
at different points and use the energy method to calculate theinitial speed. We
show sample calculations for the first system:

Case(i): We know that x(0) = 0. Therefore the entire energy att = 0
is the kinetic energy = %mvg. Att = 0.5s we note that the displacement
is maximum, i.e., the speed is zero. Therefore, the entire energy is potential
energy = 3kx2, where x = x(t = 0.5s) = 1cm.

Now, from the conservation of energy:

1 1
Emvé Ek(xt:O.Ss)2

k
= v = \/E'(tho.Ss)
k
= ‘/a.(lcm)

~——
A

= 2xf.(lcm)

1
= 2”5 Hz-1cm
= 3.14cm/s.

Similar calculations can be done for the second system.
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_SAMPLE 5.16 Smple harmonic motion of a buoy. A cylinder of cross sectional

_d mass =M area A and mass M isin static equilibrium inside a fluid of specific weight y when

specificwt. =y Lo length of the cylinder is submerged in thefluid. From this position, the cylinder is

_y  pushed down vertically by asmall amount x and let go. Assume that the only forces

acting on the cylinder are gravity and the buoyant force and assume that the buoy’s

motion is purely vertical. Derive the equation of motion of the cylinder using Linear
Lo Momentum Balance. What is the period of oscillation of the cylinder?

Solution The free body diagram of the cylinder is shown in Fig. 5.30 where Fg
—x  represents the buoyant force. Before the cylinder is pushed down by x, the linear
f momentum balance of the cylinder gives

F. re 5.29 Filename:sfig3.4.1 _— = = =
igu ( e3.4.1) Fe—Mg=M a 0 = Fs = Mg
0

Now Fg = (volume of the displaced fluid)- (its specific weight) = ALoy. Thus,
AL,y = Mg. (5.32
Now, when the cylinder is pushed down by an amount X,

Fg = new buoyant force = (Lo + X) Ay.

mg y
1 Therefore, from LMB we get
X F,—Mg = —Mx
or (Lo+Xx)Ay — Mg = —MX
E 1 =0 from (5.32).
B —_—
or MX 4+ Ayx = —AlLoy + Mg
Figure 5.30:  (ruename:stiga.a.10 or M% + Ayx = O
Ay
or X4+—x = 0.
+ M

)’(+%x=0

Comparing this equation with the standard simple harmonic egquation (e.g., eqn.(g),
in the box on ODE’s on page 226).

. A
The circular frequency A = Vy
2 M
Therefore,  the period of oscillation T = Tn =2 '
Y

T=27r\/AEy

Comments. Notethis calculation neglectsthe fluid mechanics. The common way of
making a correction is to use ‘added mass’ to account for fluid that moves more-or-
less with the cylinder. The added mass is usually something like one-half the mass
of the fluid with volume equal to that of the cylinder. Another way to seethe error is
to realize that the pressure used in this calculation assumes fluid statics when in fact
the fluid is moving.
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5.4 Moreon vibrations. damping

The mother of all vibrating machinesisthe simple harmonic oscillator from the previ-
ous section. With varying degrees of approximation, car suspensions, violin strings,
buildings responding to earthquakes, earthquake faults themsel ves, and vibrating ma-
chines are modeled as mass-spring-dashpot systems. Almost al of the conceptsin
vibration theory are based on concepts associated with the behavior of the harmonic
oscillator.  The harmonic oscillator has no friction or inelastic deformation so that
mechanical energy is conserved. Such vibrations will, once started, persist forever
even with no pushing, pumping, or energy supply of any kind. Total lack of fric-
tion does not describe any real system perfectly, but it is a useful approximation if
one is trying to understand the oscillations of a system and not the decay of those
oscillations.

But for any real system the oscillations will decay in time due to friction. We
would now like to study this decay.

Damping
The simplest system to study is the damped harmonic oscillator and the motions that
are of interest are damped oscillations.

Again the smplest model, and also the prototype of al models, is a spring and
mass system. But now we add a component called a damper or dashpot, shown in
figure5.31. The dashpot providesresistanceto motion by drawingair or oil inand out
of thecylinder through asmall opening. Duetotheviscosity of theair or oil, apressure
drop is created across the opening that is related to the speed of the fluid flowing
through. Ideally, this viscous resistance produces linear damping, meaning that the
force is exactly proportional to the velocity. In a physical dashpot nonlinearities are
introduced from the fluid flow and from friction between the piston and the cylinder.
Also, dashpotsthat useair asaworking fluid may have compressibility that introduces
non-negligible springiness to the system in addition to that of any metallic springs.

Adding a dashpot in parallel with the spring of a mass-spring system crestes a
mass-spring-dashpot system, or damped harmonic oscillator. The system is shown
infigure5.32. Figure5.33 isafreebody diagram of the mass. It hastwo forcesacting
on it, neglecting gravity:

FS - kX
Fg = cdx/dt =cx

isthe spring force, assuming alinear spring, and
is the dashpot force assuming alinear dashpot.

The system is a one degree of freedom system because a single coordinate x is
sufficient to describe the complete motion of the system. The equation of motion for
thissystemis

mx = —Fg — Fs where % = d2x/dt2. (5.33)
Assuming alinear spring and alinear dashpot this expression becomes
mX + cX + kx = 0. (5.34)

We have taken care with the signs of the various terms. You should check that you
can derive equation 5.34 without introducing any sign errors. @
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Figure5.31: A damper or dashpot. The
symbol shown representsadevicewhichre-
sists the relative motion of its endpoints.
The schematic is supposed to suggest a
plunger in a cylinder. For the plunger to
move, fluid must leak around the cylinder.
Thisleakage happensfor either direction of
motion. Thus the damper resists relative
motion in either direction; i. e, for L > 0
andL <O.

(Filename:tfigurel2.dashpot)
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Figure 5.32: A mass spring dashpot sys-
tem, or damped harmonic oscillator.

(Filename:tfigure12.MSD)
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Figure 5.33: Free body diagram of the
mass spring dashpot system.

(Filename:tfigure12.MSDFBD)

D caution: When push comesto shove, so
to speak, many students have troubl e deriv-
ing equations like 5.34 without getting sign
errors from figures like 5.32.
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Figure 5.34: The effect of varying the
damping with a fixed mass and spring. In
al the plots the mass is released from rest
a X = Xp. In the case of under-damping,
oscillations persist for along time, forever
if there is no damping. In the case of over-
damping, the dashpot doesn’t relax for a
long time; it stays locked up forever in the
limit of ¢ — oo. The fastest relaxation
occurs for critical damping.
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Solution of the damped-oscillator equations

The governing eguation 5.34 has a solution which depends on the values of the
constants. There are cases where one wants to consider negative springs or negative
dashpots, but for the purposes of understanding classical vibration theory we can
assume that m, ¢, and k are all positive. Even with this restriction the solution
depends on the relative values of m, ¢, and k. You can learn al about these solutions
in any book that introduces ordinary differential equations; most freshman calculus
books have such a discussion.
The three solutions are categorized as follows:

e Under-damped: ¢ < 4mk. In this case the damping is small and oscillations
persist forever, though their amplitude diminishes exponentialy intime. The
genera solution for thiscaseis:

X(t) = e~ 2 Acos(igt) + B sin(Agt)], (5.35)

where A4 isthe damped natural frequency andisgiven by Aq = (%)2 -k

e Critically damped: ¢ = 4mk. In this case the damping is at a critical level
that separatesthe cases of under-damped oscillationsfrom the ssmply decaying
motion of the over-damped case. The general solutionis:

x(t) = Ae 7t 4 Bte A, (5.36)

o Over-damped: c? > 4mk. Here there are no oscillations, just a simple return
to equilibrium with a most one crossing through the equilibrium position on
the way to equilibrium. The general solution in the over-damped caseis:

x(t) = AeT TV G Ry Bel—am v At (5.37)

The solution 5.37 actually includes equations 5.36 and 5.35 as specia cases.
To interpret equation refoverdampe as the general solution you need to know
the rel ation between complex exponentials and trigonometric functions for the
cases when the argument of the square root term is negative.

For a given mass and spring we can imagine the damping as a variable to adjust.
A system which has small damping (small c) is under-damped and does not come
to equilibrium quickly because oscillations persist for along time. A system which
has a lot of damping (big c) is over-damped does not come to equilibrium quickly
because the dashpot holds it away from equilibrium. A system which is critically-
damped comes to equilibrium most quickly. In many cases, the purpose of damping
is to purge motions after disturbance from equilibrium. If the only design variable
available for adjustment is the damping, then the quickest purge is accomplished
by picking c = +/(4km) and achieving critical damping. This damping design is
commonly employed.

M easurement of damping: logarithmic decrement method

In the under-damped case, the viscous damping constant ¢ may be determined exper-
imentally by measuring the rate of decay of unforced oscillations. This decay can be
quantified using the logarithmic decrement. The logarithmic decrement isthe natural
logarithm of the ratio of any two successive amplitudes. The larger the damping,
the greater will be the rate of decay of oscillations and the bigger the logarithmic
decrement:

Xn

logarithmic decrement = D = In( ) (5.38)

Xn+1
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where xp, and Xn4-1 are the heights of two successive peaksin the decaying oscillation

pictured in figure 5.35. Because of the exponential envelope that this curve has,
C C

Xn = (const.)e” (@)% and x,,1 = (const.)e™(z)u+T

D = In[(e~(z)1) /(&= (@)1 T)]
Simplifying this expression, we get that

_cT
T 2m

where T isthe period of oscillation. Thus, the damping constant ¢ can be measured
by measuring the logarithmic decrement D and the period of oscillation T as

2mD
C=

T

Summary of equationsfor the unforced harmonic oscillator

o X+ %x = 0, mass-spring equation
e %+ A%x = 0, harmonic oscillator equation
e X(t) = Acos(rt) 4+ B sin(it), general solution to harmonic oscillator equation
e X(t) = Rcos(At — ¢), amplitude-phase version of solution to harmonic oscil-
lator solution, R = v/AZ + BZ, ¢ = tan"(8)
o X+ =X+ %x = 0, mass-spring-dashpot equation (see equations 5.35-5.37 for
solutions)
2mD

e D=In (XX" ) logarithmic decrement. ¢ = =1=.
n+1

x(t)

Xn

X+ =7
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Figure 5.35: The logarithmic decre-
ment method. D = IN(Xn/Xn+1)

(Filename:tfigurel2.decrement)
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Figure 5.36: Spring-mass dashpot.
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Figure5.37: freebody diagram of system
at instant t goes herel
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SAMPLE 5.17 A block of mass 10kg is attached to a spring and a dashpot as
shown in Figure 5.36. The spring constant k = 1000N/ m and a damping rate
¢ = 50N-s/m. When the block is at a distance dy from the left wall the spring is
relaxed. The block is pulled to the right by 0.5m and released. Assuming no initial
velocity, find

@
(b)

the eguation of motion of the block.
the position of theblock at t = 2s.

Solution

@

(b)

Let x be the position of the block, measured positive to the right of the static
equilibrium position, at sometimet. Let X be the corresponding speed. The
free body diagram of the block at the instant t is shown in Figure 5.37.
Sincethe motionisonly horizontal, we can write the linear momentum balance
in the x-direction (3~ Fx = may):

—kx—cx=m X

—_— —

xR

c k
o X+ —X+—x=0 (5