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Summary of Mechanics
0) The laws of mechanics apply to any collection of material or ‘body.’ This body could be the overall system of study

or any part of it. In the equations below, the forces and moments are those that show on a free body diagram. Interacting
bodies cause equal and opposite forces and moments on each other.

I) Linear Momentum Balance (LMB)/Force Balance
Equation of Motion

∑
⇀
F i = ˙⇀L The total force on a body is equal

to its rate of change of linear
momentum.

(I)

Impulse-momentum
(integrating in time)

∫ t2

t1

∑
⇀
F i ·dt = �

⇀
L Net impulse is equal to the change in

momentum.
(Ia)

Conservation of momentum
(if

∑ ⇀
F i = ⇀

0 )

˙⇀L =
⇀

0 ⇒
�

⇀
L =

⇀
L2 − ⇀

L1 = ⇀

0
When there is no net force the linear
momentum does not change.

(Ib)

Statics

(if ˙⇀L is negligible)

∑
⇀
F i = ⇀

0 If  the  inertial   terms  are  zero  the 
net force on system is zero. 

(Ic)

II) Angular Momentum Balance (AMB)/Moment Balance
Equation of motion

∑
⇀
MC =

˙

˙⇀HC The sum of moments is equal to the
rate of change of angular momentum.

(II)

Impulse-momentum (angular)
(integrating in time)

∫ t2

t1

∑
⇀
MCdt = �

⇀
HC The net angular impulse  is equal to

the change in angular momentum.
(IIa)

Conservation of angular momentum
(if

∑ ⇀
MC = ⇀

0)

˙⇀HC = ⇀

0 ⇒
�

⇀
HC = ⇀

HC2 − ⇀
HC1 = ⇀

0
If there is no net moment about point
C then the angular momentum about
point C does not change.

(IIb)

Statics

(if ˙⇀HC is negligible)

∑
⇀
MC = ⇀

0 If the inertial terms are zero then the
total moment on the system is zero.

(IIc)

III) Power Balance (1st law of thermodynamics)
Equation of motion Q̇ + P = ĖK + ĖP + Ėint︸ ︷︷ ︸

Ė

Heat flow plus mechanical power
into a system is equal to its change
in energy (kinetic + potential +
internal).

(III)

for finite time
∫ t2

t1
Q̇dt +

∫ t2

t1
Pdt = �E The net energy flow going in is equal

to the net change in energy.
(IIIa)

Conservation of Energy
(if Q̇ = P = 0)

Ė = 0 ⇒
�E = E2 − E1 = 0

If no energy flows into a system,
then  its energy does not change.

(IIIb)

Statics
(if ĖK is negligible)

Q̇ + P = ĖP + Ėint If there is no change of kinetic energy
then the change of potential and
internal energy is due to mechanical
work and heat flow.

(IIIc)

Pure Mechanics
(if heat flow and dissipation
are negligible)

P = ĖK + ĖP In a system well modeled as purely
mechanical the change of kinetic
and potential energy is due to mechanical
work.

(IIId)



Some Definitions
⇀
r or ⇀

x Position .e.g.,
⇀
r i ≡ ⇀

r i/O is the position of a point
i relative to the origin, O)

⇀
v ≡ d ⇀

r

dt
Velocity .e.g.,

⇀
v i ≡ ⇀

v i/O is the velocity of a point
i relative to O, measured in a non-rotating
reference frame)

⇀
a ≡ d ⇀

v

dt
= d2 ⇀

r

dt2 Acceleration .e.g.,
⇀
a i ≡ ⇀

a i/O is the acceleration of a
point i relative to O, measured in a New-
tonian frame)

⇀
ω Angular

(Please also look at the tables inside the back cover.)

velocity A measure of rotational velocity of a rigid
body.

⇀
α ≡ ˙⇀ω Angular acceleration A measure of rotational acceleration of a

rigid body.

⇀
L ≡




∑
mi

⇀
v i discrete∫

⇀
vdm continuous

Linear momentum A measure of a system’s net translational
rate (weighted by mass).

= mtot
⇀
vcm

˙⇀L ≡



∑
mi

⇀
a i discrete∫

⇀
adm continuous

Rate of change of linear
momentum

The aspect of motion that balances the net
force on a system.

= mtot
⇀
acm

⇀
HC ≡




∑
⇀
ri/C × mi

⇀
v i discrete∫

⇀
r /C × ⇀

vdm continuous
Angular momentum about
point C

A measure of the rotational rate of a sys-
tem about a point C (weighted by mass
and distance from C).

˙⇀HC ≡



∑
⇀
ri/C × mi

⇀
a i discrete∫

⇀
r /C × ⇀

adm continuous
Rate of change of angular mo-
mentum about point C

The aspect of motion that balances the net
torque on a system about a point C.

EK ≡



1
2

∑
miv

2
i discrete

1
2

∫
v2dm continuous

Kinetic energy A scalar measure of net system motion.

Eint = (heat-like terms) Internal energy The non-kinetic non-potential part of a
system’s total energy.

P ≡ ∑ ⇀
F i ·⇀

v i + ∑ ⇀
M i ·⇀

ωi Power of forces and torques The mechanical energy flow into a sys-
tem. Also, P ≡ Ẇ , rate of work.

[I cm]≡




I cm
xx I cm

xy I cm
xz

I cm
xy I cm

yy I cm
yz

I cm
xz I cm

yz I cm
zz


 Moment of inertia matrix about

cm
A measure of how mass is distributed in
a rigid body.
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Preface

This is a statics and dynamics text for second or third year engineering students with
an emphasis on vectors, free body diagrams, the basic momentum balance principles,
and the utility of computation. Students often start a course like this thinking of
mechanics reasoning as being vague and complicated. Our aim is to replace this
loose thinking with concrete and simple mechanics problem-solving skills that live
harmoniously with a useful mechanical intuition.

Knowledge of freshman calculus is assumed. Although most students have seen
vector dot and cross products, vector topics are introduced from scratch in the context
of mechanics. The use of matrices (to tidy-up systems of linear equations) and of
differential equations (for describing motion in dynamics) are presented to the extent
needed. The set-up of equations for computer solutions is presented in a pseudo-
language easily translated by a student into one or another computation package that
the student knows.

Organization
We have aimed here to better unify the subject, in part, by an improved organization.
Mechanics can be subdivided in various ways: statics vs dynamics, particles vs rigid
bodies, and 1 vs 2 vs 3 spatial dimensions. Thus a 12 chapter mechanics table of
contents could look like this

I. Statics

A. particles

1) 1D
2) 2D
3) 3D

B. rigid bodies

4) 1D
5) 2D
6) 3D

II. Dynamics

C. particles

7) 1D
8) 2D
9) 3D

D. rigid bodies

10) 1D
11) 2D
12) 3D

complexity
of objects

number of
dimensions

how much
inertia

1D 2D 3D

static

dynamic

particle

rigid
body

However, these topics are far from equal in their difficulty or in the number of subtopics
they contain. Further, there are various concepts and skills that are common to many
of the 12 sub-topics. Dividing mechanics into these bits distracts from the unity of the
subject. Although some vestiges of the scheme above remain, our book has evolved
to a different organization through trial and error, thought and rethought, review and
revision, and nine semesters of student testing.

The first four chapters cover the basics of statics. Dynamics of particles and
rigid bodies, based on progressively more difficult motions, is presented in chapters
five to eleven. Relatively harder topics, that might be skipped in quicker courses,
are identifiable by chapter, section or subsection titles containing words like “three
dimensional” or “advanced”. In more detail:

iii



iv PREFACE

Chapter 1 defines mechanics as a subject which makes predictions about forces and
motions using models of mechanical behavior, geometry, and the basic balance
laws. The laws of mechanics are informally summarized.

Chapter 2 introduces vector skills in the context of mechanics. Notational clarity is
emphasized because correct calculation is impossible without distinguishing
vectors from scalars. Vector addition is motivated by the need to add forces and
relative positions, dot products are motivated as the tool which reduces vector
equations to scalar equations, and cross products are motivated as the formula
which correctly calculates the heuristically motivated concept of moment and
moment about an axis.

Chapter 3 is about free body diagrams. It is a separate chapter because, in our experience,
good use of free body diagrams is almost synonymous with correct mechanics
problem solution. To emphasize this to students we recommend that, to get
any credit for a problem that uses balance laws in the rest of the course, a good
free body diagram must be drawn.

Chapter 4 makes up a short course in statics including an introduction to trusses, mecha-
nisms, beams and hydrostatics. The emphasis is on two-dimensional problems
until the last, more advanced section. Solution methods that depend on kine-
matics (i.e., work methods) are deferred until the dynamics chapters. But for
the stretch of linear springs, deformations are not covered.

Chapter 5 is about unconstrained motion of one or more particles. It shows how far
you can go using

⇀
F = m ⇀

a and Cartesian coordinates in 1, 2 and 3 dimensions
in the absence of kinematic constraints. The first five sections are a thor-
ough introduction to motion of one particle in one dimension, so called scalar
physics, namely the equation F(x, v, t) = ma and special cases thereof. The
chapter includes some review of freshman calculus as well as an introduction
to energy methods. A few special cases are emphasized, namely, constant ac-
celeration, force dependent on position (thus motivating energy methods), and
the harmonic oscillator. After one section on coupled motions in 1 dimension,
sections seven to ten discuss motion in two and three dimensions. The easy
set up for computation of trajectories, with various force laws, and even with
multiple particles, is emphasized. The chapter ends with a mostly theoretical
section on the center-of-mass simplifications for systems of particles.

Chapter 6 is the first chapter that concerns kinematic constraint in its simplest context,
systems that are constrained to move without rotation in a straight line. In
one dimension pulley problems provide the main example. Two and three
dimensional problems are covered, such as finding structural support forces
in accelerating vehicles and the slowing or incipient capsize of a braking car.
Angular momentum balance is introduced as a needed tool but without the
usual complexities of curvilinear motion.

Chapter 7 treats pure rotation about a fixed axis in two dimensions. Polar coordinates
and base vectors are first used here in their simplest possible context. The
primary applications are pendulums, gear trains, and rotationally accelerating
motors or brakes.

Chapter 8 treats general planar motion of a (planar) rigid body including rolling, sliding
and free flight. Multi-body systems are also considered so long as they do
not involve constraint (i.e., collisions and spring connections but not hinges or
prismatic joints).

Chapter 9 is entirely about kinematics of particle motion. The over-riding theme is the
use of base vectors which change with time. First, the discussion of polar coor-
dinates started in chapter 7 is completed. Then path coordinates are introduced.
The kinematics of relative motion, a topic that many students find difficult, is
treated carefully but not elaborately in two stages. First using rotating base
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vectors connected to a moving rigid body and then using the more abstract
notation associated with the famous “five term acceleration formula.”

Chapter 10 is about the mechanics of particles and rigid bodies utilizing the relative mo-
tion kinematics ideas from chapter 9. This is the capstone chapter for a two-
dimensional dynamics course. After this chapter a good student should be able
to navigate through and use most of the skills in the concept map on page 582.

Chapter 11 is an introduction to 3D rigid body motion. It extends chapter 7 to fixed axis
rotation in three dimensions. The key new kinematic tool here is the non-
trivial use of the cross product for calculating velocities and accelerations.
Fixed axis rotation is the simplest motion with which one can introduce the
full moment of inertia matrix, where the diagonal terms are analogous to the
scalar 2D moment of inertia and the off-diagonal terms have a “centripetal”
interpretation. The main new application is dynamic balance. In our experience
going past this is too much for most engineering students in the first mechanics
course after freshman physics, so the book ends here.

Appendix A on units and dimensions is for reference. Because students are immune to
preaching about units out of context, such as in an early or late chapter like
this one, the main messages are presented by example throughout the book (the
book may be unique amongst mechanics texts in this regard):

– All engineering calculations using dimensional quantities must be dimen-
sionally ‘balanced’.

– Units are ‘carried’ from one line of calculation to the next by the same
rules as go numbers and variables.

Appendix B on contact laws (friction and collisions) is for reference for students who puzzle
over these issues.

A leisurely one semester statics course, or a more fast-paced half semester prelude
to strength of materials should use chapters 1-4. A typical one semester dynamics
course should cover most of of chapters 5-11 preceded by topics from chapters 1-4,
as needed. A one semester statics and dynamics course should cover about two thirds
of chapters 1-6 and 8. A full year statics and dynamics course should cover most of
the book.

Organization and formatting

Each subject is covered in various ways.

• Every section starts with descriptive text and short examples motivating and
describing the theory;

• More detailed explanations of the theory are in boxes interspersed in the text.
For example, one box explains the common derivation of angular momentum
balance form linear momentum balance, one explains the genius of the wheel,
and another connects ⇀

ω based kinematics to êr and êθ based kinematics;
• Sample problems (marked with a gray border) at the end of most sections show

how to do homework-like calculations. These set an example to the student
in their consistent use of free body diagrams, systematic application of basic
principles, vector notation, units, and checks against intuition and special cases;

• Homework problems at the end of each chapter give students a chance to
practice mechanics calculations. The first problems for each section build a
student’s confidence with the basic ideas. The problems are ranked in approxi-
mate order of difficulty, with theoretical questions last. Problems marked with
an * have an answer at the back of the book;
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• Reference tables on the inside covers and end pages concisely summarize
much of the content in the book. These tables can save students the time of
hunting for formulas and definitions. They also serve to visibly demonstrate
the basically simple structure of the whole subject of mechanics.

Notation

Clear vector notation helps students do problems. Students sometimes mistakenly
transcribe a conventionally printed bold vector F the same way they transcribe a
plain-text scalar F . To help minimize this error we use a redundant vector notation
in this book (bold and harpooned

⇀
F ).

As for all authors and teachers concerned with motion in two and three dimen-
sions we have struggled with the tradeoffs between a precise notation and a simple
notation. Beautifully clear notations are intimidating. Perfectly simple notations are
ambiguous. Our attempt to find clarity without clutter is summarized in the box on
page 9.

Relation to other mechanics books
This book is in some ways original in organization and approach. It also contains
some important but not sufficiently well known concepts, for example that angular
momentum balance applies relative to any point, not just an arcane list of points. But
there is little mechanics here that cannot be found in other books, including freshman
physics texts, other engineering texts, and hundreds of classics.

Mastery of freshman physics (e.g., from Halliday & Resnick, Tipler, or Serway)
would encompass some part of this book’s contents. However freshman physics
generally leaves students with a vague notion of what mechanics is, and how it can
be used. For example many students leave freshman physics with the sense that a
free body diagram (or ‘force diagram’) is an vague conceptual picture with arrows
for various forces and motions drawn on it this way and that. Even the book pictures
sometimes do not make clear what force is acting on what body. Also, because
freshman physics tends to avoid use of college math, many students end up with no
sense of how to use vectors or calculus to solve mechanics problems. This book aims
to lead students who may start with these fuzzy freshman physics notions into a world
of intuitive yet precise mechanics.

There are many statics and dynamics textbooks which cover about the same
material as this one. These textbooks have modern applications, ample samples, lots
of pictures, and lots of homework problems. Many are good (or even excellent) in
their own ways. Most of today’s engineering professors learned from one of these
books. We wrote this book with the intent of doing still better in a few ways:

• better showing the unity of the subject,
• more clear notation in figures and equations,
• better integration of the applicability of computers,
• more clear use of units throughout,
• introduction of various insights into how things work,
• a more informal and less intimidating writing style.

We intend that through this book book students will come to see mechanics as a
coherent network of basic ideas rather than a collection of ad-hoc recipes and tricks
that one need memorize or hope to discover by divine inspiration.

There are hundreds of older books with titles like statics, engineering mechan-
ics, dynamics, machines, mechanisms, kinematics, or elementary physics that cover
aspects of the material here 1©Although many mechanics books written from 1689-

1© Here are three nice older books on me-
chanics:

J.P. Den Hartog’s Mechanics originally
published in 1948 but still available as an in-
expensive reprint (well written and insight-
ful);

J.L. Synge and B.A. Griffith, Principles of
Mechanics through page 408. Originally
published in 1942, reprinted in 1959 (good
pedagogy but dry); and

E.J. Routh’s, Dynamics of a System of rigid
bodies, Vol 1 (the “elementary” part through
chapter 7. Originally published in 1905,
but reprinted in 1960 (a dense gold mine).
Routh also has 5 other idea packed statics
and dynamics books.
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1960, are amazingly thoughtful and complete, none are good modern textbooks. They
lack an appropriate pace, style of speech, and organization. They are too reliant on
geometry skills and not enough on vectors and numerical computation skills. They
lack sufficient modern applications, sample calculations, illustrations, and homework
problems for a modern text book.

Thank you
We have attempted to write a book which will help make the teaching and learning of
mechanics more fun and more effective. We have tried to present the truth as we know
it and as we think it is most effectively communicated. But we have undoubtedly left
various technical and strategic errors. We thank you in advance for letting us know
your thoughts so that we can improve future editions.

Rudra Pratap, rp28@cornell.edu
Andy Ruina, ruina@cornell.edu
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To the student
Mother nature is so strict that, to the extent we know her rules, we can make reliable
predictions about the behavior of her children, the world of physical objects. In
particular, for essentially all practical purposes all objects that engineers study strictly
follow the laws of Newtonian mechanics. So, if you learn the laws of mechanics, as
this book should help you do, you will be able to make quantitative calculations that
predict how things stand, move, and fall. You will also gain intuition about how the
physical world works.

How to use this book

Most of you will naturally get help with homework by looking at similar examples
and samples in the text or lecture notes, by looking up formulas in the front and back
covers, or by asking questions of friends, teaching assistants and professors. What
good are books, notes, classmates or teachers if they don’t help you do homework
problems? All the examples and sample problems in this book, for example, are
just for this purpose. But too-much use of these resources while solving problems
can lead to self deception. To see if you have learned to do a problem, do it again,
justifying each step, without looking up even one small thing. If you can’t do this,
you have a new opportunity to learn at two levels. First, you can learn the missing
skill or idea. More deeply, by getting stuck after you have been able to get through a
problem with guidance, you can learn things about your learning process. Often the
real source of difficulty isn’t a key formula or fact, but something more subtle. We
have tried to bring out some of these more subtle ideas in the text discussions which
we hope you read, sooner or later.

Some of you are science and math school-smart, mechanically inclined, or are
especially motivated to learn mechanics. Others of you are reluctantly taking this
class to fulfil a requirement. We have written this book with both of you in mind.
The sections start with generally accessible introductory material and include simple
examples. The early sample problems in each section are also easy. But we also
have discussions of the theory and other more advanced asides to challenge more
motivated students.

Calculation strategies and skills

In this book we try here to show you a systematic approach to solving problems.
But it is not possible to reduce the world of mechanics problem solutions to one
clear set of steps to follow. There is an art to solving problems, whether homework
problems or engineering design problems. Art and human insight, as opposed to
precise algorithm or recipe, is what makes engineering require humans and not just
computers. Through discussion and examples, we will try to teach you some of this
systematic art. Here are a few general guidelines that apply to many problems.
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Understand the question

You may be tempted to start writing equations and quoting principles when you first
see a problem. But it is generally worth a few minutes (and sometimes a few hours)
to try to get an intuitive sense of a problem before jumping to equations. Before you
draw any sketches or write equations, think: does the problem make sense? What
information has been given? What are you trying to find? Is what you are trying to
find determined by what is given? What physical laws make the problem solvable?
What extra information do you think you need? What information have you been
given that you don’t need? Your general sense of the problem will steer you through
the technical details.

Some students find they can read every line of sample problems yet cannot do
test problems, or, later on, cannot do applied design work effectively. This failing
may come from following details without spending time, thinking, gaining an overall
sense of the problems.

Think through your solution strategy

For the problem solutions we present in this book or in class, there was a time when
we had to think about the order of our work. You also have to think about the order
of your work. You will find some tips in the text and samples. But it is your job to
own the material, to learn how to think about it your own way, to become an expert
in your own style, and to do the work in the way that makes things most clear to you
and your readers.

What’s in your toolbox?
In the toolbox of someone who can solve lots of mechanics problems are two well
worn tools:

• A vector calculator that always keeps vectors and scalars distinct, and
• A reliable and clear free body diagram drawing tool.

Because many of the terms in mechanics equations are vectors, the ability to do vector
calculations is essential. Because the concept of an isolated system is at the core of
mechanics, every mechanics practitioner needs the ability to draw a good free body
diagram. Would that we could write

“Click on WWW.MECH.TOOL today and order your own professional
vector calculator and expert free body diagram drawing tool!”,

but we can’t. After we informally introduce mechanics in the first chapter, the second
and third chapters help you build your own set of these two most-important tools.

Guarantee: if you learn to do clear correct vector algebra and to draw good
free body diagrams you will do well at mechanics.

Think hard
We do mechanics because we like mechanics. We get pleasure from thinking about
how things work, and satisfaction from doing calculations that make realistic predic-
tions. Our hope is that you also will enjoy idly thinking about mechanics and that you
will be proud of your new modeling and calculation skills. You will get there if you
think hard. And you will get there more easily if you learn to enjoy thinking hard.
Often the best places to study are away from books, notes, pencil or paper when you
are walking, washing or resting.
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A note on computation
Mechanics is a physical subject. The concepts in mechanics do not depend on comput-
ers. But mechanics is also a quantitative and applied subject described with numbers.
Computers are very good with numbers. Thus the modern practice of engineering
mechanics depends on computers. The most-needed computer skills for mechanics
are:

• solution of simultaneous algebraic equations,
• plotting, and
• numerical solution of ODEs (Ordinary Differential Equations).

More basically, an engineer also needs the ability to routinely evaluate standard
functions (x3, cos−1 θ , etc.), to enter and manipulate lists and arrays of numbers, and
to write short programs.

Classical languages, applied packages, and simulators

Programming in standard languages such as Fortran, Basic, C, Pascal, or Java prob-
ably take too much time to use in solving simple mechanics problems. Thus an
engineer needs to learn to use one or another widely available computational package
(e.g., MATLAB, OCTAVE, MAPLE, MATHEMATICA, MATHCAD, TKSOLVER,
LABVIEW, etc). We assume that students have learned, or are learning such a pack-
age. We also encourage the use of packaged mechanics simulators (e.g., WORKING
MODEL, ADAMS, DADS, etc) for building intuition, but none of the homework here
depends on access to such a packaged simulator.

How we explain computation in this book.

Solving a mechanics problem involves these major steps

(a) Reducing a physical problem to a well posed mathematical problem;
(b) Solving the math problem using some combination of pencil and paper and

numerical computation; and
(c) Giving physical interpretation of the mathematical solution.

This book is primarily about setup (a) and interpretation (c), which are the same, no
matter what method is used to solve the equations. If a problem requires computation,
the exact computer commands vary from package to package. So we express our
computer calculations in this book using an informal pseudo computer language. For
reference, typical commands are summarized in box on page xii.

Required computer skills.

Here, in a little more detail, are the primary computer skills you need.

• Many mechanics problems are statics or ‘instantaneous mechanics’ problems.
These problems involve trying to find some forces or accelerations at a given
configuration of a system. These problems can generally be reduced to the
solution of linear algebraic equations of this general type: solve

3 x + 4 y = 8
−7 x + √

2 y = 3.5

for x and y. Some computer packages will let you enter equations almost as
written above. In our pseudo language we would write:



PREFACE xi

set = { 3*x + 4*y = 8
-7*x + sqrt(2)*y = 3.5 }

solve set for x and y

Other packages may require you to write the equations in matrix form something
like this (see, or wait for, page ?? for an explanation of the matrix form of
algebraic equations):

A = [ 3 4
-7 sqrt(2) ]

b = [ 8 3.5 ]’
solve A*z=b for z

where A is a 2 × 2 matrix, b is a column of 2 numbers, and the two elements of
z are x and y. For systems of two equations, like above, a computer is hardly
needed. But for systems of three equations pencil and paper work is sometimes
error prone. Most often pencil and paper solution of four or more equations is
too tedious and error prone.

• In order to see how a result depends on a parameter, or to see how a quantity
varies with position or time, it is useful to see a plot. Any plot based on more
than a few data points or a complex formula is far more easily drawn using a
computer than by hand. Most often you can organize your data into a set of
(x, y) pairs stored in an X list and a corresponding Y list. A simple computer
command will then plot x vs y. The pseudo-code below, for example, plots a
circle using 100 points

npoints = [1 2 3 ... 100]
theta = npoints * 2 * pi / 100
X = cos(theta)
Y = sin(theta)
plot Y vs X

where npoints is the list of numbers from 1 to 100, theta is a list of
100 numbers evenly spaced between 0 and 2π and X and Y are lists of 100
corresponding x, y coordinate points on a circle.

• The result of using the laws of dynamics is often a set of differential equations
which need to be solved. A simple example would be:

Find x at t = 5 given that
dx

dt
= x and that at t = 0, x = 1.

The solution to this problem can be found easily enough by hand to be e5.
But often the differential equations are just too hard for pencil and paper solu-
tion. Fortunately the numerical solution of ordinary differential equations
is already programmed into scientific and engineering computer packages. The
simple problem above is solved with computer code analogous to this:

ODES = { xdot = x }
ICS = { xzero = 1 }
solve ODES with ICS until t=5

Examples of many calculations of these types will shown, starting on page ??.
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0.1 Summary of informal computer commands

Computer commands are given informally and descriptively in this
book. The commands below are not as precise as any real computer
package. You should be able to use your package’s documentation
to translate the informal commands below. Many of the commands
below depend on mathematical ideas which are introduced in the
text. At first reading a student is not expected to absorb this table.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x=7 Set the variable x to 7.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

omega=13 Set ω to 13.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u=[1 0 -1 0]
v=[2 3 4 pi]

Define u and v to be the lists
shown.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

t= [.1 .2 .3 ... 5] Set t to the list of 50 numbers
implied by the expression.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y=v(3) sets y to the third value of v (in
this case 4).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A=[1 2 3 6.9
5 0 1 12 ]

Set A to the array shown.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

z= A(2,3) Set z to the element of A in the
second row and third column.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

w=[3
4
2
5]

Define w to be a column vector.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

w = [3 4 2 5]’ Same as above. ’ means
transpose.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u+v Vector addition. In this case the
result is [3 3 3 π ].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u*v Element by element
multiplication, in this case
[2 0 − 4 0].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sum(w) Add the elements of w, in this
case 14.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cos(w) Make a new list, each element of
which is the cosine of the
corresponding element of [w].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mag(u) The square root of the sum of the
squares of the elements in [u], in
this case 1.41421...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u dot v The vector dot product of
component lists [u] and [v], (we
could also write sum(A*B).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C cross D The vector cross product of
⇀

C
and

⇀
D, assuming the three

element component lists for [C]
and [D] have been defined.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A matmult w Use the rules of matrix
multiplication to multiply [A]
and [w].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

eqset = {3x + 2y = 6
6x + 7y = 8}

Define ‘eqset’ to stand for the set
of 2 equations in braces.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

solve eqset
for x and y

Solve the equations in ‘eqset’ for
x and y.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

solve Ax=b for x Solve the matrix equation
[A][x] = [b] for the list of
numbers x . This assumes A and
b have already been defined.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

for i = 1 to N
such and such

end

Execute the commands ‘such and
such’ N times, the first time with
i = 1, the second with i = 2, etc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

plot y vs x Assuming x and y are two lists of
numbers of the same length, plot
the y values vs the x values.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

solve ODEs
with ICs
until t=5

Assuming a set of ODEs and ICs
have been defined, use numerical
integration to solve them and
evaluate the result at t = 5.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

With an informality consistent with what is written above, other
commands are introduced here and there as needed.
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1 What is mechanics?

Mechanics is the study of force, deformation, and motion, and the relations between
them. We care about forces because we want to know how hard to push something
to move it or whether it will break when we push on it for other reasons. We care
about deformation and motion because we want things to move or not move in certain
ways. Towards these ends we are confronted with this general mechanics problem:

Given some (possibly idealized) information about the properties, forces,
deformations, and motions of a mechanical system, make useful predic-
tions about other aspects of its properties, forces, deformations, and
motions.

By system, we mean a tangible thing such as a wheel, a gear, a car, a human finger, a
butterfly, a skateboard and rider, a quartz timing crystal, a building in an earthquake,
a piano string, and a space shuttle. Will a wheel slip? a gear tooth break? a car tip
over? What muscles are used when you hit a key on your computer? How do people
balance on skateboards? Which buildings are more likely to fall in what kinds of
earthquakes? Why are low pitch piano strings made with helical windings instead of
straight wires? How fast is the space shuttle moving when in low earth orbit?

In mechanics we try to solve special cases of the general mechanics problem above
by idealizing the system, using classical Euclidean geometry to describe deformation
and motion, and assuming that the relation between force and motion is described
with Newtonian mechanics, or “Newton’s Laws”. Newtonian mechanics has held
up, with minor refinement, for over three hundred years. Those who want to know
how machines, structures, plants, animals and planets hold together and move about

1
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need to know Newtonian mechanics. In another two or three hundred years people
who want to design robots, buildings, airplanes, boats, prosthetic devices, and large
or microscopic machines will probably still use the equations and principles we now
call Newtonian mechanics 1©1© The laws of classical mechanics, how-

ever expressed, are named for Isaac Newton
because his theory of the world, the Prin-
cipia published in 1689, contains much of
the still-used theory. Newton used his the-
ory to explain the motions of planets, the
trajectory of a cannon ball, why there are
tides, and many other things.

Any mechanics problem can be divided into 3 parts which we think of as the 3
pillars that hold up the subject:

1. the mechanical behavior of objects and materials (constitutive laws);
2. the geometry of motion and distortion (kinematics); and
3. the laws of mechanics (

⇀
F = m ⇀

a , etc.).
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Let’s discuss each of these ideas a little more, although somewhat informally, so
you can get an overview of the subject before digging into the details.

Mechanical behavior

The first pillar of mechanics is mechanical behavior. The Mechanical behavior of
something is the description of how loads cause deformation (or vice versa). When
something carries a force it stretches, shortens, shears, bends, or breaks. Your finger
tip squishes when you poke something. Too large a force on a gear in an engine
causes it to break. The force of air on an insect wing makes it bend. Various geologic
forces bend, compress and break rock.

This relation between force and deformation can be viewed in a few ways. First,
it gives us a definition of force. In fact, force can be defined by the amount of
spring stretch it causes. Thus most modern force measurement devices measure
force indirectly by measuring the deformation it causes in a calibrated spring. This is
one justification for calling ‘mechanical behavior’ the first pillar. It gives us a notion
of force even before we introduce the laws of mechanics.

Second, a piece of steel distorts under a given load differently than a same-sized
piece of chewing gum. This observation that different objects deform differently
with the same loads implies that the properties of the object affect the solution of
mechanics problems. The relations of an object’s deformations to the forces that are
applied are called the mechanical properties of the object. Mechanical properties
are sometimes called constitutive laws because the mechanical properties describe
how an object is constituted (at least from a mechanics point of view). The classic
example of a constitutive law is that of a linear spring which you remember from your
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elementary physics classes: ‘F = kx’. When solving mechanics problems one has
to make assumptions and idealizations about the constitutive laws applicable to the
parts of a system. How stretchy (elastic) or gooey (viscous) or otherwise deformable
is an object? The set of assumptions about the mechanical behavior of the system is
sometimes called the constitutive model.

Distortion in the presence of forces is easy to see on squeezed fingertips, or
when thin pieces of wood bend. But with pieces of rock or metal the deformation is
essentially invisible and sometimes hard to imagine. With the exceptions of things
like rubber, flesh, or compliant springs, solid objects that are not in the process of
breaking typically change their dimensions much less than 1% when loaded. Most
structural materials deform less than one part per thousand with working loads. But
even these small deformations can be important because they are enough to break
bones and collapse bridges.

When deformations are not of consequence engineers often idealize them away.
Mechanics, where deformation is neglected, is called rigid body mechanics because
a rigid (infinitely stiff) solid would not deform. Rigidity is an extreme constitutive
assumption. The assumption of rigidity greatly simplifies many calculations while
generating adequate predictions for many practical problems. The assumption of
rigidity also simplifies the introduction of more general mechanics concepts. Thus
for understanding the steering dynamics of a car we might model it as a rigid body,
whereas for crash analysis where rigidity is clearly a poor approximation, we might
model a car as highly deformable.

Most constitutive models describe the material inside an object. But to solve a
mechanics problem involving friction or collisions one also has to have a constitutive
model for the contact interactions. The standard friction model (or idealization)
‘F ≤ µN ’ is an example of a contact constitutive model.

In all of mechanics, one needs constitutive models of a system and its components
before one can make useful predictions.

The geometry of deformation and motion

The second pillar of mechanics concerns the geometry of deformation and motion.
Classical Greek (Euclidean) geometry concepts are used. Deformation is defined
by changes of lengths and angles between sets of points. Motion is defined by the
changes of the position of points in time. Concepts of length, angle, similar triangles,
the curves that particles follow and so on can be studied and understood without
Newton’s laws and thus make up an independent pillar of the subject.

We mentioned that understanding small deformations is often important to predict
when things break. But large motions are also of interest. In fact many machines
and machine parts are designed to move something. Bicycles, planes, elevators, and
hearses are designed to move people; a clockwork, to move clock hands; insect wings,
to move insect bodies; and forks, to move potatoes. A connecting rod is designed to
move a crankshaft; a crankshaft, to move a transmission; and a transmission, to move
a wheel. And wheels are designed to move bicycles, cars, and skateboards.

The description of the motion of these things, of how the positions of the pieces
change with time, of how the connections between pieces restrict the motion, of the
curves traversed by the parts of a machine, and of the relations of these curves to
each other is called kinematics. Kinematics is the study of the geometry of motion
(or geometry in motion).

For the most part we think of deformations as involving small changes of distance
between points on one body, and of net motion as involving large changes of distance
between points on different bodies. Sometimes one is most interested in deformation
(you would like the stretch between the two ends of a bridge brace to be small)
and sometimes in the net motion (you would like all points on a plane to travel
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about the same large distance from Chicago to New York). Really, deformation and
motion are not distinct topics, both involve keeping track of the positions of points.
The distinction we have made is for simplicity. Trying to simultaneously describe
deformations and large motions is just too complicated for beginners. So the ideas
are kept (somewhat artificially) separate in elementary mechanics courses such as this
one. As separate topics, both the geometry needed to understand small deformations
and the geometry needed to understand large motions of rigid bodies are basic parts
of mechanics.

Relation of force to motion, the laws of mechanics
The third pillar of mechanics is loosely called Newton’s laws. One of Newton’s
brilliant insights was that the same intuitive ‘force’ that causes deformation also causes
motion, or more precisely, acceleration of mass. Force is related to deformation by
material properties (elasticity, viscosity, etc.) and to motion by the laws of mechanics
summarized in the front cover. In words and informally, these are: 1©1© Isaac Newton’s original three laws are:

1) an object in motion tends to stay in mo-
tion, 2)

⇀
F = m

⇀
a for a particle, and 3)

the principle of action and reaction. These
could be used as a starting point for study
of mechanics. The more modern approach
we take here leads to the same end.

0) The laws of mechanics apply to any system (rigid or not):

a) Force and moment are the measure of mechanical interaction; and
b) Action = minus reaction applies to all interactions, ( ‘every action has an

equal and opposite reaction’);

I) The net force on a system causes a net linear acceleration (linear momentum
balance),

II) The net turning effect of forces on system causes it to rotationally accelerate
(angular momentum balance), and

III) The change of energy of a system is due to the energy flow into the system
(energy balance).

The principles of action and reaction, linear momentum balance, angular mo-
mentum balance, and energy balance, are actually redundant various ways. Linear
momentum balance can be derived from angular momentum balance and, sometimes
(see section ??), vice-versa. Energy balance equations can often be derived from
the momentum balance equations. The principle of action and reaction can also be
derived from the momentum balance equations. In the practice of solving mechanics
problems, however, the ideas are generally considered independently without much
concern for which idea could be derived from the others for the problem under con-
sideration. That is, the four assumptions in O-III above are not a mathematically
minimal set, but they are all accepted truths in Newtonian mechanics.

A lot follows from the laws of Newtonian mechanics, including the contents of
this book. When these ideas are supplemented with models of particular systems (e.g.,
of machines, buildings or human bodies) and with Euclidean geometry, they lead to
predictions about the motions of these systems and about the forces which act upon
them. There is an endless stream of results about the mechanics of one or another
special system. Some of these results are classified into entire fields of research such
as ‘fluid mechanics,’ ‘vibrations,’ ‘seismology,’ ‘granular flow,’ ‘biomechanics,’ or
‘celestial mechanics.’

The four basic ideas also lead to other more mathematically advanced formula-
tions of mechanics with names like ‘Lagrange’s equations,’ ‘Hamilton’s equations,’
‘virtual work’, and ‘variational principles.’ Should you take an interest in theoretical
mechanics, you may learn these approaches in more advanced courses and books,
most likely in graduate school.
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Statics, dynamics, and strength of materials
Elementary mechanics is traditionally partitioned into three courses named ‘statics’,
‘dynamics’, and ‘strength of materials’. These subjects vary in how much they
emphasize material properties, geometry, and Newton’s laws.

Statics is mechanics with the idealization that the acceleration of mass is negligible
in Newton’s laws. The first four chapters of this book provide a thorough introduction
to statics. Strictly speaking things need not be standing still to be well idealized
with statics. But, as the name implies, statics is generally about things that don’t
move much. The first pillar of mechanics, constitutive laws, is generally introduced
without fanfare into statics problems by the (implicit) assumption of rigidity. Other
constitutive assumptions used include inextensible ropes, linear springs, and frictional
contact. The material properties used as examples in elementary statics are very
simple. Also, because things don’t move or deform much in statics, the geometry
of deformation and motion are all but ignored. Despite the commonly applied vast
simplifications, statics is useful, for example, for the analysis of structures, slow
machines or the light parts of fast machines, and the stability of boats.

Dynamics concerns motion associated with the non-negligible acceleration of
mass. Chapters 5-11 of this book introduce dynamics. As with statics, the first pillar
of mechanics, constitutive laws, is given a relatively minor role in the elementary
dynamics presented here. For the most part, the same library of elementary proper-
ties properties are used with little fanfare (rigidity, inextensibility, linear elasticity,
and friction). Dynamics thus concerns the two pillars that are labelled by the confus-
ingly similar words kinematics and kinetics. Kinematics concerns geometry with no
mention of force and kinetics concerns the relation of force to motion. Once one has
mastered statics, the hard part of dynamics is the kinematics. Dynamics is useful for
the analysis of, for example, fast machines, vibrations, and ballistics.

Strength of materials expands statics to include material properties and also pays
more attention to distributed forces (traction and stress). This book only occasionally
touches lightly on strength of materials topics like stress (loosely, force per unit
area), strain (a way to measure deformation), and linear elasticity (a commonly used
constitutive model of solids). Strength of materials gives equal emphasis to all three
pillars of mechanics. Strength of materials is useful for predicting the amount of
deformation in a structure or machine and whether or not it is likely to break with a
given load.

How accurate is Newtonian mechanics?
In popular science culture we are repeatedly reminded that Newtonian ideas have
been overthrown by relativity and quantum mechanics. So why should you read this
book and learn ideas which are known to be wrong?

First off, this criticism is maybe inappropriate because general relativity and
quantum mechanics are inconsistent with each other, not yet united by a universally
accepted deeper theory of everything. But how big are the errors we make when we
do classical mechanics, neglecting various modern physics theories?

• The errors from neglecting the effects of special relativity are on the order of
v2/c2 where v is a typical speed in your problem and c is the speed of light.
The biggest errors are associated with the fastest objects. For, say, calculating
space shuttle trajectories this leads to an error of about

v2

c2 ≈
(

5 mi/ s

3 × 108 m/s

)2

≈ .000000001 ≈ one millionth of one percent
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• In classical mechanics we assume we can know exactly where something is and
how fast it is going. But according to quantum mechanics this is impossible.
The product of the uncertainty δx in position of an object and the the uncertainty
δp of its momentum must be greater than Planck’s constant h̄. Planck’s constant
is small; h̄ ≈ 1 × 10−34joule· s. The fractional error so required is biggest for
small objects moving slowly. So if one measures the location of a computer
chip with mass m = 10−4 kg to within δx = 10−6 m ≈ a twenty fifth of a
thousands of an inch, the uncertainty in its velocity δv = δp/m is only

δxδp = h̄ ⇒ δv = mh̄/δx ≈ 10−24 m/ s ≈ 10−12thousandths of an inch per year.

• In classical mechanics we usually neglect fluctuations associated with the ther-
mal vibrations of atoms. But any object in thermal equilibrium with its sur-
roundings constantly undergoes changes in size, pressure, and energy, as it
interacts with the environment. For example, the internal energy per particle
of a sample at temperature T fluctuates with amplitude

�E

N
= 1√

N

√
kB T 2cV ,

where kB is Boltzmann’s constant, T is the absolute temperature, N is the
number of particles in the sample, and cV is the specific heat. Water has a
specific heat of 1 cal/K, or around 4 Joule/K. At room temperature of 300
Kelvin, for 1023 molecules of water, these values lead to an uncertainty of only
7.2 × 10−21 Joule in the the internal energy of the water. Thermal fluctuations
are big enough to visibly move pieces of dust in an optical microscope, and to
generate variations in electric currents that are easily measured, but for most
engineering mechanics purposes they are negligible.

• general relativity errors having to do with the non-flatness of space are so small
that the genius Einstein had trouble finding a place where the deviations from
Newtonian mechanics could possibly be observed. Finally he predicted a small,
barely measurable effect on the predicted motion of the planet Mercury.

On the other hand, the errors within mechanics, due to imperfect modeling or inaccu-
rate measurement, are, except in extreme situations, far greater than the errors due to
the imperfection of mechanics theory. For example, mechanical force measurements
are typically off by a percent or so, distance measurements by a part in a thousand,
and material properties are rarely known to one part in a hundred and often not one
part in 10.

If your engineering mechanics calculations make inaccurate predictions it will
surely be because of errors in modeling or measurement, not inaccuracies in the laws
of mechanics. Newtonian mechanics, if not perfect, is still rather accurate while rela-
tively much simpler to use than the theories which have ‘overthrown’ it. To seriously
consider mechanics errors as due to neglect of relativity, quantum mechanics, or sta-
tistical mechanics, is to pretend to an accuracy that can only be obtained in the rarest
of circumstances. You have trusted your life many times to engineers who treated
classical mechanics as ‘truth’ and in the future if you do such, your engineering
mechanics work will justly be based on classical mechanics concepts.



2 Vectors for mechanics

⇀

A2 cm

'tip'

'tail'

⇀

A2 cm
N

Figure 2.1: Vector
⇀

A is 2 cm long and
points Northeast. Two copies of

⇀

A are
shown.

(Filename:tfigure.northeast)

This book is about the laws of mechanics which were informally introduced in Chapter
1. The most fundamental quantities in mechanics, used to define all the others, are the
two scalars, mass m and time t , and the two vectors, relative position ⇀

ri/O, and force
⇀
F . Scalars are typed with an ordinary font (t and m) and vectors are typed in bold
with a harpoon on top (⇀

ri/O,
⇀
F ). All of the other quantities we use in mechanics are

defined in terms of these four. A list of all the scalars and vectors used in mechanics
are given in boxes 2 and 2.2 on pages 8 and page 9. Scalar arithmetic has already
been your lifelong friend. For mechanics you also need facility with vector arithmetic.
Lets start at the beginning.

What is a vector?

A vector is a (possibly dimensional) quantity that is fully described by
its magnitude and direction

whereas scalars are just (possibly dimensional) single numbers 1©As a first vector

1© By ‘dimensional’ we mean ‘with units’
like meters, Newtons, or kg. We don’t mean
having an abstract vector-space dimension,
as in one, two or three dimensional.example, consider a line segment with head and tail ends and a length (magnitude)

of 2 cm and pointed Northeast. Lets call this vector
⇀

A (see fig. 2.1).

⇀

A
de f= 2 cm long line segment pointed Northeast

Every vector in mechanics is well visualized as an arrow. The direction of the
arrow is the direction of the vector. The length of the arrow is proportional to the
magnitude of the vector. The magnitude of

⇀

A is a positive scalar indicated by | ⇀

A|. A
vector does not lose its identity if it is picked up and moved around in space (so long
as it is not rotated or stretched). Thus both vectors drawn in fig. 2.1 are

⇀

A.

7
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Vector arithmetic makes sense
We have oversimplified. We said that a vector is something with magnitude and
direction. In fact, by common modern convention, that’s not enough. A one way
street sign, for example, is not considered a vector even though is has a magnitude
(its mass is, say, half a kilogram) and a direction (the direction of most of the traffic).
A thing is only called a vector if elementary vector arithmetic, vector addition in
particular, has a sensible meaning 2©.2© In abstract mathematics they don’t even

bother with talking about magnitudes and
directions. All they care about is vector
arithmetic. So, to the mathematicians, any-
thing which obeys simple vector arithmetic
is a vector, arrow-like or not. In math talk
lots of strange things are vectors, like arrays
of numbers and functions. In this book vec-
tors always have magnitude and direction.

The following sentence summarizes centuries of thought and also motivates this
chapter:

The vectors in mechanics have magnitude and direction and elementary
vector arithmetic with them has a sensible physical meaning.

This chapter is about vector arithmetic. In the rest of this chapter you will learn how
to add and subtract vectors, how to stretch them, how to find their components, and
how to multiply them with each other two different ways. Each of these operations
has use in mechanics and, in particular, the concept of vector addition always has a
physical interpretation.

2.1 Vector notation and vector addition
Facility with vectors has several aspects.

1. You must recognize which quantities are vectors (such as force) and which are
scalars (such as length).

2. You have to use a notation that distinguishes between vectors and scalars us-
ing, for example, ⇀

a , or a for acceleration and a or |⇀
a | for the magnitude of

acceleration.
3. You need skills in vector arithmetic, maybe a little more than you have learned

in your previous math and physics courses.
In this first section (2.1) we start with notation and go on to the basics of vector
arithmetic.

2.1 The scalars in mechanics
The scalar quantities used in this book, and their dimensions in

brackets [ ], are listed below (M for mass, L for length, T for time,
F for force, and E for energy).

• mass m, [M];

• length or distance �, w, x , r , ρ, d , or s, [L];

• time t , [T ];

• pressure p, [F/L2] = [M/(L · T 2)];

• angles θ ‘theta’, φ ‘phi’, γ ‘gamma’, and ψ ‘psi’,
[dimensionless];

• energy E , kinetic energy EK, potential energy EP, [E] =
[F · L] = [M · L2/T 2];

• work W , [E] = [F · L] = [M · L2/T 2];

• tension T , [M · L/T 2] = [F];

• power P , [E/T ] = [M · L2/T 3];

• the magnitudes of all the vector quantities are also scalars,
for example

– speed |⇀v |, [L/T ];
– magnitude of acceleration |⇀a |, [L/T 2];

– magnitude of angular momentum | ⇀
H |, [M · L2/T ];

• the components of vectors, for example

– rx (where ⇀
r = rx ı̂ + ry ̂ ), or

– Lx ′ (where
⇀
L = Lx ′ ı̂ ′ + L y′ ̂ ′);

• coefficient of friction µ ‘mu’, or friction angle φ ‘phi’;

• coefficient of restitution e;

• mass per unit length, area, or volume ρ;

• oscillation frequency β or λ.
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How to write vectors

A scalar is written as a single English or Greek letter. This book uses slanted type
for scalars (e.g., m for mass) but ordinary printing is fine for hand work (e.g., m for
mass). A vector is also represented by a single letter of the alphabet, either English
or Greek, but ornamented to indicate that it is a vector and not a scalar. The common
ornamentations are described below.

Use one of these vector notations in all of your work.

Various ways of representing vectors in printing and writing are described below. 1©. 1©Caution: Be careful to distinguish vec-
tors from scalars all the time. Clear nota-
tion helps clear thinking and will help you
solve problems. If you notice that you are
not using clear vector notation, stop, de-
termine which quantities are vectors and
which scalars, and fix your notation.

⇀
F Putting a harpoon (or arrow) over the letter F is the suggestive notation used in in

this book for vectors.
F In most texts a bold F represents the vector

⇀
F . But bold face is inconvenient for

hand written work. The lack of bold face pens and pencils tempts students to
transcribe a bold F as F . But F with no adornment represents a scalar and
not a vector. Learning how to work with vectors and scalars is hard enough
without the added confusion of not being able to tell at a glance which terms
in your equations are vectors and which are scalars.

F Underlining or undersquiggling (F∼ ) is an easy and unambiguous notation for hand
writing vectors. A recent poll found that 14 out of 17 mechanics professors use
this notation. These professors would copy a

⇀
F from this book by writing F .

Also, in typesetting, an author indicates that a letter should be printed in bold
by underlining.

F̄ It is a stroke simpler to put a bar rather than a harpoon over a symbol. But the
saved effort causes ambiguity since an over-bar is often used to indicate average.

2.2 The Vectors in Mechanics

The vector quantities used in mechanics and the notations used in
this book are shown below. The dimensions of each are shown in
brackets [ ]. Some of these quantities are also shown in figure ??.

• position ⇀
r or ⇀

x , [L];

• velocity ⇀
v or ⇀̇

x or ⇀̇
r , [L/t];

• acceleration ⇀
a or ⇀̇

v or ⇀̈
r , [L/t2];

• angular velocity ⇀
ω ‘omega’ (or, if aligned with the k̂ axis,

θ̇ k̂), [1/t];

• rate of change of angular velocity ⇀
α ‘alpha’ or ⇀̇

ω (or, if

aligned with the k̂ axis, θ̈ k̂), [1/t2];

• force
⇀
F or

⇀
N , [m · L/t2] = [F];

• moment or torque
⇀
M , [m · L2/t2] = [F · L];

• linear momentum
⇀
L, [m · L/t] and its rate of change

⇀̇
L,

[m · L/t2];

• angular momentum
⇀
H , [m · L2/t]; and its rate of change

⇀̇
H , [m · L2/t2].

• unit vectors to help write other vectors [dimensionless]:

– ı̂, ̂ , and k̂ for cartesian coordinates,

– ı̂ ′, ̂ ′, and k̂
′

for crooked cartesian coordinates,

– êr and êθ for polar coordinates,

– êt and ên for path coordinates, and

– λ̂ ‘lambda’ and n̂ as miscellaneous unit vectors.

Subscripts and superscripts are often added to indicate the point,
points, body, or bodies the vectors are describing. Upper case letters
(O, A, B, C,...) are used to denote points. Upper case calligraphic (or
script if you are writing by hand) letters (A,B,C...F ...) are for
labeling rigid bodies or reference frames. F is the fixed, Newtonian,
or ‘absolute’ reference frame (think of F as the ground if you are a
first time reader).

For example, ⇀
rAB or ⇀

rB/A is the position of the point B relative
to the point A. ⇀

ωB is the absolute angular velocity of the body
called B (⇀

ωB is short hand for ⇀
ωB/F ). And

⇀
HA/C is the angular

momentum of body A relative to point C .

The notation is further complicated when we want to take deriva-
tives with respect to moving frames, a topic which comes up later
in the book. For completeness: B ⇀̇

ωD/E is the time derivative with
respect to reference frame B of the angular velocity of body D
with respect to body (or frame) E . If this paragraph doesn’t read
like gibberish to you, you probably already know dynamics!
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There could be confusion, say, between the velocity v̄ and the average speed v̄.
ı̂ Over-hat. Putting a hat on top is like an over-arrow or over-bar. In this book we

reserve the hat for unit vectors. For example, we use ı̂, ̂ , and k̂, or ê1, ê2, and
ê2 for unit vectors parallel to the x , y, and z axis, respectively. The same poll
of 17 mechanics professors found that 11 of them used no special notation for
unit vectors and just wrote them like, e.g., i.

Drawing vectors

In fig. 2.1, the magnitude of
⇀

A was used as the drawing length. But drawing a vector
using its magnitude as length would be awkward if, say, we were interested in vector
⇀
B that points Northwest and has a magnitude of 2 m. To well contain

⇀
B in a drawing

would require a piece of paper about 2 meters square (each edge the length of a
basketball player). This situation moves from difficult to ridiculous if the magnitude
of the vector of interest is 2 km and it would take half an hour to stroll from tail to
tip dragging a purple crayon. Thus in pictures we merely make scale drawings of
vectors with, say, one centimeter of graph paper representing 1 kilometer of vector
magnitude.

⇀
r

⇀

F

Figure 2.2: Position and force vectors are
drawn with different scales.

(Filename:tfigure.posandforce)

The need for scale drawings to represent vectors is apparent for a vector whose
magnitude is not length. Force is a vector since it has magnitude and direction. Say
⇀
F gr is the 700 N force that the ground pushes up on your feet as you stand still. We
can’t draw a line segment with length 700 N for

⇀
F gr because a Newton is a unit of

force not length. A scale drawing is needed.
One often needs to draw vectors with different units on the same picture, as for

showing the position ⇀
r at which a force

⇀
F is applied (see fig. 2.2). In this case

different scale factors are used for the drawing of the vectors that have different units.
Drawing and measuring are tedious and also not very accurate. And drawing in 3

dimensions is particularly hard (given the short supply of 3D graph paper nowadays).
So the magnitudes and directions of vectors are usually defined with numbers and
units rather than scale drawings. Nonetheless, the drawing rules, and the geometric
descriptions in general, still define vector concepts.

Adding vectors
The sum of two vectors

⇀

A and
⇀
B is defined by the tip to tail rule of vector addition

shown in fig. 2.3a for the sum
⇀

C = ⇀

A + ⇀
B. Vector

⇀

A is drawn. Then vector
⇀
B is

drawn with its tail at the tip (or head) of
⇀

A. The sum
⇀

C is the vector from the tail of
⇀

A to the tip of
⇀
B.

The same sum is achieved if
⇀
B is drawn first, as shown in fig. 2.3b. Putting

both of ways of adding
⇀

A and
⇀
B on the same picture draws a parallelogram as

shown in fig.2.3c. Hence the tip to tail rule of vector addition is also called the
parallelogram rule. The parallelogram construction shows the commutative property
of vector addition, namely that

⇀

A+ ⇀
B = ⇀

B + ⇀

A. Note that you can view figs. 2.3a-c
as 3D pictures. In 3D, the parallelogram will generally be on some tilted plane.

⇀

A

⇀

A

⇀

A

⇀

C
⇀

B

⇀

B

⇀

B

⇀

D

⇀

A

⇀

A

⇀

C

⇀

B

(a)

(b)

(c)

(d)

⇀

C

⇀

B

⇀

A+
⇀

B⇀ B
+

⇀ D

Figure 2.3: (a) tip to tail addition of
⇀

A + ⇀
B , (b) tip to tail addition of

⇀
B + ⇀

A,
(c) the parallelogram interpretation of vec-
tor addition, and (d) The associative law of
vector addition.

(Filename:tfigure.tiptotail)

Three vectors are added by the same tip to tail rule. The construction shown in
fig. 2.3d shows that (

⇀

A+ ⇀
B)+ ⇀

D = ⇀

A+ (
⇀
B + ⇀

D) so that the expression
⇀

A+ ⇀
B + ⇀

D

is unambiguous. This is the associative property of vector addition. This picture is
also sensible in 3D where the 6 vectors drawn make up the edges of a tetrahedron
which are generally not coplanar.

With these two laws we see that the sum
⇀

A + ⇀
B + ⇀

D + . . . can be permuted
to

⇀
D + ⇀

A + ⇀
B + . . . or any which way without changing the result. So vector

addition shares the associativity and commutivity of scalar addition that you are used
to e.g., that 3 + (7 + π) = (π + 3) + 7.
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We can reconsider the statement ‘force is a vector’ and see that it hides one of the
basic assumptions in mechanics, namely:

If forces
⇀
F1 and

⇀
F2 are applied to a point on a structure they can be

replaced, for all mechanics considerations, with a single force
⇀
F =

⇀
F1 + ⇀

F2 applied to that point

as illustrated in fig. 2.4. The force
⇀
F is said to be equivalent to the concurrent (acting

at one point) force system consisting of
⇀
F1 and

⇀
F2.

⇀
F1

⇀
F2

⇀
F

Figure 2.4: Two forces acting at a point
may be replaced by their sum for all me-
chanics purposes.

(Filename:tfigure.forcesadd)

Note that two vectors with different dimensions cannot be added. Figure 2.2 on
page 10 can no more sensibly be taken to represent meaningful vector addition than
can the scalar sum of a length and a weight, “2 ft + 3 N”, be taken as meaningful.

Subtraction and the zero vector
⇀

0
Subtraction is most simply defined by inverse addition. Find

⇀

C − ⇀

A means find the
vector which when added to

⇀

A gives
⇀

C. We can draw
⇀

C, draw
⇀

A and then find the
vector which, when added tip to tail to

⇀

A give
⇀

C. Fig. 2.3a shows that
⇀
B answers the

question. Another interpretation comes from defining the negative of a vector − ⇀

A as
⇀

A with the head and tail switched. Again you can see from fig. 2.3b, by imagining
that the head and tail on

⇀

A were switched that
⇀

C + (− ⇀

A) = ⇀
B. The negative of a

vector evidently has the expected property that
⇀

A+ (− ⇀

A) = ⇀

0, where
⇀

0 is the vector
with no magnitude so that

⇀

C + ⇀

0 = ⇀

C for all vectors
⇀

C.

Relative position vectors
The concept of relative position permeates most mechanics equations. The position
of point B relative to point A is represented by the vector ⇀

rB/A (pronounced ‘r of B
relative to A’) drawn from A and to B (as shown in fig. 2.5). An alternate notation for
this vector is ⇀

rAB (pronounced ‘r A B’ or ‘r A to B’). You can think of the position
of B relative to A as being the position of B relative to you if you were standing on
A. Similarly ⇀

rC/B = ⇀
rBC is the position of C relative to B.

Figure. 2.5a shows that relative positions add by the tip to tail rule. That is,

(a)

(b)

⇀
rA

⇀
rB

⇀
rB/A

⇀
rC/B

⇀
rC/A

A

B

C

⇀
rB/A

A

O

B

Figure 2.5: a) Relative position of points
A, B, and C; b) Relative position of points
O, A, and B.

(Filename:tfigure.relpos)

⇀
rC/A = ⇀

rB/A + ⇀
rC/B or ⇀

rAC = ⇀
rAB + ⇀

rBC

so vector addition has a sensible meaning for relative position vectors.
Often when doing problems we pick a distinguished point in space, say a promi-

nent point or corner of a machine or structure, and use it as the origin of a coordinate
system O. The position of point A relative to O is ⇀

rA/0 or ⇀
rOA but we often adopt the

shorthand notation ⇀
rA (pronounced ‘r A’) leaving the reference point O as implied.

Figure. 2.5b shows that
⇀
rB/A = ⇀

rB − ⇀
rA

which rolls off the tongue easily and makes the concept of relative position easier to
remember. 1©

1© For the first 7 chapters of this book you
can just translate ‘relative to’ to mean ‘mi-
nus’ as in english. ‘How much money does
Rudra have relative to Andy?’ means what
is Rudra’s wealth minus Andy’s wealth?
What is the position of B relative to A? It is
the position of B minus the position of A.
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Multiplying by a scalar stretches a vector
Naturally enough 2

⇀
F means

⇀
F + ⇀

F (see fig. 2.6) and 127
⇀

A means
⇀

A added to itself
127 times. Similarly

⇀

A/7 or 1
7

⇀

A means a vector in the direction of
⇀

A that when
added to itself 7 times gives

⇀

A. By combining these two ideas we can define any
rational multiple of

⇀

A. For example 29
13

⇀

Ameans add 29 copies of the vector that when
added 13 times to itself gives

⇀

A. We skip the mathematical fine point of extending
the definition to c

⇀

A for c that are irrational.
We can define −17

⇀

A as 17(− ⇀

A), combining our abilities to negate a vector and
multiply it by a positive scalar. In general, for any positive scalar c we define c

⇀

A

⇀
F

⇀
F

2
⇀
F≡

Figure 2.6: Multiplying a vector by a
scalar stretches it.

(Filename:tfigure.stretch)

as the vector that is in the same direction as
⇀

A but whose magnitude is multiplied by
c. Five times a 5 N force pointed Northeast is a 25 N force pointed Northeast. If c is
negative the direction is changed and the magnitude multiplied by |c|. Minus 5 times
a 5 N force pointed Northeast is a 25 N force pointed SouthWest.

If you imagine stretching a vector addition diagram (e.g., fig. 2.3a on page 10)
equally in all directions the distributive rule for scalar multiplication is apparent:

c(
⇀

A+ ⇀
B) = c

⇀

A+ c
⇀
B

Unit vectors have magnitude 1
Unit vectors are vectors with a magnitude of one. Unit vectors are useful for indi-
cating direction. Key examples are the unit vectors pointed in the positive x, y and z
directions ı̂ (called ‘i hat’ or just ‘i’), ̂ , and k̂. We distinguish unit vectors by hatting
them but any undistinguished vector notation will do (e.g., using i).

An easy way to find a unit vector in the direction of a vector
⇀

A is to divide
⇀

A by
its magnitude. Thus

λ̂A ≡
⇀

A

| ⇀

A|
is a unit vector in the

⇀

A direction. You can check that this defines a unit vector by
looking up at the rules for multiplication by a scalar. Multiplying

⇀

A by the scalar
1/| ⇀

A| gives a new vector with magnitude | ⇀

A|/| ⇀

A| = 1.

A

B

λ̂AB

⇀
F

Figure 2.7: (Filename:tfigure.FAtoB)

A common situation is to know that a force
⇀
F is a yet unknown scalar F multiplied

by a unit vector pointing between known points A and B. (fig. 2.7). We can then write
⇀
F as

⇀
F = F λ̂AB = F

⇀
rAB

|⇀
rAB| = F

⇀
rB − ⇀

rA

|⇀
rB − ⇀

rA|
where we have used λ̂AB as the unit vector pointing from A to B.

Vectors in pictures and sketches.
Some options for drawing vectors are shown in sample ?? on page ??. The two
notations below are the most common.

Symbolic: labeling an arrow with a vector symbol. Indicate a vector, say a force
⇀
F , by drawing an arrow and then labeling it with one of the symbolic notations
above as in figure 2.8a. In this notation, the arrow is only schematic, the mag-
nitude and direction are determined by the algebraic symbol

⇀
F . It is sometimes

helpful to draw the arrow in the direction of the vector and approximately to
scale, but this is not necessary.
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Graphical: a scalar multiplies an arrow. Indicate a vector’s direction by drawing
an arrow with direction indicated by marked angles or slopes. The scalar
multiple with a nearby scalar symbol, say F , as shown in figure 2.8b. This
means F times a unit vector in the direction of the arrow. (Because F might be
negative, sign confusion is common amongst beginners. Please see sample 2.1.)

Combined: graphical representation used to define a symbolic vector. The full
symbolic notation can be used in a picture with the graphical information as a
way of defining the symbol. For example if the arrow in fig. 2.8b were labeled
with an

⇀
F instead of just F we would be showing that

⇀
F is a scalar multiplied

by a unit vector in the direction shown.

F

50o

(a)

(b)

⇀
F

Figure 2.8: Two different ways of draw-
ing a vector (a) shows a labeled arrow. The
magnitude and direction of the vector is
given by the symbol

⇀
F , the drawn arrow

has no quantitative information. (b) shows
an arrow with clearly indicated orientation
next to the scalar F . This means a unit vec-
tor in the direction of the arrow multiplied
by the scalar F .

(Filename:tfigure1.d)

The components of a vector
A given vector, say

⇀
F , can be described as the sum of vectors each of which is parallel

to a coordinate axis. Thus
⇀
F = ⇀

F x + ⇀
F y in 2D and

⇀
F = ⇀

F x + ⇀
F y + ⇀

F z in 3D.
Each of these vectors can in turn be written as the product of a scalar and a unit vector
along the positive axes, e.g.,

⇀
F x = Fx ı̂ (see fig. 2.9). So

⇀
F = ⇀

F x + ⇀
F y = Fx ı̂ + Fy ̂ (2D)

or
⇀
F = ⇀

F x + ⇀
F y + ⇀

F z = Fx ı̂ + Fy ̂ + Fz k̂. (3D)

The scalars Fx , Fy , and Fz are called the components of the vector with respect to
the axes xyz. The components may also be thought of as the orthogonal projections
(the shadows) of the vector onto the coordinate axes.

Because the list of components is such a handy way to describe a vector we
have a special notation for it. The bracketed expression [

⇀
F ]xyz stands for the list of

components of
⇀
F presented as a horizontal or vertical array (depending on context),

as shown below.

[
⇀
F ]xyz = [Fx , Fy, Fz] or [

⇀
F ]xyz =


 Fx

Fy

Fz


 .

If we had an xy coordinate system with x pointing East and y pointing North
we could write the components of a 5 N force pointed Northeast as [

⇀
F ]xy =

[(5/
√

2) N, (5/
√

2) N].

x

y

ı̂

̂

⇀
F

⇀
F

⇀
F

Fx

Fx

Fz

Fy

FO

O

y

x
y

z

⇀
F

⇀
F x

⇀
F y

⇀
F y

⇀
F x

⇀
F z

Figure 2.9: A vector can be broken into
a sum of vectors, each parallel to the axis
of a coordinate system. Each of these is a
component multiplied by a unit vector along
the coordinate axis, e.g.,

⇀
F x = Fx ı̂.

(Filename:tfigure.vectproject)

Note that the components of a vector in some crooked coordinate system x ′y′z′ are
different than the coordinates for the same vector in the coordinate system xyz because
the projections are different. Even though

⇀
F = ⇀

F it is not true that [
⇀
F ]xyz = [

⇀
F ]x ′ y′z′

(see fig. 2.19 on page 25). In mechanics we often make use of multiple coordinate
systems. So to define a vector by its components the coordinate system used must be
specified.

Rather than using up letters to repeat the same concept we sometimes label the
coordinate axes x1, x2 and x3 and the unit vectors along them ê1, ê2, and ê3 (thus
freeing our minds of the silently pronounced letters y,z,j, and k).

Manipulating vectors by manipulating components
Because a vector can be represented by its components (once given a coordinate
system) we should be able to relate our geometric understanding of vectors to their
components. In practice, when push comes to shove, most calculations with vectors
are done with components.
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Adding and subtracting with components

Because a vector can be broken into a sum of orthogonal vectors, because addition is
associative, and because each orthogonal vector can be written as a component times
a unit vector we get the addition rule:

[
⇀

A+ ⇀
B]xyz = [(Ax + Bx ), (Ay + By), (Az + Bz)]

which can be described by the tricky words ‘the components of the sum of two vectors
are given by the sums of the corresponding components.’ Similarly,

[
⇀

A− ⇀
B]xyz = [(Ax − Bx ), (Ay − By), (Az − Bz)]

Multiplying a vector by a scalar using components

The vector
⇀

A can be decomposed into the sum of three orthogonal vectors. If
⇀

A is
multiplied by 7 than so must be each of the component vectors. Thus

[c
⇀

A]xyz = [cAx , cAy, cAz].

The components of a scaled vector are the corresponding scaled components.

Magnitude of a vector using components
The Pythagorean theorem for right triangles (‘A2 + B2 = C2’) tells us that

| ⇀
F | =

√
F2

x + F2
y , (2D)

| ⇀
F | =

√
F2

x + F2
y + F2

z . (3D)

To get the result in 3D the 2D Pythagorean theorem needs to be applied twice suc-
cessively, first to get the magnitude of the sum

⇀
F x + ⇀

F y and once more to add in
⇀
F z .



2.1. Vector notation and vector addition 15

SAMPLE 2.1 Drawing a vector from its components: Draw the vector ⇀
r = 3 ftı̂ −

2 ft̂ using its components.

A

x

y

3 ft

2 ft ⇀
r

Figure 2.10: A vector ⇀
r = 3 ftı̂ − 2 ft̂

is drawn by locating its end point which is
3 units away along the x-axis and 2 units
away along the negative y-axis.

(Filename:sfig1.2.4a)

Solution To draw ⇀
r using its components, we first draw the axes and measure 3

units (any units that we choose on the ruler) along the x-axis and 2 units along the
negative y-axis. We mark this point as A (say) on the paper and draw a line from the
origin to the point A. We write the dimensions ‘3 ft’ and ‘2 ft’ on the figure. Finally,
we put an arrowhead on this line pointing towards A.

SAMPLE 2.2 Drawing a vector from its length and direction: A vector ⇀
r is 3.6 ft

long and is directed 33.7o from the x-axis towards the negative y-axis. Draw ⇀
r .

A

x

y

⇀
r

33.7o

3.6 units

Figure 2.11: A vector ⇀
r with a given

length (3.6 ft ) and direction (slope angle
θ = −33.7o ) is drawn by measuring its
length along a line drawn at angle θ from
the positive x-axis.

(Filename:sfig1.2.4b)

Solution We first draw the x and y axes and then draw ⇀
r as a line from the origin at

an angle −33.7o from the x-axis (minus sign means measuring clockwise), measure
3.6 units (magnitude of ⇀

r ) along this line and finally put an arrowhead pointing away
from the origin.

Comments: Note that this is the same vector as in Sample 2.1. In fact, you can easily
verify that

rx = r cos θ = 3.6 ft · cos(−33.7o) = 3 ft

and
ry = r sin θ = 3.6 ft · sin(−33.7o) = −2 ft.

Thus
⇀
r = rx ı̂ + ry ̂ = (3 ft)ı̂ − (2 ft)̂

as given in Sample 2.1.
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SAMPLE 2.3 Various ways of representing a vector: A vector
⇀
F = 3 Nı̂ + 3 N̂

is represented in various ways, some incorrect, in the following figures. The base
vectors used are shown first. Comment on each representation, whether it is correct
or incorrect, and why.

45o

(a)

3
√

2 N
3N

3N
(b) (c)

-3
√

2 N
45o

(d)

(i) (j)

3
√

2 Nı̂′

3
√

2 Nı̂′ 3
√

2 N ′

(e)

3 Nı̂ + ˆ3 Nj

̂

3N 3N

(f)

3N

(g)

45o

(h)

3
√

2 Nı̂
45o

45o
ı̂

̂ ı̂
′

̂
′

Figure 2.12: (Filename:sfig2.vectors.rep)

Solution The given vector is a force with components of 3 N each in the positive
ı̂ and ̂ directions using the unit vectors ı̂ and ̂ shown in the box above. The unit
vectors ı̂′, and ̂ ′ are also shown.

a) Correct: 3
√

2 Nı̂
′. From the picture defining ı̂

′, you can see that ı̂′ is a unit
vector with equal components in the ı̂ and ̂ directions; i.e., it is parallel to

⇀
F . So

⇀
F is given by its magnitude

√
(3 N)2 + (3 N)2 times a unit vector in its direction, in

this case ı̂′. It is the same vector.

b) Correct: Here two vectors are shown: one with magnitude 3 N in the direction
of the horizontal arrow ı̂, and one with magnitude 3 N in the direction of the vertical
arrow ̂ . When two forces act on an object at a point, their effect is additive. So the
net vector is the sum of the vectors shown. That is, 3 Nı̂+3 N̂ . It is the same vector.

c) Correct: Here we have a scalar 3
√

2 N next to an arrow. The vector described is
the scalar multiplied by a unit vector in the direction of the arrow. Since the arrow’s
direction is marked as the same direction as ı̂′, which we already know is parallel to
⇀
F , this vector represents the same vector

⇀
F . It is the same vector.

d) Correct: The scalar −3
√

2 N is multiplied by a unit vector in the direction
indicated, −ı̂′. So we get (−3

√
2 N)(−ı̂′) which is 3

√
2 Nı̂′ as before. It is the same

vector.

e) Incorrect: 3
√

2 N̂ ′. The magnitude is right, but the direction is off by 90
degrees. It is a different vector.

f) Incorrect: 3 Nı̂ − 3 N̂ . The ı̂ component of the vector is correct but the ̂

component is in the opposite direction. The vector is in the wrong direction by 90
degrees. It is a different vector.
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g) Incorrect: Right direction but the magnitude is off by a factor of
√

2.

h) Incorrect: The magnitude is right. The direction indicated is right. But, the
algebraic symbol 3

√
2 Nı̂ takes precedence and it is in the wrong direction (ı̂ instead

of ı̂′). It is a different vector.

i) Correct: A labeled arrow. The arrow is only schematic. The algebraic symbols
3
√

2 Nı̂′ define the vector. We draw the arrow to remind us that there is a vector
to represent. The tip or tail of the arrow would be drawn at the point of the force
application. In this case, the arrow is drawn in the direction of

⇀
F but it need not.

j) Correct: Like (i) above, the directional and magnitude information is in the
algebraic symbols 3 Nı̂ + 3 N̂ . The arrow is there to indicate a vector. In this case,
it points in the wrong direction so is not ideally communicative. But (j) still correctly
represents the given vector. It is the same vector.
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SAMPLE 2.4 Adding vectors: Three forces,
⇀
F1 = 2 Nı̂+ 3 N̂ ,

⇀
F2 = −10 N̂ , and

⇀
F3 = 3 Nı̂ + 1 N̂ − 5 Nk̂, act on a particle. Find the net force on the particle.

Solution The net force on the particle is the vector sum of all the forces, i.e.,
⇀
Fnet = ⇀

F1 + ⇀
F2 + ⇀

F3

= (2 Nı̂ + 3 N̂) + (−10 N̂) + (3 Nı̂ + 1 N̂ − 5 Nk̂)

= 2 Nı̂ + 3 N̂ + 0k̂
+ 0ı̂ − 10 N̂ + 0k̂
+ 3 Nı̂ + 1 N̂ − 5k̂

= (2 N + 3 N)ı̂ + (3 N − 10 N + 1 N)̂ + (−5 N)k̂

= 5 Nı̂ − 6 N̂ − 5 Nk̂.

⇀
Fnet = 5 Nı̂ − 6 N̂ − 5 Nk̂

Comments: In general, we do not need to write the summation so elaborately. Once
you feel comfortable with the idea of summing only similar components in a vector
sum, you can do the calculation in two lines.

SAMPLE 2.5 Subtracting vectors: Two forces
⇀
F1 and

⇀
F2 act on a body. The net

force on the body is
⇀
Fnet = 2 Nı̂. If

⇀
F1 = 10 Nı̂ − 10 N̂ , find the other force

⇀
F2.

Solution
⇀
Fnet = ⇀

F1 + ⇀
F2

⇒ ⇀
F2 = ⇀

Fnet − ⇀
F1

= 2 Nı̂ − (10 Nı̂ − 10 N̂)

= (2 N − 10 N)ı̂ − (−10 N)̂

= −8 Nı̂ + 10 N̂ .

⇀
F2 = −8 Nı̂ + 10 N̂

SAMPLE 2.6 Scalar times a vector: Two forces acting on a particle are
⇀
F1 =

100 Nı̂ − 20 N̂ and
⇀
F2 = 40 N̂ . If

⇀
F1 is doubled, does the net force double?

Solution
⇀
Fnet = ⇀

F1 + ⇀
F2 = (100 Nı̂ − 20 N̂) + (40 N̂)

= 100 Nı̂ + 20 N̂

After
⇀
F1 is doubled, the new net force

⇀
F(net)2

is

⇀
F(net)2

= 2
⇀
F1 + ⇀

F2 = 2(100 Nı̂ − 20 N̂) + (40 N̂)

= 200 Nı̂ − 40 N̂ + 40 N̂

= 200 Nı̂ �= 2 (100 Nı̂ + 20 N̂)︸ ︷︷ ︸
⇀
Fnet

No, the net force does not double.
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SAMPLE 2.7 Magnitude and direction of a vector: The velocity of a car is given
by ⇀

v = (30ı̂ + 40̂) mph.

(a) Find the speed (magnitude of ⇀
v ) of the car.

(b) Find a unit vector in the direction of ⇀
v .

(c) Write the velocity vector as a product of its magnitude and the unit vector.

Solution

(a) Magnitude of ⇀
v : The magnitude of a vector is the length of the vector. It is a

scalar quantity, usually represented by the same letter as the vector but without
the vector notation (i.e. no bold face, no underbar). It is also represented by
the modulus of the vector (the vector written between two vertical lines). The
length of a vector is the square root of the sum of squares of its components.
Therefore, for

⇀
v = 30 mphı̂ + 40 mph̂ ,

v = |⇀
v | =

√
v2

x + v2
y

=
√

(30 mph)2 + (40 mph)2

= 50 mph

which is the speed of the car.

speed = 50 mph

(b) Direction of ⇀
v as a unit vector along ⇀

v : The direction of a vector can be spec-
ified by specifying a unit vector along the given vector. In many applications
you will encounter in dynamics, this concept is useful. The unit vector along a
given vector is found by dividing the given vector with its magnitude. Let λ̂v

be the unit vector along ⇀
v . Then,

λ̂v =
⇀
v

|⇀
v | = 30 mphı̂ + 40 mph̂

50 mph
= 0.6ı̂ + 0.8̂ . (unit vectors have no units!)

λ̂v = 0.6ı̂ + 0.8̂

(c) ⇀
v as a product of its magnitude and the unit vector λ̂v: A vector can be
written in terms of its components, as given in this problem, or as a product of
its magnitude and direction (given by a unit vector). Thus we may write,

⇀
v = |⇀

v |λ̂v = 50 mph(0.6ı̂ + 0.8̂)

which, of course, is the same vector as given in the problem.

⇀
v = 50 mph(0.6ı̂ + 0.8̂)
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SAMPLE 2.8 Position vector from the origin: In the xyz coordinate system, a
particle is located at the coordinate (3m, 2m, 1m). Find the position vector of the
particle.

Solution The position vector of the particle at P is a vector drawn from the origin

y

x

z

2 m

3 m1 m

⇀
r

(3m,2m,1m)

Figure 2.13: The position vector of the
particle is a vector drawn from the origin of
the coordinate system to the position of the
particle.

(Filename:sfig2.vec1.6)

of the coordinate system to the position P of the particle. See Fig. 2.13. We can write
this vector as

⇀
rP = (3 m)ı̂ + (2 m)̂ + (1 m)k̂

or ⇀
rP = (3ı̂ + 2̂ + k̂) m.

⇀
rP = 3 mı̂ + 2 m̂ + 1 mk̂

SAMPLE 2.9 Relative position vector: Let A (2m, 1m, 0) and B (0, 3m, 2m) be two
points in the xyz coordinate system. Find the position vector of point B with respect
to point A, i.e., find ⇀

rAB (or ⇀
rB/A).

Solution From the geometry of the position vectors shown in Fig. 2.14 and the rules

y

x

z

A (2,1,0)

B (0,3,2)

2

1
3

2

⇀
rA

⇀
rAB

⇀
rB

Figure 2.14: The position vector of B
with respect to A is found from ⇀

rAB =
⇀
rB − ⇀

rA.

(Filename:sfig2.vec1.7)

of vector sums, we can write,

⇀
rB = ⇀

rA + ⇀
rAB

⇒ ⇀
rAB = ⇀

rB − ⇀
rA

= (0ı̂ + 3 m̂ + 2 mk̂) − (2 mı̂ + 1 m̂ + 0k̂)

= −2 mı̂ + 2 m̂ + 2 mk̂.

⇀
rAB ≡ ⇀

rB/A = −2 mı̂ + 2 m̂ + 2 mk̂
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SAMPLE 2.10 Finding a force vector given its magnitude and line of action: A

x

y

z

A

B
1m

0.6 m

0.5 m

0.2m
0.2 m

⇀
F

Figure 2.15: (Filename:sfig1.2.2)

string is pulled with a force F = 100 N as shown in the Fig. 2.15. Write F as a vector.

Solution A vector can be written, as we just showed in the previous sample problem,
as the product of its magnitude and a unit vector along the given vector. Here, the
magnitude of the force is given and we know it acts along AB. Therefore, we may
write

⇀
F = F λ̂AB

where λ̂AB is a unit vector along AB. So now we need to find λ̂AB . We can easily

x

y

z

A

B1m

0.6 m

0.5 m

0.2m

0.2 m

⇀
rA ⇀

r B

⇀
rAB

Figure 2.16: ⇀
r AB = ⇀

r B − ⇀
r A.

(Filename:sfig1.2.2b)

find λ̂AB if we know vector AB. Let us denote vector AB by ⇀
r AB (sometimes we

will also write it as ⇀
r B/A to represent the position of B with respect to A as a vector).

Then,

λ̂AB =
⇀
r AB

|⇀
r AB | .

To find ⇀
r AB , we note that (see Fig. 2.16)

⇀
r A + ⇀

r AB = ⇀
r B

where ⇀
r A and ⇀

r B are the position vectors of point A and point B respectively. Hence,

⇀
r B/A = ⇀

r AB = ⇀
r B − ⇀

r A

= (0.2 mı̂ + 0.6 m̂ + 0.2 mk̂) − (0.5 mı̂ + 1.0 mk̂)

= −0.3 mı̂ + 0.6 m̂ − 0.8 mk̂.

Therefore,

λ̂AB = −0.3 mı̂ + 0.6 m̂ − 0.8 mk̂√
(−0.3)2 + (0.6)2 + (−0.8)2 m

= −0.29ı̂ + 0.57̂ − 0.77k̂,

and, finally,

⇀
F = (

F︷ ︸︸ ︷
100 N) λ̂AB

= −29 Nı̂ + 57 N̂ − 77 Nk̂.

⇀
F = −29 Nı̂ + 57 N̂ − 77 Nk̂
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SAMPLE 2.11 Adding vectors on computers: The following six forces act at different
points of a structure.

⇀
F1 = −3 N̂ ,

⇀
F2 = 20 Nı̂ − 10 N̂ ,

⇀
F3 = 1 Nı̂ + 20 N̂ −

5 Nk̂,
⇀
F4 = 10 Nı̂,

⇀
F5 = 5 N(ı̂ + ̂ + k̂),

⇀
F6 = −10 Nı̂ − 10 N̂ + 2 Nk̂.

(a) Write all the force vectors in column form.
(b) Find the net force by hand calculation.
(c) Write a computer program to sum n vectors, each of length 3. Use your program

to compute the net force.

Solution

(a) The 3-D vector
⇀
F = Fx ı̂ + Fy ̂ + Fz k̂ is represented as a column (or a row)

as follows:

[
⇀
F ] =


 Fx

Fy

Fz




xyz

Following this convention, we write the given forces as

[
⇀
F1] =


 0

−3 N
0




xyz

, [
⇀
F2] =


 20 N

−10 N
0




xyz

, · · · , [
⇀
F6] =


 −10 N

−10 N
2 N




xyz

(b) The net force,
⇀
Fnet = ⇀

F1 + ⇀
F2 + ⇀

F3 + ⇀
F4 + ⇀

F5 + ⇀
F6 or

[
⇀
Fnet] =


 0 20 1 10 5 −10

−3 + −10 + 20 + 0 + 5 + −10
0 0 −5 0 5 2




xyz

N

=

 26

2
2




xyz

N

(c) The steps to do this addition on computers are as follows.

• Enter the vectors as rows or columns:

F1 = [0 -3 0]
F2 = [20 -10 0]
F3 = [1 20 -5]
F4 = [10 0 0]
F5 = [5 5 5]
F6 = [-10 -10 2]

• Sum the vectors, using a summing operation that automatically does ele-
ment by element addition of vectors:

Fnet = F1 + F2 + F3 + F4 + F5 + F6

• The computer generated answer is:

Fnet = [26 2 2].

⇀
Fnet = 26 Nı̂ + 2 N̂ + 2 Nk̂
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2.2 The dot product of two vectors
The dot product is used to project a vector in a given direction, to reduce a vector
to components, to reduce vector equations to scalar equations, to define work and
power, and to help solve geometry problems.

The dot product of two vectors
⇀

A and
⇀
B is written

⇀

A · ⇀
B (pronounced ‘A dot B’).

The dot product of
⇀

A and
⇀
B is the product of the magnitudes of the two vectors times

a number that expresses the degree to which
⇀

A and
⇀
B are parallel: cos θAB , where

θAB is the angle between
⇀

A and
⇀
B. That is,

⇀
B

⇀

A
θAB

B

A

cosθAB

co
sθ A

B

Figure 2.17: The dot product of
⇀

A and
⇀
B is a scalar and so is not easily drawn. It is
given by

⇀

A · ⇀
B = AB cos θAB which is A

times the projection of
⇀
B in the A direction

and also B times the projection of
⇀

A in the
B direction.

(Filename:tfigure1.11)

⇀

A · ⇀
B

de f= | ⇀

A| | ⇀
B| cos θAB

which is sometimes written more concisely as
⇀

A · ⇀
B = AB cos θ . One special case

is when cos θAB = 1,
⇀

A and
⇀
B are parallel, and

⇀

A · ⇀
B = AB. Another is when

cos θAB = 0,
⇀

A and
⇀
B are perpendicular, and

⇀

A · ⇀
B = 0. 1©

1© If you don’t know, almost without
a thought, that cos 0 = 1, cos π/2 =
0, sin 0 = 0, and sin π/2 = 1 now is as
good a time as any to draw as many trian-
gles and unit circles as it takes to cement
these special cases into your head.

The dot product of two vectors is a scalar. So the dot product is sometimes called
the scalar product. Using the geometric definition of dot product, and the rules for
vector addition we have already discussed, you can convince yourself of (or believe)
the following properties of dot products.

• ⇀

A · ⇀
B = ⇀

B · ⇀

A commutative law,
AB cos θ = B A cos θ

• (a
⇀

A) · ⇀
B = ⇀

A · (a
⇀
B) = a(

⇀

A · ⇀
B) a distributive law,

(a A)B cos θ = A(aB) cos θ

• ⇀

A · (
⇀
B + ⇀

C) = ⇀

A · ⇀
B + ⇀

A · ⇀

C another distributive law,
the projection of

⇀
B+ ⇀

C onto
⇀

A is the
sum of the two separate projections

• ⇀

A · ⇀
B = 0 if

⇀

A ⊥ ⇀
B perpendicular vectors have zero for

a dot product, AB cos π/2 = 0

• ⇀

A · ⇀
B = | ⇀

A|| ⇀
B| if

⇀

A ‖ ⇀
B parallel vectors have the product of

their magnitudes for a dot product,
AB cos 0 = AB. In particular,

⇀

A ·
⇀

A = A2 or | ⇀

A| =
√ ⇀

A · ⇀

A

• ı̂ · ı̂ = ̂ · ̂ = k̂ · k̂ = 1,

ı̂ · ̂ = ̂ · k̂ = k̂ · ı̂ = 0
The standard base vectors used with
cartesian coordinates are unit vectors
and they are perpendicular to each
other. In math language they are ‘or-
thonormal.’

• ı̂
′ · ı̂′ = ̂

′ · ̂ ′ = k̂
′ · k̂′ = 1,

ı̂
′ · ̂ ′ = ̂

′ · k̂′ = k̂
′ · ı̂′ = 0

The standard crooked base vectors
are orthonormal.

The identities above lead to the following equivalent ways of expressing the dot
product of

⇀

A and
⇀
B (see box 2.2 on page 24 to see how the component formula

follows from the geometric definition above):
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⇀

A · ⇀
B = | ⇀

A|| ⇀
B| cos θAB

= Ax Bx + Ay By + Az Bz (component formula for dot product)

= Ax ′ Bx ′ + Ay′ By′ + Az′ Bz′

= | ⇀

A| · [projection of
⇀
B in the

⇀

A direction]

= | ⇀
B| · [projection of

⇀

A in the
⇀
B direction]

Using the dot product to find components
To find the x component of a vector or vector expression one can use the dot product
of the vector (or expression) with a unit vector in the x direction as in figure 2.18. In
particular,

vx = ⇀
v · ı̂.

x

y

vx

v

ı̂

̂

Figure 2.18: The dot product with unit
vectors gives projection. For example,
vx = ⇀

v ·ı̂.
(Filename:tfigure1.3.dotprod)

This idea can be used for finding components in any direction. If one knows the

orientation of the crooked unit vectors ı̂′, ̂ ′
, k̂

′
relative to the standard bases ı̂, ̂ , k̂

then all the angles between the base vectors are known. So one can evaluate the dot
products between the standard base vectors and the crooked base vectors. In 2-D

2.3 THEORY
Using the geometric definition of the dot product to find the dot product in terms of components

Vectors are essentially a geometric concept and we have conse-
quently defined the dot product geometrically as

⇀

A · ⇀
B = ABcosθ .

Almost 400 years ago René Descartes discovered that you could do
geometry by doing algebra on the coordinates of points.

So we should be able to figure out the dot product of two vectors
by knowing their components. The central key to finding this com-
ponent formula is the distributive law (

⇀

A·( ⇀
B+ ⇀

C) = ⇀

A· ⇀
B+ ⇀

A· ⇀

C).

If we write
⇀

A = Ax ı̂ + Ay ̂ + Az k̂ and
⇀
B = Bx ı̂ + By ̂ + Bz k̂

then we just repeatedly use the distributive law as follows.
⇀

A · ⇀
B = (Ax ı̂ + Ay ̂ + Az k̂) · (Bx ı̂ + By ̂ + Bz k̂)

= (Ax ı̂ + Ay ̂ + Az k̂) · Bx ı̂ +
(Ax ı̂ + Ay ̂ + Az k̂) · By ̂ +
(Ax ı̂ + Ay ̂ + Az k̂) · Bz k̂

= Ax Bx ı̂ · ı̂ + Ay Bx ̂ · ı̂ + Az Bx k̂ · ı̂ +
Ax By ı̂ · ̂ + Ay By ̂ · ̂ + Az By k̂ · ̂ +
Ax Bz ı̂ · k̂ + Ay Bz ̂ · k̂ + Az Bz k̂ · k̂

= Ax Bx (1) + Ay Bx (0) + Az Bx (0) +

Ax By(0) + Ay By(1) + Az By(0) +
Ax Bz(0) + Ay Bz(0) + Az Bz(1)

⇒ ⇀

A · ⇀
B = Ax Bx + Ay By + Az Bz (3D).

⇒ ⇀

A · ⇀
B = Ax Bx + Ay By (2D).

The demonstration above could have been carried out using a
different orthogonal coordinate system x ′y′z′ that was crooked with
respect to the xyz system. By identical reasoning we would find
that

⇀

A · ⇀
B = Ax ′ Bx ′ + Ay′ By′ + Az′ Bz′ . Even though all of the

numbers in the list [Ax , Ay , Az] might be different from the numbers

in the list [Ax ′ , Ay′ , Az′ ] and similarly all the list [
⇀
B]xyz might be

different than the list [
⇀
B]x ′ y′z′ , so (somewhat remarkably),

Ax Bx + Ay By + Az Bz = Ax ′ Bx ′ + Ay′ By′ + Az′ Bz′ .

If we call our coordinate x1, x2, and x3; and our unit base
vectors ê1,ê2, and ê3 we would have

⇀

A = A1ê1 + A2ê2 + A3ê3
and

⇀
B = B1ê1 + B2ê2 + B3ê3 and the dot product has the tidy

form:
⇀

A · ⇀
B = A1 B1 + A2 B2 + A3 B3 =

3∑
i=1

Ai Bi .
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assume that the dot products between the standard base vectors and the vector ̂ ′
(i.e., . ı̂ · ̂ ′

, ̂ · ̂ ′) are known. One can then use the dot product to find the x ′y′
components (Ax ′ , Ay′) from the xy coordinates (Ax , Ay). For example, as shown in
2-D in figure 2.19, we can start with the obvious equation

x

x'

y
y'

Ax

Ay

Ax'

Ay'

⇀

A = Ax ı̂ + Ay ̂

⇀

A = Ax ′ ı̂′ + Ay′ ̂ ′

θ

ı̂

̂

ı̂
′

̂
′

Figure 2.19: The dot product helps
find components in terms of crooked unit
vectors. For example, Ay′ = ⇀

A·̂ ′ =
Ax(ı̂·̂ ′

) + Ay(ı̂·̂ ′
) = Ax(− sin θ) +

Ay(cos θ).
(Filename:tfigure1.3.dotprod.a)

⇀

A = ⇀

A

and dot both sides with ̂ ′ to get:

⇀

A · ̂ ′ = ⇀

A · ̂ ′

(Ax ′ ı̂′ + Ay′ ̂ ′
)︸ ︷︷ ︸

⇀

A

·̂ ′ = (Ax ı̂ + Ay ̂)︸ ︷︷ ︸
⇀

A

·̂ ′

Ax ′ ı̂′ · ̂ ′︸ ︷︷ ︸
0

+Ay′ ̂ ′ · ̂ ′︸ ︷︷ ︸
1

= Ax ı̂ · ̂ ′ + Ay ̂ · ̂ ′

Ay′ = Ax (ı̂ · ̂ ′
)︸ ︷︷ ︸

− sin θ

+Ay (̂ · ̂ ′
)︸ ︷︷ ︸

cos θ

Similarly, one could find the component Ax ′ using a dot product with ı̂′.
This technique of finding components is useful when one problem uses more than

one base vector system.

Using dot products with other than ı̂, ̂ , or k̂

It is often useful to use dot products to get scalar equations using vectors other than
ı̂, ̂ , and k̂.

Example: Getting scalar equations without dotting with ı̂, ̂ , or k̂

Given the vector equation.

−mg̂ + N n̂ = maλ̂

where it is known that the unit vector n̂ is perpendicular to the unit vector
λ̂, we can get a scalar equation by dotting both sides with λ̂ which we
write as follows {

(−mg̂ + N n̂) = (maλ̂)
}

·λ̂
(−mg̂ + N n̂)·λ̂ = (maλ̂)·λ̂

−mg̂ ·λ̂+ N n̂·λ̂︸︷︷︸
0

= ma λ̂·λ̂︸︷︷︸
1

−mg̂ ·λ̂ = ma.

Then we find ̂ ·λ̂ as the cosine of the angle between ̂ and λ̂. We have
thus turned our vector equation into a scalar equation and eliminated the
unknown N at the same time. ✷
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Using dot products to solve geometry problems
We have seen how a vector can be broken down into a sum of components each
parallel to one of the orthogonal base vectors. Another useful decomposition is this:
Given any vector

⇀

A and a unit vector λ̂ the vector
⇀

A can be written as the sum of two
parts,

⇀

A = ⇀

A
‖ + ⇀

A
⊥

where
⇀

A
‖ is parallel to λ̂ and

⇀

A
⊥ is perpendicular to λ̂ (see fig. 2.20). The part parallel

to λ̂ is a vector pointed in the λ̂ direction that has the magnitude of the projection of
⇀

A in that direction,
⇀

A
‖ = (

⇀

A · λ̂)λ̂.

The perpendicular part of
⇀

A is just what you get when you subtract out the parallel
part, namely,

⇀

A
⊥ = ⇀

A− ⇀

A
‖ = ⇀

A− (
⇀

A · λ̂)λ̂

The claimed properties of the decomposition can now be checked, namely that
⇀

A =

⇀

A
⊥

⇀

A

λ̂

⇀

A
||

Figure 2.20: For any
⇀

A and λ̂,
⇀

A can be

decomposed into a part parallel to λ̂ and a

part perpendicular to λ̂.
(Filename:tfigure.Graham1) ⇀

A
‖ + ⇀

A
⊥ (just add the 2 equations above and see), that

⇀

A
‖ is in the direction of λ̂

(its a scalar multiple), and that
⇀

A
⊥ is perpendicular to λ̂ (evaluate

⇀

A
⊥ · λ̂ and find 0).

Example. Given the positions of three points ⇀
rA,

⇀
rB, and ⇀

rC what is the
position of the point D on the line AB that is closest to C? The answer
is,

⇀
rD = ⇀

rA + ⇀
rC/A

‖

where ⇀
rC/A

‖ is the part of ⇀
rC/A that is parallel to the line segment AB.

Thus,
⇀
rD = ⇀

rA + (
⇀
rC − ⇀

rA) ·
⇀
rB − ⇀

rA

|⇀
rB − ⇀

rA| .

✷

Likewise we could find the parts of a vector
⇀

A in and perpendicular to a given
plane. If the plane is defined by two vectors that are not necessarily orthogonal we
could follow these steps. First find two vectors in the plane that are orthogonal, using
the method above. Next subtract from

⇀

A the part of it that is parallel to each of the
two orthogonal vectors in the plane. In math lingo the execution of this process goes
by the intimidating name ‘Graham Schmidt orthogonalization.’

A Given vector can be written as various sums and products
A vector

⇀

A has many representations. The equivalence of different representations
of a vector is partially analogous to the case of a dimensional scalar which has the
same value no matter what units are used (e.g., the mass m = 4.41 lbm is equal to
m = 2 kg). Here are some common representations of vectors.

Scalar times a unit vector in the vector’s direction.
⇀
F = F λ̂ means the scalar F

multiplied by the unit vector λ̂.
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Sum of orthogonal component vectors.
⇀
F = ⇀

F x + ⇀
F y is a sum of two vectors

parallel to the x and y axis, respectively. In three dimensions,
⇀
F = ⇀

F x + ⇀
F y +

⇀
F z .

Components times unit base vectors.
⇀
F = Fx ı̂ + Fy ̂ or

⇀
F = Fx ı̂ + Fy ̂ + Fz k̂

in three dimensions. One way to think of this sum is to realize that
⇀
F x = Fx ı̂,

⇀
F y = Fy ̂ and

⇀
F z = Fz k̂.

Components times rotated unit base vectors.
⇀
F = F ′

x i′ + F ′
yj′ or

⇀
F = F ′

x i′ +
F ′

yj′ + F ′
zk′ in three dimensions. Here the base vectors marked with primes,

i′, j′ and k′, are unit vectors parallel to some mutually orthogonal x ′, y′, and
z′ axes. These x ′, y′, and z′ axes may be crooked in relation to the x , y, and z
axis. That is, the x ′ axis need not be parallel to the x axis, the y′ not parallel to
the y axis, and the z′ axis not parallel to the z axis.

Components times other unit base vectors. If you use polar or cylindrical coordi-
nates the unit base vectors are êθ and êR , so in 2-D ,

⇀
F = FR êR + Fθ êθ and

in 3-D,
⇀
F = FR êR + Fθ êθ + Fz k̂. If you use ‘path’ coordinates, you will use

the path-defined unit vectors êt , ên , and êb so in 2-D
⇀
F = Ft êt + Fn ên . In 3-D

⇀
F = Ft êt + Fn ên + Fbêb.

A list of components. [
⇀
F ]xy = [Fx , Fy] or [

⇀
F ]xyz = [Fx , Fy, Fz] in three dimen-

sions. This form coincides best with the way computers handle vectors. The
row vector [Fx , Fy] coincides with Fx ı̂ + Fy ̂ and the row vector [Fx , Fy, Fz]
coincides with Fx ı̂ + Fy ̂ + Fz k̂.

In summary:
⇀

A = ⇀

A

= | ⇀

A|λ̂A = Aλ̂A, where λ̂A ‖ ⇀

A, A = | ⇀

A| and |λ̂A| = 1

= ⇀

Ax + ⇀

Ay + ⇀

Az where
⇀

Ax ,
⇀

Ay,
⇀

Az are parallel to the x, y, z axis

= Ax ı̂ + Ay ̂ + Az k̂, where ı̂, ̂ , k̂ are parallel to the x, y, z axis

= Ax ′ ı̂′ + Ay′ ̂ ′ + Az′ k̂
′
, where ı̂′, ̂ ′

, k̂
′

are ‖ to skewed x ′, y′, z′ axes

= AR êR + Aθ êθ + Az k̂, using polar coordinate basis vectors.

[
⇀

A]xyz = [Ax , Ay, Az] [
⇀

A]xyz stands for the component list in xyz

[
⇀

A]x ′ y′z′ = [Ax ′ , Ay′ , Az′ ] [
⇀

A]x ′ y′z′ stands for the component list in x ′y′z′

Vector algebra
Vectors are algebraic quantities and manipulated algebraically in equations. The rules
for vector algebra are similar to the rules for ordinary (scalar) algebra. For example,
if vector

⇀

A is the same as the vector
⇀
B,

⇀

A = ⇀
B. For any scalar a and any vector

⇀

C,
we then

⇀

A+ ⇀

C = ⇀
B + ⇀

C,

a
⇀

A = a
⇀
B, and

⇀

A · ⇀

C = ⇀
B · ⇀

C,

because performing the same operation on equal quantities maintains the equality.
The vectors

⇀

A,
⇀
B, and

⇀

C might themselves be expressions involving other vectors.
The equations above show the allowable manipulations of vector equations:

adding a common term to both sides, multiplying both sides by a common scalar,
taking the dot product of both sides with a common vector.

All the distributive, associative, and commutative laws of ordinary addition and
multiplication hold. 1©.

1©Caution: But you cannot divide a vector
by a vector or a scalar by a vector: 7/ı̂
and

⇀

A/
⇀

C are nonsense expressions. And it
does not make sense to add a vector and a
scalar, 7 + ⇀

A is a nonsense expression.
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Vector calculations on the computer
Most computer programs deal conveniently with lists of numbers, but not with vec-
tor notation and units. Thus our computer calculations will be in terms of vector
components with the units left off. For example, when we write on the computer

F = [ 3 5 -7]

we take that to be the plain computer typing for [
⇀
F ]xyz = [3 N, 5 N, −7 N]. This

assumes that we are clear about what units and what coordinate system we are using.
In particular, at this point in the course, you should only use one coordinate system
in one problem in computer calculations.

Most computer languages will allow vector addition by a sequence of lines some-
thing like this:

A = [ 1 2 5 ]
B = [ -2 4 19 ]
C = A + B

scaling (stretching) like this:

A = [ 1 2 5 ]
C = 3*A

and dot products like this:

A = [ 1 2 5 ]
B = [ -2 4 19 ]
D = A(1)*B(1) + A(2)*B(2) + A(3)*B(3).

In our pseudo code we write D = A dot B. Many computer languages have a
shorter way to write the dot product like dot(A,B). In a language built for linear
algebra D = A*B’ 1© will work because the rules of matrix multiplication are then1© B’ is a common notation for the trans-

pose of B, which means, in this case, to turn
the row of numbersB into a column of num-
bers.

the same as the component formula for the dot product.
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SAMPLE 2.12 Calculating dot products: Find the dot product of the two vectors
⇀
a = 2ı̂ + 3̂ − 2k̂ and ⇀

r = 5 mı̂ − 2 m̂ .

Solution The dot product of the two vectors is

⇀
a · ⇀

r = (2ı̂ + 3̂ − 2k̂) · (5 mı̂ − 2 m̂)

= (2 · 5 m) ı̂ · ı̂︸︷︷︸
1

−(2 · 2 m) ı̂ · ̂︸︷︷︸
0

+(3 · 5 m) ̂ · ı̂︸︷︷︸
0

−(3 · 2 m) ̂ · ̂︸︷︷︸
1

−(2 · 5 m) k̂ · ı̂︸︷︷︸
0

+(2 · 2 m) k̂ · ̂︸︷︷︸
0

= 10 m − 6 m

= 4 m.

⇀
a · ⇀

r = 4 m

Comments: Note that with just a little bit of foresight, we could totally ignore the
k̂ component of ⇀

a since ⇀
r has no k̂ component, i.e., k̂ · ⇀

r = 0. Also, if we keep in
mind that ı̂ · ̂ = ̂ · ı̂ = 0, we could compute the above dot product in one line:

⇀
a · ⇀

r = (2ı̂ + 3̂) · (5 mı̂ − 2 m̂) = (2 · 5 m) ı̂ · ı̂︸︷︷︸
1

−(3 · 2 m) ̂ · ̂︸︷︷︸
1

= 4 m.

SAMPLE 2.13 What is the y-component of
⇀
F = 5 Nı̂ + 3 N̂ + 2 Nk̂ ?

Solution Although it is perhaps obvious that the y-component of
⇀
F is 3 N, the scalar

multiplying the unit vector ̂ , we calculate it below in a formal way using the dot
product between two vectors. We will use this method later to find components of
vectors in arbitrary directions.

Fy = ⇀
F · (a unit vector along y-axis)

= (5 Nı̂ + 3 N̂ + 2 Nk̂) · ̂
= 5 N ı̂ · ̂︸︷︷︸

0

+3 N ̂ · ̂︸︷︷︸
1

+2 N k̂ · ̂︸︷︷︸
0

= 3 N.

Fy = ⇀
F · ̂ = 3 N.



30 CHAPTER 2. Vectors for mechanics

SAMPLE 2.14 Finding angle between two vectors using dot product: Find the angle
between the vectors ⇀

r 1 = 2ı̂ + 3̂ and ⇀
r 2 = 2ı̂ − ̂ .

Solution From the definition of dot product between two vectors

⇀
r 1 · ⇀

r 2 = |⇀
r 1||⇀

r 2| cos θ

or cos θ =
⇀
r 1 · ⇀

r 2

|⇀
r 1||⇀

r 2|
= (2ı̂ + 3̂) · (2ı̂ − ̂)

(
√

22 + 32)(
√

22 + 12)

= 4 − 3√
13

√
5

= 0.124

Therefore, θ = cos−1(0.124) = 82.87o.

θ = 83o

SAMPLE 2.15 Finding direction cosines from unit vectors: Find the angles (from

direction cosines) between
⇀
F = 4 Nı̂ + 6 N̂ + 7 Nk̂ and each of the three axes.

Solution

⇀
F = F λ̂

λ̂ =
⇀
F

F

= 4 Nı̂ + 6 N̂ + 7 Nk̂√
42 + 62 + 72 N

= 0.4ı̂ + 0.6̂ + 0.7k̂.

Let the angles between λ̂ and the x, y, and z axes be θ, φ and ψ respectively. Then

cos θ = ı̂ · λ̂
|ı̂||λ̂| = 0.4

|1||1| = 0.4.

⇒ θ = cos−1(0.4) = 66.4o.

Similarly,

cos φ = 0.6 or φ = 53.1o

cos ψ = 0.7 or ψ = 45.6o.

θ = 66.4o, φ = 53.1o, ψ = 45.6o

Comments: The components of a unit vector give the direction cosines with the
respective axes. That is, if the angle between the unit vector and the x, y, and z axes
are θ, φ and ψ , respectively (as above), then

λ̂ = cos θ︸︷︷︸
λx

ı̂ + cos φ︸ ︷︷ ︸
λy

̂ + cos ψ︸ ︷︷ ︸
λz

k̂.
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SAMPLE 2.16 Projection of a vector in the direction of another vector: Find the

component of
⇀
F = 5 Nı̂ + 3 N̂ + 2 Nk̂ along the vector ⇀

r = 3 mı̂ − 4 m̂ .

Solution The dot product of a vector ⇀
a with a unit vector λ̂ gives the projection of

the vector ⇀
a in the direction of the unit vector λ̂. Therefore, to find the component of

⇀
F along ⇀

r , we first find a unit vector λ̂r along ⇀
r and dot it with

⇀
F .

λ̂r =
⇀
r

|⇀
r | = 3 mı̂ − 4 m̂√

32 + 42 m
= 0.6ı̂ − 0.8̂

Fr = ⇀
F · λ̂r

= (5 Nı̂ + 3 N̂ + 2 Nk̂) · (0.6ı̂ − 0.8̂)

= 3.0 N + 2.4 N = 5.4 N.

Fr = 5.4 N

SAMPLE 2.17 Assume that after writing the equation
∑ ⇀

F = m ⇀
a in a particular

problem, a student finds
∑ ⇀

F = (20 N− P1)ı̂+7 N̂− P2k̂ and ⇀
a = 2.4 m/s2 ı̂+a3̂ .

Separate the scalar equations in the ı̂, ̂ , and k̂ directions.

Solution ∑
⇀
F = m ⇀

a

Taking the dot product of both sides of this equation with ı̂, we write

ı̂ ·
∑

⇀
F = ı̂ · m ⇀

a

ı̂ ·
[
(20 N − P1)ı̂ + 7 N̂ − P2k̂ = m(2.4 m/s2 ı̂ + a3̂)

]
⇒ (20 N − P1)︸ ︷︷ ︸

Fx

ı̂ · ı̂︸︷︷︸
1

+7 N ̂ · ı̂︸︷︷︸
0

−P − 2 k̂ · ı̂︸︷︷︸
0

= m(2.4 m/s2︸ ︷︷ ︸
ax

ı̂ · ı̂︸︷︷︸
1

+a3 ̂ · ı̂︸︷︷︸
0

)

⇒
∑

Fx = max

⇒ 20 N − P1 = m(2.4 m/s2)

Similarly,

̂ ·
[∑

⇀
F = m ⇀

a
]

⇒
∑

Fy = may (2.1)

k̂ ·
[∑

⇀
F = m ⇀

a
]

⇒
∑

Fz = maz . (2.2)

Substituting the given components of
⇀
F and ⇀

a in the remaining Eqns. (2.1) and (2.2)
we get

7 N = may

−P2 = 0.

Comments: As long as both sides of a vector equation are in the same basis, separating
the scalar equations is trivial—simply equate the respective components from both
sides. The technique of taking the dot product of both sides with a vector is quite
general and powerful. It gives a scalar equation valid in any direction that one desires.
You will appreciate this technique more if the vector equation uses more than one
basis.
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2.3 Cross product, moment, and mo-

ment about an axis
When you try to move something you can push it and you can turn it. In mechanics,
the measure of your pushing is the net force you apply. The measure of your turning
is the net moment, also sometimes called the net torque or net couple. In this section
we will define the moment of a force intuitively, geometrically, and finally using
vector algebra. We will do this first in 2 dimensions and then in 3. The main
mathematical tool here is the vector cross product, a second way of multiplying
vectors together. The cross product is used to define (and calculate) moment and to
calculate various quantities in dynamics. The cross product also sometimes helps
solve three-dimensional geometry problems.

Although concepts involving moment (and rotation) are often harder for beginners
than force (and translation), they were understood first. The ancient principle of the
lever is the basic idea incorporated by moments. The principle of the lever can be
viewed as the root of all mechanics.

Ultimately you can take on faith the vector definition of moment (given opposite
the inside cover) and its role in eqs. II. But we can more or less deduce the definition
by generalizing from common experience.

Teeter totter mechanics

(not a free body diagram)

Figure 2.21: On a balanced teeter totter
the bigger person gets the short end of the
stick. A sideways force directed towards
the hinge has no effect on the balance.

(Filename:tfigure.teeter)

The two people weighing down on the teeter totter in Fig. 2.21 tend to rotate it about
its hinge, the right one clockwise and the left one counterclockwise. We will now
cook up a measure of the tendency of each force to cause rotation about the hinge and
call it the moment of the force about the hinge.

As is verified a million times a year by young future engineering students, to
balance a teeter-totter the smaller person needs to be further from the hinge. If two
people are on one side then the teeter totter is balanced by two similar people an equal
distance from the hinge on the other side. Two people can balance one similar person
by scooting twice as close to the hinge. These proportionalities generalize to this:
the tendency of a force to cause rotation is proportional to the size of the force and to
its distance from the hinge (for forces perpendicular to the teeter totter).

If someone standing nearby adds a force that is directed towards the hinge it causes
no tendency to rotate. Because any force can be decomposed into a sum of forces,
one perpendicular to the teeter totter and the other towards the hinge, and because
we assume that the affect of the sum of these forces is the sum of the affects of each
separately, and because the force towards the hinge has no tendency to rotate, we
have deduced:

The moment of a force about a hinge is the product of its distance from
the hinge and the component of the force perpendicular to the line from
the hinge to the force.

Here then is the formula for 2D moment about C or moment with respect to C. 1©1© The ‘/’ in the subscript of
⇀
M reads as

‘relative to’ or ‘about’. For simplicity we
often leave the / out and just write

⇀
MC. M/C = |⇀

r | (| ⇀
F | sin θ) = (|⇀

r | sin θ) | ⇀
F |. (2.3)

Here, θ is the angle between ⇀
r (the position of the point of force application relative

to the hinge) and
⇀
F (see fig. 2.22). This formula for moment has all the teeter

totter deduced properties. Moment is proportional to r , and to the part of
⇀
F that is

perpendicular to ⇀
r . The re-grouping as (|⇀

r | sin θ) shows that a force
⇀
F has the same

effect if it is applied at a new location that is displaced in the direction of
⇀
F . That is,
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the force
⇀
F can slide along its length without changing its M/C and is equivalent in

its effect on the teeter totter. The quantity |⇀
r | sin θ is sometimes called the lever arm

of the force.
By common convention we define as positive a moment that causes a counter-

clockwise rotation. A moment that causes a clockwise rotation is negative. If we
define θ appropriately then eqn. (2.3) obeys this sign convention. We define θ as the
angle from the positive vector ⇀

r to the positive vector
⇀
F measured counterclockwise.

Point the thumb of your right hand towards yourself. Point the fingers of your right

⇀
r

⇀

F

O

O

O | ⇀
F |

|⇀
r |

θ

θ

θ

∼

∼

| ⇀
F | sin θ

|⇀
r | sin θ

Figure 2.22: The moment of a force is
either the product of its radius with its per-
pendicular component or of its lever arm
and the full force. The ∼ indicates that
the lower two forces and positions have the
same moment.

(Filename:tfigure.slidevector)

hand along ⇀
r and curl them towards the direction of

⇀
F and see how far you have to

rotate them. The force caused by the person on the left of the teeter totter has θ = 90o

so sin θ = 1 and the formula 2.3 gives a positive counterclockwise M . The force
of the person on the right has θ = 270o (3/4 of a revolution) so sin θ = −1 and the
formula 2.3 gives a negative M .

In two dimensions moment is really a scalar concept, it is either positive or
negative. In three dimensions moment is a vector. But even in 2D we find it easier to
keep track of signs if we treat moment as a vector. In the xy plane, the 2D moment
is a vector in the k̂ direction (straight out of the plane). So eqn. 2.3 becomes

⇀
M/C = |⇀

r | | ⇀
F | sin θ k̂. (2.4)

If you curl the fingers of your right hand in the direction of rotation caused by a force
your thumb points in the direction of the moment vector.

The 2D cross product
The expression we have found for the right side of eqn. 2.4 is the 2D cross product
of vectors ⇀

r and
⇀
F . We can now apply the concept to any pair of vectors whether or

not they represent force and position. The 2D cross product is defined as :

⇀

A× ⇀
B︸ ︷︷ ︸

‘A cross B’

de f= | ⇀

A| | ⇀
B| sin θ k̂. (2.5)

where θ is the amount that
⇀

A would need to be rotated counterclockwise to point in
the same direction as

⇀
B. An equivalent alternative approach is to define the cross

product as
⇀

A× ⇀
B

de f= | ⇀

A| | ⇀
B| sin θ n̂. (2.6)

with θ defined to be less than 180o and n̂ defined as the unit vector pointing in the
direction of the thumb when the fingers are curled from the direction of

⇀

A towards
the direction of

⇀
B. For the ⇀

r and
⇀
F on the right of the teeter totter this definition

forces us to point our thumb into the plane (in the negative k̂ direction). With this
definition sin θ is always positive and the negative moments come from n̂ being in
the −k̂ direction.

With a few sketches you could convince yourself that the definition of cross
product in eqn.2.5 obeys these standard algebra rules (for any 3 2D vectors

⇀

A,
⇀
B, and

⇀

C and any scalar d):

d(
⇀

A× ⇀
B) = (d

⇀

A) × ⇀
B = ⇀

A× (d
⇀
B)

⇀

A× (
⇀
B + ⇀

C) = ⇀

A× ⇀
B + ⇀

A× ⇀

C.

A difference between the algebra rules for scalar multiplication and vector cross
product multiplication is that for scalar multiplication AB = B A whereas for the
cross product

⇀

A × ⇀
B �= ⇀

B × ⇀

A (because the definition of θ in eqn. 2.5 and n̂ in 2.6
depends on order). In particular

⇀

A× ⇀
B = − ⇀

B × ⇀

A.
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Because the magnitude of the cross product of
⇀

A and
⇀
B is the magnitude of

⇀

A

times the magnitude of the projection of
⇀
B in the direction perpendicular to

⇀

A (as
shown in the top two illustrations of fig. 2.22) you can think of the cross product as
a measure of how much two vectors are perpendicular to each other. In particular

if
⇀

A ⊥ ⇀
B ⇒ | ⇀

A× ⇀
B| = | ⇀

A| | ⇀
B|, and

if
⇀

A ‖ ⇀
B ⇒ | ⇀

A× ⇀
B| = ⇀

0.

For example, ı̂ × ̂ = k̂, ̂ × ı̂ = −k̂, ı̂ × ı̂ = ⇀

0, and ̂ × ̂ = ⇀

0.

Component form for the 2D cross product
Just like the dot product, the cross product can be expressed using components. As
can be verified by writing

⇀

A = Ax ı̂ + Ay ̂ , and
⇀
B = Bx ı̂ + By ̂ and using the

distributive rules:
⇀

A× ⇀
B = (Ax By − Bx Ay)k̂. (2.7)

Some people remember this formula by putting the components of
⇀

A and
⇀
B into a

matrix and calculating the determinant
Ax Ay

Bx By
. If you number the components

of
⇀

A and
⇀
B (e.g., [

⇀

A]x1x2 = [A1, A2]), the cross product is
⇀

A × ⇀
B = (A1 B2 −

B2 A1)ê3. This you might remember as “first times second minus second times first.”

Example: Given that
⇀

A = 1ı̂ + 2̂ and
⇀
B = 10ı̂ + 20̂ then

⇀

A × ⇀
B =

(1 · 20 − 2 · 10)k̂ = 0k̂ = ⇀

0. ✷

For vectors with just a few components it is often most convenient to use the distribu-
tive rule directly.

Example: Given that
⇀

A = 7ı̂ and
⇀
B = 37.6ı̂ + 10̂ then

⇀

A × ⇀
B =

(7ı̂)×(37.6ı̂+10̂) = (7ı̂)×(37.6ı̂)+(7ı̂)×(10̂) = ⇀

0 +70k̂ = 70k̂.
✷

There are many ways of calculating a 2D cross product

You have several options for calculating the 2D cross product. Which you choose
depends on taste and convenience. You can use the geometric definition directly,
the first times the perpendicular part of the second (distance times perpendicular
component of force), the second times the perpendicular part of the first (lever arm
times the force), components, or break each of the vectors into a sum of vectors and
use the distributive rule.

2D moment by components
We can use the component form of the 2D cross product to find a component form
for the moment

⇀
M/C of eqn. 2.4. Given

⇀
F = Fx ı̂ + Fy ̂ acting at P, where ⇀

rP/C =
rx ı̂ + ry ̂ , the moment of the force about C is

⇀
M/C = (rx Fy − ry Fx ))k̂

or the moment of
⇀
F about the axis at C is

MC = rx Fy − ry Fx (2.8)

We can derive this component formula with the sequence of vector manipulations
shown graphically in fig. 2.23.

x

y

ı̂

̂

⇀r

⇀
F

ry

O

⇀
F x

⇀
F y

x

y

⇀r

rx

ry

O

x

y
Fx

rx

Fy

O

ry

Figure 2.23: The component form of the
2D moment can be found by sequentially
breaking the force into components, sliding
each component along its line of action to
the x and y axis, and adding the moments
of the two components.

(Filename:tfigure1.2Dcrosscomps)
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3D moment about an axis
The concept of moment about an axis is historically, theoretically, and practically
important. Moment about an axis describes the principle of the lever, which far
precedes Newton’s laws. The net moment of a force system about enough different
axes determines everything needed in mechanics about a force system. And one can
sometimes quickly solve a statics or dynamics problem by considering moment about
a judiciously chosen axis.

Lets start by thinking about a teeter totter again. Looking from the side we thought
of a teeter totter as a 2D system. But the teeter totter really lives in the 3D world (see
Fig. 2.24). We now re-interpret the 2D moment M as the moment of the 2D forces
about the k̂ axis of rotation at the hinge. It is plain that a force

⇀
F

‖ pushing a teeter
totter parallel to the axle causes no tendency to rotate. And we already agreed that a
radial force

⇀
F

r causes no rotation. So we see that the moment a force causes about
an axis is the distance of the force from the axis times the part of the force that is
neither parallel to the axis nor directed towards the axis.

Figure 2.24: Teeter totter with applied
forces broken into components parallel to

the axis
⇀
F

‖
, radial

⇀
F

r
, and perpendicular

to the plane containing the axis and the point

of force application
⇀
F

⊥
.

(Filename:tfigure.3Dteeter)

C

P

axis

⇀
rP/C

r⇀
r

‖⇀
r

⇀
F

⊥⇀
F

⇀
Fr

⇀
F ‖

λ̂

Figure 2.25: Moment about an axis
(Filename:tfigure2.mom.axis)

Now look at this in the more 3-dimensional context of fig. 2.25. Here an imagined
axis of rotation is defined as the line through C that is in the λ̂ direction. A force

⇀
F

is applied at P. We can break
⇀
F into a sum of three vectors

⇀
F = ⇀

F
‖ + ⇀

F
r + ⇀

F
⊥

where
⇀
F

‖ is parallel to the axis,
⇀
F

r is directed along the shortest connection between
the axis and P (and is thus perpendicular to the axis) and

⇀
F

⊥ is out of the plane
defined by C, P and λ̂. By analogy with the teeter totter we see that

⇀
F

r and
⇀
F

‖ cause
no tendency to rotate about the axis. So only the

⇀
F

⊥ contributes.

Example: Try this. Stand facing a partially open door with the front
of your body parallel to the plane of the door (a door with no springs
is best). Hold the outer edge of the door with one hand. Press down
and note that the door is not opened or closed. Push towards the hinge
and note that the door is not opened or closed. Push and pull away and
towards your body and note how easily you cause the door to rotate. Thus
the only force component that tends to rotate the door is perpendicular
to the plane of the door (which is the plane of the hinge and line from the
hinge to your hand). Now move your hand to the middle of the door, half
the distance from the hinge. Note that it takes more force to rotate the
door with the same authority (push with your pinky if you have trouble
feeling the difference).

Thus the only potent force for rotation is perpendicular to the plane
of the hinge and point of force application, and its potence is increased
with distance from the hinge. ✷

We can also decompose ⇀
r = ⇀

rP/C into two parts, one parallel to the hinge and
one radial, as

⇀
r = ⇀

r ‖ + ⇀
r r .

Clearly ⇀
r ‖ has no affect on how much rotation

⇀
F causes about the axis. If for example

the point of force application was moved parallel to the axis a few centimeters, the
tendency to rotate would not be changed. Altogether, we have that the moment of the
force

⇀
F about the axis λ̂ through C is given by

MλC = rr F⊥.

The perpendicular distance from the axis to the point of force application is |⇀
r r |

and
⇀
F

⊥ is the part of the force that causes right-handed rotation about the axis. A
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moment about an axis is defined as positive if curling the fingers of your right hand
give the sense of rotation when your outstretched thumb is pointing along the axis (as
in fig. 2.25). The force of the left person on the teeter totter causes a positive moment
about the k̂ axis through the hinge.

So long as you interpret the quantities correctly, the freshman physics line

“Moment is distance (|⇀
r r |) times force (| ⇀

F
⊥|)”

perfectly defines moment about an axis.
Three dimensional geometry is difficult, so a formula for moment about an axis

in terms of components would be most useful. The needed formula depends on the
3D moment vector defined by the 3D cross product which we introduce now.

The 3D cross product (or vector product)

⇀

A× ⇀
B

⇀
B

⇀

A
θAB

Figure 2.26: The cross product of
⇀

A and
⇀
B is perpendicular to

⇀

A and
⇀
B in the di-

rection given by the right hand rule. The
magnitude of

⇀

A× ⇀
B is AB sin θAB .

(Filename:tfigure1.12)

The cross product of two vectors
⇀

A and
⇀
B is written

⇀

A× ⇀
B and pronounced ‘A cross

B.’ In contrast to the dot product, which gives a scalar and measures how much two
vectors are parallel, the cross product is a vector and measures how much they are
perpendicular. The cross product is also called the vector product.

⇀

A

⇀
B

⇀

C

Figure 2.27: The right hand rule for de-
termining the direction of the cross product
of two vectors.

⇀

C = ⇀

A× ⇀
B .
(Filename:tfigure.rhr)

The cross product is defined by:

⇀

A× ⇀
B

de f= | ⇀

A|| ⇀
B| sin θAB n̂

where |n̂| = 1,
n̂ ⊥ ⇀

A,
n̂ ⊥ ⇀

B,
0 ≤ θAB ≤ π , and
n̂ is in the direction given by the right hand
rule, that is, in the direction of the right thumb
when the fingers of the right hand are pointed
in the direction of

⇀

A and then wrapped towards
the direction of

⇀
B.

If
⇀

A and
⇀
B are perpendicular then θAB is π/2, sin θAB = 1, and the magnitude of the

ı̂ × ̂ = k̂

ı̂

̂

k̂

̂ × k̂ = ı̂

k̂× ı̂ = ̂

Figure 2.28: Mnemonic device to re-
member the cross product of the standard
base unit vectors.

(Filename:tfigure1.e)

cross product is AB. If
⇀

A and
⇀
B are parallel then θAB is 0, sin θAB = 0 and the cross

product is
⇀

0 (the zero vector). This is why we say the cross product is a measure of
the degree of orthogonalityof two vectors.

Using the definition above you should be able to verify to your own satisfaction
that

⇀

A× ⇀
B = − ⇀

B× ⇀

A. Applying the definition to the standard base unit vectors you
can see that ı̂ × ̂ = k̂, ̂ × k̂ = ı̂, and k̂ × ı̂ = ̂ (figure 2.28).

The geometric definition above and the geometric (tip to tale) definition of vector
addition imply that the cross product follows the distributive rule (see box 2.4 on page
41).

⇀

A× ( ⇀
B + ⇀

C
) = ⇀

A× ⇀
B + ⇀

A× ⇀

C.

Applying the distributive rule to the cross products of
⇀

A = Ax ı̂ + Ay ̂ + Az k̂ and
⇀
B = Bx ı̂ + By ̂ + Bz k̂ leads to the algebraic formula for the Cartesian components
of the cross product.

⇀

A× ⇀
B = [Ay Bz − Az By]ı̂

+[Az Bx − Ax Bz]̂

+[Ax By − Ay Bx ]k̂
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There are various mnemonics for remembering the component formula for cross
products. The most common is to calculate a ‘determinant’ of the 3 × 3 matrix with
one row given by ı̂, ̂ , k̂ and the other two rows the components of

⇀

A and
⇀
B.

⇀

A× ⇀
B = det

∣∣∣∣∣∣
ı̂ ̂ k̂

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣
The following identities and special cases of cross products are worth knowing

well:

• (a
⇀

A) × ⇀
B = ⇀

A× (a
⇀
B) = a(

⇀

A× ⇀
B) (a distributive law)

• ⇀

A× ⇀
B = − ⇀

B × ⇀

A (the cross product is not commutative!)

• ⇀

A× ⇀
B = ⇀

0 if
⇀

A ‖ ⇀
B (parallel vectors have zero cross product)

• | ⇀

A× ⇀
B| = AB if

⇀

A ⊥ ⇀
B

• ı̂× ̂ = k̂, ̂×k̂ = ı̂, k̂× ı̂ = ̂ (assuming the x, y, z coordinate system
is right handed — if you use your right hand and point your fingers along the
positive x axis, then curl them towards the positive y axis, your thumb will
point in the same direction as the positive z axis. )

• ı̂
′ × ̂

′ = k̂
′
, ̂

′ × k̂
′ = ı̂

′
, k̂

′ × ı̂
′ = ̂

′
(assuming the x ′y′z′ coordinate system is also right handed.)

• ı̂ × ı̂ = ̂ × ̂ = k̂ × k̂ = ⇀

0, ı̂
′ × ı̂

′ = ̂
′ × ̂

′ = k̂
′ × k̂

′ = ⇀

0

The moment vector

We now define the moment of a force
⇀
F applied at P, relative to point C as

⇀
M/C = ⇀

rP/C × ⇀
F

which we read in short as ‘M is r cross F.’ The moment vector is admittedly a difficult
idea to intuit. A look at its components is helpful.

⇀
M/C = (ry Fz − rz Fy)ı̂ + (rz Fx − rx Fz)̂ + (rx Fy − ry Fx )k̂

You can recognize the z component of the moment vector is the moment of the force
about the k̂ axis through C (eqn. 2.8). Similarly the x and y components of

⇀
MC are

the moments about the ı̂ and ̂ axis through C. So at least the components of
⇀
MC have

intuitive meaning. They are the moments around the x , y, and z axes respectively.
Starting with this moment-about-the-coordinate-axes interpretation of the mo-

ment vector, each of the three components can be deduced graphically by the moves
shown in fig. 2.30. The force is first broken into components. The components are
then moved along their lines of action to the coordinate planes. From the resulting
picture you can see, say, that the moment about the +y axis gets a positive contribu-
tion from Fx with lever arm rz and a negative contribution from Fz with lever arm rx .
Thus the y component of

⇀
M is rz Fx − rx Fz .
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The mixed triple product
The ‘mixed triple product’ of

⇀

A,
⇀
B, and

⇀

C is so called because it mixes both the dot
product and cross product in a single expression. The mixed triple product is also
sometimes called the scalar triple product because its value is a scalar. The mixed
triple product is useful for calculating the moment of a force about an axis and for
related dynamics quantities.The mixed triple product of

⇀

A,
⇀
B, and

⇀

C is defined by
and written as

⇀

A · ( ⇀
B × ⇀

C
)

and pronounced ‘A dot B cross C.’ The parentheses () are sometimes omitted (i.e., .,
⇀

A · ⇀
B × ⇀

C) because the wrong grouping (
⇀

A · ⇀
B) × ⇀

C is nonsense (you can’t take the
cross product of a scalar with a vector) . It is apparent that one way of calculating
the mixed triple product is to calculate the cross product of

⇀
B and

⇀

C and then to take
the dot product of that result with

⇀

A. Some people use the notation
( ⇀

A,
⇀
B,

⇀

C
)

for the
mixed triple product but it will not occur again in this book.

⇀

A× ⇀
B

⇀

A

⇀
B⇀

C

θ

Figure 2.29: One interpretation of the
mixed triple product of

⇀

A× ⇀
B · ⇀

C is as the
volume (a scalar) of a parallelepiped with
⇀

A,
⇀
B , and

⇀

C as the three edges emanating
from one corner. This interpretation only
works if

⇀

A,
⇀
B , and

⇀

C are taken in the ap-
propriate order, otherwise

⇀

A × ⇀
B · ⇀

C is
minus the volume which is calculated.

(Filename:tfigure1.13)

The mixed triple product has the same value if one takes the cross product of
⇀

A

and
⇀
B and then the dot product of the result with

⇀

C. That is
⇀

A·( ⇀
B× ⇀

C) = (
⇀

A× ⇀
B)· ⇀

C.
This identity can be verified using the geometric description below, or by looking at
the (complicated) expression for the mixed triple product of three general vectors

⇀

A,
⇀
B, and

⇀

C in terms of their components as calculated the two different ways. One thus
obtains the string of results

⇀

A · ⇀
B × ⇀

C = ⇀

A× ⇀
B · ⇀

C = − ⇀
B × ⇀

A · ⇀

C = − ⇀
B · ⇀

A× ⇀

C = . . .

The minus signs in the above expressions follow from the cross product identity that
⇀

A× ⇀
B = − ⇀

B × ⇀

A.
The mixed triple product has various geometric interpretations, one of them is

that
⇀

A · ⇀
B × ⇀

C is (plus or minus) the volume of the parallelepiped, the crooked shoe
box, edged by

⇀

A,
⇀
B and

⇀

C as shown in figure 2.29.
Another way of calculating the value of the mixed triple product is with the

determinant of a matrix whose rows are the components of the vectors.

⇀

A · (
⇀
B × ⇀

C) =
Ax Ay Az

Bx By Bz

Cx Cy Cz

=
Ax (ByCZ − BzCy)

+Ay(BzCx − Bx Cz)

+Az(Bx Cy − ByCx )

The mixed triple product of three vectors is zero if 1©

1© In the language of linear algebra, the
mixed triple product of three vectors is zero
if the vectors are linearly dependent.

• any two of them are parallel, or
• if all three of the vectors have one common plane.

A different triple product, sometimes called the vector triple product is defined
by

⇀

A× (
⇀
B × ⇀

C) which is discussed later in the text when it is needed (see box 11.1
on page 643).

More on moment about an axis
We defined moment about an axis geometrically using fig. 2.25 on page 35 as M

λ̂
=

rr F⊥. We can now verify that the mixed triple product gives the desired result by
guessing the formula and seeing that it agrees with the geometric definition.

MλC = λ̂ · ⇀
M/C (An inspired guess...) (2.9)
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We break both ⇀
r and

⇀
F into sums indicated in the figure, use the distributive law, and

note that the mixed triple product gives zero if any two of the vectors are parallel.
Thus,

λ̂ · ⇀
M/C = λ̂ · ⇀

rP/C × ⇀
F

= λ̂ · (
⇀
r r + ⇀

r ‖) × (
⇀
F

⊥ + ⇀
F

‖ + ⇀
F

r
)

= λ̂ · ⇀
r r × ⇀

F
⊥ + λ̂ · ⇀

r r × ⇀
F

‖ + λ̂ · ⇀
r r × ⇀

F
r
. . .

+λ̂ · ⇀
r ‖ × ⇀

F
⊥ + λ̂ · ⇀

r ‖ × ⇀
F

‖ + λ̂ · ⇀
r ‖ × ⇀

F
r

= rr F⊥ + 0 + 0 + 0 + 0 + 0

= rr F⊥. ( ... and a good guess too.)

We can calculate the cross and dot product any convenient way, say using vector

O x

y

z

⇀
r

⇀
r

⇀

F

⇀
F y

⇀
F x

⇀
F z

O
x

y

z

⇀
F y

⇀
F x

⇀
F z

O
x

y

z

rx

rz

ry

Figure 2.30: The three components of the
3D moment vector are the moments about
the three axis. These can be found by se-
quentially breaking the force into compo-
nents, sliding each component along its line
of action to the coordinate planes, and not-
ing the contribution of each component to
moment about each axis.

(Filename:tfigure1.3Dcrosscomps)

components.

Example: Moment about an axis

Given a force,
⇀
F 1 = (5ı̂−3̂ +4k̂) N acting at a point P whose position

is given by ⇀
r P/O = (3ı̂+2̂ −2k̂) m, what is the moment about an axis

through the origin O with direction λ̂ = 1√
2
̂ + 1√

2
k̂?

M
λ̂

= (
⇀
r P/O × ⇀

F 1) · λ̂
= [(3ı̂ + 2̂ − 2k̂) m × (5ı̂ − 3̂ + 4k̂) N] · (

1√
2
̂ + 1√

2
k̂)

= − 17√
2

m N.

✷

The power of our abstract reasoning is apparent when we consider calculating the
moment of a force about an axis with two different coordinate systems. Each of the
vectors in eqn. 2.3 will have different components in the different systems. Yet the
resulting scalar, after all the arithmetic, will be the same no matter what the coordinate
system.

Finally, the moment about an axis gives us an interpretation of the moment vector.
The direction of the moment vector

⇀
MC is the direction of the axis through C about

which
⇀
F has the greatest moment. The magnitude of

⇀
MC is the moment of

⇀
F about

that axis.

Special optional ways to draw moment vectors

Neither of the special rotation notations below is needed because moment (and later,
angular velocity, and angular momentum) is a vector like any other. None-the-less,
sometimes it is nice to use a notation that suggests the rotational nature of these
quantities.

Arced arrow for 2-D moment and angular velocity. In 2D problems in the xy
plane, the relevant moment, angular velocity, and angular momentum point
straight out of the plane in the z (k̂) direction. A way of drawing this is to
use an arced arrow. Wrap the fingers of your right hand in the direction of
the arc and your thumb points in the direction of the unit vector that the scalar
multiplies. The three representations in Fig. 2.31a indicate the same moment
vector.
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Double headed arrow for 3-D rotations and moments. Some people like to dis-
tinguish vectors for rotational motion and torque from other vectors. Two
ways of making this distinction are to use double-headed arrows or to use an
arrow with an arced arrow around it as shown in Fig. 2.31b.

-3 N.m3 N.m 3 N.m= =

(a)

(b)

k̂

⇀
M

Figure 2.31: Optional drawing method
for moment vectors. (a) shows an arced ar-
row to represent vectors having to do with
rotation in 2 dimensions. Such vectors point
directly out of, or into, the page so are in-
dicated with an arc in the direction of the
rotation. (b) shows a double-headed arrow
for torque or rotation quantities in three di-
mensions.

(Filename:tfigure1rot.d)

Cross products and computers
The components of the cross product can be calculated with computer code that may
look something like this.

A = [ 1 2 5 ]
B = [ -2 4 19 ]
C = [ ( A(2)*B(3) - A(3)*B(2) ) ...

( A(3)*B(1) - A(1)*B(3) ) ...
( A(1)*B(2) - A(2)*B(1) ) ]

giving the result C=[18 -29 8]. Many computer languages have a shorter way
to write the cross product like cross(A,B). The mixed triple product might be
calculated by assembling a 3 × 3 matrix of rows and then taking a determinant like
this:

A = [ 1 2 5 ]
B = [ -2 4 19 ]
C = [ 32 4 5 ]

matrix = [A ; B ; C]
mixedprod = det(matrix)

giving the result mixedprod = 500. A versatile language might well allow the
command dot( A, cross(B,C) ) to calculate the mixed triple product.



2.3. Cross product, moment, and moment about an axis 41

2.4 THEORY
The 3D cross product is distributive over sums; calculation with components

Finding the component formula for the cross product from the
geometric definition depends on the geometric definition obeying
the distributive rule.

The distributive rule
We would like to demonstrate that the geometrically defined cross
product obeys the rule

⇀

A×
( ⇀
B + ⇀

C
)

= ⇀

A× ⇀
B + ⇀

A× ⇀

C.

Here is a 3D construction demonstrating this fact. It is a bit trickier
than the demonstration of most of the algebra manipulation rules for
vectors.

First we present another geometric definition of the cross prod-
uct of

⇀

A and any vector
⇀
V . Consider a plane P that is perpendicular

to
⇀

A.

×
×

⇀
V ''

⇀
V '

⇀

A ⇀
V

⇀

A× ⇀
V

Now look at
⇀
V

′
, the projection of

⇀
V on to P. The right-hand-

rule normal of
⇀

A and
⇀
V is the same as the normal of

⇀

A and
⇀
V

′
.

Also, | ⇀
V

′| = | ⇀
V | sin θAV . So

⇀

A × ⇀
V = ⇀

A × ⇀
V

′
. Now consider

⇀
V

′′
which is the rotation of

⇀
V

′
by 90o around

⇀

A. Note that
⇀
V

′′
is

still in the plane P. Finally stretch
⇀
V

′′
by | ⇀

A|. The result is a vector
in the P plane that is

⇀

A× ⇀
V since it has the correct magnitude and

direction.
Thus

⇀

A × ⇀
V is given by projecting

⇀
V onto P, rotating that

projection by 90o about
⇀

A, and stretching that by | ⇀

A|.
Now consider

⇀
B ,

⇀

C, and
⇀
D ≡ ⇀

B + ⇀

C.

⇀

A× ⇀
B

⇀
A× ⇀

C⇀A× ⇀D ⇀
B ''

⇀

C''
⇀
D''

⇀
B '

⇀

C'
⇀
D'

⇀

A
⇀
B

⇀

C
⇀
D

All three cross products
⇀

A× ⇀
B,

⇀

A× ⇀

C, and
⇀

A× ⇀
D,

can be calculated by this projection, rotation, and stretch. But each
of these three operations is distributive since

• the projection of a sum is the sum of the projections (
⇀
D

′ =
⇀
B

′ + ⇀

C
′
);

• the sum of two 90o rotated vectors is the rotation of the sum
(

⇀
D

′′ = ⇀
B

′′ + ⇀

C
′′
); and

• stretched
⇀
D

′′
is (stretched

⇀
B

′′
) + (stretched

⇀

C
′′
).

Thus the act of taking the cross product of
⇀

Awith
⇀
B and adding

that to the cross product of
⇀

Awith
⇀

C gives the same result as taking
the cross product of

⇀

A with
⇀
D (≡ ⇀

B + ⇀

C), demonstrating the
distributive law.

Calculation of the cross product with
components
Application of the distributive rule to vectors expressed in terms of
the standard unit base vectors yields the oft-used component expres-
sion for the cross product as follows

⇀

A× ⇀
B = [Ax ı̂ + Ay ̂ + Az k̂] × [Bx ı̂ + By ̂ + Bz k̂]

= Ax Bx ı̂ × ı̂ + Ax By ı̂ × ̂ + Ax Bz ı̂ × k̂

+Ay Bx ̂ × ı̂ + Ay By ̂ × ̂ + Ay Bz ̂ × k̂

+Az Bx k̂ × ı̂ + Az By k̂ × ̂ + Az Bz k̂ × k̂

= Ax Bx
⇀
0 + Ax By k̂ − Ax Bz ̂

−Ay Bx k̂ + Ay By
⇀
0 + Ay Bz ı̂

+Az Bx ̂ − Az By ı̂ + Az Bz
⇀
0

= [Ay Bz − Az By ]ı̂

+[Az Bx − Ax Bz]̂

+[Ax By − Ay Bx ]k̂
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SAMPLE 2.18 Cross product in 2-D: Two vectors ⇀
a and

⇀

b of length 10 ft and 6 ft,
respectively, are shown in the figure. The angle between the two vectors is θ = 60o.
Find the cross product of the two vectors.

x

y

⇀
a

⇀

b

6'

10'

Figure 2.32: (Filename:sfig2.vec2.cross1)

Solution Both vectors ⇀
a and

⇀

b are in the xy plane. Therefore, their cross product
is,

⇀
a × ⇀

b = |⇀
a ||⇀

b| sin θ n̂

= (10 ft) · (6 ft) · sin 60ok̂

= 60 ft2 ·
√

3

2
k̂

= 30
√

3 ft2k̂.

⇀
a × ⇀

b = 30
√

3 ft2k̂

SAMPLE 2.19 Computing 2-D cross product in different ways: The two vectors
shown in the figure are ⇀

a = 2ı̂ − ̂ and
⇀

b = 4ı̂ + 2̂ . The angle between the two
vectors is θ = sin−1(4/5) (this information can be found out from the given vectors).
Find the cross product of the two vectors

(a) using the angle θ , and
(b) using the components of the vectors.

x

y

θ = sin−1( 4
5 )

⇀
a

⇀

b

Figure 2.33: (Filename:sfig2.vec2.cross2)

Solution

(a) Cross product using the angle θ :

⇀
a × ⇀

b = |⇀
a ||⇀

b| sin θ n̂

= |2ı̂ − ̂ ||4ı̂ + 2̂ | · sin(sin−1 4

5
)k̂

= (
√

22 + 12)(
√

42 + 22) · 4

5
k̂

=
√

5 ·
√

20 · 4

5
k̂ = 10 · 4

5
k̂

= 8k̂.

(b) Cross product using components:

⇀
a × ⇀

b = (2ı̂ − ̂) × (4ı̂ + 2̂)

= 2ı̂ × (4ı̂ + 2̂) − ̂ × (4ı̂ + 2̂)

= 8 ı̂ × ı̂︸︷︷︸
⇀

0

+4 ı̂ × ̂︸ ︷︷ ︸
k̂

−4 ̂ × ı̂︸ ︷︷ ︸
−k̂

−2 ̂ × ̂︸ ︷︷ ︸
⇀

0

= 4k̂ + 4k̂

= 8k̂.

The answers obtained from the two methods are, of course, the same as they must be.

⇀
a × ⇀

b = 8k̂
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SAMPLE 2.20 Finding the minimum distance from a point to a line: A straight line
passes through two points, A (-1,4) and B (2,2), in the xy plane. Find the shortest
distance from the origin to the line.

x

y

A (-1,1)
B (2,2)

O

Figure 2.34: (Filename:sfig2.vec2.perp2D)

Solution Let λ̂AB be a unit vector along line AB. Then,

λ̂AB × ⇀
rB = |λ̂AB|︸ ︷︷ ︸

1

|⇀
rB| sin θ n̂ = |⇀

rB| sin θ k̂.

Now |⇀
rB| sin θ is the component of ⇀

rB that is perpendicular to λ̂AB or line AB, i.e., it

x

y

A (-1,1)

B (2,2)

O

d

λ̂AB

⇀
r B

θ

θ

Figure 2.35: (Filename:sfig2.vec2.perp2Da)

is the perpendicular, and hence the shortest, distance from the origin (the root of
vector ⇀

rB) to the line AB. Thus, the shortest distance d from the origin to the line AB
is computed from,

d = |λ̂AB × ⇀
rB|

=
∣∣∣∣( 3ı̂ + ̂√

32 + 12
) × (2ı̂ + 2̂)

∣∣∣∣ =
∣∣∣∣ 6√

10
k̂ − 2√

10
k̂

∣∣∣∣ =
∣∣∣∣ 4√

10
k̂

∣∣∣∣
= 4√

10
.

d = 4/
√

10

Comments: In this calculation, ⇀
rB is an arbitrary vector from the origin to some

point on line AB. You can take any convenient vector. Since the shortest distance is
unique, any such vector will give you the same answer. In fact, you can check your
answer by selecting another vector and repeating the calculations, e.g., vector ⇀

rA.

SAMPLE 2.21 Moment of a force: Find the moment of force
⇀
F = 1 Nı̂ + 20 N̂

shown in the figure about point O.

ı̂

̂

⇀
F

A

O
θ = 60o

Figure 2.36: (Filename:sfig2.vec2.mom1)

Solution The force acts through point A on the body. Therefore, we can compute
its moment about O as follows.

⇀
MO = ⇀

rOA × ⇀
F

= (−2 m · cos 60o ı̂ − 2 m · sin 60o̂)︸ ︷︷ ︸
⇀
rOA

× (1 Nı̂ + 20 N̂)︸ ︷︷ ︸
⇀
F

= (−1 mı̂ −
√

3 m̂) × (1 Nı̂ + 20 N̂)

= −20 N·mk̂ + 1.732 N·mk̂

= −18.268 N·mk̂.

⇀
MO = −18.268 N·mk̂
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SAMPLE 2.22 A 2 m square plate hangs from one of its corners as shown in the
figure. At the diagonally opposite end, a force of 50 N is applied by pulling on the
string AB. Find the moment of the applied force about the center C of the plate.

square
plate

�

ı̂

̂

O

C

A

B

⇀
F 45o

Figure 2.37: (Filename:sfig2.vec2.mom2)

Solution The moment of
⇀
F about point C is

⇀
MC = ⇀

rA/C × ⇀
F .

So, to compute
⇀
MC, we need to find the vectors ⇀

rA/C and
⇀
F .

⇀
rA/C = −C A̂ = − �√

2
̂ (since OA = 2 CA =

√
2�)

⇀
F = F(− cos θ ı̂ − sin θ ̂) = −F(cos θ ı̂ + sin θ ̂)

Hence,

⇀
MC = − �√

2
̂ × [−F(cos θ ı̂ + sin θ ̂)]

= �√
2

F(cos θ ̂ × ı̂︸ ︷︷ ︸
−k̂

+ sin θ ̂ × ̂︸ ︷︷ ︸
⇀

0

)

= − �√
2

F cos θ k̂

= −2 m√
2

· 50 N · cos 45ok̂ = −50 N·mk̂.

⇀
MC = −50 N·mk̂
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SAMPLE 2.23 Computing cross product in 3-D: Compute ⇀
a × ⇀

b , where ⇀
a =

ı̂ + ̂ − 2k̂ and
⇀

b = 3ı̂ + −4̂ + k̂.

Solution The calculation of a cross product between two 3-D vectors can be carried
out by either using a determinant or the distributive rule. Usually, if the vectors
involved have just one or two components, it is easier to use the distributive rule. We
show you both methods here and encourage you to learn both. We are given two
vectors:

⇀
a = a1 ı̂ + a2̂ + a3k̂ = ı̂ + ̂ − 2k̂,
⇀

b = b1 ı̂ + b2̂ + b3k̂ = 3ı̂ + −4̂ + k̂.

• Calculation using the determinant formula: In this method, we first write a
3 × 3 matrix whose first row has the basis vectors as its elements, the second
row has the components of the first vector as its elements, and the third row has
the components of the second vector as its elements. Thus,

⇀
a × ⇀

b =
∣∣∣∣∣∣
ı̂ ̂ k̂

a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
= ı̂(a2b3 − a3b2) + ̂(a3b1 − a1b3) + k̂(a1b2 − b1a2)

= ı̂(1 − 8) + ̂(−6 − 1) + k̂(−4 − 3)

= −7(ı̂ + ̂ + k̂).

• Calculation using the distributive rule: In this method, we carry out the cross
product by distributing the cross product properly over the three basis vectors.
The steps involved are shown below.

ı̂

̂ k̂

Figure 2.38: The cross product of any
two basis vectors is positive in the direc-
tion of the arrow and negative if carried out

backwards, e.g. ı̂×̂ = k̂ but ̂×ı̂ = −k̂.
(Filename:ijkcircle)

⇀
a × ⇀

b = (a1 ı̂ + a2̂ + a3k̂) × (b1 ı̂ + b2̂ + b3k̂)

= a1 ı̂ × (b1 ı̂ + b2̂ + b3k̂) +
a2̂ × (b1 ı̂ + b2̂ + b3k̂) +
a3k̂ × (b1 ı̂ + b2̂ + b3k̂)

= a1b1(

0︷︸︸︷
ı̂ × ı̂) + a1b2(

k̂︷ ︸︸ ︷
ı̂ × ̂) + a1b3(

−̂︷ ︸︸ ︷
ı̂ × k̂) +

a2b1(

−k̂︷ ︸︸ ︷
̂ × ı̂) + a2b2(

0︷ ︸︸ ︷
̂ × ̂) + a2b3(

ı̂︷ ︸︸ ︷
̂ × k̂) +

a3b1(

̂︷ ︸︸ ︷
k̂ × ı̂) + a3b2(

−ı̂︷ ︸︸ ︷
k̂ × ̂) + a3b3(

0︷ ︸︸ ︷
k̂ × k̂)

= ı̂(a2b3 − a3b2) + ̂(a3b1 − a1b3) + k̂(a1b2 − b1a2)

= ı̂(1 − 8) + ̂(−6 − 1) + k̂(−4 − 3)

= −7(ı̂ + ̂ + k̂)

which, of course, is the same result as obtained above using the determinant.
Making a sketch such as Fig. 2.38 is helpful while calculating cross products
this way. The product of any two basis vectors is positive in the direction of the
arrow and negative if carried out backwards, e.g., ı̂ × ̂ = k̂ but ̂ × ı̂ = −k̂.

⇀
a × ⇀

b = −7(ı̂ + ̂ + k̂)
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SAMPLE 2.24 Finding a vector normal to two given vectors: Find a unit vector

perpendicular to the vectors ⇀
r A = ı̂ − 2̂ + k̂ and ⇀

r b = 3̂ + 2k̂.

Solution The cross product between two vectors gives a vector perpendicular to the
plane formed by the two vectors. The sense of direction is determined by the right
hand rule.

Let
⇀
N = N λ̂ be the perpendicular vector.

⇀
N = ⇀

r A × ⇀
r B

= (ı̂ − 2̂ + k̂) × (3̂ + 2k̂)

=
❇❇�

This calculation can be done
in any of the two ways shown
in the previous sample prob-
lem.

−7ı̂ − 2̂ + 3k̂.

Therefore,

λ̂ =
⇀
N

N

= −7ı̂ − 2̂ + 3k̂√
72 + 22 + 32

= −0.89ı̂ − 0.25̂ + 0.38k̂

λ̂ = −0.89ı̂ − 0.25̂ + 0.38k̂

Check:

• |λ̂| = (0.89)2 + (0.25)2 + (0.38)2
√
= 1. (it is a unit vector)

• λ̂ · ⇀
r A = 1(−0.89) − 2(−0.25) + 1(0.38)

√
= 0. (λ̂ ⊥ ⇀

r A).

• λ̂ · ⇀
r B = 3(−0.25) + 2(0.38)

√
= 0. (λ̂ ⊥ ⇀

r B).

Comments: If λ̂ is perpendicular to ⇀
rA and ⇀

rB, then so is −λ̂. The perpendicularity
does not change by changing the sense of direction (from positive to negative) of
the vector. In fact, if λ̂ is perpendicular to a vector ⇀

r then any scalar multiple of λ̂,
i.e., αλ̂, is also perpendicular to ⇀

r . This follows from the fact that

αλ̂ · ⇀
r = α(λ̂ · ⇀

r ) = α(0) = 0.

The case of −λ̂ is just a particular instance of this rule with α = −1.
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SAMPLE 2.25 Finding a vector normal to a plane: Find a unit vector normal to the
plane ABC shown in the figure.

A (0,0,1)

C (0,1,0)

B (1,0,0)

y

x

z

Figure 2.39: (Filename:sfig2.vec2.normal)

Solution A vector normal to the plane ABC would be normal to any vector in that
plane. In particular, if we take any two vectors, say ⇀

rAB and ⇀
rAC, the normal to the

plane would be perpendicular to both ⇀
rAB and ⇀

rAC. Since the cross product of two
vectors gives a vector perpendicular to both vectors, we can find the desired normal
vector by taking the cross product of ⇀

rAB and ⇀
rAC. Thus,

⇀
N = ⇀

rAB × ⇀
rAC

= (ı̂ − k̂) × (̂ − k̂)

= ı̂ × ̂︸ ︷︷ ︸
k̂

− ı̂ × k̂︸ ︷︷ ︸
−̂

− k̂ × ̂︸ ︷︷ ︸
−ı̂

+ k̂ × k̂︸ ︷︷ ︸
⇀

0

= ı̂ + ̂ + k̂

⇒ n̂ =
⇀
N

| ⇀
N |

= 1√
3
(ı̂ + ̂ + k̂).

n̂ = 1√
3
(ı̂ + ̂ + k̂)

Check: Now let us check if n̂ is normal to any vector in the plane ABC. It is fairly
easy to show that n̂ · ⇀

rAB = n̂ · ⇀
rAC = 0. It is, however, not a surprise; it better be

since we found n̂ from the cross product of ⇀
rAB and ⇀

rAC. Let us check if n̂ is normal
to ⇀
rBC:

n̂ · ⇀
rBC = 1√

3
(ı̂ + ̂ + k̂) · (−ı̂ + ̂)

= 1√
3
(−ı̂ · ı̂ + ̂ · ̂)

= 1√
3
(−1 + 1)

√
= 0.
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SAMPLE 2.26 The shortest distance between two lines: Two lines, AB and CD,
in 3-D space are defined by four specified points, A(0,2 m,1 m), B(2 m,1 m,3 m),
C(-1 m,0,0), and D(2 m,2 m,2 m) as shown in the figure. Find the shortest distance
between the two lines.

y

x

z

B (2m,1m,3m)

D (2m,2m,2m)
C (-1m,0,0)

A (0,2m,1m)

Figure 2.40: (Filename:sfig2.vec2.perp3D)

Solution The shortest distance between any pair of lines is the length of the line that
is perpendicular to both the lines. We can find the shortest distance in three steps:

(a) First find a vector that is perpendicular to both the lines. This is easy. Take
two vectors ⇀

r1 and ⇀
r2, one along each of the two given lines. Take the cross

product of the two unit vectors and make the resulting vector a unit vector n̂.
(b) Find a vector parallel to n̂ that connects the two lines. This is a little tricky.

We don’t know where to start on any of the two lines. However, we can take
any vector from one line to the other and then, take its component along n̂.

(c) Find the length (magnitude) of the vector just found (in the direction of n̂).
This is simply the component we find in step (b) devoid of its sign.

Now let us carry out these steps on the given problem.

(a) Step-1: Find a unit vector n̂ that is perpendicular to both the lines.

⇀
rAB = 2 mı̂ − 1 m̂ + 2 mk̂

⇀
rCD = 3 mı̂ + 2 m̂ + 2 mk̂

⇒ ⇀
rAB × ⇀

rCD = ı̂ ̂ k̂

2 −1 2
3 2 2

m2

= ı̂(−2 − 4) m2 + ̂(6 − 4) m2 + k̂(4 + 3) m2

= (−6ı̂ + 2̂ + 7k̂) m2

Therefore,

n̂ =
⇀
rAB × ⇀

rCD

|⇀
rAB × ⇀

rCD|
= 1√

89
(−6ı̂ + 2̂ + 7k̂).

(b) Step-2: Find any vector from one line to the other line and find its component
along n̂.

⇀
rAC = −1 mı̂ − 2 m̂ − 1 mk̂

⇀
rAC · n̂ = −(ı̂ + 2̂ + k̂) m · 1√

89
(−6ı̂ + 2̂ + 7k̂)

= 1√
89

(6 − 4 − 7) m = − 5√
89

m.

(c) Step-3: Find the required distance d by taking the magnitude of the component
along n̂.

d = ∣∣⇀
rAC · n̂∣∣ =

∣∣∣∣− 5√
89

m

∣∣∣∣ = 0.53 m

d = 0.53 m
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SAMPLE 2.27 The mixed triple product: Calculate the mixed triple product λ̂·(⇀
a×⇀

b)

for λ̂ = 1√
2
(ı̂ + ̂),

⇀
a = 3ı̂, and

⇀

b = ı̂ + ̂ + 3k̂.

Solution We compute the given mixed triple product in two ways here:
• Method-1: Straight calculation using cross product and dot product.

Let ⇀
c = ⇀

a × ⇀

b

= (3ı̂) × (ı̂ + ̂ + 3k̂)

= 3 ı̂ × ı̂︸︷︷︸
⇀

0

+3 ı̂ × ̂︸ ︷︷ ︸
k̂

+9 ı̂ × k̂︸ ︷︷ ︸
−̂

= −9̂ + 3k̂

So, λ̂ · (
⇀
a × ⇀

b) = λ̂ · ⇀
c

= 1√
2
(ı̂ + ̂) · (−9̂ + 3k̂) = − 9√

2
.

• Method-2: Using the determinant formula for mixed product.

λ̂ · (
⇀
a × ⇀

b) = λx λy λz

ax ay az

bx by bz

= 1√
2

1√
2

0

3 0 0
1 1 3

= 1√
2
(0 − 0) + 1√

2
(0 − 9) + 0 = − 9√

2
.

λ̂ · (
⇀
a × ⇀

b) = − 9√
2

SAMPLE 2.28 Moment about an axis: A vertical force of unknown magnitude F
acts at point B of a triangular plate ABC shown in the figure. Find the moment of the
force about edge CA of the plate.

y

z

C (3,0,0)

A (0,3,0)

B (-2,0,0)

x

⇀
F

Figure 2.41: (Filename:sfig2.vec2.momxx)

Solution The moment of a force
⇀
F about an axis x-x is given by

Mxx = λ̂xx · (
⇀
r × ⇀

F )

where λ̂xx is a unit vector along the axis x-x, ⇀
r is a position vector from any point on

the axis to the applied force. In this problem, the given axis is CA. Therefore, we can
take ⇀

r to be ⇀
rAB or ⇀

rCB. Here,

λ̂CA =
⇀
rCA

|⇀
rCA| = 3(−ı̂ + ̂)√

9 + 9
= − 1√

2
ı̂ + 1√

2
̂ .

Now, moment about point A is
⇀
MA = ⇀

rAB × ⇀
F

= (−2ı̂ − 3̂) × F k̂ = 2F ̂ − 3F ı̂.

Therefore, the moment about CA is

MC A = λ̂CA · (
⇀
rAB × ⇀

F ) = λ̂CA · ⇀
MA

= (− 1√
2
ı̂ + 1√

2
̂) · (−3F ı̂ + 2F ̂)

= (
3√
2

+ 2√
2
)F = 5√

2
F.

MC A = 5√
2

F
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2.4 Solving vector equations
If as an engineer you knew all quantities of interest you would not need to calculate.
But as a rule in life you know less than you would like to know. And you naturally
try to figure out more. In engineering mechanics analysis you find more quantities of
interest from others that you already know (or assume) using the laws of mechanics
(including geometry and kinematics). Because many of the laws of these laws are
vector equations, engineering analysis often requires the solving of vector equations.

The methods involved are much the same whether the problems are in geometry,
kinematics, statics, dynamics or a combination of these. In this section we will show a
few methods for solving some of the more common vector equations. In a sense there
are no new concepts in this section; if you are already adept at vector manipulations
you will find yourself reading quickly.

Vector algebra

We will be concerned with manipulating equations that involve vectors (like
⇀

A,
⇀
B,

⇀

C,
and

⇀

0) and scalars (like a, b,, c, and 0). Without knowing anything about mechanics
or the geometric meaning of vectors, one can learn to do correct vector algebra by just
following the manipulation rules below, these are elaborations of elementary scalar
algebra to accommodate vectors and the three new kinds of multiplication (scalar
times vector, dot product, and cross product). Here is a summary.

Addition and all three kinds of multiplication (scalar multiplication, dot prod-
uct, cross product) all follow the usual commutative, associative, and distribu-
tive laws of scalar addition and multiplication with the following exceptions:

• a + ⇀

A is nonsense,
• a/

⇀

A is nonsense,
• ⇀

A/
⇀
B is nonsense,

• a · ⇀

A is nonsense (unless you mean by it a
⇀

A),
• a × ⇀

A is nonsense,
• ⇀

A× ⇀
B �= ⇀

B × ⇀

A,

and the following extra simplification rules:

• a
⇀

A is a vector,
• ⇀

A· ⇀
B is a scalar,

• ⇀

A× ⇀
B is a vector,

• ⇀

A× ⇀
B = − ⇀

B × ⇀

A (so
⇀

A× ⇀

A = ⇀

0)
• ⇀

A·( ⇀
B × ⇀

C) = (
⇀

A× ⇀
B)· ⇀

C.

Following these rules automatically enforces correct manipulations. Armed with
insight you can direct these manipulations towards a desired end.

Example. Say you know
⇀

A,
⇀
B,

⇀

C and
⇀
D and you know that

a
⇀

A+ b
⇀
B + c

⇀

C = ⇀
D
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but you don’t know a, b, and c. How could you find a? First dot both
sides with

⇀
B × ⇀

C and then blindly follow the rules:{
a

⇀

A+ b
⇀
B + c

⇀

C = ⇀
D

} · ( ⇀
B × ⇀

C
)

(2.10)

a
⇀

A· ( ⇀
B × ⇀

C
) + b

⇀
B· ( ⇀

B × ⇀

C
)︸ ︷︷ ︸

0

+c
⇀

C· ( ⇀
B × ⇀

C
)︸ ︷︷ ︸

0

= ⇀
D· ( ⇀

B × ⇀

C
)

a =
⇀
D· ( ⇀

B × ⇀

C
)

⇀

A· ( ⇀
B × ⇀

C
) .

The two zeros followed from the general rules that
⇀

A · (
⇀
B × ⇀

C) =
(

⇀

A × ⇀
B)· ⇀

C) and
⇀

A × ⇀

A = ⇀

0. The last line of the calculation assumes
that

⇀

A· ( ⇀
B × ⇀

C
) �= 0. (The linear algebra savvy reader will recognize

this thoughtless manipulation as a derivation of Cramer’s rule for 3 × 3
matrices.) Note the derivation above breaks down if the vectors

⇀

A, b
⇀
B,

and c
⇀

C are co-planar (see box 2.5). ✷

The point of the example above was to show the vector algebra rules at work. However,
to get to the end took the first ‘move’ of dotting the equation with the appropriate
vector. That move could be motivated this way. We are trying to find a and not b or
c. We can get rid of the terms in the equation that contain b and c if we can dot

⇀
B

and
⇀

C with a vector perpendicular to both of them.
⇀
B × ⇀

C is perpendicular to both
⇀
B and

⇀

C so can be used to kill them off with a dot product. The 0s in the example
calculation were thus expected for geometric reasons.

Count equations and unknowns.

One cannot (usually) find more unknowns than one has scalar equations. Before you
do lots of algebra, you should check that you have as many equations as unknowns.
If not, you probably can’t find all the unknowns. How do you count vector equations
and vector unknowns? A two- dimensional vector is fully described by two numbers.
For example, a 2D vector is described by its x and y components or its magnitude and
the angle it makes with the positive x axis. A three-dimensional vector is described by
three numbers. So a vector equation counts as 2 or 3 equations in 2 or 3 dimensional
problems, respectively. And an unknown vector counts as 2 or 3 unknowns in 2 or
3 dimensions, respectively. If the direction of a vector is known but its magnitude is
not, then the magnitude is the only unknown. Magnitude is a scalar, so it counts as
one unknown.

Example: Counting equations

Say you are doing a 2-D problem where you already know the vector
λ̂ = √

2ı̂ + √
2̂ and you are given the vector equation

C λ̂ = ⇀
a .

You then have two equations (a vector equation in 2-D ) and three
unknowns (the scalar C and the vector ⇀

a). There are more unknowns
than equations so this vector equation is not sufficient for finding C and
⇀
a . ✷
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Most often when you have as many equations as unknowns the equations
have a unique solution. When you have more equations than unknowns there
is most often no solution to the equations. When you have more unknowns
than equations most often you have a whole family of solutions.

However these are only guidelines, no matter how many equations and unknowns you
have, you could have no solutions, many solutions or a unique solution. The geometric
significance of some cases that satisfy and that don’t satisfy these guidelines is given
in box 2.5 on page 63.

Vector triangles

In 2D one often wants to know all three vectors in a vector triangle, the diagram for
expressions like

⇀

A+ ⇀
B = ⇀

C or
⇀

A− ⇀

C = ⇀
B or

⇀

A+ ⇀
B + ⇀

C = ⇀

0 etc.

Usually at least one vector is given and some information is given about the others. The
situation is much like the geometry problem of drawing a triangle given various bits of
information about the lengths of its sides and its interior angles. If enough information
is given to prove triangle congruence, then enough information is given to determine
all angles and sides. A difference between vector triangles and proofs of triangle
congruence is that triangle congruence does not depend on the overall orientation,
whereas vector triangles need to have the correct orientation. Nonetheless, the tools
used to solve triangles are useful for solving vector equations.

Vector addition

We start with a problem that is in some sense solved at the start. Say
⇀

A and
⇀
B are

known and you want to find
⇀

C given that

⇀

C = ⇀

A+ ⇀
B.

The obvious and correct answer is that you find
⇀

C by vector addition. You could
do this addition graphically by drawing a scale picture, or by adding corresponding
vector components. Suppose now that

⇀

A and
⇀
B are given to you in terms of magnitude

and direction and that you are interested in the direction of
⇀

C.
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Example: adding vectors defined by magnitude and direction

Say direction is indicated by angle measured counterclockwise form the
positive x axis and that A = 5

√
2, θA = π/4, B = 4, and θB = 2π/3.

So

⇀

A = A
(
cos θA ı̂ + sin θA̂

)
= 5

√
2

(
cos(π/4)ı̂ + sin(π/4)̂

) = 5ı̂ + 5̂
⇀
B = B

(
cos θB ı̂ + sin θB ̂

)
= 4

(
cos(2π/3)ı̂ + sin(2π/3)̂

) = −2ı̂ + 2
√

3̂
⇀

C = ⇀

A+ ⇀
B = (

5ı̂ + 5̂
) +

(
−2ı̂ + 2

√
3̂

)
= 3ı̂ + (5 + 2

√
3)̂

⇒ θC = tan−1 (
Cy/Cx

) = tan−1
((

5 + 2
√

3
)

/3
)

≈ 1.23 ≈ 70.5o

and C =
√

32 + (5 + 2
√

3)2 ≈ 8.98

✷

To find θC we used the arctan (or tan−1) function which can be off by π 1©. To find 1© The problem is that, measuring angles
between 0 and 2π (or equivalently between
−π and π ) there are always two different
angles that have the same tangent. The in-
verse tangent function picks one. Some
computers or calculators always pick an an-
gle between 0 and π and some always pick
a value between −π/2 and π/2. Both of
these could be the wrong answer. So you
need to check and possibly ad π to your an-
swer, or, alternatively use one of these two
commands: 1) the two-argument inverse
tangent (arctan(x, y)) or 2) rectangular-to-
polar coordinate conversion, using the angle
as the desired arctangent.

the angle of
⇀

C we had to convert
⇀

A and
⇀
B to coordinate form, add components, and

then convert back to find the angle of
⇀

C. That is, even though the desired answer is
given by a sum, carrying out the sum takes a bit of effort. An alternative approach
avoids some work.

Figure 2.42: Using trig to solve vector
triangles

(Filename:tfigure.cosinetriangle)

Example: Same as above, different method

Start with picture of the situation, Fig. 2.42. By adding angles,

θ2 = π/4 + π/3 = 7π/12.

From the law of cosines (see box 2.6 on page 64),

C2 = A2 + B2 − 2AB cos θ2

⇒ C =
√

(5
√

2)2 + 42 − 2(5
√

2) · 4 · cos(7π/12)

≈ 8.98 (as before)

And from the law of sines (see box 2.6),

sin θ1

B
= sin θ2

C

⇒ θ1 = sin−1
(

B sin θ2

C

)
≈ sin−1

(
4 sin(7π/12)

8.98

)
≈ .445

⇒ θC = θA + θ2 ≈ π/4 + .445 ≈ 1.23 (as before).

✷

This second approach is somewhat more direct in some situations.
The determination of a third vector by vector addition is analogous to the deter-

mination of a triangle in geometry by “side-angle-side”.
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Vector subtraction
Say you want to find

⇀

C given
⇀

A and
⇀
B and that

⇀

A,
⇀
B and

⇀

C add to zero. So, subtracting
⇀

C from both sides and multiplying through by -1 we get

⇀

A+ ⇀
B + ⇀

C = ⇀

0

⇒ ⇀

C = − ⇀

A− ⇀
B.

The problem has now been reduced to one of addition which can be done by drawing,
components, or trig as shown above.

Find the magnitude of two vectors given their directions and
their sum (2D)
Often one knows that 2 vectors

⇀

A and
⇀
B add to a given third vector

⇀

C. The directions
of

⇀

A and
⇀
B are known but not their magnitudes. That is, given λ̂A, λ̂B and

⇀

C and that

⇀

A + ⇀
B = ⇀

C

Aλ̂A + Bλ̂B = ⇀

C

(2.11)

you would like to find
⇀

A and
⇀
B (which you will know if you find A and B).

Example: A walk

You walked SW (half way between South and West) for a while and
NNW (half way between North and NorthWest, 22.5o West of North)
for a while and ended up going a net distance of 200 m East.

⇀

A and
⇀
B

are your displacements on the first and second parts of your walk.
So, taking xy axes aligned with East and North, the directions are

λ̂A =
√

2

2
ı̂ −

√
2

2
̂ and λ̂B = − sin(

π

8
)ı̂ + cos(

π

8
)̂

and the given sum is
⇀

C = 200 mı̂. Still unknown are the distances A and
B. ✷

Figure 2.43: An indirect walk from O to
D via C.

(Filename:tfigure.2.walk)

Here are four ways to solve eqn. (2.11) which will be illustrated with “a walk”.

Method I: Use dot products with ı̂ and ̂

If we take the dot product of both sides of eqn. (2.11) with ı̂ and then again with ̂

we get:

ı̂ · {eqn. (2.11)} ⇒ AλAx + BλBx = Cx , and
̂ · {eqn. (2.11)} ⇒ AλAy + BλBy = Cy

(2.12)

where the components of the vectors λ̂A, λ̂B , and
⇀

C are known, or easily determined,
because the vectors are known (however they are represented). Eqns. 2.12 are two
scalar equations in the unknowns A and B. You can solve these any way that pleases
you. One method would be to write the equations in matrix form[

λAx λBx

λAy λBy

]
·
[

A
B

]
=

[
Cx

Cy

]
(2.13)
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Example: Solving “A walk”: method I, simultaneous equations

For the walk example above we would have[ √
2/2 − sin(π

8 )

−√
2/2 cos(π

8 )

]
·
[

A
B

]
=

[
200 m

0

]

which solves (on a computer or calculator) to A ≈ 483 m and B ≈ 370
(with the total walked distance being about 852 m). ✷

Taking dot products of a vector equation with ı̂ and ̂ is equivalent to extracting the x
and y components of the equation. But we use the dot product notation to highlight
that you could dot both sides of the vector equation with any vector that pleases you
and you would get a legitimate scalar equation. Use any other vector that pleases you
(not parallel with the first) and you will get a second independent equation. And the
two resulting equations will have the same solution for A and B as the x and y (or
“ı̂” and “̂”) equations above.

Method II: pick a vector for dot product that kills terms you don’t know.

Pretend for a paragraph that you only want to find A in eqn. (2.11), for example that
you only wanted to know the distance walked on the first leg of the indirect walk in
the example above. It would be nice to reduce eqn. (2.11) to a single scalar equation
in the single unknown A. We’d like to get rid of the term with B, a quantity that we
do not know. Suppose we knew a vector n̂B that was perpendicular to λ̂B . If we
dotted both sides of eqn. (2.11) we’d get:

n̂ · {eqn. (2.11)} ⇒ n̂B ·
(

Aλ̂A + Bλ̂B

)
= n̂B · ⇀

C

⇒ n̂B ·
(

Aλ̂A

)
+ n̂B ·

(
Bλ̂B

)
= n̂B · ⇀

C

n̂B ⊥ λ̂B so n̂B · λ̂B = 0 ⇒
(
n̂B · λ̂A

)
A = n̂B · ⇀

C

⇒ A = n̂B ·
⇀

C
n̂B ·λ̂A

.

To make use of this method we have to cook up a vector n̂B that is perpendicular to
λ̂B

1©. The vector n̂B = k̂ × λ̂B serves the purpose. So we get 1© The vector k̂ (the unit vector out of the
page) is perpendicular to λ̂B but is unfor-
tunately not suitable because it is also per-

pendicular to λ̂A and
⇀

C so only yields the
equation 0 + 0 = 0 or the nonsense that
A = 0/0.

A = (k̂ × λ̂B) · ⇀

C

(k̂ × λ̂B) · λ̂A

= λByCx − λBx Cy

λByλAx − λBxλAy

which, if you learned such, you may recognize as the Cramer’s rule solution of
eqn. (2.19). Summarizing 2©.

2© Its the modern way, kill the things you
don’t know about (and thus don’t like) us-
ing the most powerful weapons at your dis-
posal.To reduce eqn. (2.11) to one scalar equation in the one unknown A, kill the

λ̂B or
⇀
B term by dotting both sides of with k̂ × λ̂B or k̂ × ⇀

B

Altogether you can think of this method as something like the “component”
method. But we are taking components of the vectors in the direction perpendicular
to

⇀
B. Alternatively you can think of this method as taking the projection of the vector

equation onto a line perpendicular to
⇀
B.

Similarly dotting both sides of eqn. (2.11) with k̂ × λ̂A gives

B = (k̂ × λ̂A) · ⇀

C

(k̂ × λ̂A) · λ̂B

.
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Example: Solving “A walk”: method II, judicious dot products

You should be able to derive the formulas above as needed. Dotting,
for example, both sides of eqn. (2.11) with k̂ × λ̂B and plugging in the
known components yields

A = (k̂ × λ̂B) · ⇀

C

(k̂ × λ̂B) · λ̂A

= λByCx − λBx Cy

λByλAx − λBxλAy

= cos(π/8) · 200 m − (− sin(π/8)) · 0

cos(π/8) · (
√

2/2) − (− sin(π/8)) · (−√
2/2)

≈ 483 m (as before)

✷

Method III, graphical solution

On the vector triangle defined by
⇀

A+ ⇀
B = ⇀

C we call O the tail end of
⇀

A. The location
of the tip of

⇀

C at G can be drawn to scale. Then the point H can be located as at the
intersection of two lines: one emanating from O and in the direction of λ̂A and one
emanating from H and in the direction of λ̂B . Once the point H is located, the lengths
A and B can be measured.

Figure 2.44: Method III: Find point H as
the intersection of two known lines.

(Filename:tfigure.2.walkIII)

Example: Solving “A walk”: method III, graphing

Taking 100 mas drawn to scale as, say 1 cm, point G is drawn 2 cm to
the right of O. The location of the point H is found as the intersection
of two lines: one emanating from O and pointing 45o counterclockwise
from the −̂ axis, and the other emanating from G and pointing 22.5o

counterclockwise from the −̂ axis. The distance from O to H can be
measured as about 4.8 cm yielding A ≈ 480 m.

This construction can be done with pencil and paper or with a com-
puter drawing program. ✷

Method IV, trigonometry

The final method, the classical method used predominantly before vector notation
was well accepted, is to treat the vector triangle as a triangle with some known sides
and some known angles, and to use the law of sines (discussed in box 2.6 ).

Because
⇀

C and the directions of
⇀

A and
⇀
B are assumed known, the angles a

(opposite side A) and b (opposite side B) are known. Because the sum of interior
angles in a triangle is π we know the angle c = π − a − b. The law of sines tells us
that

sin a

A
= sin c

C
and

sin b

B
= sin c

C

which we can rewrite as

A = C sin a

sin c
and B = C sin b

sin c
.

Figure 2.45: Solving “A walk” using the
law of sines.

(Filename:tfigure.2.walkIV)
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Example: Solving “A walk”: method IV, the law of sines

Referring to Fig. 2.45 we get

A = C sin a

sin c
= 200 m · sin(5π/8)

sin(π/8)
≈ 483 m

and B = C sin b

sin c
= 200 m · sin(π/4)

sin(π/8)
≈ 370 m

as we have found three times already. ✷

The determination of two vectors by knowing their directions and their sum is
analogous to determination of a triangle by “angle-side-angle”.

The magnitudes and sum of two vectors are known (2D)

Two vectors
⇀

A and
⇀
B in the plane have known magnitudes A and B but unknown

directions λ̂A and λ̂B . Their sum
⇀

C is known. So, measuring angles counterclockwise
relative to the positive x axis, we have:

⇀

A+ ⇀
B = ⇀

C

Aλ̂A + Bλ̂B = ⇀

C

A
(
cos θA ı̂ + sin θA̂

) + B
(
cos θB ı̂ + sin θB ̂

) = ⇀

C (2.14)

where eqn. (2.14) is one 2D vector equation in 2 unknowns: θA and θB .

Method 1: using an appropriate dot product

This problem is really best solved with trig (see below) and getting it right with
component method is a matter of hindsight. Eqn. 2.14 can be rewritten as

C
(
cos θC ı̂ + sin θC ̂

) − A
(
cos θA ı̂ + sin θA̂

) = B
(
cos θB ı̂ + sin θB ̂

)
Taking the dot product of each side with itself gives

C2 + A2 − 2AC (cos θC cos θA + sin θC sin θA)︸ ︷︷ ︸
cos(θC −θA)

= B2

so

θA = θC − arccos

(
C2 + A2 − B2

2AC

)
.

Now
⇀

A is fully determined and
⇀
B can be found by vector subtraction. Note that

the arccos function is always double valued (the negative of any arccos is also a
legitimate arccos), so that the solution of this problem is not unique. Also, if the
argument of the arccos function is greater than 1 in magnitude, there is no solution;
this happens if any two of A, B, and C is greater than the third (that is, if the so-called
“triangle inequality” is violated) and there is no way of making a triangle with the
given lengths.)

Figure 2.46: For use in using the law of
cosines to solve a vector triangle.

(Filename:tfigure.cosinestriangle)
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Method II: The law of cosines

Referring to Fig. 2.46, we can apply the law of cosines directly to get

B2 = A2 + C2 − 2AB cos θB (2.15)

which we can solve to get θ1 = arccos

(
C2 + A2 − B2

2AC

)
. (2.16)

Thus the orientation of
⇀

A is determined in relation to
⇀

C. This method is a bit quicker
than the component method above because it skips the steps where, in effect, the
component method derives the law of cosines.

Method III: graphical construction

P1

P2

⇀

A

⇀

A

⇀
B

⇀
B

another 
possible

another 
possible

⇀

C

Figure 2.47: Solving a vector triangle
where vectors

⇀

A and
⇀
B have known mag-

nitude but unknown direction.
(Filename:tfigure.2circs)

From the tail of
⇀

C draw a circle with radius A (see Fig. 2.47). From the tip of
⇀

C draw
a circle with radius B. For each of the two points of intersection, P1 and P2, a solution
has been found. Vector

⇀

A goes from the tail of
⇀

C to, say, P1, and
⇀
B goes from P1

to the tip of
⇀

C. An
⇀

A and
⇀
B based on P2 is also a legitimate solution. Each pair is

a legitimate solution to the problem. To get a unique solution set other information
would have to be provided.

Determining a vector triangle when one vector is known and only the magnitudes
of the other two are known is analogous to determining a triangle from ”side-side-
side” in geometry. It is interesting that this, the most elementary of all geometric
constructions does not have an equally simple analytic representation.

Find the magnitude of three vectors given their directions
and their sum (3D)

This problem is close in approach to its junior 2D cousin on page 54 and to the
example on page 50. It is the most common of the 3D vector equation problems.
Assume that you know the directions of three vectors

⇀

A,
⇀
B and

⇀

C (given, say, as the
unit vectors λ̂A, λ̂B, and λ̂C ), as well as their sum

⇀
D. So we have

⇀

A + ⇀
B + ⇀

C = ⇀
D

Aλ̂A + Bλ̂B + C λ̂C = ⇀
D

(2.17)

and we want to find A, B, and C from which we can find
⇀

A,
⇀
B, and

⇀

C (e.g.,
⇀

A =
Aλ̂A). We can think of the last of eqn. (2.17) as one 3D vector equation in three
unknowns.

In three dimensions the graphical approach is essentially impossible. And the
trigonometric approach is awkward to say the least, and probably only generally
practical for people with British accents who are long dead. The general ideas in the
first two methods still stand, however. Thus the use of vector concepts is basically
unavoidable in 3D problems.
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Method I: doting with ı̂, ̂ , and k̂.

We can dot the left and right sides of eqn. (2.17) with ı̂ or ̂ or k̂. This is equivalent
to taking the x, y and z components of the equation. We get then

ı̂ · {eqn. (2.17)} ⇒ AλAx + BλBx + CλCx = Dx ,

̂ · {eqn. (2.17)} ⇒ AλAy + BλBy + CλCy = Dy, and
k̂ · {eqn. (2.17)} ⇒ AλAz + BλBz + CλCz = Dz

(2.18)

which can be written in matrix form as
 λAx λBx λCx

λAy λBy λCy

λAz λBz λCz


 ·


 A

B
C


 =


 Dx

Dy

Dz


 . (2.19)

Unless the matrix is sparse (has a lot of zeros as entries) it is probably best to solve
such a set of equations for A, B and C on a computer or calculator.

Method II: pick a vector for dot product that kills terms you don’t know.

The philosophy here is the same as for method II in 2D (page 55). Pretend for
a paragraph that you only want to find A in eqn. (2.17). We can kill the terms
involving the unknowns B and C by dotting both sides of the equation with a vector
perpendicular to λ̂B and λ̂C . Such a vector is λ̂B × λ̂C . Thus

(λ̂B × λ̂C ) · {eqn. (2.11)}
⇒ (λ̂B × λ̂C ) ·

(
Aλ̂A + Bλ̂B + C λ̂C

)
= (λ̂B × λ̂C ) · ⇀

D

⇒ (λ̂B × λ̂C ) ·
(

Aλ̂A

)
+ ⇀

0 + ⇀

0 = (λ̂B × λ̂C ) · ⇀
D

⇒ A =
⇀
D · (λ̂B × λ̂C )

λ̂A · (λ̂B × λ̂C ).

If you use a matrix determinant to evaluate the mixed triple product you can recognize
this formula (like the formula solving the example on 50) as Cramer’s rule. By a
judicious dot product we have reduced the vector equation to a scalar equation in one
unknown. Similarly we could get one equation in one unknown for B or for C by
doting eqn. (2.17) with λ̂A × λ̂C and λ̂A × λ̂B , respectively 1©. 1© Note that the key to the method was dot-

ting with a vector in an appropriate direc-
tion, the magnitude of the vector did not
matter. So if, for example, you knew any

vector ⇀
v B in the direction of λ̂B and any

vector ⇀
vC in the direction of λ̂C you could

dot both sides of eqn. (2.17) with ⇀
v B × ⇀

vC
to get one scalar equation for A. This can
simplify calculations by avoiding the square
roots (which cancel in the end) that you cal-
culate to find unit vectors.

Parametric equations for lines and planes
A line in 2D

In geometry a line on a plane is often describe as the set of x and y points that satisfy
an equation like

Ax + By = D or y = mx + b

for given A, B, and D or m and b. However a line is a “one dimensional” object and
it is nice to describe it that way. The parametric form that is often useful is:

⇀
r = ⇀

r0 + s ⇀
v (2.20)

where ⇀
r are the set of points on the line, one point for each value of the scalar

parameter s. ⇀
r0 is any one given point on the line and ⇀

v is a vector parallel to the
line. In the special case that

⇀

A is a unit vector, s is the distance from the point at ⇀
r0

to the point at ⇀
r . If the vector ⇀

v was the velocity of a point moving on the line then
s would be the time since it was at the point ⇀

r0.
Figure 2.48: Parametric description of a
line using vectors.

(Filename:tfigure.parametricline)
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Example: Prametric equation of a line

A parametric equation for the line going through the points with position
vectors ⇀

rA and ⇀
rB is

⇀
r = ⇀

rA + s


⇀
rB − ⇀

rA︸ ︷︷ ︸
⇀
v


 or better ⇀

r = ⇀
rA + sλ̂A

where λ̂A = (
⇀
rB − ⇀

rA

)
/
∣∣⇀
rB

⇀
rA

∣∣ ✷

A line in 3D

In three dimensions a line is often described geometrically as the intersection of
two planes. But a line in three dimensions is still a one dimensional object so the
parametric form eqn. (2.20), applicable in three dimensions as well as two, is nice.

A plane

A plane in three dimensions can be described as the set of points x ,y, and z that satisfy
an equation like:

Ax + By + Cz = D

for a given A,B,C, and D. The parametric description of a plane uses two parameters
s1 and s2 and is

⇀
r = ⇀

rO + s1
⇀
v1 + s2

⇀
v2 (2.21)

where ⇀
r is a typical point on the plane, ⇀

v1 and ⇀
v2 are any two non-parallel vectors that

lie in the plane and s1 and s2 are any two real numbers. Each pair (s1, s2) corresponds
to one point in the plane and vice versa. The numbers s1 and s2 can be thought of as
in-plane distance coordinates if the vectors ⇀

v1 and ⇀
v2 are mutually orthogonal unit

vectors.

Figure 2.49: a) Parametric equation of a
plane. b) the plane through the points A,B,
and C

(Filename:tfigure.parametricplane)

Example: A plane

A parametric equation for the plane going through the three points ⇀
rA,

⇀
rB, and ⇀

rC is

⇀
r = ⇀

rA︸︷︷︸
⇀
r0

+s1
(

⇀
rB − ⇀

rA

)︸ ︷︷ ︸
⇀
v 1

+s2
(

⇀
rC − ⇀

rA

)︸ ︷︷ ︸
⇀
v 2

You can check that when s1 = s2 = 0 the point on the plane ⇀
rA is given.

And when one of the s values is one and the other zero the points ⇀
rB and

⇀
rC are given. ✷

Vectors, matrices, and linear algebraic equations
Once has drawn a free body diagram and written the force and moment balance
equations one is left with vector equations to solve for various unknowns. The vector
equations of mechanics can be reduced to scalar equations by using dot products.
The simplest dot product to use is with the unit vectors ı̂, ̂ , and k̂. This use of dot
products is equivalent to taking the x , y, and z components of the vector equation.
The two vector equations

aı̂ + b̂ = (c − 5)ı̂ + (d + 7)̂

(a − c)ı̂ + (a + b)̂ = (c + b)ı̂ + (2a + c)̂
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with four scalar unknowns a, b, c, and d , can be rewritten as four scalar equations,
two from each two-dimensional vector equation. Taking the dot product of the first
equation with ı̂ gives a = c −5. Similarly dotting with ̂ gives b = d +7. Repeating
the procedure with the second equation gives 4 scalar equations:

a = c − 5
b = d + 7

a − c = c + b
a + b = 2a + c.

These equations can be re-arranged putting unknowns on the left side and knowns on
the right side:

1a + 0b + −1c + 0d = −5
0a + 1b + 0c + −1d = 7
1a + −1b + −2c + 0d = 0

−1a + 1b + −1c + 0d = 0

These equations can in turn be written in standard matrix form. The standard matrix
form is a short hand notation for writing (linear) equations, such as the equations
above: 


1 0 −1 0
0 1 0 −1
1 −1 −2 0

−1 1 −1 0




︸ ︷︷ ︸
[A]

·




a
b
c
d




︸ ︷︷ ︸
[x]

=




−5
7
0
0




︸ ︷︷ ︸
[y]

⇒ [A] · [x] = [y] .

The matrix equation [A] · [x] = [y] is in a form that is easy to input to any of
several programs that solve linear equations. The computer (or a do-able but probably
untrustworthy hand calculation) should return the following solution for [x] (a, b, c,
and d). 


a
b
c
d


 =




−5
−5
0

−12


 .

That is, a = −5, b = −5, c = 0, and d = −12. If you doubt the solution, check it.
To check the answer, plug it back into the original equation and note the equality (or
lack thereof!). In this case, we have done our calculations correctly and


1 0 −1 0
0 1 0 −1
1 −1 −2 0

−1 1 −1 0


 ·




−5
−5
0

−12


 =




−5
7
0
0


 .

Going back to the original vector equations we can also check that

−5ı̂ + −5̂ = (0 − 5)ı̂ + (−12 + 7)̂

(−5 − 0)ı̂ + (−5 + −5)̂ = (0 + −5)ı̂ + (2 · −5 + 0)̂ .

‘Physical’ vectors and row or column vectors
The word ‘vector’ has two related but subtly different meanings. One is a physical
vector like

⇀
F = Fx ı̂ + Fy ̂ + Fz k̂, a quantity with magnitude and direction. The

other meaning is a list of numbers like the row vector

[x] = [x1, x2, x3]
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or the column vector

[y] =

 y1

y2
y3


 .

Once you have picked a basis, like ı̂, ̂ , and k̂, you can represent a physical vector

⇀
F as a row vector

[
Fx , Fy, Fz

]
or a column vector


 Fx

Fy

Fz


. But the components of

a given vector depend on the base coordinate system (or base vectors) that are used.
For clarity it is best to distinguish a physical vector from a list of components using
a notation like the following:

[
⇀
F ]XY Z =


 Fx

Fy

Fz




The square brackets around
⇀
F indicate that we are looking at its components. The

subscript XY Z identifies what coordinate system or base vectors are being used. The
right side is a list of three numbers (in this case arranged as a column, the default
arrangement in linear algebra).
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2.5 THEORY
Existence, uniqueness, and geometry

As mentioned in the text, sometimes vector equations can have
no solutions, sometimes a unique solution and sometimes multiple
solutions. In some of the common types of vector equations these
cases often have simple geometric interpretation.

Example 1
Consider a very simple equation

a
⇀
v1 = ⇀

w

where ⇀
v1 and ⇀

w are given and you are to find a. The left hand
side is a parametric expression for the points on a line through the
origin in the direction ⇀

v1. So the equation only has a solution if ⇀
w

in on this line. In other words ⇀
w bust be parallel to ⇀

v1. This vector
equation is equivalent to 2 scalar equations (3 in 3D) with one scalar
unknown and we expect generally to find no solution. That is, two
random vectors ⇀

v1 and ⇀
w are unlikely to be parallel either in 2D or

3D.

Example 2
Now consider this vector equation in two unknown scalars a andb
with all vectors in the plane

a
⇀
v1 + b

⇀
v2 = ⇀

w.

If ⇀
v1 and ⇀

v2 are not parallel it is apparent that a
⇀
v1 + b

⇀
v2 could

be any vector on the plane. So there would be a unique solution for
every possible ⇀

w. But if ⇀
v1 and ⇀

v2 are parallel then the expression
a

⇀
v1 + b

⇀
v2 just describes a line. If ⇀

w is on this line there are many
solutions for a and b because the two vectors a

⇀
v1 and ⇀

v2 can be
added various ways that partially cancel.

in 2D a test to see if two vectors are parallel is to take their cross
product. So, if

(
⇀
v1 × ⇀

v2) · k̂ = v1xv2y − v1yv2x = det
[

v1x v2x
v1y v2y

]
= 0

then ⇀
v1 and ⇀

v2 are parallel and there are either many solutions or
no solutions depending on whether or not ⇀

w is also parallel to ⇀
v1

and ⇀
v2.

Example 3
Consider the same example as above

a
⇀
v1 + b

⇀
v2 = ⇀

w.

but where ⇀
v1, ⇀

v2 and ⇀
w are vectors in 3D. Now the question is

whether the vector ⇀
w is in the plane described parametrically by

a
⇀
v1 +b

⇀
v2. If we count equations (3) and unknowns (2) we see that

solution should be unlikely. Or, given 3 random vectors in 3D ⇀
v1,

⇀
v2 and ⇀

w, it is unlikely that ⇀
w would be in the plane determined by

⇀
v1 and ⇀

v2.

Example 4
Finally consider this common equation in 3D.

a
⇀
v1 + b

⇀
v2 + c

⇀
v3 = ⇀

w. (2.22)

where ⇀
v1, ⇀

v2, ⇀
v3, and ⇀

w are given vectors and a, b and c are
unknowns. If ⇀

v1, ⇀
v2, and ⇀

v3 are not co-planar, then it should be
clear that any point in space ⇀

w can be reached by some value of a,
b and c. On the other hand, if ⇀

v1, ⇀
v2, and ⇀

v3 are co-planar than
there is only a solution if ⇀

w is on the plane and then there are many
solutions because there are many ways for ⇀

v1, ⇀
v2, and ⇀

v3 to cancel
each other out.

We can test for coplanarity with geometric reasoning and cross
products. The vector ⇀

v1 × ⇀
v2 is orthogonal to the plane of ⇀

v1 and
⇀
v2. So, if ⇀

v3 is in the same plane it will be orthogonal to ⇀
v1 × ⇀

v2.
Thus if

(
⇀
v1 × ⇀

v2) · ⇀
v3 = 0

the three vectors are co-planar. But this test can also be written as

det

[
v1x v2x v3x
v1y v2y v3y
v1z v2z v3z

]
= 0

which is what we would expect from considering the matrix form of
eqn. (2.22)[

v1x v2x v3x
v1y v2y v3y
v1z v2z v3z

][
a
b
c

]
=

[
wx
wy
wz

]

and checking to see if the 3×3 matrix is “singular” (a linear algebra
word meaning that the determinant is zero).
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2.6 THEORY
Vector triangles and the laws of sines and cosines

The tip to tail rule of vector addition defines a triangle. Given some
information about the vectors in this triangle how does one figure
out the rest? One traditional approach is to use the laws of sines and
cosines.

A

a

b

c

B
C

Consider the vector sum
⇀

A+ ⇀
B = ⇀

C represented by the trian-
gle shown with traditionally labeled sides A, B, and C and internal
angles a, b, and c.

The sides and angles are related by

sin a

A
= sin b

B
= sin c

C
the law of sines, and

C2 = A2 + B2 − 2AB cos c the law of cosines.

Proof of the law of sines
The first equality, say, in the law of sines can be proved by calculating
the altitude from c two ways.

A

a

b

c
B

C

P
1

P
2

On the one hand length P1P2 is given by

P1P2 = B sin a

and on the other hand by

P1P2 = A sin b

so

B sin a = A sin b ⇒ sin a

A
= sin b

B
.

We could do likewise with all three altitudes thus proving the triple
equality.

Proof of the law of cosines

The proof of the law of cosines is similar in spirit. So as to end up
with the usual lettering lets look at altitude h of the triangle.

A

a

b

c

B
C

d

h

This is the base of two different right triangles. So by the
pythagorean theorem we have on the one hand that

h2 = A2 − d2

and on the other that

h2 = C2 − (B + d)2.

Equating these expressions and expanding the square we get

A2 − d2 = C2 − (B2 + d2 − 2d B)(2.23)

⇒ A2 + B2 + 2d B = C2 (2.24)

But d = −A cos c so

C2 = A2 + B2 − 2AB cos c.

Sometimes the angle we call here c is called θ .

These laws, applied to various sides and angles of a triangle are
useful when you want to figure out the shape and size of a triangle
when, of the six triangle quantities (thee sides and three angles),
only are given. At least one of these three has to be a length.

As noted, it is possible to give problems of this type that have no
solutions. And it is possible to give problems that have either 1 or 2
solutions. No example was given in the text of the ”side-side-angle”
case because it has infinitely many solutions.

In this era where vector algebra is popular and so is the repre-
sentation of vectors in terms of their components, the laws of sines
and cosines are not used that often. But as shown in the section,
there are cases where the laws of sines and cosines are the easiest
approach.
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SAMPLE 2.29 Plain vanilla vector equation in 2-D: Three forces act on a particle

x

y

30o 45o

F2F1

W

Figure 2.50: (Filename:sfig2.4.veceqn.1)

as shown in the figure. The equilibrium condition of the particle requires that
⇀
F1 +

⇀
F2 + ⇀

W = ⇀

0. It is given that
⇀
W = −20 N̂ . Find the magnitudes of forces

⇀
F1 and

⇀
F2.

Solution We are given a vector equation,
⇀
F1 + ⇀

F2 + ⇀
W = ⇀

0, in which one vector
⇀
W

is completely known and the directions of the other two vectors are given. We need
to find their magnitudes. Let us write the vectors as

⇀
F1 = F1λ̂1,

⇀
F2 = F2λ̂2,

⇀
W = −W ̂ ,

where λ̂1 and λ̂2 are unit vectors along
⇀
F1 and

⇀
F2, respectively (their directions are

specified by the given angles in the figure), and W = 20 N as given. We can write
the unit vectors in component form as

λ̂1 = λ1x ı̂ + λ1y ̂ and λ̂2 = λ2x ı̂ + λ2y ̂ .

Now we can write the given vector equation as

F1(λ1x ı̂ + λ1y ̂) + F2(λ2x ı̂ + λ2y ̂) = W ̂ . (2.25)

Dotting both sides of eqn. (2.25) with ı̂ and ̂ respectively, we get

λ1x F1 + λ2x F2 = 0 (2.26)

λ1y F1 + λ2y F2 = W. (2.27)

Here, we have two equations in two unknowns (F1 and F2). We can solve these
equations for the unknowns. Let us solve these two linear equations by first putting
them into a matrix form and then solving the matrix equation. The matrix equation is[

λ1x λ2x

λ1y λ2y

] (
F1
F2

)
=

(
0
W

)
.

Using Cramer’s rule for matrix inversion, we get(
F1
F2

)
= 1

λ1x λ2y − λ2x λ1y

[
λ2y −λ2x

−λ1y λ1x

] (
0
W

)
.

Substituting the numerical values of λ1x = − cos 30o = −√
3/2, λ1y = − sin 30o =

1/2 and similarly, λ2x = 1/
√

2, λ2y = 1/
√

2, and W = 20 N, we get(
F1
F2

)
=

(
14.64
17.93

)
N.

F1 = 14.64 N, F2 = 17.93 N

Check: We can easily check if the values we have got are correct. For example,
substituting the numerical values in eqn. (2.26), we get

14.64 N ·
(

−
√

3

2

)
+ 17.93 N · 1√

2

√
= 0.
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SAMPLE 2.30 Solving for a single unknown from a 2-D vector equation: Consider

x

y

30o 45o

F2F1

W

Figure 2.51: (Filename:sfig2.4.veceqn.2)

the same problem as in Sample 2.29. That is, you are given that
⇀
F1 + ⇀

F2 + ⇀
W = ⇀

0
where

⇀
W = −20 N̂ and

⇀
F1 and

⇀
F2 act along the directions shown in the figure. Find

the magnitude of
⇀
F2.

Solution Once again, we write the given vector equation as

F1λ̂1 + F2λ̂2 = W ̂ ,

where W = 20 N, λ̂1 = λ1x ı̂ + λ1y ̂ = −√
3/2ı̂ + 1/2̂ , and λ̂2 = λ2x ı̂ + λ2y ̂ =

1/
√

2(ı̂ + ̂). We are interested in finding F2 only. So, let us take a dot product of
this equation with a vector that gets rid of the F1 term. Any such vector would have
to be perpendicular to λ̂1. One such vector is k̂ × λ̂1. Let us call this vector n̂1, that
is, n̂1 = k̂ × (λ1x ı̂ + λ1y ̂) = λ1x ̂ − λ1y ı̂. Now, dotting the given vector equation
with n̂1, we get

F1

0︷ ︸︸ ︷
(n̂1 · λ̂1) +F2(n̂1 · λ̂2) = W (n̂1 · ̂)

⇒ F2 = W
n̂1 · ̂
n̂1 · λ̂2

= W
(λ1x ̂ − λ1y ı̂) · ̂

(λ1x ̂ − λ1y ı̂) · (λ2x ı̂ + λ2y ̂)

= W
λ1x

λ1x λ2y − λ1y λ2x

= 20 N
−√

3/2

−√
3/2 · 1/

√
2 − 1/2 · 1/

√
2

= 20 N

√
6√

3 + 1
= 17.93 N

which, of course, is the same value we got in Sample 2.29. Note that here we
obtained one scalar equation in one unknown by dotting the 2-D vector equation with
an appropriate vector to get rid of the other unknown F1.

F2 = 17.93 N
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SAMPLE 2.31 Solving a 3-D vector equation on a computer: Four forces,
⇀
F1,

⇀
F2,

⇀
F3

and
⇀
N are in equilibrium, that is,

⇀
F1 + ⇀

F2 + + ⇀
F3 + ⇀

N = ⇀

0 where
⇀
N = −100 kNk̂

is known and the directions of the other three forces are known.
⇀
F1 is directed from

(0,0,0) to (1,-1,1),
⇀
F2 from (0,0,0) to (-1,-1,1), and

⇀
F3 from (0,0,0) to (0,1,1). Find

the magnitudes of
⇀
F1,

⇀
F2, and

⇀
F3.

Solution Let
⇀
F1 = F1λ̂1,

⇀
F2 = F2λ̂2, and

⇀
F1 = F3λ̂3, where λ̂1, λ̂2 and λ̂3 are

unit vectors in the directions of
⇀
F1,

⇀
F2, and

⇀
F3, respectively. Then the given vector

equation can be written as

F1λ̂1 + F2λ̂2 + F3λ̂3 = − ⇀
N = −N k̂

where N = −100 kN. Dotting this equation with ı̂, ̂ and k̂ respectively, and realizing
that ı̂ · λ̂1 = λ1x , ̂ · λ̂1 = λ1y , etc., we get the following three scalar equations.

λ1x F1 + λ2x F2 + λ3x F3 = 0

λ1y F1 + λ2y F2 + λ3x F3 = 0

λ1z F1 + λ2z F2 + λ3z F3 = −N .

Thus we get a system of three linear equations in three unknowns. To solve for the
unknowns, we set up these equations as a matrix equation and then use a computer
to solve it. In matrix form these equations are

 λ1x λ2x λ3x

λ1y λ2y λ3y

λ1z λ2z λ3z





 F1

F2
F3


 =


 0

0
−N


 .

To solve this equation on a computer, we need to input the matrix of unit vector
components and the known vector on the right hand side. From the given coordinates
for the directions of forces, we have λ̂1 = (ı̂ − ̂ + k̂)/

√
3, λ̂2 = (−ı̂ − ̂ + k̂)/

√
3,

and λ̂3 = (̂ + k̂)/
√

2. 1©We are also given that N = −100 kN. Now, we use the 1© These unit vectors are computed by tak-
ing a vector from one end point to the other
end point (as given) and then dividing by

its magnitude. For example, we find λ̂1 by

first finding ⇀
r1 = (1)ı̂ + (−1)̂ + (1)k̂,

a vector from (0,0,0) to (1,-1,1), and then

λ̂1 =
⇀
r1

|⇀r1| .

following pseudo-code to find the solution on a computer.

Let s2 = sqrt(2), s3 = sqrt(3)
A = [ 1/s3 -1/s3 0

-1/s3 -1/s3 1/s2
1/s3 1/s3 1/s2 ]

b = [ 0 0 100]’
solve A*F = b for F

Using this pseudo-code we find the solution to be

F = [ 43.3013
43.3013
70.7107 ]

That is, F1 = F2 = 43.3 kN and F3 = 70.7 kN.

F1 = 43.3 kN, F2 = 43.3 kN, F3 = 70.7 kN
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SAMPLE 2.32 Vector operations on a computer: Consider the problem of Sam-
ple 2.31 again. That is, you are given the vector equation

⇀
F1 + ⇀

F2 + + ⇀
F3 + ⇀

N = ⇀

0
where

⇀
N = −100 kNk̂ and the directions of

⇀
F1,

⇀
F2 and

⇀
F3 are given by the unit

vectors λ̂1 = (ı̂ − ̂ + k̂)/
√

3, λ̂2 = (−ı̂ − ̂ + k̂)/
√

3, and λ̂3 = (̂ + k̂)/
√

2,
respectively. Find F1.

Solution We can, of course, solve the problem as we did in Sample 2.31 and we get
the answer as a part of the unknown forces we solved for. However, we would like
to show here that we can extract one scalar equation in just one unknown (F3) from
the given 3-D vector equation and solve for the unknown without solving a matrix
equation. Although we can carry out all required calculations by hand, we will show
how we can use a computer to do these operations.

We can write the given vector equation as

F1λ̂1 + F2λ̂2 + F3λ̂3 = − ⇀
N . (2.28)

We want to find F1. Therefore, we should dot this equation with a vector that gets
rid of both F2 and F3, i.e., with a vector which is perpendicular to both

⇀
F2 and

⇀
F3.

One such vector is
⇀
F2 × ⇀

F3 or λ̂2 × λ̂3. Let n̂ = λ̂2 × λ̂3. Now, dotting both sides of
eqn. (2.28) with n̂, we get

F1(λ̂1 · n̂) + F2(λ̂2 · n̂) + F3(λ̂3 · n̂) = − ⇀
N · n̂

Since λ̂2 · n̂ = 0 and λ̂3 · n̂ = 0 (n̂ is normal to both λ̂2 and λ̂3), we get

F1(λ̂1 · n̂) = − ⇀
N · n̂

⇒ F1 = − ⇀
N · n̂
λ̂1 · n̂ .

Thus we have found the solution. To compute the expression on the right hand side of
the above equation we use the following pseudo-code which assumes that you have
written (or have access to) two functions, dot and cross, that compute the dot and
cross product of two given vectors.

lambda_1 = 1/sqrt(3)*[1 -1 1]’;
lambda_2 = 1/sqrt(3)*[-1 -1 1]’;
lambda_3 = 1/sqrt(2)*[0 1 1]’;

N = [0 0 -100]’;
n = cross(lambda_2, lambda_3);

F1 = - dot(N, n)/dot(lambda_1, n)

By following these steps on a computer, we get the output F1 = 43.3013, that is,
F1 = 43.3 kN, which, of course, is the same answer we obtained in Sample 2.31.

F1 = 43.3 kN
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2.5 Equivalent force systems
Most often one does not want to know the complete details of all the forces acting
on a system. When you think of the force of the ground on your bare foot you do
not think of the thousands of little forces at each micro-asperity or the billions and
billions of molecular interactions between the wood (say) and your skin. Instead you
think of some kind of equivalent force. In what way equivalent? Well, because all
that the equations of mechanics know about forces is their net force and net moment,
you have a criterion. You replace the actual force system with a simpler force system,
possibly just a single well-placed force, that has the same total force and same total
moment with respect to a reference point C.

The replacement of one system with an equivalent system is often used to help
simplify or solve mechanics problems. Further, the concept of equivalent force
systems allows us to define a couple, a concept we will use throughout the book.
Here is the definition of the word equivalent 1©when applied to force systems in 1© Other phrases used to describe the same

concept in other books include: statically
equivalent, mechanically equivalent, and
equipollent.

mechanics.

Two force systems are said to be equivalent if they have the same sum (the
same resultant) and the same net moment about any one point C.

We have already discussed two important cases of equivalent force systems. On
page 11 we stated the mechanics assumption that a set of forces applied at one point
is equivalent to a single resultant force, their sum, applied at that point. Thus when
doing a mechanics analysis you can replace a collection of forces at a point with their
sum. If you think of your whole foot as a ‘point’ this justifies the replacement of the
billions of little atomic ground contact forces with a single force.

On page 33 we discovered that a force applied at a different point is equivalent to
the same force applied at a point displaced in the direction of the force. You can thus
harmlessly slide the point of force application along the line of the force.

More generally, we can compare two sets of forces. The first set consists of
⇀
F

(1)
1 ,

⇀
F

(1)
2 ,

⇀
F

(1)
3 , etc. applied at positions ⇀

r
(1)
1/C ,

⇀
r

(1)
2/C ,

⇀
r

(1)
3/C , etc. In short hand, these

forces are
⇀
F

(1)
i applied at positions ⇀

r
(1)
i/C , where each value of i describes a different

force (i = 7 refers to the seventh force in the set). The second set of forces consists
of

⇀
F

(2)
j applied at positions ⇀

r
(2)
j/C where each value of j describes a different force in

the second set.
Now we compare the net (resultant) force and net moment of the two sets. If

⇀
F

(1)
tot = ⇀

F
(2)
tot and

⇀
M

(1)
C = ⇀

M
(2)
C (2.29)

then the two sets are equivalent. Here we have defined the net forces and net moments
by

⇀
F

(1)

tot =
∑

all forces i

⇀
F

(1)
i ,

⇀
M

(1)
C =

∑
all forces i

⇀
r

(1)
i/C × ⇀

F
(1)
i ,

⇀
F

(2)
tot =

∑
all forces j

⇀
F

(2)
j , and

⇀
M

(2)
C =

∑
all forces j

⇀
r

(2)
j/C × ⇀

F
(2)
j .

If you find the
∑

(sum) symbol intimidating see box 2.5 on page 70.
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Example:

Consider force system (1) with forces
⇀
FA and

⇀
FC and force system (2)

with forces
⇀
F0 and

⇀
FB as shown in fig. 2.52. Are the systems equivalent?

First check the sum of forces.

x

y ı̂

̂

A B

C0

⇀
FA = 1 Nı̂

⇀
FB = 1 N̂

⇀
FC = 2 N̂

⇀
F0 = 1 Nı̂ + 1 N̂

1 m

1 m

Figure 2.52: The force system
⇀
FA,

⇀
FC

is equivalent to the force system
⇀
F0,

⇀
FB.

(Filename:tfigure.equivforcepair)

⇀
F

(1)
tot

?= ⇀
F

(2)
tot∑

⇀
F

(1)
i

?=
∑

⇀
F

(2)
j

⇀
FA + ⇀

FC
?= ⇀

F0 + ⇀
FB

1 Nı̂ + 2 N̂
√
= (1 Nı̂ + 1 N̂) + 1 N̂

Then check the sum of moments about C.

⇀
M

(1)
C

?= ⇀
M

(2)
C∑

⇀
r

(1)
i/C × ⇀

F
(1)
i

?=
∑

⇀
r

(2)
j/C × ⇀

F
(2)
j

⇀
rA/C × ⇀

FA + ⇀
rC/C × ⇀

FC
?= ⇀

r0/C × ⇀
F0 + ⇀

rB/C × ⇀
FB

(−1 mı̂ + 1 m̂) × 1 Nı̂ + ⇀

0 × 2 N̂
?= (−1 mı̂) × (1 Nı̂ + 1 N̂) + 1 m̂ × 1 N̂

−1 m Nk̂
√
= −1 m Nk̂

So the two force systems are indeed equivalent. ✷

What is so special about the point C in the example above? Nothing.

2.7
∑

means add

In mechanics we often need to add up lots of things: all the forces
on a body, all the moments they cause, all the mass of a system, etc.
One notation for adding up all 14 forces on some body is

⇀
Fnet = ⇀

F1 + ⇀
F2 + ⇀

F3 + ⇀
F4 + ⇀

F5 + ⇀
F6 + ⇀

F7

+ ⇀
F8 + ⇀

F9 + ⇀
F10 + ⇀

F11 + ⇀
F12 + ⇀

F13 + ⇀
F14.

which is a bit long, so we might abbreviate it as
⇀
Fnet = ⇀

F1 + ⇀
F2 + . . . + ⇀

F14.

But this is definition by pattern recognition. A more explicit state-
ment would be

⇀
Fnet = The sum of all 14 forces

⇀
Fi where i = 1 . . . 14

which is too space consuming. This kind of summing is so important
that mathematicians use up a whole letter of the greek alphabet as a
short hand for ‘the sum of all’. They use the capital greek ’S’ (for
Sum) called sigma which looks like this:∑

.

When you read
∑

aloud you don’t say ‘S’ or‘sigma’ but rather
‘the sum of.’ The

∑
(sum) notation may remind you of infinite

series, and convergence thereof. We will rarely be concerned with
infinite sums in this book and never with convergence issues. So
panic on those grounds is unjustified. We just want to easily write

about adding things. For example we use the
∑

(sum) to write the

sum of 14 forces
⇀
Fi explicitly and concisely as

14∑
i=1

⇀
Fi

and say ‘the sum of F sub i where i goes from one to fourteen’.
Sometimes we don’t know, say, how many forces are being added.
We just want to add all of them so we write (a little informally)∑ ⇀

Fi meaning
⇀
F1 + ⇀

F2 + etc.,

where the subscript i lets us know that the forces are numbered.

Rather than panic when you see something like
14∑

i=1

, just relax

and think: oh, we want to add up a bunch of things all of which look
like the next thing written. In general,∑

(thing)i translates to (thing)1 + (thing)2 + (thing)3 + etc.

no matter how intimidating the ‘thing’ is. In time you can skip
writing out the translation and will enjoy the concise notation.

See box ?? for a similar discussion of integration (
∫

) and
addition.
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If two force systems are equivalent with respect to some point C, they are
equivalent with respect to any point.

For example, both of the force systems in the example above have the same moment

Figure 2.53: Frictionless wheel bearing.
All the bearing forces are equivalent to a
single force acting at the center of the wheel.

(Filename:tfigure2.wheelbearing)

of 2 N mk̂ about the point A. See box 2.5 for the proof of the general case.

Example: Frictionless wheel bearing

If the contact of an axle with a bearing housing is perfectly frictionless
then each of the contact forces has no moment about the center of the
wheel. Thus the whole force system is equivalent to a single force at the
center of the wheel. ✷

Couples
Consider a pair of equal and opposite forces that are not colinear. Such a pair is
called a couple. 1©The net moment caused by a couple is the size of the force times 1©Caution: Just because a collection of

forces adds to zero doesn’t mean the net
moment they cause adds to zero.

the distance between the two lines of action and doesn’t depend on the reference

2.8 THEORY
Two force systems that are equivalent for one reference point are equivalent for all reference points.

Consider two sets of forces
⇀
F

(1)

i and
⇀
F

(2)

j with corresponding

points of application P(1)
i and P(2)

j at positions relative to the origin

of ⇀
r (1)

i and ⇀
r (2)

j . To simplify the discussion let’s define the net
forces of the two systems as

⇀
F

(1)

tot ≡
∑ ⇀

F
(1)

i and
⇀
F

(2)

tot ≡
∑ ⇀

F
(2)

j ,

and the net moments about the origin as

⇀
M

(1)

0 ≡
∑

⇀
r (1)

i × ⇀
F

(1)

i and
⇀
M

(2)

0 ≡
∑

⇀
r (2)

j × ⇀
F

(2)

j .

Using point 0 as a reference, the statement that the two systems are

equivalent is then
⇀
F

(1)

tot = ⇀
F

(2)

tot and
⇀
M

(1)

0 = ⇀
M

(2)

0 . Now consider
point C with position ⇀

rC = ⇀
rC/0 = −⇀

r0/C. What is the net moment
of force system (1) about point C?

⇀
M

(1)

C ≡
∑

⇀
r (1)

i/C × ⇀
F

(1)

i

=
∑(

⇀
r (1)

i − ⇀
rC

)
× ⇀
F

(1)

i

=
∑(

⇀
r (1)

i × ⇀
F

(1)

i − ⇀
rC × ⇀

F
(1)

i

)
=

∑
⇀
r (1)

i × ⇀
F

(1)

i −
∑

⇀
rC × ⇀

F
(1)

i

=
∑

⇀
r (1)

i × ⇀
F

(1)

i − ⇀
rC ×

(∑ ⇀
F

(1)

i

)
= ⇀

M
(1)

0 − ⇀
rC × ⇀

F
(1)

tot .

= ⇀
M

(1)

0 + ⇀
r0/C × ⇀

F
(1)

tot .

[ Aside. The calculation above uses the ‘move’ of
factoring a constant out of a sum. This mathematical
move will be used again and again in the development
of the theory of mechanics. ]

Similarly, for force system (2)

⇀
M

(2)

C = ⇀
M

(2)

0 + ⇀
r0/C × ⇀

F
(2)

tot .

If the two force systems are equivalent for reference point 0 then
⇀
F

(1)

tot = ⇀
F

(2)

tot and
⇀
M

(1)

0 = ⇀
M

(2)

0 and the expressions above imply

that
⇀
M

(1)

C = ⇀
M

(2)

C . Because we specified nothing special about the
point C, the systems are equivalent for any reference point. Thus, to
demonstrate equivalence we need to use a reference point, but once
equivalence is demonstrated we need not name the point since the
equivalence holds for all points.

By the same reasoning we find that once we know the net force
and net moment of a force system (

⇀
Ftot) relative to some point C

(call it
⇀
MC), we know the net moment relative to point D as

⇀
MD = ⇀

MC + ⇀
rC/D × ⇀

Ftot.

Note that if the net force is
⇀
0 (and the force system is then called

a couple) that
⇀
MD = ⇀

MC so the net moment is the same for all
reference points.
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point. In fact, any force system that has
⇀
Ftot = ⇀

0 causes the same moment about
all different reference points (as shown at the end of box 2.5).So, in modern usage,
any force system with any number of forces and with

⇀
Ftot = ⇀

0 is called a couple. A

couple is described by its net moment. 2©2© People who have been in difficult long
term relationships don’t need a mechanics
text to know that a couple is a pair of equal
and opposite forces that push each other
round and round.

⇀
F

⇀
-F

Figure 2.54: One couple. The forces add
to zero. Then net moment they cause does
not.

(Filename:tfigure.onecouple)

A couple is any force system that has a total force of
⇀

0. It is described by the
net moment

⇀
M that it causes.

We then think of
⇀
M as representing an equivalent force system that contributes

⇀

0 to
the net force and

⇀
M to the net moment with respect to every reference point.

The concept of a couple (also called an applied moment or an applied torque) is
especially useful for representing the net effect of a complicated collection of forces
that causes some turning. The complicated set of electromagnetic forces turning a
motor shaft can be replaced by a couple.

Every system of forces is equivalent to a force and a couple
Given any point C, we can calculate the net moment of a system of forces relative to
C. We then can replace the sum of forces with a single force at C and the net moment
with a couple at C and we have an equivalent force system.

A force system is equivalent to a force
⇀
F = ⇀

F tot acting at C and a couple M
equal to the net moment of the forces about C, i.e.,

⇀
M = ⇀

MC.

If instead we want a force system at D we could recalculate the net moment about D
or just use the translation formula (see box 2.5).

⇀
Ftot = ⇀

Ftot, and
⇀
MD = ⇀

MC + ⇀
rC/D × ⇀

Ftot.

stays the same and the moment at D is the moment at C plus the moment caused by
⇀
Fnet acting at position C relative to D. The net effect of the forces of the ground on a
tree, for example, is of a force and a couple acting on the base of the tree.

The tidiest representation of a force system: a “wrench”
Any force system can be represented by an equivalent force and a couple at any
point. But force systems can be reduced to simpler forms. That this is so is of
more theoretical than practical import. We state the results here without proof (see
problems 2.122 and 2.123 on page 731).

In 2D one of these two things is true:

• The system is equivalent to a couple, or
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• There is a line of points for which the system can be described by an equivalent
force with no couple.

In 3D one of these three things is true:

• The system is equivalent to a couple (applied anywhere), or
• The system is equivalent to a force (applied on a given line parallel to the force),

or
• There is a line of points for which the system can be reduced to a force and a

couple where the force, couple, and line are all parallel. The representation of
the system of forces as a force and a parallel moment is called a wrench.

Equivalent does not mean equivalent for all purposes
We have perhaps oversimplified.

Imagine you stayed up late studying and overslept. Your roommate was not so
diligent; woke up on time and went to wake you by gently shaking you. Having read
this chapter so far and no further, and being rather literal, your roommate gets down
on the floor and presses on the linoleum underneath your bed applying a force that is
equivalent to pressing on you. Obviously this is not equivalent in the ordinary sense
of the word. It isn’t even equivalent in all of its mechanics effects. One force moves
you even if you don’t wake up, and the other doesn’t.

Any two force systems that are ‘equivalent’ but different do have different me-
chanical effects. So, in what sense are two force systems that have the same net force
and the same net moment really equivalent? They are equivalent in their contributions
to the equations of mechanics (equations 0-II on the inside cover) for any system to
which they are both applied. But full mechanical analysis of a situation requires
looking at the mechanics equations of many subsystems. In the mechanics equations
for each subsystem, two ‘equivalent’ force systems are equivalent if they are both
applied to that subsystem.

Figure 2.55: It feels different if some-
one presses on you or presses on the floor
underneath you with an ‘equivalent’ force.
The equivalence of ‘equivalent’ force sys-
tems depends on them both being applied
to the same system.

(Filename:tfigure.inbed)

For the analysis of the subsystem that is you sleeping, the force of your roommate’s
hand on the floor isn’t applied to you, so doesn’t show up in the mechanics equations
for you, and doesn’t have the same effect as a force on you.
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SAMPLE 2.33 Equivalent force on a particle: Four forces
⇀
F1 = 2 Nı̂−1 N̂ ,

⇀
F2 =

ı̂

̂

⇀
F1

⇀
F 2

⇀
F 3

⇀
F4

Figure 2.56: (Filename:sfig2.vec3.particle)

−5 N̂ ,
⇀
F3 = 3 Nı̂ + 12 N̂ , and

⇀
F4 = 1 Nı̂ act on a particle. Find the equivalent

force on the particle.

Solution The equivalent force on the particle is the net force, i.e., the vector sum
of all forces acting on the particle. Thus,

⇀
Fnet = ⇀

F1 + ⇀
F2 + ⇀

F3 + ⇀
F4

= (2 Nı̂ − 1 N̂) + (−5 N̂) + (3 Nı̂ + 12 N̂) + (1 Nı̂)

= 6 Nı̂ + 6 N̂ .

⇀
Fnet = 6 N(ı̂ + ̂)

Note that there is no net couple since all the four forces act at the same point. This
is always true for particles. Thus, the equivalent force-couple system for particles
consists of only the net force.

SAMPLE 2.34 Equivalent force with no net moment: In the figure shown, F1 =

A

1 m

B

D

60o

F3 = 30 N

F1 = 50 N
F2 = 10 N

Figure 2.57: (Filename:sfig2.vec3.plate)

50 N, F2 = 10 N, F3 = 30 N, and θ = 60o. Find the equivalent force-couple system
about point D of the structure.

Solution From the given geometry, we see that the three forces
⇀
F1,

⇀
F2, and

⇀
F3 pass

through point D. Thus they are concurrent forces. Since point D is on the line of
action of these forces, we can simply slide the three forces to point D without altering
their mechanical effect on the structure. Then the equivalent force-couple system at
point D consists of only the net force,

⇀
Fnet, with no couple (the three forces passing

through point D produce no moment about D). This is true for all concurrent forces.
Thus,

⇀
Fnet = ⇀

F1 + ⇀
F2 + ⇀

F3

= F1(cos θ ı̂ − sin θ ̂) − F2̂ + F3 ı̂

= (F1 cos θ + F3)ı̂ − (F1 sin θ + F2)̂

= (50 N · 1

2
+ 30 N)ı̂ − (50 N ·

√
3

2
+ 10 N)̂

= 50 Nı̂ − 53.3 N̂ ,

and
⇀
MD = ⇀

0.

Graphically, the solution is shown in Fig. 2.58

D
D

F3 = 30 N

F1 = 50 N

F1

F3

F2

F2 = 10 N

D

net
⇀
F

≡ ≡

Figure 2.58: (Filename:sfig2.vec3.plate.a)

⇀
Fnet = 50 Nı̂ − 53.3 N̂ ,

⇀
MD = ⇀

0
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SAMPLE 2.35 An equivalent force-couple system: Three forces F1 = 100 N, F2 =

α

B

A

C

D

F1

F2

h

F3

θ

�

Figure 2.59: (Filename:sfig2.vec3.bar)

50 N, and F3 = 30 N act on a structure as shown in the figure where α = 30o, θ =
60o, � = 1 m and h = 0.5 m. Find the equivalent force-couple system about point D.

Solution The net force is the sum of all applied forces, i.e.,

⇀
Fnet = ⇀

F1 + ⇀
F2 + ⇀

F3

= F1(− sin αı̂ − cos α̂) + F2(cos θ ı̂ − sin θ ̂) + F3 ı̂

= (−F1 sin α + F2 cos θ)ı̂ + (−F1 cos α − F2 sin θ + F3)̂

= (−100 N · 1

2
+ 50 N · 1

2
)ı̂ + (−100 N ·

√
3

2
− 50 N ·

√
3

2
+ 30 N)̂

= −25 Nı̂ − 99.9 N̂ .

Forces
⇀
F1 and

⇀
F3 pass through point D. Therefore, they do not produce any moment

about D. So, the net moment about D is the moment caused by force
⇀
F2:

⇀
MD = ⇀

rC/D × ⇀
F2

= h̂ × F2(cos θ ı̂ − sin θ ̂)

= −F2h cos θ k̂

= −50 N · 0.5 m
1

2
k̂ = −12.5 N·mk̂.

The equivalent force-couple system is shown in Fig. 2.60
⇀
MD⇀

Fnet

Figure 2.60: (Filename:sfig2.vec3.bar.a)

⇀
Fnet = −25 Nı̂ − 99.9 N̂ and

⇀
MD = −12.5 N·mk̂

SAMPLE 2.36 Translating a force-couple system: The net force and couple acting

ı̂

̂

O P

G

F

M

1 m 2 m

2 m

Figure 2.61: (Filename:sfig2.vec3.bentbar)

about point B on the ’L’ shaped bar shown in the figure are 100 N and 20 N·m,
respectively. Find the net force and moment about point G.

Solution The net force on a structure is the same about any point since it is just the
vector sum of all the forces acting on the structure and is independent of their point
of application. Therefore,

O

G

�

h
M F

G

MG

F≡

Figure 2.62: (Filename:sfig2.vec3.bentbar.a)

⇀
Fnet = ⇀

F = −100 N̂ .

The net moment about a point, however, depends on the location of points of appli-
cation of the forces with respect to that point. Thus,

⇀
MG = ⇀

MO + ⇀
rO/G × ⇀

F

= M k̂ + (−�ı̂ + h̂) × (−F ̂)

= (M + F�)k̂

= (20 N·m + 100 N · 1 m)k̂ = 120 N·mk̂.

⇀
Fnet = −100 N̂ , and

⇀
MG = 120 N·mk̂
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SAMPLE 2.37 Checking equivalence of force-couple systems: In the figure shown
below, which of the force-couple systems shown in (b), (c), and (d) are equivalent to
the force system shown in (a)?

A B C

1 m
10 N

A B C

20 N

10 N˙m
10 N

1 m

A B D C

.5 m .5 m

20 N

A B C

20 N

10 N˙m
(c) (d)(a) (b)

Figure 2.63: (Filename:sfig2.vec3.beam)

Solution The equivalence of force-couple systems require that (i) the net force be
the same, and (ii) the net moment about any reference point be the same. For the given
systems, let us choose point B as our reference point for comparing their equivalence.
For the force system shown in Fig. 2.63(a), we have,

A B C

1 m
F1 F2

Figure 2.64: (Filename:sfig2.vec3.beam.a)

⇀
Fnet = ⇀

F1 + ⇀
F2 = −10 N̂ − 10 N̂ = −20 N̂

⇀
MBnet

= ⇀
rC/B × ⇀

F2 = 1 mı̂ × (−10 N̂) = −10 N·mk̂.

Now, we can compare the systems shown in (b), (c), and (d) against the computed
equivalent force-couple system,

⇀
Fnet and

⇀
MD.

• Figure (b) shows exactly the system we calculated. Therefore, it represents an
equivalent force-couple system.

• Figure (c): Let us calculate the net force and moment about point B for this
system.

⇀
Fnet = ⇀

FC

√
= −20 N̂

⇀
MB = ⇀

MC + ⇀
rC/B × ⇀

FC

= −10 N·mk̂ + 1 mı̂ × (−20 N̂) = −30 N·mk̂ �= ⇀
MBnet

.

Thus, the given force-couple system in this case is not equivalent to the force
system in (a).

• Figure (d): Again, we compute the net force and the net couple about point B:

⇀
Fnet = ⇀

FD

√
= −20 N̂

⇀
MB = ⇀

rD/B × ⇀
FD

= 0.5 mı̂ × (−20 N̂) = −10 N·mk̂

√
= ⇀
MBnet

.

Thus, the given force-couple system (with zero couple) at D is equivalent to
the force system in (a).

(b) and (d) are equivalent to (a); (c) is not.
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SAMPLE 2.38 Equivalent force with no couple: For a body, an equivalent force-

⇀
F

A A
⇀
M

Figure 2.65: (Filename:sfig2.vec3.body)

couple system at point A consists of a force
⇀
F = 20 Nı̂ + 16 N̂ and a couple

⇀
MA = 10 N·mk̂. Find a point on the body such that the equivalent force-couple
system at that point consists of only a force (zero couple).

Solution The net force in the two equivalent force-couple systems has to be the
same. Therefore, for the new system,

⇀
Fnet = ⇀

F = 20 Nı̂+ 15 N̂ . Let B be the point

x

y

⇀
F

A

y = 0.75x - 0.5 m

B
A

⇀
M

Figure 2.66: (Filename:sfig2.vec3.body.a)

at which the equivalent force-couple system consists of only the net force, with zero
couple. We need to find the location of point B. Let A be the origin of a xy coordinate
system in which the coordinates of B are (x, y). Then, the moment about point B is,

⇀
MB = ⇀

MA + ⇀
rA/B × ⇀

F

= MAk̂ + (−x ı̂ − y̂) × (Fx ı̂ + Fy ̂)

= MAk̂ + (−Fy x + Fx y)k̂.

Since we require that
⇀
MB be zero, we must have

Fy x − Fx y = MA

⇒ y = Fy

Fx
x − MA

Fx

= 15 N

20 N
x − 10 N·m

20 N
= 0.75x − 0.5 m.

This is the equation of a line. Thus, we can select any point on this line and apply the
force

⇀
F = 20 Nı̂ + 15 N̂ with zero couple as an equivalent force-couple system.

Any point on the line y = 0.75x − 0.5 m.

Figure 2.67: (Filename:sfig2.vec3.body.b)

So, how or why does it work? The line we obtained is shown in gray in Fig. 2.66.
Note that this line has the same slope as that of the given force vector (slope = 0.75 =
Fy/Fx ) and the offset is such that shifting the force

⇀
F to this line counter balances

the given couple at A. To see this clearly, let us select three points C, D, and E on the
line as shown in Fig. 2.67. From the equation of the line, we find the coordinates of
C(0,-.5m), D(.24m,.32m) and E(.67m,0). Now imagine moving the force

⇀
F to C, D,

or E. In each case, it must produce the same moment
⇀
MA about point A. Let us do a

quick check.

• ⇀
F at point C: The moment about point A is due to the horizontal component
Fx = 20 N, since Fy passes through point A. The moment is Fx · AC =
20 N · 0.5 m = 10 N·m, same as MA. The direction is counterclockwise as
required.

• ⇀
F at point D: The moment about point A is | ⇀

F | · AD = 25 N ·0.4 m = 10 N·m,
same as MA. The direction is counterclockwise as required.

• ⇀
F at point E: The moment about point A is due to the vertical component Fy ,
since Fx passes through point A. The moment is Fy · AE = 15 N · 0.67 m =
10 N·m, same as MA. The direction here too is counterclockwise as required.

Once we check the calculation for one point on the line, we should not have to do any
more checks since we know that sliding the force along its line of action (line CB)
produces no couple and thus preserves the equivalence.
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3 Free body diagrams

The zeroth laws of mechanics
One way to understand something is to isolate it, see how it behaves on its own, and
see how it responds to various stimuli. Then, when the thing is not isolated, you still
think of it as isolated, but think of the effects of all its surroundings as stimuli. We can
also see its behavior as causing stimulus to other things around it, which themselves
can be thought of as isolated and stimulating back, and so on.

This reductionist approach is used throughout the physical and social sciences. A
tobacco plant is understood in terms of its response to light, heat flow, the chemical
environment, insects, and viruses. The economy of Singapore is understood in terms
of the flow of money and goods in and out of the country. And social behavior is
regarded as being a result of individuals reacting to the sights, sounds, smells, and
touch of other individuals and thus causing sights, sounds, smell and touch that the
others react to in turn, etc.

The isolated system approach to understanding is made most clear in thermody-
namics courses. A system, usually a fluid, is isolated with rigid walls that allow no
heat, motion or material to pass. Then, bit by bit, as the subject is developed, the
response of the system to certain interactions across the boundaries is allowed. Even-
tually, enough interactions are understood that the system can be viewed as isolated
even when in a useful context. The gas expanding in a refrigerator follows the same
rules of heat-flow and work as when it was expanded in its ‘isolated’ container.

The subject of mechanics is also firmly rooted in the idea of an isolated system.
As in elementary thermodynamics we will be solely concerned with closed systems.
A (closed) system, in mechanics, is a fixed collection of material. You can draw an
imaginary boundary around a system, then in your mind paint all the atoms inside the

79
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boundary red, and then define the system as being the red atoms, no matter whether
they cross the original boundary markers or not. Thus mechanics depends on bits of
matter as being durable and non-ephemeral. A given bit of matter in a system exists
forever, has the same mass forever, and is always in that system. 1©1© The mechanics of open systems, where

material crosses the system boundaries, is
important in fluid mechanics and even in
some elementary dynamics problems (like
rockets), where material is allowed to cross
the system boundaries. But the equations
governing these open systems are deduced
from careful application of the more funda-
mental governing mechanics equations of
closed systems. So we have to master the
mechanics of closed systems first.

Mechanics is based on the notion that any part of a system is itself a system and
that all interactions between systems or subsystems have certain simple rules, most
basically:

The measure of mechanical interaction is force,

and

What one system does to another, the other does back to the first.

Thus a person can be moved by forces, but not by the sight of a tree falling towards
them or the attractive smell of a flower (these things may cause, by rules that fall
outside of mechanics, forces that move a person). And when a person is moved by
the force of the ground on her feet, the ground is pushed back just as hard. The two
simple rules above, which we call the zeroth 1©laws of mechanics, imply that all the

1© Why do we awkwardly number the first
law as zero? Because it is really more of an
underlying assumption, a background con-
cept, than a law. As a law it is a little im-
precise since force has not yet been defined.
You could take the zeroth law as an implicit
and partial definition of force. The phrase
“zeroth law” means “important implicit as-
sumption”. The second part of the zeroth
law is usually called “Newton’s third law.” mechanical effects of interaction on a system can be represented by a sketch of the

system with arrows showing the forces of interaction. If we want to know how the
system in turn effects its surroundings we draw the opposite arrows on a sketch of the
surroundings.

In mechanics a system is often called a body and when it is isolated it is free (as
in free from its surroundings). In mechanics a sketch of an isolated system and the
forces which act on it is called a free body diagram. A more descriptive phrase might
have been “isolated system diagram”, but this latter phrase is not in common usage.

3.1 Free body diagrams
A free body diagram is a sketch of the system of interest and the forces that act on the
system. A free body diagram precisely defines the system to which you are applying
mechanics equations and the forces to be considered. Any reader of your calculations
needs to see your free body diagrams. To put it directly, if you want to be right and
be seen as right, then 2©

2©Free-body Perkins. At Cornell Uni-
versity, in the 1950’s, a professor Harold
C. Perkins earned the nick name ‘Free-body
Perkins’ by stopping random mechanics
students in the hall and saying “You! Come
in my office! Draw a free body diagram!”
Students learned that they should draw free
body diagrams, at least to please Free-body
Perkins. But by learning to please Perkins
they learned to get more right answers to
mechanics problems, and they learned how
to better explain their work.

Draw a Free Body Diagram!

The concept of the free body diagram is simple. In practice, however, drawing
useful free body diagrams takes some thought, even for those practiced at the art.
Here are some free body diagram properties and features:

• A free body diagram is a picture of the system for which you would like to
apply linear or angular momentum balance (force and moment balance being
special cases) or power balance. It shows the system isolated (‘free’) from its
environment. That is, the free body diagram does not show things that are near
or touching the system of interest. See figure 3.1.

Sketch FBD

front wheel

Figure 3.1: A sketch of a bicycle and
a free body diagram of the braked front
wheel. A sketch of a person and a free body
diagram of a person.

(Filename:tfigure2.1)
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• A free body diagram may show one or more particles, rigid bodies, deformable
bodies, or parts thereof such as a machine, a component of a machine, or a
part of a component of a machine. You can draw a free body diagram of
any collection of material that you can identify. The word ‘body’ connotes a
standard object in some people’s minds. In the context of free body diagrams,
‘body’ means system. The body in a free body diagram may be a subsystem
of the overall system of interest.

• The free body diagram of a system shows the forces and moments that the sur-
roundings impose on the system. That is, since the only method of mechanical
interaction that God has invented is force (and moment), the free body diagram
shows what it would take to mechanically fool the system if it was literally
cut free. That is, the motion of the system would be totally unchanged if it
were cut free and the forces shown on the free body diagram were applied as a
replacement for all external interactions.

• The forces and moments are shown on the free body diagram at the points
where they are applied. These places are where you made ‘cuts’ to free the
body.

• At places where the outside environment causes or restricts translation of the
isolated system, a contact force is drawn on the free body diagram. Draw the
contact force outside the sketch of the system for viewing clarity. A block
supported by a hinge with friction in figure 3.2 illustrates how the reaction
force on the block due to the hinge is best shown outside the block. mg

m

FBD

block of mass m

A

A
A

hinge with
friction

Not thisThis

g

mg
⇀
RA

⇀
RA

⇀
MAfriction

⇀
MAfriction

Figure 3.2: A uniform block of mass m
supported by a hinge with friction in the
presence of gravity. The free body diagram
on the right is correct, just less clear than
the one on the left.

(Filename:tfigure2.outside.loads)

• At connections to the outside world that cause or restrict rotation of the system
a contact torque (or couple or moment) is drawn. Draw this moment outside
the system for viewing clarity. Refer again to figure 3.2 to see how the moment
on the block due to the friction of the hinge is best shown outside the block.

• The free body diagram shows the system cut free from the source of any body
forces applied to the system. Body forces are forces that act on the inside of a
body from objects outside the body. It is best to draw the body forces on the
interior of the body, at the center of mass if that correctly represents the net
effect of the body forces. Figure 3.2 shows the cleanest way to represent the
gravity force on the uniform block acting at the center of mass. 1©. 1© Body Forces. In this book, the only

body force we consider is gravity. For near-
earth gravity, gravity forces show on the free
body diagram as a single force at the center
of gravity, or as a collection of forces at the
center of gravity of each of the system parts.
For parts of electric motors and generators,
not covered here in detail, electrostatic or
electro-dynamic body forces also need to
be considered.

• The free body diagram shows all external forces acting on the system but no
internal forces — forces between objects within the body are not shown.

• The free body diagram shows nothing about the motion 2©. It shows: no

2©Caution:A common error made by be-
ginning dynamics students is to put velocity
and/or acceleration arrows on the free body
diagram.

“centrifugal force”, no “acceleration force”, and no “inertial force”. For statics
this is a non-issue because inertial terms are neglected for all purposes.
Velocities, inertial forces, and acceleration forces do not show on a free body
diagram.
The prescription that you not show inertial forces is a practical lie. In the
D’Alembert approach to dynamics you can show inertial forces on the free
body diagram. The D’Alembert approach is discussed in box ?? on page ??.
This legitimate and intuitive approach to dynamics is not followed in this book
because of the frequent sign errors amongst beginners who use it.

How to draw a free body diagram
We suggest the following procedure for drawing a free body diagram, as shown
schematically in fig. 3.3

(a) Define in your own mind what system or what collection of material, you would
like to write momentum balance equations for. This subsystem may be part of
your overall system of interest.
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(b) Draw a sketch of this system. Your sketch may include various cut marks to
show how it is isolated from its environment. At each place the system has
been cut free from its environment you imagine that you have cut the system
free with a sharp scalpel or with a chain saw.

(c) Look systematically at the picture at the places that the system interacts with
material not shown in the picture, places where you made ‘cuts’.

F1
F2

N1 N2

⇀
Fs

⇀
Ms

ı̂
̂

k̂

Figure 3.3: The process of drawing a
FBD is illustrated by the sequence shown.

(Filename:tfigure2.howtoFBD)

(d) Use forces and torques to fool the system into thinking it has not been cut. For
example, if the system is being pushed in a given direction at a given contact
point, then show a force in that direction at that point. If a system is being
prevented from rotating by a (cut) rod, then show a torque at that cut.

(e) To show that you have cut the system from the earth’s gravity force show the
force of gravity on the system’s center of mass or on the centers of mass of its
parts.

How to draw forces on free body diagrams

How you draw a force on a free body diagram depends on

• How much you know about the force when you draw the free body diagram.
Do you know its direction? its magnitude?; and

• Your choice of notation (which may vary from vector to vector within one free
body diagram). See page 12 for a description of the ‘symbolic’ and ‘graphical’
vector notations.

Some of the possibilities are shown in fig. 3.4 for three common notations for a 2D
force in the cases when (a) any

⇀
F possible, (b) the direction of

⇀
F is fixed, and (c)

everything about
⇀
F is fixed.

(a)

Nothing is known
about .

(b)

Direction of
    is known

(c)

   is known
⇀
F

⇀
F

⇀
F

⇀
F = F ı̂+̂√

2

⇀
F 10 Nı̂ + 10 N̂

Symbolic

Graphical
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Figure 3.4: The various ways of notating a force on a free body diagram. (a) nothing is known or everything is variable (b) the direction is known,
(c) Everything is known. In one free body diagram different notations can be used for different forces, as needed or convenient.
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Equivalent force systems
The concept of ‘fooling’ a system with forces is somewhat subtle. If the free body
diagram involves ‘cutting’ a rope what force should one show? A rope is made of
many fibers so cutting the rope means cutting all of the rope fibers. Should one show
hundreds of force vectors, one for each fiber that is cut? The answer is: yes and
no. You would be correct to draw all of these hundreds of forces at the fiber cuts.
But, since the equations that are used with any free body diagram involve only the
total force and total moment, you are also allowed to replace these forces with an
equivalent force system (see section 2.5).

Any force system acting on a given free body diagram can be replaced by an
equivalent force and couple.

In the case of a rope, a single force directed nearly parallel to the rope and acting at
about the center of the rope’s cross section is equivalent to the force system consisting
of all the fiber forces. In the case of an ideal rope, the force is exactly parallel to the
rope and acts exactly at its center.

Action and reaction
For some systems you will want to draw free body diagrams of subsystems. For
example, to study a machine, you may need to draw free body diagrams of its parts;
for a building, you may draw free body diagrams of various structural components;
and, for a biomechanics analysis, you may ‘cut up’ a human body. When separating
a system into parts, you must take account of how the subsystems interact. Say these
subsystems, e.g. two touching parts of a machine, are called A and B. We then have
that

If A feels force
⇀
F and couple

⇀
M from B,

then B feels force − ⇀
F and couple − ⇀

M from A.

To be precise we must make clear that
⇀
F and − ⇀

F have the same line of action. 1© 1© The principle of action and reaction can
be derived from the momentum balance
laws by drawing free body diagrams of little
slivers of material. Nonetheless, in practice
you can think of the principle of action and
reaction as a basic law of mechanics. New-
ton did. The principal of action and reaction
is “Newton’s third law”.

The principle of action and reaction doesn’t say anything about what force or
moment acts on one object. It only says that the actor of a force and moment gets
back the opposite force and moment.

It is easy to make mistakes when drawing free body diagrams involving action
and reaction. Box 3.3 on page 96 shows some correct and incorrect partial FBD’s of
interacting bodies A and B. Use notation consistent with box ?? on page ?? for the
action and reaction vectors.

Interactions
The way objects interact mechanically is by the transmission of a force or a set of
forces. If you want to show the effect of body B on A, in the most general case you
can expect a force and a moment which are equivalent to the whole force system,
however complex.

That is, the most general interaction of two bodies requires knowing
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• six numbers in three dimensions (three force components and three moment
components)

• and three numbers in two dimensions (two force components and one moment).

Many things often do not interact in this most general way so often fewer numbers
are required. You will use what you know about the interaction of particular bodies
to reduce the number of unknown quantities in your free body diagrams.

Some of the common ways in which mechanical things interact, or are assumed
to interact, are described in the following sections. You can use these simplifications
in your work.

Constrained motion and free motion
One general principle of interaction forces and moments concerns constraints. Wher-
ever a motion of A is either caused or prevented by B there is a corresponding force
shown at the interaction point on the free body diagram of A. Similarly if B causes
or prevents rotation there is a moment (or torque or couple) shown on the free body
diagram of A at the place of interaction.

The converse is also true. Many kinds of mechanical attachment gadgets are
specifically designed to allow motion. If an attachment allows free motion in some
direction the free body diagram shows no force in that direction. If the attachment
allows free rotation about an axis then the free body diagram shows no moment
(couple or torque) about that axis.

You can think of each attachment point as having a variety of jobs to do. For
every possible direction of translation and rotation, the attachment has to either allow
free motion or restrict the motion. In every way that motion is restricted (or caused)
by the connection a force or moment is required. In every way that motion is free
there is no force or couple. Motion of body A is caused and restricted by forces and
couples which act on A. Motion is freely allowed by the absence of such forces and
couples.

Here are some of the common connections and the free body diagrams with which
they are associated.

Cuts at rigid connections
Sometimes the body you draw in a free body diagram is firmly attached to another.C

C

location
of FBD cut

cantilever
protrusion

building

mg

x

y

⇀
F x

⇀
F y

⇀
MC

Figure 3.5: A rigid connection: a can-
tilever structure on a building. At the
point C where the cantilever structure is
connected to the building all motions are
restricted so every possible force needs to
be shown on the free body diagram cut at
C.

(Filename:tfigure2.rigid)

Figure 3.5 shows a cantilever structure on a building. The free body diagram of
the cantilever has to show all possible force and load components. Since we have
used vector notation for the force

⇀
F and the moment

⇀
MC we can be ambiguous about

whether we are doing a two or three dimensional analysis.
A common question by new mechanics students seeing a free body diagram like

in figure 3.5 is: ‘gravity is pointing down, so why do we have to show a horizontal
reaction force at C?’ Well, for a stationary building and cantilever a quick statics
analysis reveals that

⇀
FC must be vertical, so the question is reasonable. But one must

remember: this book is about statics and dynamics and in dynamics the forces on a
body do not add to zero. In fact, the building shown in figure 3.5 might be accelerating
rapidly to the right due to the motions of a violent earthquake occurring at the instant
pictured in the figure. Sometimes you know a force is going to turn out to be zero, as
for the sideways force in this example if treated as a statics problem. In these cases
it is a matter of taste whether or not you show the sideways force on the free body
diagram (see box 3.1 on page 86).

The attachment of the cantilever to the building at C in figure 3.5 is surely intended
to be rigid and prevent the cantilever from moving up or down (falling), from moving
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sideways (and drifting into another building) or from rotating about point C. In most
of the building’s life, the horizontal reaction at C is small. But since the connection
at C clearly prevents relative horizontal motion, a horizontal reaction force is drawn
on the free body diagram. During an earthquake, this horizontal component will turn
out to be not zero.

The situation with rigid connections is shown more abstractly in figure 3.6.

Rigid connection

cut

Fx Fx

Mx

Fz

Fy
Fy My

Mz

M

OR OR

2D 3D

x

z

y

⇀
F

⇀
F

⇀
M

M k̂

Figure 3.6: A rigid connection shown with partial free body diagrams in two and three dimensions.
One has a choice between showing the separate force components (top) or using the vector notation
for forces and moments (bottom). The double head on the moment vector is optional.

(Filename:tfigure2.rigidb)

Hinge or pin

note,
no Mz

Partial FBDs

x

z

y

Fx

Fx

Fy
Fy

Fz

Mx

My

OR OR

2D 3D

⇀
F

⇀
F

⇀
M

Figure 3.7: A hinge with partial free body diagrams in 2D and 3-D. A hinge joint is also called
a pin joint because it is sometimes built by drilling a hole and inserting a pin.

(Filename:tfigure2.hinge)



86 CHAPTER 3. Free body diagrams

Cuts at hinges

A hinge, shown in figure 3.7, allows rotation and prevents translation. Thus, the free
body diagram of an object cut at a hinge shows no torque about the hinge axis but
does show the force or its components which prevent translation.

There is some ambiguity about how to model pin joints in three dimensions. The
ambiguity is shown with reference to a hinged door (figure 3.8). Clearly, one hinge,
if the sole attachment, prevents rotation of the door about the x and y axes shown.
So, it is natural to show a couple (torque or moment) in the x direction, Mx , and in
the y direction, My . But, the hinge does not provide very stiff resistance to rotations
in these directions compared to the resistance of the other hinge. That is, even if both
hinges are modeled as ball and socket joints (see the next sub-section), offering no
resistance to rotation, the door still cannot rotate about the x and y axes.

If a connection between objects prevents relative translation or rotation that is
already prevented by another stiffer connection, then the more compliant connection
reaction is often neglected. Even without rotational constraints, the translational
constraints at the hinges A and B restrict rotation of the door shown in figure 3.8. The
hinges are probably well modeled — that is, they will lead to reasonably accurate

3.1 THEORY
How much mechanics reasoning should you use when you draw a free body diagram?

The simple rules for drawing free body diagrams prescribe an
unknown force every place a motion is prevented and an unknown
torque where rotation is prevented. Consider the simple symmetric
truss with a load W in the middle. By this prescription the free
body diagram to draw is shown as (a). There is an unknown force
restricting both horizontal and vertical motion at the hinge at B.

However, a person who knows some statics will quickly deduce
that the horizontal force at B is zero and thus draw the free body
diagram in figure (b). Or if they really think ahead they will draw
the free body diagram in (c). All three free body diagrams are
correct. In particular diagram (a) is correct even though FBx turns
out to be zero and (b) is correct even though FB turns out to be equal
to FC .

Some people, thinking ahead, sometimes say that the free body
diagram in (a) is wrong. But it should be pointed out that free body
diagram (a) is correct because the force FBx is not specified and
therefore could be zero. Free body diagram (d), on the other hand,
explicitly and incorrectly assigns a non-zero value to FBx , so it is
wrong.

A reasonable approach is to follow the naive rules, and then
later use the force and momentum equations to find out more about
the forces. That is use free body diagram (a) and discover (c) using
the laws of mechanics. If you are confident about the anticipated
results, it is sometimes a time saver to use diagrams analogous to
(b) or (c) but beware of

• making assumptions that are not reasonable, and

• wasting time trying to think ahead when the force and mo-
mentum balance equations will tell all in the end anyway.

A

W

B

(a)

C

W

FBx

FBy FC

(c)

(d)

(b)
W

FB FC

FBD

W

W/2 W/2

FBD

wrong FBD

FBD

100 N

10 N

50 N 50 N
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calculations of forces and motions — by ball and socket joints at A and B. In 2-D , a
ball and socket joint is equivalent to a hinge or pin joint.

Ball and socket joint
Sometimes one wishes to attach two objects in a way that allows no relative translation
but for which all rotation is free. The device that is used for this purpose is called a
‘ball and socket’ joint. It is constructed by rigidly attaching a sphere (the ball) to one
of the objects and rigidly attaching a partial spherical cavity (the socket) to the other
object.

The human hip joint is a ball and socket joint. At the upper end of the femur bone
is the femoral head, a sphere to within a few thousandths of an inch. The hip bone has
a spherical cup that accurately fits the femoral head. Car suspensions are constructed
from a three-dimensional truss-like mechanism. Some of the parts need free relative
rotation in three dimensions and thus use a joint called a ‘ball joint’ or ‘rod end’ that
is a ball and socket joint.

Since the ball and socket joint allows all rotations, no moment is shown at a cut
ball and socket joint. Since a ball and socket joint prevents relative translation in all
directions, the possibility of force in any direction is shown.

String, rope, wires, and light chain
One way to keep a radio tower from falling over is with wire, as shown in figure 3.10.
If the mass and weight of the wires seems small it is common to assume they can only
transmit forces along their length. Moments are not shown because ropes, strings,
and wires are generally assumed to be so compliant in bending that the bending
moments are negligible. We define tension to be the force pulling away from a free
body diagram cut. 1©

1©Caution: Sometimes string like things
should not be treated as idealized strings.
Short wires can be stiff so bending mo-
ments may not be negligible. The mass of
chains can be significant so that the mass
and weight may not be negligible, the direc-
tion of the tension force in a sagging chain
is not in the direction connecting the two
chain endpoints.

y
x

z

A

B

A

B

Fy

Fz

Fx

My?
Mx?

Figure 3.8: A door held by hinges. One must decide whether to model hinges as proper hinges
or as ball and socket joints. The partial free body diagram of the door at the lower right neglects the
couples at the hinges, effectively idealizing the hinges as ball and socket joints. This idealization is
generally quite accurate since the rotations that each hinge might resist are already resisted by their
being two connection points.

(Filename:tfigure2.door)
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Springs and dashpots
Springs are used in many machines to absorb and return small amounts of energy.
Dashpots are used to absorb energy. They are shown schematically in fig. 3.12.
Often springs and dashpots are light in comparison to the machinery to which they
are attached so their mass and weight are neglected. Often they are attached with pin
joints, ball and socket joints, or other kinds of flexible connections so only forces are
transmitted. Since they only have forces at their ends they are ‘two-force’ bodies and,
by the reasoning of coming section 4.1, the forces at their ends are equal, opposite,

Ball and Socket

FxFx

FzFy Fy

note,
no M

OROR

2D

Partial FBDs

3D

x
z

y
ball

socket

⇀
F

⇀
F

Figure 3.9: A ball and socket joint allows all relative rotations and no relative translations so
reaction forces, but not moments, are shown on the partial free body diagrams. In two dimensions a
ball and socket joint is just like a pin joint. The top partial free body diagrams show the reaction in
component form. The bottom illustrations show the reaction in vector form.

(Filename:tfigure2.ballands)

Partial FBDs

OR
string, rope, wire, chain

A

A

B C

D
cuts

T3 T1

T2

Force at cut is parallel
to the cut wire

TA/Bλ̂A/B
TA/C λ̂A/C

TA/D λ̂A/D

Figure 3.10: A radio tower kept from falling with three wires. A partial free body diagram of
the tower is drawn two different ways. The upper figure shows three tensions that are parallel to the
three wires. The lower partial free body diagram is more explicit, showing the forces to be in the

directions of the λ̂s, unit vectors parallel to the wires.
(Filename:tfigure2.string)
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and along the line of connection.

� + ��

Stretched spring

� + ��

T = k(��)

T = k(��)

�

Relaxed spring

Figure 3.11: Spring connection. The
tension in a spring is usually assumed to be
proportional to its change in length, with
proportionality constant k: T = k��.

(Filename:tfigure2.spring)

Springs

Springs often look like the standard spring drawing in figure 3.11.
If the tension in a spring is a function of its length alone, independent of its

rate of lengthening, the spring is said to be ‘elastic.’ If the tension in the spring is
proportional to its stretch the spring is said to be ‘linear.’ The assumption of linear
elastic behavior is accurate for many physical springs. So, most often if one says one
is using a spring, the linear and elastic properties are assumed.

The stretch of a spring is the amount by which the spring is longer than when it is
relaxed. This relaxed length is also called the ‘unstretched’ length, the ‘rest’ length,
or the ‘reference’ length. If we call the unstretched length, the length of the spring
when its tension is zero, �0, and the present length �, then the stretch of the spring is
�� = � − �0. The tension in the spring is proportional to this stretch. Most often
people use the letter k for the proportionality constant and say ‘the spring has constant
k.’ So the basic equation defining a spring is

T = k��.

Dashpots

Dashpots are used to absorb, or dampen, energy. The most familiar example is in the
shock absorbers of a car. The symbol for a dashpot shown in figure 3.12 is meant to
suggest the mechanism. A fluid in a cylinder leaks around a plunger as the dashpot
gets longer and shorter. The dashpot resists motion in both directions.

The tension in the dashpot is usually assumed to be proportional to the rate at
which it lengthens, although this approximation is not especially accurate for most
dampers one can buy. The relation is assumed to hold for negative lengthening as
well. So the compression (negative tension) is proportional to the rate at which the
dashpot shortens (negative lengthens). The defining equation for a linear dashpot is:

T = c�̇

�

T = c�̇

Figure 3.12: A dashpot. A dashpot is
shown here connecting two parts of a mech-
anism. The tension in the dashpot is propor-
tional to the rate at which it lengthens.

(Filename:tfigure2.dashpot)

T = C �̇

where C is the dashpot constant.

Collisions
Two objects are said to collide when some interaction force or moment between them
becomes very large, so large that other forces acting on the bodies become negligible.
For example, in a car collision the force of interaction at the bumpers may be many
times the weight of the car or the reaction forces acting on the wheels.

The analysis of collisions is a little different than the analysis of smooth motions,
as will be discussed later in the text. But this analysis still depends on free body
diagrams showing the non-negligible collision forces. See figure 3.13. Knowing
which forces to include and which to ignore in a collision problem is an issue which
can have great subtlety. Some rules of thumb:
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• ignore forces from gravity, springs, and at places where contact is broken in
the collision, and

• include forces at places where new contact is made, or where contact is main-
tained.

Collision! The collision forces are
assumed to be much bigger
than all other forces on the
FBD during the collision.

Fcollision

Figure 3.13: Here cars are shown colliding. A free body diagram of the right car shows the collision
force and should not show other forces which are negligibly small. Here they are shown as negligibly
small forces to give the idea that they may be much smaller than the collision force. The wheel
reaction forces are neglected because of the spring compliance of the suspension and tires.

(Filename:tfigure2.collisions)

Friction
When two independent solids are in contact relative slipping motion is resisted by
friction. Friction can prevent slip and resists any slip which does occur.N N

OR OR

2D
Partial FBDs

3D

1

A slides frictionally on B

A

B

x

y

z
⇀
vA/B

F=µN

F=µN

-µN
⇀
vA/B

|⇀vA/B|

µ
⇀
F N̂

Figure 3.14: ObjectA slides on the plane
B . The friction force on A is in the direc-
tion that opposes the relative motion.

(Filename:tfigure2.friction)

The force on body A from body B is decomposed into a part which is tangent to
the surface of contact

⇀
F , with | ⇀

F | = F , and a part which is normal to the surface N .
The relation between these forces depends on the relative slip of the bodies ⇀

v A/B .
The magnitude of the frictional force is usually assumed to be proportional to the
normal force with proportionality constant µ. So the deceptively simple defining
equation for the friction force F during slip is

F = µN

where N is the component of the interaction force in the inwards normal direction.
The problem with this simple equation is that it assumes you have drawn the friction
force in the direction opposing the slip of A relative to B. If the direction of the
friction force has been drawn incorrectly then the formula gives the wrong answer.

If two bodies are in contact but are not sliding then the friction force can still keep
the objects from sliding. The strength of the friction bond is often assumed to be
proportional to the normal force with proportionality constant µ. Thus if there is no
slip we have that the force is something less than or equal to the strength,

|F | ≤ µN .

Partial FBD’s for the cases of slip and no slip are shown in figures 3.14 and 3.15,
respectively. See the appendix for a further discussion of friction. To make things
a little more precise, for those more formally inclined, we can write the friction
equations as follows:

⇀
F (B acts on A) = −µN

⇀
v A/B

|⇀
v A/B | , if ⇀

v A/B �= ⇀

0,

| ⇀
F (B acts on A)| ≤ µN , if ⇀

v A/B = ⇀

0.
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The unit vector
⇀
v A/B

|⇀v A/B | is in the direction of relative slip. The principle of action and

reaction, discussed previously, determines the force that A acts on B.
The simplest friction law, the one we use in this book, uses a single constant

coefficient of friction µ. Usually .05 ≤ µ ≤ 1.2. We do not distinguish the static
coefficient µs from the dynamic coefficient µd or µk . That is µ = µs = µk = µd

for our purposes. We promote the use of this simplest law for a few reasons.

2D
Partial FBDs

3D

A does not slide relative to B

A

B

x

y

z

⇀
F

⇀
F

Figure 3.15: Object A does not slide
relative to the plane B .
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• All friction laws used are quite approximate, no matter how complex. Unless
the distinction between static and dynamic coefficients of friction is essential
to the engineering calculation, using µs �= µk doesn’t add to the calculation’s
usefulness.

• The concept of a static coefficient of friction that is larger than a dynamic
coefficient is, it turns out, not well defined if bodies have more than one point
of contact, which they often do have.

• Students learning to do dynamics are often confused about how to handle prob-
lems with friction. Since the more complex friction laws are of questionable
usefulness and correctness, it seems time is better spent understanding the
simplest relations.

In summary, the simple model of friction we use is:

Friction resists relative slipping motion. During slip the friction force opposes
relative motion and has magnitude F = µN. When there is no slip the
magnitude of the friction force F cannot be determined from the friction law
but it cannot exceed µN , F ≤ µN .

Sometimes people describe the friction coefficient with a friction angle φ rather than
the coefficient of friction (see fig. 3.16). The friction angle is the angle between the

µN

N
φ

Partial FBDs

Figure 3.16: Two ways of characterizing
friction: the friction coefficient µ and fric-
tion angle φ.

(Filename:tfigure2.friction.angle)

net interaction force (normal force plus friction force) and the normal to the sliding
surface when slip is occurring. The relation between the friction coefficient µ and
the friction angle φ is

tan φ ≡ µ.

The use of φ or µ to describe friction are equivalent. Which you use is a matter of
taste and convenience.

“Smooth” and “rough” surfaces

As a modeling simplification for situations where we would like to neglect friction
forces we sometimes assume frictionless contact and thus set µ = φ = 0. In many
books, but never in this one, the phrase “perfectly smooth” means frictionless. It
is true that when separated by a little fluid (say water between your feet and the
bathroom tile, or oil between pieces of a bearing) that smooth surfaces slide easily
by each other. And even without a lubricant sometimes slipping can be reduced by
roughening a surface. But making a surface progressively smoother does not diminish
the friction to zero. In fact, extremely smooth surfaces sometimes have anomalously
high friction. In general, there is no reliable relation correlation smoothness and low
friction.

Similarly many books, but not this one, use the phrase “perfectly rough” to mean
perfectly high friction (µ → ∞ and φ → 90o) and hence that no slip is allowed.
This is misleading twice over. First, as just stated, rougher surfaces do not reliably
have more friction than smooth ones. Second, even when µ → ∞ slip can proceed
in some situations (see, for example, box 4.1 on page 120).
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We use the phrase frictionless to mean that there is no tangential force component
and not the misleading words “perfectly smooth”. We use the phrase no slip to mean
that no tangential motion is allowed and not the misleading words “perfectly rough”.

Rolling contact
An idealization for the non-skidding contact of balls, wheels, and the like is pure
rolling.

ObjectsAandB are in pure rolling contact when their (relatively convex)
contacting points have equal velocity. They are not slipping, separating,
or interpenetrating.

Free body diagrams

A

A

B

B

⇀
F

A
A

B

B

-
⇀
F

Figure 3.17: Rolling contact: Points of contact on adjoining bodies have the same velocity,
⇀
v A = ⇀

v B . But, ⇀
ωA is not necessarily equal to ⇀

ωB .
(Filename:tfigure2.rolling.contact)

Most often, we are interested in cases where the contacting bodies have some non-
zero relative angular velocity — a ball sitting still on level ground may be technically
in rolling contact, but not interestingly so.

The simplest common example is the rolling of a round wheel on a flat surface
in two dimensions. See figure 3.18. In practice, there is often confusion about the

mwheelg

N
F

M Fx

FyA

B
A

FBD of Wheel

R θ

⇀
vA = ⇀

vB =
⇀

0

ı̂

̂

Figure 3.18: Pure rolling of a round wheel on a flat slope in two dimensions.
(Filename:tfigure2.pure.rolling.wheel)

direction and magnitude of the force F shown in the free body diagram in figure 3.18.
Here is a recipe:

1.) Draw F as shown in any direction, tangent to the surface.
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2.) Solve the statics or dynamics problem and find F . (It may turn out to be a
negative force, which is fine.)

3.) Check that rolling is really possible; that is, that slip would not occur. If the
force is greater than the frictional strength, |F | > µN , the assumption of
rolling contact is not appropriate. In this case, you must assume that F = µN
or F = −µN and that slip occurs; then, re-solve the problem.

mball g

N
F2F1

FBD of Ball

⇀
F

⇀
M

Figure 3.19: Rolling ball in 3-D. The force
⇀
F and moment

⇀
M are applied loads from, say, wind,

gravity, and any attachments. N is the normal reaction and F1 and F2 are the in plane components of
the frictional reaction. One must check the no-slip condition, µ2 N 2 ≥ F2

1 + F2
2 .
(Filename:tfigure2.3D.rolling)

In three-dimensional rolling contact, we have a free body diagram that again looks
like a free body diagram for non-slipping frictional contact. Consider, for example,
the ball shown in figure 3.19. For the friction force to be less than the friction
coefficient times the normal force, we have√

F2
1 + F2

2 ≤ µN or F2
1 + F2

2 ≤ µ2 N 2 no slip condition

Rolling is just a special case of frictional contact. It is the case where bodies
contact at a single point (or on a line, as with cylinders) and have relative rotation yet
have no relative velocity at their contacting points. The tricky part about rolling is
the kinematic analysis. This kinematics, we take up in section 8.3 on page 467 after
you have learned more about angular velocity ⇀

ω.

Rolling resistance
Non-ideal rolling contact includes provision for rolling resistance. This resistance is
simply represented by either moving the location of the point of contact force or by a
contact couple. Rolling resistance leads to subtle questions which we would like to
finesse here. A brief introduction is given in chapter 10.

Ideal wheels
An ideal wheel is an approximation of a real wheel. It is a sensible approximation if the
mass of the wheel is negligible, bearing friction is negligible, and rolling resistance is
negligible. Free body diagrams of undriven ideal wheels in two and three dimensions
are shown in figure 3.20. This idealization is rationalized in chapter 4 in box 4.1 on
page 120. Note that if the wheel is not massless, the 2-D free body diagram looks
more like the one in figure 3.20b with Ffriction ≤ µN .
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track of
wheel

2D 3D

FN

M
F

N

N

N

mg

cm

N

Ffriction

FM

(a) Ideal massless wheel (b) Driven or braked wheel possibly
     with mass

Figure 3.20: An ideal wheel is massless, rigid, undriven, round and rolls on flat rigid ground
with no rolling resistance. Free body diagrams of ideal undriven wheels are shown in two and three
dimensions. The force F shown in the three-dimensional picture is perpendicular to the path of the
wheel. (b) 2D free body diagram of a wheel with mass, possibly driven or braked. If the wheel has
mass but is not driven or braked the figure is unchanged but for the moment M being zero.

(Filename:tfigure2.idealwheel)

3.2 THEORY
Conformal contact of rigid bodies: a near impossibility

If you take two arbitrary shaped rigid objects and make them
touch without overlapping you will most often only be able to make
contact at a few points (typically 1 to 3 points in 2D, and 1 to 6
points in 3D). Cut out two pieces of cardboard (leaving no straight
edges) and slide them around on a table and you will see this.

2D
.

But machines are not made of random parts. Many parts are
made to conform, like an axle and a bearing, and many parts are
machined with flat surfaces and thus seem to conform with each
other whether or not by explicit intent. Many machined objects }em
nominally (in name) conform. But do they really conform?

Let us consider the case of two rigid objects pressed together
at their flat surfaces. We can think of a rigid object as a limiting
case of stiffer and stiffer objects; and we can think of flat surfaces
as the limiting case of less and less rough surfaces. Now imagine
pressing two objects together that are not quite flat and are also not
quite rigid.

On the one hand, no matter how stiff the objects so long as
they have a little compliance, if you made them flatter and flatter,

eventually the little bit of deformation from your pressing would
make them conform and they would make contact along the contact
surfaces (where the details of the pressure distribution still would
depend on the shape of the bodies away from the contact area).

On the other hand, no matter how flat the contact surfaces (so
long as they were not perfectly flat), if you made them stiffer and
stiffer, the deformation would be extinguished and eventually they
would only make contact at a few points (as in the figure above).

To get the idea considering two springs in parallel that have
almost equal length. Consider the limits as the lengths become
matched and as the stiffnesses go to infinity (see problem. ?? on
page ??).

That is, the meaning of the phrase ‘flat and rigid’ depends on
whether you first think of the objects as flat and then rigid, or first
rigid and then flat. In math language this dependence on the order
of limits is called a distinguished limit. Here it means that the idea
of rigid objects touching on flat surfaces is ill-defined.

This distinguished limit is not a mathematical fine point. It
corresponds to the physical reality that things which look flat and
hard touch each other with a pressure distribution that is highly
dependent on fine details of construction and loading.

In many mechanics problems one can, by means of the equations
of elementary mechanics taught here, find an equivalent force system
to that of the micro-contact force distribution. Using more advanced
mechanics reasoning (the theory of elasticity) and computers (finite
element programs) one can estimate certain features of the details
of the contact pressure distribution if one knows the surface shapes
accurately. But in many mechanics calculations the details of the
contact force distribution are left unknown.
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Extended contact
When things touch each other over an extended region, like the block on the plane of
fig. 3.21a, it is not clear what forces to put where on the free body diagram. On the
one hand one imagines reality to be somewhat reflected by millions of small forces
as in fig. 3.21b which may or may not be divided into normal (ni ) and frictional ( fi )
components. But one generally is not interested in such detail, and even if interested
one cannot find it easily (see box 3.1 on page 94).

A simple approach is to replace the detailed force distribution with a single equiv-
alent force, as shown in fig. 3.21c broken into components. The location of this force
is not relevant for some problems. 1© 1© In 3D, contact force distributions cannot

always be replaced with an equivalent force
at an appropriate location (see section 2.5).
A couple may be required. Nonetheless,
many people often make the approximation
that a contact force distribution can be re-
placed by a force at an appropriate location.
This approximation neglects any frictional
resistance to twisting about the normal to
the contact plane.

If one wants to make clear that the contact forces serve to keep the block from
rotating, one may replace the contact force distribution with a pair of contacts at the
corners as in fig. 3.21d.

(a)

(b)

(c)

(d)

ni , fi

F
N

F1 F2
N1 N2

Figure 3.21: The contact forces of a block
on a plane can be sensibly modeled in var-
ious ways.

(Filename:tfigure.conformalblock)

Summary of free body diagrams.
• Draw one or more clear free body diagrams!
• Forces and moments on the free body diagram show all mechanical interactions.
• Every point on the boundary of a body has a force in every direction that motion

is either being caused or prevented. Similarly with torques.
• If you do not know the direction of a force, use vector notation to show that the

direction is yet to be determined.
• Leave off the free body diagram forces that you think are negligible such as,

possibly:

– The force of air on small slowly moving bodies;
– Forces that prevent motion that is already prevented by a much stiffer

means (as for the torques at each of a pair of hinges);
– Non-collisional forces, such as gravity, during a collision.
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3.3 Action and reaction on partial FBD’s of interacting bodies

Imagine bodies A and B are interacting and that you
want to draw separate free body diagrams (FBD’s) of each.

A
B

Part of the FBD of each shows the interaction force. The FBD of A
shows the force of B on A and the FBD of B shows the force of
A on B . To illustrate the concept, we show partial FBD’s of both
A and B using the principle of action and reaction. Items (a - d)
are correct and items (e - g) are wrong.

Correct partial FBD’s

(a)
A

B
⇀
F-

⇀
F

(a) Here are some good partial FBD’s: the arrows are equal and
opposite and the vector notations are opposite in sign.

(b)
A

B

F

F

(b) These FBD’s are also good since the opposite arrows multi-
plied by equal magnitude F produce net vectors that are equal and
opposite.

(c)
A

B⇀
F-

⇀
F

(c) The FBD’s may look wrong, and they are impractically mis-
leading and not advised. But technically they are okay because we
take the vector notation to have precedence over the drawing inac-
curacy.

(d)
A

B

F

-F

(d) The FBD’s may look wrong but since no vector notation is
used, the forces should be interpreted as in the direction of the drawn
arrows and multiplied by the shown scalars. Since the same arrow
is multiplied by F and −F , the net vectors are actually equal and
opposite.

Wrong partial FBD’s

(e)
A

B
⇀
F

⇀
F

(e) The FBD’s are wrong because the vector notation
⇀
F takes

precedence over the drawn arrows. So the drawing shows the same
force

⇀
F acting on both A and B , rather than the opposite force.

(f)
A

B

F

-F

(f) Since the opposite arrow is multiplied by the negative scalars,
the FBD’s here show the same force acting on both A and B .
Treating a double-negative as a negative is a common mistake.

(g)
A

B

F

F

(g) The FBD’s are obviously wrong since they again show the
same force acting on A and B . These FBD’s would represent the
principle of double action which applies to laundry detergents but
not to mechanics.
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SAMPLE 3.1 A mass and a pulley. A block of mass m is held up by applying a

B

A

F

Figure 3.22: (Filename:sfig2.1.02)

force F through a massless pulley as shown in the figure. Assume the string to be
massless. Draw free body diagrams of the mass and the pulley separately and as one
system.

Solution The free body diagrams of the block and the pulley are shown in Fig. 3.23.
Since the string is massless and we assume an ideal massless pulley, the tension in
the string is the same on both sides of the pulley. Therefore, the force applied by the
string on the block is simply F . When the mass and the pulley are considered as one
system, the force in the string on the left side of the pulley doesn’t show because it is
internal to the system.

B

A A

F

F

F

R

F

R

mg

B

mg

Figure 3.23: The free body diagrams of the mass, the pulley, and the mass-pulley system. Note
that for the purpose of drawing the free body diagram we need not show that we know that R = 2F .
Similarly, we could have chosen to show two different rope tensions on the sides of the pulley and
reasoned that they are equal as is done in the text.

(Filename:sfig2.1.02a)
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SAMPLE 3.2 Forces in strings. A block of mass m is held in position by strings AB
T1 T2

2m 1m

2m

m

A

B C

Figure 3.24: (Filename:sfig2.1.2a)

and AC as shown in Fig. 3.24. Draw a free body diagram of the block and write the
vector sum of all the forces shown on the diagram. Use a suitable coordinate system.

Solution To draw a free body diagram of the block, we first free the block. We
cut strings AB and AC very close to point A and show the forces applied by the cut
strings on the block. We also isolate the block from the earth and show the force due
to gravity. (See Fig. 3.25.)

T1
T2

mg

A

B

ı̂

̂

-2mı̂

 2m̂
⇀
rAB

Figure 3.25: Free body diagram of the
block and a diagram of the vector ⇀

r AB .
(Filename:sfig2.1.2b)

To write the vector sum of all the forces, we need to write the forces as vectors. To
write these vectors, we first choose an xy coordinate system with basis vectors ı̂ and
̂ as shown in Fig. 3.25. Then, we express each force as a product of its magnitude
and a unit vector in the direction of the force. So,

⇀
T 1 = T1λ̂AB = T1

⇀
rAB

|⇀
rAB| ,

where ⇀
rAB is a vector from A to B and |⇀

rAB| is its magnitude. From the given
geometry,

⇀
r AB = −2 mı̂ + 2 m̂

⇒ λ̂AB = 2 �m(−ı̂ + ̂)√
22 + 22 �m = 1√

2
(−ı̂ + ̂).

Thus,
⇀
T 1 = T1

1√
2
(−ı̂ + ̂).

Similarly,

⇀
T 2 = T2

1√
5
(ı̂ + 2̂)

m ⇀
g = −mg̂ .

Now, we write the sum of all the forces:∑
⇀
F = ⇀

T 1 + ⇀
T 2 + m ⇀

g

=
(

− T1√
2

+ T2√
5

)
ı̂ +

(
T1√

2
+ 2T2√

5
− mg

)
̂ .

∑ ⇀
F =

(
− T1√

2
+ T2√

5

)
ı̂ +

(
T1√

2
+ 2T2√

5
− mg

)
̂
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SAMPLE 3.3 Two bodies connected by a massless spring. Two carts A and B are

A B

T

F

Figure 3.26: Two carts connected by a
massless spring

(Filename:sfig2.1.3a)

connected by a massless spring. The carts are pulled to the left with a force F and to
the right with a force T as shown in Fig. 3.26. Assume the wheels of the carts to be
massless and frictionless. Draw free body diagrams of

• cart A,
• cart B, and
• carts A and B together.

Solution The three free body diagrams are shown in Fig. 3.27 (a) and (b). In Fig. 3.27
(a) the force Fs is applied by the spring on the two carts. Why is this force the same
on both carts? In Fig. 3.27(b) the spring is a part of the system. Therefore, the forces
applied by the spring on the carts and the forces applied by the carts on the spring are
internal to the system. Therefore these forces do not show on the free body diagram.

Note that the normal reaction of the ground can be shown either as separate forces
on the two wheels of each cart or as a resultant reaction.

mAg

mAg

A T

T

B
Fs Fs

Na1
Na2

or

BA

NA

(a)

(b)

Fs Fs

mBgNb1
Nb2

mAg

A

NA

mBg

NB

TB

mBg

NB

F

F

F

Figure 3.27: Free body diagrams of (a) cart A and cart B separately and (b) cart A and B together
(Filename:sfig2.1.3b)
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SAMPLE 3.4 Stacked blocks at rest on an inclined plane. Blocks A and B with

T
M

m

frictionless

friction

θ

Figure 3.28: Two blocks held in place on
a frictionless inclined surface

(Filename:sfig2.1.4a)

masses m and M , respectively, rest on a frictionless inclined surface with the help of
force T as shown in Fig. 3.28. There is friction between the two blocks. Draw free
body diagrams of each of the the two blocks separately and a free body diagram of
the two blocks as one system.

Solution The three free body diagrams are shown in Fig. 3.29 (a) and (b). Note the
action and reaction pairs between the two blocks; the normal force NA and the friction
force Ff between the two bodies A and B. If we consider the two blocks together as
a system, then the forces NA and Ff do not show on the free body diagram of the
system (See Fig. 3.29(b)), because now they are internal to the system.

T

Mg

Ff

NB

Ff

NA

mg

T

B

(a) (b)

NB Mg
mg

NA

A

Figure 3.29: Free body diagrams of (a) block A and block B separately and (b) blocks A and B
together.

(Filename:sfig2.1.4b)

SAMPLE 3.5 Two blocks slide down a frictional inclined plane. Two blocks of
m

m

µ/2

θ

µ

Figure 3.30: Two blocks slide down a
frictional inclined plane. The blocks are
connected by a light rigid rod.

(Filename:sfig2.1.15)

identical mass but different material properties are connected by a massless rigid rod.
The system slides down an inclined plane which provides different friction to the two
blocks. Draw free body diagrams of the two blocks separately and of the system (two
blocks with the rod).

Solution The Free body diagrams are shown in Fig. 3.31. Note that the friction
forces on the two blocks are different because the coefficients of friction are different
for the two blocks. The normal reaction of the plane, however, is the same for each
block (why?).

T

f1

f2

N

mg

(a) (b)

mg

N f1

N
mg mg

N

f2

T

A

B A B
ı̂

̂

θ θ

Figure 3.31: Free body diagrams of (a) the two blocks and the rod as a system and (b) the two
blocks separately.

(Filename:sfig2.1.15a)
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SAMPLE 3.6 Massless pulleys. A force F is applied to the pulley arrangement

m

F

µ

Figure 3.32: A cart with pulleys
(Filename:sfig2.1.7a)

connected to the cart of mass m shown in Fig. 3.32. All the pulleys are massless and
frictionless. The wheels of the cart are also massless but there is friction between the
wheels and the horizontal surface. Draw a free body diagram of the cart, its wheels,
and the two pulleys attached to the cart, all as one system.

Solution The free body diagram of the cart system is shown in Fig. 3.33. The force
in each part of the string is the same because it is the same string that passes over all
the pulleys.

F

F

F
F

f1 f2

N1 N2

mg

Figure 3.33: Free body diagram of the cart. (Filename:sfig2.1.7b)

SAMPLE 3.7 Two carts connected by pulleys. The two masses shown in Fig. 3.34

F P
A B

a b
c

x

y

Figure 3.34: Two carts connected by
massless pulleys.

(Filename:sfig2.1.12)

have frictionless bases and round frictionless pulleys. The inextensible massless cord
connecting them is always taut. Mass A is pulled to the left by force F and mass B
is pulled to the right by force P as shown in the figure. Draw free body diagrams of
each mass.

Solution Let the tension in the cord be T . Since the pulleys and the cord are massless,
the tension is the same in each section of the cord. This equality is clearly shown in
the Free body diagrams of the two masses below.

F B

mAg

A

NA1
NA2

mBg

NB1
NB2

T

T

T

T

T
P

Figure 3.35: Free body diagrams of the two masses. (Filename:sfig2.1.12a)

Comments: We have shown unequal normal reactions on the wheels of mass B. In
fact, the two reactions would be equal only if the forces applied by the cord on mass
B satisfy a particular condition. Can you see what condition they must satisfy for,
say, NA1 = NA2 . [Hint: think about the moment of forces about the center of mass
A.]
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SAMPLE 3.8 Structures with pin connections. A horizontal force T is applied on

T

pin

A

B

C Dk

2 ft

θ θ

Figure 3.36: (Filename:sfig2.1.5)

the structure shown in the figure. The structure has pin connections at A and B and a
roller support at C. Bars AB and BC are rigid. Draw free body diagrams of each bar
and the structure including the spring.

Solution The free body diagrams are shown in figure 3.37. Note that there are both
vertical and horizontal forces at the pin connections because pins restrict translation
in any direction. At the roller support at point C there is only vertical force from the
support (T is an externally applied force).

T
Ax

Ay Ay

Ax

Bx

ByBy

Fs Fs

mg mg

(a)

Cy Cy

mg mg

T

(b)

Figure 3.37: Free body diagrams of (a) the individual bars and (b) the structure as a whole.
(Filename:sfig2.1.5a)

SAMPLE 3.9 A unicyclist in action. A unicyclist weighing 160 lbs exerts a force on

ı̂

̂

θ

Figure 3.38: The unicyclist
(Filename:sfig2.1.8)

the front pedal with a vertical component of 30 lbf at the instant shown in figure 3.38.
The rear pedal barely touches the other foot. Assume the wheel and the frame
are massless. Draw free body diagrams of the cyclist and the cycle. Make other
reasonable assumptions if required.

Solution Let us assume, there is friction between the seat and the cyclist and between
the pedal and the cyclist’s foot. Let’s also assume a 2-D analysis. The free body
diagrams of the cyclist and the cycle are shown in Fig. 3.39. We assume no couple
interaction at the seat.

mg

N1

F1

F2
30 lbf

N1

F1

F2

F3

30 lbf

N3

ı̂

̂

θ

Figure 3.39: Free body diagram of the cyclist and the cycle. (Filename:sfig2.1.8a)
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SAMPLE 3.10 The four bar linkage shown in the figure is pushed to the right with a

.75m
.4m

A

B

C

D
π/4

α

1m
F

Figure 3.40: A four bar linkage.
(Filename:sfig2.2.1)

force F as shown in the figure. Pins A, C & D are frictionless but joint B is rusty and
has friction. Neglect gravity; and assume that bar AB is massless. Draw free body
diagrams of each of the bars separately and of the whole structure. Use consistent
notation for the interaction forces and moments. Clearly mark the action-reaction
pairs.

Solution A ‘good’ pin resists any translation of the pinned body, but allows free
rotation of the body about an axis through the pin. The body reacts with an equal and
opposite force on the pin. When two bodies are connected by a pin, the pin exerts
separate forces on the two bodies. Ideally, in the free body diagram , we should show
the pin, the first body, and the second body separately and draw the interaction forces.
This process, however, results in too many free body diagrams. Therefore, usually,
we let the pin be a part of one of the objects and draw the free body diagrams of the
two objects.

Note that the pin at joint B is rusty, which means, it will resist a relative rotation
of the two bars. Therefore, we show a moment, in addition to a force, at point B of
each of the two rods AB and BC.

(a)

or

A

B

C

D A

B
B

C
C

DAx Dx

action-reaction pairs action-reaction pairs

 MB

Ay Dy

Ax

Ay

Dx

Dy

Bx

By

Bx

By Cx

Cy

Cx

Cy

(b)

 MB

A

B

C

D A

B
B

C
C

DAx Dx

action-reaction pairs action-reaction pairs

 MB

Ay Dy

Ax

Ay

Dx

Dy

Bx

By

-Bx

-By -Cx

-Cy

Cx

Cy
 MB

x

y

F
F

F F

Figure 3.41: Style 1: Free body diagrams of the structure and the individual bars. The forces
shown in (a) and (b) are the same.

(Filename:sfig2.2.1b)

Figure 3.41 shows the free body diagrams of the structure and the individual
rods. In this figure, we show the forces in terms of their x- and y-components. The
directions of the forces are shown by the arrows and the magnitude is labeled as
Ax , Ay , etc. Therefore, a force, shown as an arrow in the positive x-direction with
‘magnitude’ Ax , is the same as that shown as an arrow in the negative x-direction
with magnitude −Ax . Thus, the free body diagrams in Fig. 3.41(a) show exactly the
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same forces as in Fig. 3.41(b).
In Fig. 3.42, we show the forces by an arrow in an arbitrary direction. The

corresponding labels represent their magnitudes. The angles represent the unknown
directions of the forces.

A

B

C

D A

B B

C
C

D
RA

RA

RD RA

RC

-RC

RC

RC

RB

RD

RD

RB

RB -RB

-MBMB

MB MB

action-reaction pair

action-reaction pair

action-reaction pair

action-reaction pair

action-reaction pair

action-reaction pair

(a)

A

B B

C
C

D

(b)

or

F
F

F

Figure 3.42: Style 2: Free body diagrams of the structure and the individual bars. The forces
shown in (a) and (b) are the same.

(Filename:sfig2.2.1c)

In Fig. 3.43, we show yet another way of drawing and labeling the free body
diagrams, where the forces are labeled as vectors.

A

B

C

D A

B B

C
C

D

action-reaction pair

action-reaction pair

action-reaction pair

-
⇀
RC-

⇀
RB

⇀
RA

⇀
RA

⇀
RC

⇀
RD

⇀
RB

⇀
RD

-
⇀
MB

⇀
MBF F

Figure 3.43: Style 3: Free body diagrams of the structure and the individual bars. The label of a
force indicates both its magnitude and direction. The arrows are arbitrary and merely indicate that a
force or a moment acts on those locations.

(Filename:sfig2.2.1d)

Note: There are no two-force bodies in this problem. Bar AB is massless but is
not a two-force member because it has a couple at its end.
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4 Statics

Statics is the mechanics of things that don’t move. But everything does move, at
least a little. So statics doesn’t exactly apply to anything. The statics equations are,
however, a very good approximation of the more general dynamics equations for
many practical problems. The statics equations are also easier to manage than the
dynamics equations. So with little loss of accuracy, sometimes very little loss, and
a great saving of effort, sometimes a very great saving, many calculations can be
performed using a statics model instead of a more general dynamics model. Thus it
is not surprising that typical engineers perform many more statics calculations than
dynamics calculations. Statics is the core of structural and strength analysis. And
even for a moving system, say an accelerating car, statics calculations are appropriate
for many of the parts. Simply put, and perhaps painful to remember when you
complete this chapter and begin the chapters on dynamics, statics is more useful to
most engineers than dynamics.

One possible motivation for studying statics is that the statics skills all carry over
to dynamics which is a more general subject. But the opposite is maybe closer to
truth. Statics is indeed a special case of dynamics. But for many engineers the benefit
of going on from statics to dynamics is the sharpening of the more-useful statics skills
that ensue.

How does general mechanics simplify to statics?

The mechanics equations in the front cover are applicable to everything most engi-
neers will ever encounter. The statics equations are a special case that apply only
approximately to many things. In statics we set the right hand sides of equations I
and II to zero. The neglected terms involve mass times acceleration and are called the
inertial terms. For statics we set the inertial terms ˙⇀L and ˙⇀HC to zero. Thus we replace

107
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the linear and angular momentum balance equations with their simplified forms∑
All external

forces

⇀
F = ⇀

0 and
∑

All external
torques

⇀
MC = ⇀

0 (Ic,IIc)

which are called the force balance and moment balance equations and together are
called the equilibrium equations. The forces to be summed are those that show on a
free body diagram of the system. The torques that are summed are those due to the
same forces (by means of ⇀

ri/C × ⇀
Fi) plus those due to any force systems that have

been replaced with equivalent couples. If the forces on a system satisfy eqs. Ic and
IIc the system is said to be in static equilibrium or just in equilibrium.

A system is in static equilibrium if the applied forces and moments add to
zero.

Which can also be stated as

The forces on a system in static equilibrium, considered as a system, are
equivalent to a zero force and a zero couple.

The approximating assumption that an object is in static equilibrium is that the forces
mediated by an object are much larger than the forces needed to accelerate it. The
statics equations are generally reasonably accurate for

• Things that a normal person would call “still” such as a building or bridge on
a calm day, and a sleeping person; for

• Things that move slowly or with little acceleration, such as a tractor plowing a
field or the arm of a person holding up a book while seated in a smooth-flying
airplane; and for

• Parts that mediate the forces needed to accelerate more massive parts, such
as gears in a transmission, the rear wheel of an accelerating bicycle, the strut
in the landing gear of an airplane, and the individual structural members of a
building swaying in an earthquake.

Quantitative estimation of the goodness of the statics approximation is not a statics
problem, so we defer it until the chapters on dynamics.

How is statics done?

The practice of statics involves:

• Drawing free body diagrams of the system of interest and of appropriate sub-
systems;

• writing equations Ic and IIc for each free body diagram; and
• using vector manipulation skills to solve for unknown features of the applied

loads or geometry.
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The organization of this chapter
This whole chapter involves drawing free body diagrams and apply the force and
moment balance equations. The chapter development is, roughly, the application of
this procedure to more and more complex systems. We start with single bodies in the
next key section. We then go on to the most useful examples of composite bodies,
trusses. The relation between statics and the prediction of structural failure is next
explained to be based on the concept of “internal” forces. Springs are ubiquitous
in mechanics, so we devote a section to them. More difficult statics problems with
composite bodies, mechanisms and frames, come next. Hydrostatics, useful for
understanding the forces of water on a structure, is next. The final section serves as
a cover for harder and three dimensional problems associated with all of the statics
topics but has little new content.

Further statics skills will be developed later in the dynamics portion of the book.
In particular, statics methods that depend on kinematics (work methods) are deferred.

Two dimensional and three dimensional mechanics
The world we live in is three dimensional. So two dimensional models and equations
are necessarily approximations. The theory of mechanics is a three dimensional
theory that is simplified in two dimensional models. To appreciate the simplification
one needs to understand 3D mechanics. But to understand 3D mechanics it is best
to start practicing with 2D mechanics. Thus, until the last section of this chapter,
we emphasize use of the two dimensional approximation and are intentionally casual
about its precise meaning. We will think of a cylinders and spheres as circles, of
boxes as squares, and of cars as things with two wheels (one in front, one in back). In
the last section on three dimensional statics we will look more closely at the meaning
of the 2 dimensional approximation.

4.1 Static equilibrium of one body
A body is in static equilibrium if and only if the force balance and moment balance
equations are hold:∑

All external
forces

⇀
F = ⇀

0

︸ ︷︷ ︸
force balance

and
∑

All external
torques

⇀
MC = ⇀

0

︸ ︷︷ ︸
moment balance

(Ic,IIc)

for some point C. Is C a special point? No. Why? Because the statics equations say
that the net force system is equivalent to a zero force and zero couple at C. We know
from our study of equivalent force systems that this implies that the force system is
equivalent to a zero force and zero couple at any and every point. So you can use any
convenient point for the reference point in the moment balance equation.

Example. As you sit still reading, gravity is pulling you down and forces
from the floor on your feet, the chair on your seat, and the table on your
elbows hold you up. All of these forces add to zero. The net moment of
these forces about the front-left corner of your desk adds to zero. ✷

In two dimensions the equilibrium equations make up 3 independent scalar equations
(2 components of force, 1 of moment). In 3 dimensions the equilibrium equations
make up 6 independent scalar equations (3 components of force and 3 components
of moment).

We now proceed to consider a sequence of special loading situations. In principle
you don’t need to know any of them, force balance and moment balance spell out the
whole statics story.
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Concurrent forces, equilibrium of a particle
The word particle usually means something small. In mechanics a particle is some-
thing whose spatial extent is ignored for one reason or another. If the ‘body’ in a free
body diagram is a particle then all forces on it act at the same point, namely at the
particle, and are said to be concurrent (see fig. 4.1). Force balance says that the forces

C

P

⇀
F 1 ⇀

F 2

⇀
F 3

Figure 4.1: A set of forces acting concur-
rently on a particle.

(Filename:tfigure.particleequilib)

add to zero. The moment balance equation adds no information because it is automat-
ically satisfied (concurrent forces adding to zero have no moment about any point).

ı̂

̂

30o
75o

30o

135o

45o

45o

W
P

�

A

B

⇀
FB

⇀
FA

445 N

Example. A 100 pound weight hangs from 2 lines. So

∑
⇀
F i = ⇀

0 ⇒ 445 N(−̂)+FA
(ı̂ + ̂)√

2
+FB(−1

2
ı̂+

√
3

2
̂) = ⇀

0.

This can be solved any number of ways to get FA = 230.3 N and FB =
325.8 N. ✷

Although the moment balance equation has nothing to add in the case of concurrent
forces, it can be used instead of force balance.

Example. Consider the same weight hanging from 2 strings. Moment
balance about point A gives

∑
⇀
MA = ⇀

0 ⇒ ⇀
rP/A×445 N(−̂)+⇀

rP/A×FB(−1

2
ı̂+

√
3

2
̂)+⇀

0 = ⇀

0.

Evaluating the cross products one way or another one again gets FB =
325.8 N. Similarly moment balance about B could be used to find FA =
230.3 N. ✷

If we thought of moment balance first we could have solved this problem using
moments and said the force balance had nothing to add. In either case, we only have
two useful scalar equilibrium equations in 2D and 3 in 3D for concurrent force systems.
The other equations are satisfied automatically because of the force concurrence.

One-force body
Lets first dispose of the case of a “one-force” body. Consider a finite body with only
one force acting on it. Assume it is in equilibrium. Force balance says that the sum
of forces must be zero. So that force must be zero.

If only one force is acting on a body in equilibrium that force is zero.

That was too easy, but a count to 3 wouldn’t feel complete if it didn’t start at 1.
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Two-force body

When only two forces act on a system the situation is also simplified, though not
so drastically as the case with one force. To determine the simplification, we apply
the equilibrium equations of statics (Ic and IIc) to the body. Consider the free body
diagram of a body B in figure 4.2a. Forces

⇀
F P and

⇀
F Q are acting on B at points P

and Q. First, we have that the sum of all forces on the body are zero,

∑
All external

forces

⇀
F = ⇀

0

⇀
F P + ⇀

F Q = ⇀

0 ⇒ ⇀
F P = − ⇀

F Q .

Thus, the two forces must be equal in magnitude and opposite in direction. So, thus
far, we can conclude that the forces must be parallel as shown in figure 4.2b. But the

(a) One might imagine this ...

Q

P B

⇀
F P

⇀
FQ

λ̂Q/P

Q

P

(b)...or this...

B

⇀
F P

⇀
FQ

⇀
FQ

(c)...but actually this.

Q

P B

P

λ̂Q/P

F

P
F

=-

Figure 4.2: (a) Two forces acting on a
body B . (b) force balance implies that the
forces are equal in magnitude and opposite
in direction. (c) moment balance implies
that the forces are colinear. Body B is a
two-force member; the two forces are equal,
opposite, and collinear.

(Filename:tfigure2.two.force)

forces still seem to have a net turning effect, thus still violating the concept of static
equilibrium. The sum of all external torques on the body about any point are zero.
So, summing moments about point P , we get,

∑
All external

torques

⇀
M/P = ⇀

0

⇀
r Q/P × ⇀

F Q = ⇀

0 (
⇀
F P produces no torque about P .)∣∣⇀

r Q/P
∣∣ (λ̂Q/P × ⇀

F Q

)
= ⇀

0 (λ̂Q/P =
⇀
r Q/P

|⇀
r Q/P | = −

⇀
r P/Q

|⇀
r P/Q | )

So
⇀
FQ has to be parallel to the line connecting P and Q. Similarly, taking the sum of

moments about point Q, we get

−λ̂Q/P × ⇀
F Q = ⇀

0

and
⇀
F P also must be parallel to the line connecting P and Q. So, not only are

⇀
F P and

⇀
F Q equal and opposite, they are collinear as well since they are parallel to the axis
passing through their points of action (see fig. 4.2c). Summarizing,

If a body in static equilibrium is acted on by two forces, then those forces
are equal, opposite, and have a common line of action.

A body with only two forces acting on it is called a two-force bodies or two-force
member. If you recognize a two-force body you can draw it in a free body diagram
as in fig. 4.2c and the equations of force and moment balance applied to this body
will provide no new information. This shortcut is sometimes useful for systems with
several parts some of which are two-force members. Most often springs, dashpots,
struts, and strings are idealized as two-force bodies as for bar BC in the example
below.
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Example: Tower and strut

hinges

hinge A C

A

B

B

C

FBD's of Rods AB and BC  

B

⇀
FA

-
⇀
FB

⇀
FB

⇀
FC = -

⇀
FB

Consider an accelerating cart holding up massive tower AB which is
pinned at A and braced by the light strut BC . The rod BC qualifies as
a two-force member. The rod AB does not because it has three forces
and is also not in static equilibrium (non-negligible accelerating mass).
Thus, the free body diagram of rod BC shows the two equal and opposite
colinear forces at each end parallel to the rod and the tower AB does not.
✷

Example: Logs as bearings

Consider the ancient egyptian dragging a big stone. If the stone and
ground are flat and rigid, and the log is round, rigid and much lighter
than the stone we are led to the free body diagram of the log shown. With
these assumptions there can’t be any resistance to rolling. Note that
this effectively frictionless rolling occurs no matter how big the friction
coefficient between the contacting surfaces. That the egyptian got tired
comes from logs, ground, stone,not being perfectly flat (or round) and
rigid. (Also, it is tiring to keep replacing the logs in the front.) ✷

Example: One point of support

If an object with weight is supported at just one point, that point must be
directly above or below the center of mass. Why? The gravity forces are
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equivalent to a single force at the center of mass. The body is then a two
force body. Since the direction of the gravity force is down, the support
point and center of mass must be above one another. Similarly if a body
is suspended from one point, the center of gravity must be directly above
or below that point. ✷

Three-force body
If a body in equilibrium has only three forces on it, again there is a general simplifi-
cation that one can deduce from the general equations of statics∑

All external
forces

⇀
F = ⇀

0 and
∑

All external
torques

⇀
MC = ⇀

0.

The simplification is not as great as for two-force bodies but is remarkably useful
for more difficult statics problems. In box 4.1 on page 113 moment balance about
various axes is used to prove that

2D

3D

Figure 4.3: In a three-force body, the
lines of action of the forces intersect at a
single point and are coplanar. The point of
intersection does not have to lie within the
body.

(Filename:tfigure2.three.force)

for a three-force body to be in equilibrium, the forces

(a) must be coplanar, and

(b) must either have lines of action which intersect at a single point,
or the three forces are parallel.

That is, one could imagine three random forces acting on a body. But, for equilibrium
they must be coplanar and concurrent.

Example: Hanging book box

mtotg

4.1 THEORY
Three-force bodies

Consider a body in static equilibrium with just three forces on it;
⇀
F 1,

⇀
F 2, and

⇀
F 3 acting at ⇀

r 1, ⇀
r 2, and ⇀

r 3. Taking moment balance
about the axis through points at ⇀

r 2 and ⇀
r 3 implies that the line of

action of
⇀
F 1 must pass through that axis. Similarly, for equilibrium

to hold, the line of action of
⇀
F 2 must intersect the axis through

points at ⇀
r 1 and ⇀

r 3 and the line of action of
⇀
F 3 must intersect the

axis through ⇀
r 1 and ⇀

r 2. So, the lines of action of all three forces
are in the plane defined by the three points of action and the lines of
action of

⇀
F 2 and

⇀
F 3 must intersect. Taking moment balance about

this point of intersection implies that
⇀
F 1 has line of action passing

through the same point. (The exceptional case is when
⇀
F 1,

⇀
F 2, and

⇀
F 3 are parallel and have a common plane of action.)
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A box with a book inside is hung by two strings so that it is in equilibrium
on when level. The lines of action of the two strings must intersect
directly above the center of mass of the box/book system. ✷

(a) (b) (c)

100o
120o

140o

A

AA

D

BB

B
C

C

C

180o

30o45o

285o

D

D

Example: Which way do the forces go?

The maximum angle between pairs of forces can be (a) greater than, (b)
equal to, or (c) less than 180o. In case (b) force balance in the direction
perpendicular to line ADC shows that the odd force must be zero. In
case (a) force balance perpendicular to the middle force implies that the
outer two forces are both directed from D or both directed away from D.
Force balance in the direction of the middle force shows that it has to
have the opposite sense than the outer forces. If the others are pushing
in then it is pulling away. If the outer forces are pulling away than it is
pushing in. In case (c) application of force balance perpendicular to the
force at C shows that the other two forces must both pull away towards D
or both push in. Then force balance along C shows that all three forces
must have the same sense. All three forces are pulling away from D or
all three are pushing in. ✷

The idealized massless pulley
Both real machines and mechanical models are built of various building blocks. One
of the standards is a pulley. We often draw pulleys schematically something like in
figure 4.4a which shows that we believe that the tension in a string, line, cable, or
rope that goes around an ideal pulley is the same on both sides, T1 = T2 = T . An
ideal pulley is

(i.) Round,
(ii.) Has frictionless bearings,

(iii.) Has negligible inertia, and
(iv.) Is wrapped with a line which only carries forces along its length.

We now show that these assumptions lead to the result that T1 = T2 = T . First, look
at a free body diagram of the pulley with a little bit of string at both ends. Since we

R2

R1

T1

T2
O

FBD

FBD

Forces of bearing
on pulley, assuming
no friction

ı̂

̂

R

R

T

F

T

Round, massless,
frictionless pulley.

T1

T2

Ideal
massless pulley

T1 = T2 = T

O

(a)

(b)

(c)

Figure 4.4: (a) An ideal massless pul-
ley, (b) FBD of idealized massless pulley,
detailing the frictionless bearing forces and
showing forces at the cut strings, (c) final
FBD after analysis.

(Filename:tfigure3.pulleytheory1)

assume the bearing has no friction, the interaction between the pulley bearing shaft
and the pulley has no component tangent to the bearing.

To find the relation between tensions, we apply angular momentum balance (equa-
tion II) about point O {∑

⇀
MO = ˙⇀HO

}
· k̂. (4.1)

Evaluating the left hand side of eqn. 4.1∑
⇀
MO · k̂ = R2T2 − R1T1 + bearing friction︸ ︷︷ ︸

0

= R(T2 − T1), since R1 = R2 = R.
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Because there is no friction, the bearing forces acting perpendicular to the round
bearing shaft have no moment about point O (see also the short example on page 71).
Because the pulley is round, R1 = R2 = R.

When mass is negligible, dynamics reduces to statics because, for example, all
the terms in the definition of angular momentum are multiplied by the mass of the
system parts. So the right hand side of eqn. 4.1 reduces to ˙⇀HO · k̂ = 0.

Putting these assumptions and results together gives

{∑
⇀
MO = ˙⇀HO

}
· k̂

⇒ R(T2 − T1) = 0

⇒ T1 = T2

Thus, the tensions on the two lines of an ideal massless pulley are equal.

Lopsided pulleys are not often encountered, so it is usually satisfactory to assume
round pulleys. But, in engineering practice, the assumption of frictionless bearings
is often suspect. In dynamics, you may not want to neglect pulley mass.

Lack of equilibrium as a sign of dynamics
Surprisingly, statics calculations often give useful information about dynamics. If,
in a given problem, you find that forces cannot be balanced this is a sign that the
related physical system will accelerate in the direction of imbalance. If you find that
moments cannot be balanced, this is a sign of rotational acceleration in the physical
system. The first example (‘block on ramp’) in the next subsection illustrates the
point.

Conditional contact, consistency, and contradictions
There is a natural hope that a subject will reduce to the solution of some well defined
equations. For statics problems one would like to specify the object(s) the forces on the
them, the nature of the interactions and then just write the force balance and moment
balance equations and be sure that the solution follows by solving the equations.

For better and worse, things are not always this simple. For better because it
means that the recipes are still not so well defined that computers can easily steal the
subject of mechanics from people. For worse because it means people have to think
hard to do mechanics problems.

Many mechanics problems do have a solution, just one, that follows from the
governing equations. But some reasonable looking problems have no solutions. And
some problems have multiple solutions. When these mathematical anomalies arise,
they usually have some physical importance. Even for problems with one solution,
the route to finding that solution can involve more than simple equation manipulation.

One source of these difficulties is the conditional nature of the equations that
govern contact. For example:

• The ground pushes up on something to prevent interpenetration if the pushing
is positive, otherwise the ground does not push up.

• The force of friction opposes motion and has magnitude µN if there is slip,
otherwise the force of friction is something less than µN in magnitude.

• The distance between two points is kept from increasing by the tension in the
string between them if the tension is positive, otherwise the tension is zero.

These conditions are, implicitly or explicitly, in the equations that govern these inter-
actions. One does not always know which of the contact conditions, if either, apply
when one starts a problem. Sometimes multiple possibilities need to be checked.
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Example: Robot hand

Roboticist Michael Erdmann has designed a palm manipulator that ma-
nipulates objects without squeezing them. The flat robot palms just move
around and the object consequently slides. Determining whether the ob-
ject slides on one the other or possibly on both hands in a given movement
is a matter of case study. The computer checks to see if the equilibrium
equations can be solved with the assumption of sticking or slipping at
one or the other contact. ✷

Sometimes there is no statics solution as the following simple example shows.

Example: Block on ramp.

45o

W

N1
2 N

g

A block with coefficient of friction µ = .5 is in static equilibrium sliding
steadily down a 45o ramp. Not! The two forces in the free body diagram
cannot add to zero (since they are not parallel). The assumptions are
not consistent. They lead to a contradiction. Given the geometry and
friction coefficient one could say that the assumption of equilibrium
was inconsistent (and actually the block accelerates down the ramp). If
equilibrium is demanded, say you saw the block just sitting there, then
you can pin the contradiction on a mis-measured slope or a mis-estimated
coefficient of friction. ✷

The following problem shows a case where a statics problem has multiple solutions.
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Example: Rod pushed in a channel.

45o
30o

60o

R

N

F

or

µ = 0

µ = 1

F

FBD 1 FBD 2

A light rod is just long enough to make a 60o angle with the walls of a
channel. One channel wall is frictionless and the other has µ = 1. What
is the force needed to keep it in equilibrium in the position shown? If
we assume it is sliding we get the first free body diagram. The forces
shown can be in equilibrium if all the forces are zero. Thus we have the
solution that the rod slides in equilibrium with no force. If we assume
that the block is not sliding the friction force on the lower wall can be
at any angle between ±45o. Thus we have equilibrium with the second
FBD for arbitrary positive F . This is a second set of solutions. A rod
like this is said to be self locking in that it can hold arbitrary force F
without slipping. That we have found freely slipping solutions with no
force and jammed solutions with arbitrary force corresponds physically
to one being able to easily slide a rod like this down a slot and then
have it totally jamb. Some rock-climbing equipment depends on such
self-locking and easy release. ✷

One might not at first thing of string connections as being a form of contact, but
the whether a string is taught or not is the same as whether contact is made with a
frictionless spherical wall or not.

Example: Particle held by two strings.

Two inextensible strings are slightly slack when no load is applied to
the knot in the middle. When a load is applied what is the tension in
the strings? Force balance along the strings gives us one equation for
the two unknown tensions. There are many solutions. There are even
solutions where both tensions are positive. But geometry does not allow
both of the strings to be at full length simultaneously. Thus we have to
assume one of the strings has no tension when applying force balance.
If we pick the wrong string we will get the contradiction that its tension
is negative. ✷

The triviality of this example perhaps hides the problem, so here it is again with three
strings.
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Example: Particle held by three strings.

Fx

Fy

Three inextensible strings are just slightly slack when no load is applied
to the knot in the middle. When a load is applied what is the tension in the
strings? Planar force balance gives us two equations for the 3 unknown
tensions. These equations have many solutions, even some with positive
tension in all three strings. But geometry does not allow all three strings
to be at their extended lengths simultaneously. So at least one string has
to be slack and have no tension. If you guess the right one you will find
positive tension in the other two strings. If you guess the wrong one you
will get the contradiction that one of the strings has negative tension. ✷

If this example still seems too easy to demonstrate that sometimes you have to think
about which of two or more conditionals needs to be enforced, try a case with four
strings in three dimensions.

These examples, and one could construct many more, show that you have to look
out for static equilibrium being not consistent with other information given. This
contradiction could arise in an il-posed problem, a problem that is really a dynamics
problem, or as you eliminate possibilities that a given well-posed statics problem
superficially allows.

The general case
For one body, whether in 1D,2D or 3D the equations of equilibrium are:∑

All external
forces

⇀
F = ⇀

0

︸ ︷︷ ︸
force balance

and
∑

All external
torques

⇀
MC = ⇀

0

︸ ︷︷ ︸
moment balance

(Ic,IIc)

Solving a statics problem means using these equations, along with any available
information about the forces involved, to find various unknowns. For some problems,
the various tricks involving one-force, two-force, and three-force bodies can serve as
a time saver for solving these equations and can help build your intuition. For some
contact problems you may have to try various cases. But ultimately, always, statics
means applying the force balance and moment balance equations.

Linearity and superposition
For a given geometry the equilibrium equations are linear. That is: If for a given
object you know a set of forces that is in equilibrium and you also know a second set
of forces that is in equilibrium, then the sum of the two sets is also in equilibrium.
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Example: A bicycle wheel

W

W

G

a) b) c)

G

W

W

T

FGx

FAFA

FGx

T

The free body diagram of an ideal massless bicycle wheel with a vertical
load is shown in (a) above. The same wheel driven by a chain tension
but with no weight is shown in equilibrium in (b) above. The sum of
these two load sets (c) is therefor in equilibrium. ✷

The idea that you can add two solutions to a set of equations is called the principle of
superposition, sometimes called the principle of superimposition 1©. The principle 1© Here’s a pun to help you remember the

idea. When talkative Sam comes over you
get bored. When hungry Sally comes over
you reluctantly go get a snack for her. When
Sam and Sally come over together you get
bored and reluctantly go get a snack. Each
one of them is imposing. By the principle of
superimposition their effects add when they
are together and they are super imposing.

of superposition provides a useful shortcut for some mechanics problems.
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4.2 Wheels and two force bodies
One often hears whimsical reverence for the “invention of the

wheel.” Now, using elementary mechanics, we can gain some ap-
preciation for this revolutionary way of sliding things.

Without a wheel the force it takes to drag something is about
µW . Since µ ranges between about .1 for teflon, to about .6 for
stone on ground, to about 1 for rubber on pavement, you need to
pull with a force that is on the order of a half of the full weight of
the thing you are dragging.

You have seen how rolling on round logs cleverly take advantage
of the properties of two-force bodies (page 112). But that good idea
has the major deficiency of requiring that logs be repeatedly picked
up from behind and placed in front again.

The simplest wheel design uses a dry “journal” bearing consist-
ing of a non-rotating shaft protruding through a near close fitting
hole in the wheel. Here is shown part of a cart rolling to the right
with a wheel rotating steadily clockwise.

To figure out the forces involved we draw a free body diagram of the
wheel. We neglect the wheels weight because it is generally much
smaller than the forces it mediates. To make the situation clear the
picture shows too-large a bearing hole r .

R

ı̂

̂

NF

Fx

Fy

rC

G

θ

The force of the axle on the wheel has a normal component N and
a frictional component F . The force of the ground on the wheel has
a part holding the cart up Fy and a part along the ground Fx which
will surely turn out to be negative for a cart moving to the right. If
we take the wheel dimensions to be known and also the vertical part
of the ground reaction force Fy we have as unknowns N , F, θ and
Fx . To find these we could use the friction equation for the sliding
bearing contact

F = µN ;
force balance

Fx ı̂ + Fy ̂ + N (− sin θ ı̂ − cos θ ̂ ) + F(cos θ ı̂ − sin θ ̂ ) = ⇀
0 ,

which could be reduced to 2 scalar equations by taking components
or dot products; and moment balance which is easiest to see in terms
of forces and perpendicular distances as

Fr + Fx R = 0.

Of key interest is finding the force resisting motion Fx . With a little
mathematical manipulation we could solve the 4 scalar equations

above for any of Fx , N , F, and θ in terms of r, R, Fy , and µ. We
follow a more intuitive approach instead.

As modeled, the wheel is a two-force body so the free body
diagram shows equal and opposite colinear forces at the two contact
points.

θ
φ

α

α

r

d

R

The friction angleφ describes the friction between the axle and wheel
(with tan φ = µ). The angle α describes the effective friction of the
wheel. This is not the friction angle for sliding between the wheel
and ground which is assumed to be larger (if not, the wheel would
skid and not roll), probably much larger. The specific resistance or
the coefficient of rolling resistance or the specific cost of transport
is µeff = tan α. (If there was no wheel, and the cart or whatever was
just dragged, the specific resistance would be the friction between
the cart and ground µeff = µ.)

Lets consider two extreme cases: one is a frictionless bearing
and the other is a bearing with infinite friction coefficient µ → ∞
and φ → 90o.

r

R

α

α

µ = 0 µ = ∞

In the case that the wheel bearing has no friction we satisfyingly
see clearly that there is no ground resistance to motion. The case of
infinite friction is perhaps surprising. Even with infinite friction we
have that

sin α = r

R
.

Thus if the axle has a diameter of 10 cm and the wheel of 1 m then
sin α is less than .1 no matter how bad the bearing material. For such
small values we can make the approximation µeff = tan α ≈ sin α

so that the effective coefficient of friction is .1 or less no matter what
the bearing friction.

The genius of the wheel design is that it makes the effec-
tive friction less than r/R no matter how bad the bearing
friction.
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Going back to the two-force body free body diagram we can see that

d = d

⇒ r sin φ = R sin α

⇒ sin α = r

R
sin φ. (∗)

From this formula we can extract the limiting cases discussed pre-
viously (φ = 0 and φ = 90o). We can also plug in the small angle
approximations (sin α ≈ tan α and sin φ ≈ tan φ) if the friction
coefficient is low to get

µeff ≈ µ
r

R
.

The effective friction is the bearing friction attenuated by the radius

ratio. Or, we can use the trig identity sin =
√

1 + tan−2
−1

to solve
the exact equation (*) for

µeff = µ
r

R

(
1√

1 + µ2(1 − r2/R2)

)
,

where the term in parenthesis is always less than one and close to
one if the sliding coefficient in the bearing is low.

Finally we combine the genius of the wheel with the genius of
the rolling log and invent a wheel with rolling logs inside, a ball
bearing wheel.

Each ball is a two force body and thus only transmits radial loads.
Its as if there were no friction on the bearing and we get a specific
resistance of zero, µeff = 0. Of course real ball bearings are not
perfectly smooth or perfectly rigid, so its good to keep r/R small as
a back up plan even with ball bearings.

By this means some wheels have effective friction coefficients
as low as about .003. The force it takes to drag something on wheels
can be as little as one three hundredth the weight.
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SAMPLE 4.1 Concurrent forces: A block of mass m = 10 kg hangs from strings

2m 1m

2m

B C

m A

Figure 4.5: (Filename:sfig2.4new.1)

T1
T2

mgı̂

̂

Figure 4.6: (Filename:sfig2.4new.1a)

AB and AC in the vertical plane as shown in the figure. Find the tension in the strings.

Solution The free body diagram of the block is shown in figure 4.6. Since the block
is at rest, the equation of force balance is∑

⇀
F = ⇀

0

or T1λ̂AB + T2λ̂AC − mg̂ = ⇀

0, (4.2)

where λ̂AB and λ̂BC are unit vectors in the AB and AC directions, respectively. From
geometry,

λ̂AB =
⇀
r AB

|⇀
r AB | = −2 mı̂ + 2 m̂

2
√

2 m
= 1√

2
(−ı̂ + ̂)

λ̂AC =
⇀
r AC

|⇀
r AC | = 1 mı̂ + 2 m̂√

5 m
= 1√

5
(ı̂ + 2̂)

Dotting eqn. (4.2) with ı̂ we get

T1(λ̂AB·ı̂︸ ︷︷ ︸
−1/

√
2

) + T2(λ̂AC·ı̂︸ ︷︷ ︸
1/

√
5

) = 0 ⇒ T1 =
√

2

5
T2

Dotting eqn. (4.2) with ̂ and substituting T1 = √
2/5 T2, we get√

2

5
T2︸ ︷︷ ︸

T1

(λ̂AB·̂︸ ︷︷ ︸
1/

√
2

) + T2(λ̂AC·̂︸ ︷︷ ︸
2/

√
5

) − mg = 0

⇒ 3√
5

T2 − mg = 0 ⇒ T2 =
√

5

3
mg = 73.12 N

Substituting in T1 =
√

2
5 T2, we have T1 =

√
2
5 ·(73.12 N) = 46.24 N

T1 = 46.24 N, T2 = 73.12 N

• • •

Note: We could also write eqn. (4.2) in matrix form and solve the matrix equation to find T1 and T2 . Substituting λ̂AB and λ̂AC in terms

of ı̂ and ̂ in eqn. (4.2) and dotting the resulting equation with ı̂ and ̂ , we can write eqn. (4.2) as[ − 1√
2

1√
5

1√
2

2√
5

] (
T1
T2

)
=

(
0

mg

)
⇒

(
T1
T2

)
=

[ − 1√
2

1√
5

1√
2

2√
5

]−1 (
0

mg

)

Using Cramer’s rule for the inverse of a matrix, we get(
T1
T2

)
= −

√
10

3

[
2√
5

− 1√
5

− 1√
2

− 1√
2

] (
0

mg

)
=

( √
2

3 mg√
5

3 mg

)

which is, of course, the same result as we got above.
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SAMPLE 4.2 A small block of mass m rests on a frictionless inclined plane with

A

B C

θ

êt ên

m

Figure 4.7: A mass-particle on an in-
clined plane.

(Filename:sfig2.1.11)

the help of a string that connects the mass to a fixed support at A. Find the force in
the string.

Solution The free body diagram of the mass is shown in Fig. 4.8. The string force
Fs and the normal reaction of the plane N are unknown forces. To determine the

mg
mg

NN

Fs

Fs

O

nt

x

y

θ

êt ên

Figure 4.8: Free body diagram of the mass and the geometry of force vectors. (Filename:sfig2.1.11a)

unknown forces, we write the force balance equation,
∑ ⇀

F = ⇀

0,

⇀
Fs + ⇀

N + m ⇀
g = ⇀

0

We can express the forces in terms of their components in various ways and then
dot the vector equation with appropriate unit vectors to get two independent scalar
equations. For example, let us draw two unit vectors êt and ên along and perpendicular
to the plane. Now we write the force balance equation using mixed basis vectors êt

and ên , and ı̂ and ̂ :
Fs êt + N ên − mg̂ = ⇀

0 (4.3)

We can now find Fs directly by taking the dot product of the above equation with êt

since the other unknown N is in the ên direction and ên · êt = 0:

[eqn. (4.3)] · êt ⇒ Fs − mg

sin θ︷ ︸︸ ︷
(̂ · êt ) = 0 ⇒ Fs = mg sin θ

Fs = mg sin θ

• • •
Note that we did not have to separate out two scalar equations and solve for Fs and N
simultaneously. If we needed to find N , we could do that too from a single equation
by taking the dot product of eqn. (4.3) with n̂:

[eqn. (4.3)] · ên ⇒ N − mg

cos θ︷ ︸︸ ︷
(̂ · ên) = 0 ⇒ N = mg cos θ

mg

(a)

(b)

x

y

mgsinθmgcosθ
θ

θ

θ
̂ ̂

êt
ên

nt

Figure 4.9: (a) Components of mg along
t and n directions. (b) The mixed basis dot
products: ̂ · êt = sin θ and ̂ · ên = cos θ

(Filename:sfig2.1.11b)

Writing direct scalar equations: You are familiar with this method from your
elementary physics courses. We resolve all forces into their components along the
desired directions and then sum the forces. Here, Fs is along the plane and therefore,
has no component perpendicular to the plane. Force N is perpendicular to the plane
and therefore, has no component along the plane. We resolve the weight mg into two
components: (1) mg cos θ perpendicular to the plane (n direction) and (2) mg sin θ

along the plane (t direction). Now we can sum the forces:∑
Ft = 0 ⇒ Fs−mg sin θ = 0; and

∑
Fn = 0 ⇒ N−mg cos θ = 0

which, of course, is essentially the same as the equations obtained above.
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SAMPLE 4.3 A bar as a 2-force body: A 4 ft long horizontal bar supports a load of
B

A

4'

3'

60 lb

C

Figure 4.10: (Filename:sfig4.single.bar)

60 lbf at one of its ends. The other end is pinned to a wall. The bar is also supported
by a string connected to the load-end of the bar and tied to the wall. Find the force in
the bar and the tension in the string.

Solution Let us do this problem two ways — using equilibrium equations without
much thought, and using those equations with some insight.

B

A

h

C

P

Ax

Ay

T

λ̂

AAx F

�ı̂

̂

θ

Figure 4.11: (Filename:sfig4.single.bar.a)

(a) The free body diagram of the bar is shown in Fig. 4.11. The moment balance
about point A,

∑ ⇀
MA = 0, gives

⇀
rC/A × T λ̂+ ⇀

rC/A × (−P ̂) = ⇀

0

�ı̂ × T (− cos θ ı̂ + sin θ ̂)︸ ︷︷ ︸
�T sin θ k̂

+ �ı̂ × (−P ̂)︸ ︷︷ ︸
−�P k̂

= ⇀

0

(T � sin θ − P�)k̂ = ⇀

0 (4.4)

[eqn. (4.4)] · k̂ ⇒ T = P

sin θ
= 60 lbf

3
5

= 100 lbf.

The force equilibrium,
∑ ⇀

F = 0, gives

(Ax − T cos θ)ı̂ + (Ay + T sin θ − P)̂ = ⇀

0 (4.5)

[eqn. (4.5)] · ı̂ ⇒ Ax = T cos θ = (100 lbf) · 4

5
= 80 lbf

[eqn. (4.5)] · ̂ ⇒ Ay = P − T sin θ = 0

where the last equation, Ay = P − T sin θ = 0 follows from eqn. (4.4). Thus,
the force in the rod is

⇀

A = 80 lbfı̂, i.e., a purely compressive force, and the
tension in the string is 100 lbf.

⇀

A = 80 lbfı̂, T = 100 lbf

P

Ax F

T

θ

Figure 4.12: (Filename:sfig4.single.bar.b)

(b) From the free body diagram of the rod, we realize that the rod is a two-force
body, since the forces act at only two points of the body, A and C. The reaction
force at A is a single force

⇀

A, and the forces at end C, the tension
⇀
T and the

load
⇀
P , sum up to a single net force, say

⇀
F . So, now using the fact that the rod

is a two-force body, the equilibrium equation requires that
⇀
F and

⇀

A be equal,
opposite, and colinear (along the longitudinal axis of the bar). Thus,

⇀

A = − ⇀
F = −F ı̂.

Now,

⇀
F = ⇀

P + ⇀
T

−F ı̂ = −P ̂ + T sin θ ̂ − T cos θ ı̂ (4.6)

[eqn. (4.6)] · ̂ ⇒ P = T sin θ

⇒ T = P

sin θ
= 60 lbf

3
5

= 100 lbf

[eqn. (4.6)] · ı̂ ⇒ F = T cos θ = (100 lbf) · 4

5
= 80 lbf.

The answers, of course, are the same.
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SAMPLE 4.4 Will the ladder slip? A ladder of length � = 4 m rests against a wall at

B

C

ladder

no friction

frictionW

A

d

Figure 4.13: (Filename:sfig4.single.ladder)

θ = 60o. Assume that there is no friction between the ladder and the vertical wall but
there is friction between the ground and the ladder with µ = 0.5. A person weighing
700 N starts to climb up the ladder.

(a) Can the person make it to the top safely (without the ladder slipping)? If not,
then find the distance d along the ladder that the person can climb safely. Ignore
the weight of the ladder in comparison to the weight of the person.

(b) Does the “no slip” distance d depend on θ? If yes, then find the angle θ which
makes it safe for the person to reach the top.

Solution

B

D

C

W

F

A

θ

�

ı̂

̂

Figure 4.14: The free body diagram of
the ladder indicates that it is a three force
body. Since the direction of the forces act-
ing at points B and C are known (the nor-
mal, horizontal reaction at B and the vertical
gravity force at C), it is easy to find the di-
rection of the net ground reaction at A —
it must pass through point D. The ground
reaction F at A can be decomposed into a
normal reaction and a horizontal reaction
(the force of friction, Fs ) at A.

(Filename:sfig4.single.ladder.a)

(a) The free body diagram of the ladder is shown in Fig. 4.14. There is only a
normal reaction

⇀
R= Rı̂ at A since there is no friction between the wall and the

ladder. The force of friction at B is
⇀
Fs = −Fs ı̂ where Fs ≤ µN . To determine

how far the person can climb the ladder without the ladder slipping, we take
the critical case of impending slip. In this case, Fs = µN . Let the person be
at point C, a distance d along the ladder from point B.
From moment balance about point B,

∑ ⇀
MB = ⇀

0, we find

⇀
rA/B × ⇀

R + ⇀
rC/B × ⇀

W = ⇀

0

−R� sin θ k̂ + W d cos θ k̂ = ⇀

0

⇒ R = W
d cos θ

� sin θ

From force equilibrium, we get

(R − µN )ı̂ + (N − W )̂ = ⇀

0 (4.7)

Dotting eqn. (4.7) with ̂ and ı̂, respectively, we get

N = W

R = µN = µW

Substituting this value of R in eqn. (4.7) we get

µW = W
d cos θ

� sin θ
⇒ d = µ� tan θ (4.8)

= 0.5 · (4 m) · tan 60o (4.9)

= 3.46 m

Thus, the person cannot make it to the top safely.

d = 3.46 m

(b) The “no slip” distance d depends on the angle θ via the relationship in eqn. (4.8).
The person can climb the ladder safely up to the top (i.e., d = �), if

tan θ = 1

µ
⇒ θ = tan−1(µ−1) = 63.43o

Thus, any angle θ ≥ 64o will allow the person to climb up to the top safely.

θ ≥ 64o
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SAMPLE 4.5 How much friction does the ball need? A ball of mass m sits between

r

m

A

B

frictionless

friction

θ

Figure 4.15: (Filename:sfig4.single.ball)

an incline and a vertical wall as shown in the figure. There is no friction between
the wall and the ball but there is friction between the incline and the ball. Take the
coefficient of friction to be µ and the angle of incline with the horizontal to be θ .
Find the force of friction on the ball from the incline.

Solution The free body diagram of the ball is shown in Fig. 4.16. Note that the

R

N

mg
Fs

A

B
C

θ

θ

λ̂n̂

ı̂

̂

Figure 4.16: (Filename:sfig4.single.ball.a)

normal reaction of the vertical wall, N , the force of gravity, mg, and the normal
reaction of the incline, R, all pass through the center C of the ball. Therefore, the
moment balance about point C,

∑ ⇀
MC = ⇀

0, gives

⇀
rA/C × Fs λ̂ = ⇀

0

⇒ Fs = 0

Thus the force of friction on the ball is zero! Note that Fs is independent of θ ,
the angle of incline. Thus, irrespective of what the angle of incline is, in the static
equilibrium condition, there is no force of friction on the ball.

Fs = 0
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SAMPLE 4.6 Can you balance this? A spool of mass m = 2 kg rests on an incline

θ
T

R

r

m

Figure 4.17: (Filename:sfig4.single.spool)

as shown in the figure. The inner radius of the spool is r = 200 mm and the outer
radius is R = 500 mm. The coefficient of friction between the spool and the incline
is µ = 0.4, and the angle of incline θ = 60o.

(a) Which way does the force of friction act, up or down the incline?
(b) What is the required horizontal pull T to balance the spool on the incline?
(c) Is the spool about to slip?

Solution

mg

C

A

A

N
F

fs

B

F

T

θ

θ

ı̂

̂

λ̂n̂

Figure 4.18: (Filename:sfig4.single.spool.a)

(a) The free body diagram of the spool is shown in Fig. 4.18. Note that the spool
is a 3-force body. Therefore, in static equilibrium all the three forces — the
force of gravity mg, the horizontal pull T , and the incline reaction F — must
intersect at a point. Since T and mg intersect at the top of the inner drum
(point B), the incline reaction force

⇀
F must be along the direction AB. Now

the incline reaction
⇀
F is the vector sum of two forces — the normal (to the

incline) reaction N and the friction force Fs (along the incline). The normal
reaction force N passes though the center C of the spool. Therefore, the force
of friction Fs must point up along the incline to make the resultant

⇀
F point

along AB.
(b) From the moment equilibrium about point A,

∑ ⇀
MA = ⇀

0, we get

⇀
rC/A × (−mg̂) + ⇀

rB/A × (T ı̂) = ⇀

0

Substituting the cross products

⇀
rC/A × (−mg̂) = mgR sin θ k̂ and ⇀

rB/A × (T ı̂) = −T (R cos θ + r)k̂

and dotting the entire equation with k̂, we get

mgR sin θ = T (R cos θ + r)

⇒ T = mg
sin θ

cos θ + r/R

= 2 kg · 9.81 m/s2 ·
√

3
2

1
2 + .2 m

.5 m

= 18.88 N

T = 18.88 N
(c) To find if the spool is about to slip, we need to find the force of friction Fs and

see if Fs = µN . The force balance on the spool,
∑ ⇀

F = ⇀

0 gives

T ı̂ − mg̂ + Fs λ̂+ N n̂ = ⇀

0 (4.10)

where λ̂ and n̂ are unit vectors along the incline and normal to the incline,
respectively. Dotting eqn. (4.10) with λ̂ we get

Fs = −T ( ı̂ · λ̂︸︷︷︸
cos θ

) + mg(̂ · λ̂︸︷︷︸
sin θ

) = −T cos θ + mg sin θ

= −18.88 N(1/2) + 19.62 N(
√

3/2) = 7.55 N

Similarly, we compute the normal force N by dotting eqn. (4.10) with n̂:

N = −T (ı̂ · n̂) + mg(̂ · n̂) = T sin θ + mg cos θ

= 18.88 N(
√

3/2) + 19.62 N(1/2) = 26.16 N

Now we find that µN = 0.4(26.16 N) = 10.46 N which is greater than Fs =
7.55 N. Thus Fs < µN , and therefore, the spool is not in the condition of
impending slip.
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4.2 Elementary truss analysis a)

b)

c)

d)

Figure 4.19: a) Two pencils strapped to-
gether with a rubber band are not sturdy. b)
A triangle made of pencils feels sturdy. c)
A square made of 4 pencils easily distorts
into a parallelogram. d) A structure made
of two triangles feels sturdy (if held on a
table).

(Filename:tfigure.pencil)

Join two pencils (or pens, chopsticks, or popsicle sticks) tightly together with a rubber
band as in fig. 4.19a. You can feel that the pencils rotate relative to each other relatively
easily. But it is hard to slide one against the other. Add a third pencil to complete the
triangle (fig. 4.19b). The relative rotation of the first two pencils is now almost totally
prohibited. Now tightly strap four pencils (or whatever) into a square with rubber
bands as in fig. 4.19c, making 4 rubber band joints at the corners. Put the square down
on a table. The pencils don’t stretch or bend visibly, nor do they slide much along
each-other’s lengths, but the connections allow the pencils to rotate relative to each
other so the square easily distorts into a parallelogram. Because a triangle is fully
determined by the lengths of its sides and a quadrilateral is not, the triangle is much
harder to distort than the square. A triangle is sturdy even without restraint against
rotation at the joints and a square is not.

Now add two more pencils to your triangle to make two triangles (fig. 4.19d).
So long as you keep this structure flat on the table, it is also sturdy. You have just
observed the essential inspiration of a truss: triangles make sturdy structures.

A different way to imagine discovering a truss is by means of swiss cheese.
Imagine your first initial design for a bridge is to make it from one huge piece of solid
steel. This would be heavy and expensive. So you could cut holes out of the chunk
here and there, greatly diminishing the weight and amount of material used, but not
much reducing the strength. Between these holes you would see other heavy regions
of metal from which you might cut more holes leading to a more savings of weight
at not much cost in strength. In fact, the reduced weight in the middle decreases the
load on the outer parts of the structure possibly making the whole structure stronger.
Eventually you would find yourself with a structure that looks much like a collection
of bars attached from end to end in vaguely triangular patterns. As opposed to a solid
block, a truss

• Uses less material;
• Puts less gravity load on other parts of the structure;
• Leaves space for other things of interest (e.g., cars, cables, wires, people).
Real trusses are usually not made by removing material from a solid but by

joining bars of steel, wood, or bamboo with welds, bolts, rivets, nails, screws, glue,
or lashings. Now that you are aware you will probably notice trusses in bridges,
radio towers, and large-scale construction equipment. Early airplanes were flying
trusses. 1©Trusses have been used as scaffoldings for millennia. Birds have had bones 1© The Wright brothers first planes were

near copies of the planes built a few years
earlier by Octave Chanute, a retired bridge
designer. With regard to structural design,
these early biplanes were essentially flying
bridges. Take away the outer skin from
many small modern planes and you will also
find trusses.

whose internal structure is truss-like since they were dinosaurs. Trusses are worth
study on their own, since they are a practical way to design sturdy light structures.
But trusses also are useful

• As a first example of a complex mechanical system that a student can analyze;
• As an example showing the issues involved in structural analysis;
• As an intuition builder for understanding structures that are not really trusses

(The engineering mind often sees an underlying conceptual truss where no
physical truss is externally visible).

What is a truss?

A truss is a structure made from connecting long narrow elements at their
ends.

The sturdiness of most trusses comes from the inextensibility of the bars, not the
resistance to rotation at the joints. To make the analysis simpler the (generally small)
resistance to rotation in the joints is totally neglected in truss analysis. Thus
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An ideal truss is an assembly of two force members.

Or, if you like, an ideal truss is a collection of bars connected at their ends with
frictionless pins. Loads are only applied at the pins. In engineering analysis, the
word ‘truss’ refers to an ideal truss even though the object of interest might have, say,
welded joint connections. Had we assumed the presence of welding equipment in
your room, the opening paragraph of this section would have described the welding
of metal bars instead of the attachment of pencils with rubber bands. Even welded,
you would have found that a triangle is more rigid than a square.

Bars, joints, loads, and supports

A

BD

E G
C

a)

b)

c)

load, F

C

F

TCA

TAB

TAB

TCB

TCG
TCF

TCD

support

joints

support

bars

bar AB

Figure 4.20: a) a truss, b) each bar is a
two-force body, c) A joint is acted on by bar
tensions and from applied loads.

(Filename:tfigure.trussdef)

An ideal truss is a collection of bars connected at frictionless joints at which are
applied loads as shown in fig. 4.20a (the load at a joint can be

⇀

0 and thus not show
on either the sketch of the truss or the free body diagram of the truss). Each bar
is a two-force body so has a free body diagram like that shown in fig. 4.20b, with
the same tension force pulling away from each end. A joint can be cut free with a
conceptual chain saw, fooling each bar stub with the bar tension, as in the free body
diagram 4.20c. A truss is held in place with supports which are idealized in 2D as
either being fixed pins (as for joint E in fig. 4.20a) or as a pin on a roller (as for joint
G in fig. 4.20a). The forces of the outside world on the truss at the supports are called
the reaction forces.

The bar tensions can be negative. A bar with a tension of, say, T = −5000 N is
said to be in compression.

Elementary truss analysis
In elementary truss analysis you are given a truss design to which given loads are
applied. Your goal is to ‘solve the truss’ which means you are to find the reaction
forces and the tensions in the bars (sometimes called the ‘bar forces’). As an engineer,
this allows you to determine the needed strengths for the bars.

The elementary truss analysis you are about to learn is straightforward and fun.
You will learn it without difficulty. However, the analysis of trusses at a more advanced
level is mysteriously deep and has occupied great minds from the mid-nineteenth
century (e.g., Maxwell and Cauchy) to the present.

The method of free body diagrams
Trusses are always analyzed by the method of free body diagrams. Free body diagrams
are drawn of the whole truss and of various parts of the truss, the equilibrium equations
are applied to each free body diagram, and the resulting equations are solved for the
unknown bar forces and reactions.

The method of free body diagrams is sometimes subdivided into two sub-methods.

• In the method of joints you draw free body diagrams of every joint and apply
the force balance equations to each free body diagram. The method of joints
is systematic and complete; if a truss can be solved, it can be solved with the
method of joints.
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• In the method of sections you draw a free body diagrams of one or more sections
of the structure each of which includes 2 or more joints and apply force and
moment balance to the section. The method of sections is powerful tool but
is generally not applied systematically. Rather, the method of sections is a
mostly used for determining 1-3 bar forces in trusses that have a simple aspect
to them. The method of sections can add to your intuitive understanding of
how a structure carries a load.

For either of these methods, it is often useful to first draw a free body diagram of the
whole structure and use the equilibrium equations to determine what you can about
the reaction forces.

Consider this planar approximation to the arm of a derrick used in construction
where F and d are known (see fig.4.21). This truss has joints A-S (skipping ‘F’ to
avoid confusion with the load). As is common in truss analysis, we totally neglect the
force of gravity on the truss elements 1©. From the free body diagram of the whole 1© To include the force of gravity on the

truss elements replace the single gravity
force at the center of each bar with a pair
of equivalent forces at the ends. The grav-
ity loads then all apply at the joints and the
truss can still be analyzed as a collection of
two-force members.
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Figure 4.21: A truss. (Filename:tfigure.derrick)

structure we find that{∑ ⇀
Fi = ⇀

0
} · ̂ ⇒ FRy = F{∑ ⇀

MS = ⇀

0
} · k̂ ⇒ FRx = 9F{∑ ⇀

MR = ⇀

0
} · k̂ ⇒ FSx = −8F.

The method of joints
The sure-fire approach to solve a truss is the brute force method of joints. For the truss
above you draw 18 free body diagrams, one for each joint. For each joint free body
diagram you write the force balance equations, each of which can be broken down
into 2 scalar equations. You then solve these 36 equations for the 33 unknown bar
tensions and the 3 reactions (which we found already, but need not have). In general
solving 36 simultaneous equations is really only feasible with a computer, which is
one way to go about things.

For simple triangulated structures, like the one in fig. 4.21, you can find a sequence
of joints for which there are at most two unknown bar forces at each joint. So hand
solution of the joint force balance equations is actually feasible. For this truss we
could start at joint B (see fig. 4.22) where force balance tells us at a glance that

BTDB

TAB

Figure 4.22: Free body diagram of joint
B.

(Filename:tfigure.derrickB)
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TAB = 0 and TDB = 0.

Just by looking at the joint and thinking about the free body diagram you could
probably pick out these zero force members. Now you can draw a free body diagram
of joint A where there are only two unknown tensions (since we just found TAB),
namely TAD and TAC. Force balance will give two scalar equations which you can
solve to find these. Now you can move on to joint C. Here, without drawing the free
body diagram on paper, you might see that bar CD is also a zero force member (its
the only thing pulling up on joint C and the net up force has to be zero). In any case
force balance for joint C will tell you TCD and TCE. You can then work your way
through the alphabet of joints and find all the bar tensions, using the bar tensions you
have already found as you go on to new joints.

Zero force members

0

Figure 4.23: A zero force member is
sometimes indicated by writing a zero on
top of the bar.

(Filename:tfigure.zeroforce)

The unnecessary but useful trick of recognizing zero-force members, like we just did
for bars AB,BD and CD in the truss of fig. 4.21, can be systematized. The basic idea
is this: if there is any direction for which only one bar contributes a force, that bar
tension must be zero. In particular:

F

0
0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 4.24: A tower with many zero
force members. Although they carry no
load they prevent structural collapse.

(Filename:tfigure.zeroforcetower)

• At any joint where there are no loads, where there are only two unknown non-
parallel bar forces, and where all known bar-tensions are zero, the two new bar
tensions are both zero (joint B in the example above).

• At any joint where all bars but one are in the same direction as the applied load
(if any), the one bar is a zero-force member (see joints C, G, H, K, L, O, and P
in the example above).

In the truss of fig. 4.21 bars AB, BD, CD, EG, IH, JK, ML, NO, and PQ are all zero
force members. Sometimes it is useful to keep track of the zero force members by
marking them with a zero (see fig. 4.23). Although zero-force members seem to do
nothing, they are generally needed. For this or that reason there are small loads,
imperfections, or load induced asymmetries in a structure that give the ‘zero-force’
bars a small job to do, a job not noticed by the equilibrium equations in elementary
truss analysis, but one that can prevent total structural collapse. Imagine, for example,
the tower of fig. 4.24 if all of the zero-force members were removed.

The method of sections
Say you are interested in the truss of fig. 4.21, but only in the tension of bar KM. You
already know how to find TKM using the brute-force method of joints or by working
through the joints one at time. The method of sections provides a shortcut.

You look for a way to isolate a section of the structure using a section cut that cuts
the bar of interest and at most two other bars as in free body diagram 4.25. For the
method of sections to bear easy fruit, the truss must be simple in that it has a place
where it can be divided with only three bar cuts.

Because 2D statics of finite bodies gives three scalar equations we can find all
three unknown tensions. In particular:

KM TKM

TJM

TJL J

F
F

4d

d

ı̂

̂

Figure 4.25: Free body diagram of a ‘sec-
tion’ of the structure.

(Filename:tfigure.derricksection)

{∑ ⇀
MJ = ⇀

0
} · k̂ ⇒ TKM = 4 F.

Using this same section cut we can also find:{∑ ⇀
MM = ⇀

0
} · k̂ ⇒ TJL = −5 F, and{∑ ⇀

Fi = ⇀

0
} · ̂ ⇒ FJM = √

2 F.
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A traditional part of the shortcut in the method of sections is to avoid the solution of
even two or three simultaneous equations by judicious choice of equilibrium equations
following this general rule.

Use equilibrium equations that don’t contain terms that you don’t know and
don’t care about.

The two common implementations of this rule are:

Figure 4.26: Many bridges are essen-
tially trusses. Here’s one that is partially
obscured by the truss on a car bridge.

(Filename:tfigure.truss)

• Use moment balance about points where the lines of action of two unknown
forces meet. In the free body diagram of fig. 4.25 moment balance about point
J eliminates TJM and TJL and gives one equation for TKM.

• Use force balance perpendicular to the direction of a pair of parallel unknown
forces. In the free body diagram of fig. 4.25 force balance in the ̂ direction
eliminates TKM and TJL and gives one equation for TJM.

In the method of joints, as you worked your way along the structure fig. 4.21
from right to left you would have found the tensions getting bigger and bigger on the
top bars and the compressions (negative tensions) getting bigger and bigger on the
bottom bars. With the method of sections you can see that this comes from the lever
arm of the load F being bigger and bigger for longer and longer sections of truss.
The moment caused by the vertical load F is carried by the tension in the top bars
and compression in the bottom bars.

Why aren’t trusses everywhere?
Trusses can carry big loads with little use of material and can look nice (See fig. 4.27).,
so why don’t engineers use them for all structural designs? Here are some reasons to
consider other designs:

• Trusses are relatively difficult to build and thus possibly expensive.
• They are sensitive to damage when loads are not applied at the anticipated

joints. They are especially sensitive to loads on the middle of the bars.
• Trusses inevitably depend on the tension strength in some bars. Some common

building materials (e.g., concrete, stone, and clay) crack easily when pulled.
• Trusses usually have little or no redundancy, so failure in one part can lead to

total structural failure.
• The triangulation that trusses require can use space that is needed for other

purposes (e.g., doorways or rooms)
• Trusses tend to be stiff, and sometimes more flexibility is desirable (e.g., diving

boards, car suspensions).
• In some places some people consider trusses unaesthetic.

Figure 4.27: Sometimes trusses are used
only because they look nice. The tensegrity
structure ‘Needle Tower’ was designed by
artist Kenneth Snelson and is on display in
the Hirshhorn Museum in Washington, DC.
Here you are looking straight up the middle.
Photograph by Christopher Rywalt.

(Filename:tfigure.Needle)

None-the-less, for situations where you want a stiff, light structure that can carry
known loads at pre-defined points, a truss is often a great design choice.

Summary
Using free body diagrams of the whole structure, sections of the structure, or the joints,
you can find the tensions in the bars and the reaction forces for some elementary
trusses. There are trusses that do not yield to this analysis, however, which are
discussed in the next section.
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SAMPLE 4.7 A 2-D truss: The box truss shown in the figure is loaded by three

A

20 kN 50 kN 20 kN

B E

�

� � � �

� � � �

��
� �

CD

FO

Figure 4.28: (Filename:sfig4.truss.simple)

vertical forces acting at joints A, B, and E. All horizontal and vertical bars in the truss
are of length 2 m. Find the forces in members AB, AC, and DC.

Solution First, we need to find the support reactions at points O and F. We do this
by drawing the free body diagram of the whole truss and writing the equilibrium
equations for it. Referring to Fig. 4.29, the force equilibrium,

∑ ⇀
F = ⇀

0 implies,

ı̂

̂

Ox

Oy FyP1 P2 P3

� � � �

Figure 4.29: (Filename:sfig4.truss.simple.a)

Ox ı̂ + (Oy + Fy − P1 − P2 − P3)̂ = ⇀

0 (4.11)

Dotting eqn. (4.11) with ı̂ and ̂ , respectively, we get

Ox = 0

Oy + Fy = P1 + P2 + P3 (4.12)

The moment equilibrium about point O,
⇀
MO = ⇀

0, gives

(−P1� − P2 2� − P3 3� + Fy 4�)k̂ = ⇀

0 (4.13)

or Fy = 1

4
(P1 + 2P2 + 3P3) (4.14)

Solving eqns. (4.12) and (4.14), we get

Fy = 45 kN, and Oy = 45k N .

In fact, from the symmetry of the structure and the loads, we could have guessed
that the two vertical reactions must be equal, i.e., Oy = Fy . Then, from eqn. (4.12)
it follows that Oy = Fy = (P1 + P2 + P3)/2 = 45 kN.

A B

CD

O

cut

A

D

O

Oy

FAB

FAC

P1

FDC

θ

Figure 4.30: (Filename:sfig4.truss.simple.b)

Now, we proceed to find the forces in the members AB, AC, and DC. For this
purpose, we make a cut in the truss such that it cuts members AD, AC, and DC,
just to the right of joints A and D. Next, we draw the free body diagram of the left
(or right) portion of the truss and use the equilibrium equations to find the required
forces. Referring to Fig. 4.30, the force equilibrium requires that

(FAB + FDC + FAC cos θ)ı̂ + (Oy − P1 + FAC sin θ)̂ = ⇀

0 (4.15)

Dotting eqn. (4.15) with ı̂ and ̂ , respectively, we get

FAB + FDC + FAC cos θ = 0 (4.16)

Oy − P1 + FAC sin θ = 0 (4.17)

So far, we have two equations in three unknowns ( FAB, FDC , FAC ). We need
one more independent equation to be able to solve for the unknown forces. We now
write moment equilibrium equation about point A, i.e.,

∑ ⇀
MA = ⇀

0,

(−Oy� − FDC�)k̂ = ⇀

0

⇒ Oy + FDC = 0. (4.18)

We can now solve eqns. (4.16–4.18) any way we like, e.g., using elimination or a
computer. The solution we get (see next page for details) is:

FAC = −25
√

2 kN, FDC = −45 kN, and FAB = 70 kN.

FAC = −25
√

2 kN, FDC = −45 kN, FAB = 70 kN.
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Comments:

• Note that the values of FAC and FDC are negative which means that bars AC
and DC are in compression, not tension, as we initially assumed. Thus the
solution takes care of our incorrect assumptions about the directionality of the
forces.

• Short-cuts: In the solution above, we have not used any tricks or any special
points for moment equilibrium. However, with just a little bit of mechanics
intuition we can solve for the required forces in five short steps as shown below.

(i) No external force in ı̂ direction implies Ox = 0.
(ii) Symmetry about the middle point B implies Oy = Fy . But,

Oy + Fy =
∑

Pi = 90 kN ⇒ Oy = Fy = 45 kN.

(iii) (
∑ ⇀

MA = ⇀

0) · k̂ gives

Oy� + FDC� = 0 ⇒ FDC = −Oy = −45 kN.

(iv) (
∑ ⇀

MC = ⇀

0) · k̂ gives

−Oy 2� + P1� + FAB� = 0 ⇒ FAB = 2Oy − P1 = 70 kN.

(v) (
∑ ⇀

F = ⇀

0) · ̂ gives

Oy−P1+FAC sin θ = 0 ⇒ FAC = (P1−Oy)/ sin θ = −25
√

2 kN.

• Solving equations: On the previous page, we found FAB, FDC , and FAC by
solving eqns. (4.15–4.17) simultaneously. Here, we show you two ways to
solve those equations.

(a) By elimination: From eqn. (4.17), we have

FAC = Oy − P1

sin θ
= 20 kN − 45 kN

1/
√

2
= −25

√
2 kN.

From eqn. (4.18), we get

FDC = −Oy = −45 kN,

and finally, substituting the values found in eqn. (4.15), we get

FAB = −FDC − FAC cos θ = 45 kN + 25
√

2 · 1√
2

= 70 kN.

(b) On a computer: We can write the three equations in the matrix form:
 1 1 cos θ

0 0 sin θ

0 1 0




︸ ︷︷ ︸
A




FAB
FDC
FAC


︸ ︷︷ ︸

x

=



0
P1 − Oy

−Oy


 =




0
−25
−45


︸ ︷︷ ︸

b

kN

We can now solve this matrix equation on a computer by keying in matrix
A (with θ specified as π/4) and vector b as input and solving for x. 1©

1© Pseudocode:
A = [1 1 cos(pi/4)

0 0 sin(pi/4)
0 1 0]

b = [0 -25 -45]
solve A*x = b for x
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SAMPLE 4.8 The truss shown in the figure has four horizontal bays, each of length
1 m

20 kN

20o

40 kN

1 m 1 m 1 m

Figure 4.31: (Filename:sfig4.truss.comp)

1 m. The top bars make 20o angle with the horizontal. The truss carries two loads of
40 kN and 20 kN as shown. Find the forces in each bar. In particular, find the bars
that carry the maximum tensile and compressive forces.

Solution Since we need to find the forces in all the 15 bars, we need to find
enough equations to solve for these 15 forces in addition to 3 unknown reactions
Ax , Ay, and Ix . Thus we have a total of 18 unknowns. Note that there are 9 joints
and therefore, we can generate 18 scalar equations by writing force equilibrium equa-
tions (one vector equation per joint) for each joint.

Number of unknowns 15 + 3 = 18
Number of joints 9
Number of equations 9 × 2 = 18

So, we go joint by joint, draw the free body diagram of each joint and write the equi-
librium equations. After we get all the equations, we can solve them on a computer.
All joint equations are just force equilibrium equations, i.e.,

∑ ⇀
F = ⇀

0.
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Figure 4.32: (Filename:sfig4.truss.comp.a)

• Joint A:

(Ax + T1 + T10 cos α1)ı̂ + (Ay + T11 + T10 sin α1)̂ = ⇀

0 (4.19)

• Joint B:

(−T1 + T2 + T8 cos α2)ı̂ + (T9 + T8 sin α2)̂ = ⇀

0 (4.20)

• Joint C:

(−T2 + T3 + T6 cos α3)ı̂ + (T7 + T6 sin α3)̂ = P ̂ (4.21)

• Joint D:

(T4 − T3)ı̂ + T5̂ = ⇀

0 (4.22)

• Joint E:

(−T4 − T15 cos θ)ı̂ + T15 sin θ ̂ = 2P ̂ (4.23)

• Joint F:

(−T6 cos α3 +(T15 −T14) cos θ)ı̂+(−T6 sin α3 +(T14 −T15) sin θ −T5)̂ = ⇀

0
(4.24)

• Joint G:

(−T8 cos α2 + (T14 − T13) cos θ)ı̂ + ((T13 − T14) sin θ − T8 sin α2 − T7)̂ = ⇀

0
(4.25)

• Joint H:

(−T10 cos α1 +(T13 −T12) cos θ)ı̂+((T12 −T13) sin θ −T10 sin α1 −T9)̂ = ⇀

0
(4.26)

• Joint I:

(−Ix + T12 cos θ)ı̂ + (−T11 − T12 sin θ)̂ = ⇀

0 (4.27)

Dotting each equation from (4.19) to (4.27) with ı̂ and ̂ , we get the required
18 equations. We need to define all the angles that appear in these equations
(α1, α2, α3, and θ ) before we are ready to solve the equations on a computer.
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Let � be the length of each horizontal bar and let DF = h1, CG = h2, and BH = h3.
Then, h1/� = h2/2� = h3/3� = tan θ . Therefore,

tan α1 = h1

�
= tan θ ⇒ α1 = tan−1(tan θ) = θ

tan α2 = h2

�
= 2 tan θ ⇒ α2 = tan−1(2 tan θ)

tan α3 = h3

�
= 3 tan θ ⇒ α3 = tan−1(3 tan θ)

Now, we are ready for a computer solution. You can enter the 18 equations in matrix
form or as your favorite software package requires and get the solution by solving for
the unknowns. Here are two examples of pseudocodes. Let us order the unknown
forces in the form

x = [T1 T2 . . . T15 Ax Ay Ix ]T

so that x1–x15 = T1–T15, x16 = Ax , x17 = Ay , and x18 = Ix

(a) Entering full matrix equation:

theta = pi/9 % specify theta in radians
alpha1 = theta % calculate alpha1
alpha2 = atan(2*tan(theta)) % calculate alpha2 from arctan
alpha3 = atan(3*tan(theta) % calculate alpha3 from arctan

C = cos(theta), S = sin(theta) % compute all sines and cosines
C1 = cos(alpha1), S1 = sin(alpha1)
C2 = .. ..

A = [1 0 0 0 0 0 0 0 0 C1 0 0 0 0 0 1 0 0 % enter matrix A row-wise
0 0 0 0 0 0 0 0 0 S1 1 0 0 0 0 0 1 0
.
.
0 0 0 0 0 0 0 0 0 0 -1 -S 0 0 0 0 0 0]

b = [0 0 0 0 0 20 0 0 0 40 0 0 0 0 0 0 0 0]’ % enter column vector b
solve A*x = b for x

(b) Entering each equation as part of matrix A and vector b:

A(1,[1 10 16]) = [1 C1 1]
A(2,[10 11 17]) = [S1 1 1]
.
.
A(18,[11 12]) = [-1 -S]
b(6,1) = 20
b(10,1) = 40
form A and b setting all other entries to zero
solve A*x = b for x

The solution obtained from the computer is

T1 = −128.22 kN, T2 = T3 = T4 = −109.9 kN, T5 = T6 = 0,

T7 = 20 kN, T8 = −22.66 kN, T9 = −T10 = 13.33 kN, T11 = −50 kN,

T12 = 146.19 kN, T13 = 136.44 kN, T14 = T15 = 116.95 kN,

Ax = 137.37 kN, Ay = 60 kN, Ix = −137.37 kN.
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4.3 Advanced truss analysis: determi-

nacy, rigidity, and redundancy
After you have mastered the elementary truss analysis of the previous section, namely
the method of free body diagrams in its two incarnations (the method of joints and
the method of sections) you might wonder if at least one of these methods always
work. The answer is yes, if you just look at the homework problems for elementary
truss analysis, but ‘no’ if you look at the variety of real (good and bad) structures in
the world. In this section we discuss the classification of trusses into types. In the
previous section all of the examples were from one of these types.

Determinate, rigid, and redundant trusses

F(a)
A

C

B

D

(b)
A

C

B

D

j=4,  b=5,  r=3 j=4,  b=4,  r=3

(c) (d)

j=4,  b=6,  r=3

j=6,  b=9,  r=3

Figure 4.33: a) a statically determinate
truss, b) a non-rigid truss, c) a redundant
truss, and d) a non-rigid and redundant
truss.

(Filename:tfigure.4cases)

Your first concern when studying trusses is to develop the ability to solve a truss
using free body diagrams and equilibrium equations. A truss that yields a solution,
and only one solution, to such an analysis for all possible loadings is called statically
determinate or just determinate. The braced box supported with one pin joint and
one pin on rollers (see fig. 4.33a) is a classic statically determinate truss. A statically
determinate truss is rigid and does not have redundant bars.

You should beware, however, that there are a few other possibilities.
Some trusses are non-rigid, like the one shown in fig. 4.33b, and can not carry

arbitrary loads at the joints.

BA TABTAB F

TBDTAC

Figure 4.34: Free body diagrams of joints
A and B from 4.33b

(Filename:tfigure.squarejoints)

Example: Joint equations and non-rigid structures

Free body diagrams of joints A and B of fig. 4.33b are shown in fig. 4.34.

jointB :
{∑ ⇀

Fi = ⇀

0
} · ı̂ ⇒ TAB = F

jointA :
{∑ ⇀

Fi = ⇀

0
} · ı̂ ⇒ TAB = 0

The contradiction that TAB is both F and 0 implies that the equations of
statics have no solution for a horizontal load at joint B. ✷

A non-rigid truss can carry some loads, and you can find the bar tensions using the
joint equilibrium equations when these loads are applied. For example, the structure
of fig. 4.33b can carry a vertical load at joint B. Engineers sometimes choose to design
trusses that are not rigid, the simplest example being a single piece of cable hanging
a weight. A more elaborate example is a suspension bridge which, when analyzed as
a truss, is not rigid.

A redundant truss has more bars than needed for rigidity. As you can tell from
inspection or analysis, the braced square of fig. 4.33a is rigid. None the less engineers
will often choose to add extra redundant bracing as in fig. 4.33c for a variety of reasons.

• Redundancy is a safety feature. If one member brakes the whole structure holds
up.

• Redundancy can increase a structure’s strength.
• Redundancy can allow tensile bracing. In the structure of Fig. 4.33a top load

to the left puts bar BC in compression. Thus bar BC can’t be, say, a cable.
But in structure fig. 4.33c both diagonals can be cables and neither need carry
compression for any load 1©.

1© As a curiosity notice that you could make
the diagonals in fig. 4.33c both sticks and
all of the outside square from cables and the
truss would still carry all loads. This is the
simplest ‘tensegrity’ structure. In a tenseg-
rity structure no more than one bar in com-
pression is connected to any one joint. (See
fig. 4.27 for a more elegant example.). The
label ‘Tensegrity structure’ was coined by
the truss-pre-occupied designer Buckmin-
ster Fuller. Fuller is also responsible for
re-inventing the “geodesic dome” a type of
structure studied previously by Cauchy.
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A property of redundant structures is that you can find more than one set of bar
forces that satisfy the equilibrium equations. Even when the loads are all zero these
structures can have non-zero locked in forces (sometimes called (‘locked in stress’,
or ‘self stress’). In the structure of fig. 4.33c, for example, if one of the diagonals got
hot and stretched both it and the opposite diagonal would be put in compression while
the outside was in tension. For structures whose parts are likely to expand or contract,
or for which the foundation may shift, this locked in stress can be a contributor to
structural failure. So redundancy is not all good.

Finally, a structure can be both non-rigid and redundant as shown in fig. 4.33d.
This structure can’t carry all loads, but the loads it can carry it can carry with various
locked in bar forces.

More examples of statically determinate, non-rigid, and redundant truss are given
on pages 143 and 144.

Note, one of the basic assumptions in elementary truss analysis which we have
thus far used without comment is that motions and deformations of the structure are
not taken into account when applying the equilibrium equations. If a bar is vertical
in the drawing then it is taken as vertical for all joint equilibrium equations.

Example: Hanging rope

For elementary truss analysis, a hanging rope would be taken as hanging
vertically even if side loads are applied to its end. This obviously ridicu-
lous assumption manifests itself in truss analysis by the discovery that
a hanging rope cannot carry any sideways loads (if it must stay vertical
this is true). ✷

Determining determinacy: counting equations and un-
knowns
How can you tell if a truss is statically determinate? The only sure test is to write all
the joint force balance equations and see if they have a unique solution for all possible
joint loads. Because this is an involved linear algebra calculation (which we skip in
this book), it is nice to have shortcuts, even if not totally reliable. Here are three:

• See, using your intuition, if the structure can deform without any of the bars
changing length. You can see that the structures of fig. 4.33b and d can distort.
If a structure can distort it is not rigid and thus is not statically determinate.

• See, using your intuition, if there are any redundant bars. A redundant bar is
one that prevents a structural deformation that already is prevented. It is easy to
see that the second diagonal in structures of fig. 4.33c and d is clearly redundant
so these structures are not statically determinate.

• Count the total number of joint equations, two for each joint. See if this is
equal to the number of unknown bar forces and reactions. If not, the structure
is not statically determinate.

The counting formula in the third criterion above is:

2 j = b + r (4.28)

where j is the number of joints, including joints at reaction points, b is the number of
bars, and r is the number of reaction components that shows on a free body diagram
of the whole structure (2 from pin joints, 1 from a pin on a roller).
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If 2 j > b + r the structure is necessarily not rigid because then there are more
equations than unknowns 1©. For such a structure there are some loads for which there1© A non-rigid truss is sometimes called

‘over-determinate’ because there are more
equations than unknowns. However, the
term ‘over-determinate’ may incorrectly
conjure up the image of there being too
many bars (which we call redundant) rather
than too many joints. So we avoid use of
this phrase.

is no set of bar forces and reactions that can satisfy the joint equilibrium equations. A
structure that is non-redundant and non-rigid always has 2 j > b + r (see fig. 4.33b).

If 2 j < b + r the structure is redundant because there are not as many equations
as unknowns; if the equations can be solved there is more than one combination of
forces that solve them. A structure that is rigid and redundant always has 2 j < b + r
(see fig. 4.33b).

But the possibility of structures that are both non-rigid and redundant makes the
counting formulas an imperfect way to classify structures 2©. Non-rigid redundant2© In the language of mathematics we

would say that satisfaction of the counting
equation 2 j = b+r is a necessary condition
for static determinacy but it is not sufficient.

structures can have 2 j < b + r , 2 j = b + r , or 2 j > b + r . The redundant non-rigid
structure in fig. 4.33d has 2 j = b + r .

The discussion above can be roughly summarized by this table (refer to fig. 4.33
for a simple example of each entry and to pages 143 and 144 for several more exam-
ples).

Truss Type Rigid Non-rigid

Non-redundant a) 2 j = b + r b) 2 j > b + r
(Statically determinate)

2 j < b + r ,
Redundant c) 2 j < b + r d) 2 j = b + r , or

2 j > b + r

A basic summary is this:

If

– 2 j = b + r and
– you cannot see any ways the structure can distort, and
– you cannot see any redundant bars

then the truss is likely statically determinate. But the only way you can know
for sure is through either a detailed study of the joint equilibrium equations,
or familiarity with similar structures.

On the other hand if

– 2 j > b + r , or
– 2 j < b + r , or
– you can see a way the structure can distort, or
– you can see one or more redundant bars,

then the truss is not statically determinate.

Example: The classic statically determinate structure

A triangulated truss can be drawn as follows:
(a) draw one triangle,
(b) then another by adding two bars to an edge,
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(c) then another by adding two bars to an existent edge
(d) and so on, but never adding a triangle by adding just one bar, and
(e) you hold this structure in place with a pin at one joint and one pin

on roller at another joint

then the structure is statically determinate. Many elementary trusses are
of exactly this type. (Note: if you violate the ‘but’ in rule (d) you can
make a truss that looks ‘triangulated’ but is redundant and therefore not
statically determinate.) ✷

Floating trusses
Sometimes one wants to know if a structure is rigid and non-redundant when it is
floating unconnected to the ground (but still in 2D, say). For example, a triangle is
rigid when floating and a square is not. The truss of fig. 4.35a is rigid as connected
but not when floating (fig. 4.35b). A way to find out if a floating structure is rigid is to

(a) (b)

(c)

Figure 4.35: a) a determinate two bar
truss connected to the ground, b) the same
truss is not rigid when floating, which you
can tell by seeing that c) it is not rigid when
one bar is fixed to the ground.

(Filename:tfigure.rigidonground)

connect one bar of the truss to the ground by connecting one end of the bar with a pin
and the other with a pin on a roller, as in fig. 4.35c. All determinations of rigidity for
the floating truss are the same as for a truss grounded this way. The counting formula
eqn. 4.28, is reduced to

2 j = b + 3

because this minimal way of holding the structure down uses r = 3 reaction force
components.

The principle of superposition for trusses
Say you have solved a truss with a certain load and have also solved it with a different
load. Then if both loads were applied the reactions would be the sums of the previously
found reactions and the bar forces would be the sums of the previously found bar
forces.

This useful fact follows from the linearity of the equilibrium equations 1©. 1© A careful derivation would also show
that the linearity depends on the nature of
the foundation. Linearity holds for pins and
pins on rollers, but not for frictional contact.Example: Superposition and a truss

A

B 100 lbf
a)

A

100 lbf
c)

A

B

200 lbf

B

200 lbfb)

If for the loading (a) you found TAB = 50 lbf and for loading (b) you
found TAB = −140 lbf then for loading (c) TAB = 50 lbf − 140 lbf =
−90 lbf ✷
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4.3 Theory: Rigidity, redundancy, linear algebra and maps

This mathematical aside is only for people who have had a course
in linear algebra. For definiteness this discussion is limited to 2D
trusses, but the ideas also apply to 3D trusses.

For beginners trusses fall into two types, those that are uniquely
solvable (statically determinate) and those that are not. Statically
determinate trusses are rigid and non-redundant. However, a truss
could be non-rigid and non-redundant, rigid and redundant, or non-
rigid and redundant. These four possibilities are shown with a sim-
ple example each in figure 4.33 on page 138, as a simple table on
page 140, and as a big table of examples on pages 143 and 144. The
table below, which we now proceed to discuss in detail, is a more
abstract mathematical representation of this same set of possibilities.

• • •
We can number the bars of the truss followed by the reaction com-

ponents 1, 2, . . . , n, where n = b + r . The bar tensions and support
reaction forces can be put in a vertical list [F1, F2, . . . , Fn]′. The
set of lists of all conceivable tensions and reaction forces we call the
“vector space” V (it is also Rn).

We can also make a list of all possible applied loads. In a 2D
truss there can be a horizontal or vertical load at each joint. So, we
can write a list of m = 2 j numbers to represent the load. If there is
only an applied load at a few joints most of the elements of this load
vector will be zero. The set of all possible loads we call the vector
space W .

If we use the method of joints we can write two scalar equilib-
rium equations for each joint. These are linear algebraic equations.
Thus we can write them in matrix form as:

[A][v] = [w] (4.29)

where [v] is the list of bar tensions and reaction forces, and [w] is
the list of applied loads to the joints. The matrix [A] is determined
by the geometry of the truss. The classification of trusses is really
a statement about the solutions of eqn. 4.29. This classification
follows, in turn, from the properties of the matrix [A].

Another point of view is to think of eqn. 4.29 as a function that
maps one vector space onto another. For any [v] eqn. 4.29 maps
that [v] to some [w]. That is, if one were given all the bar tensions
and reactions one could uniquely determine the applied loads from
eqn. 4.29. This map, from V to W we call T .

• • •
We can now discuss each of the truss categorizations in turn, with

reference to the table at the end of this box.

The first column of the table corresponds to rigid trusses. These
trusses have at least one set of bar forces that can equilibrate any
particular load. This means that for every [w] there is some [v] that
maps to (whose image is) [w]. In these cases the map T is onto.
And the columns space of [A] is W . Thus [A] needs to have at least
as many columns as the dimension of W which is the number of
rows of [A].

On the other hand if the structure is not rigid there are some
loads that cannot be equilibrated by any bar forces. This is the

second column of the table. There is at least some [w] with no pre-
image [v]. Thus the map T is not onto and the column space of [A]
is less than all of W .

The first row of the table describes trusses which are not-
redundant. Thus, any loads which can be equilibrated can be equi-
librated with a unique set of bar tensions and reactions. Thus the
columns of [A] are linearly independent and the map T is one to
one. The matrix [A] must have at least as many rows as columns.

If a truss is redundant, as in the second row of the table, then
there are various ways to equilibrate loads which can be carried.
Points in W in the image of one, and the columns of A are linearly
dependent.

• • •
We can now look at the four entries in the table. The top left case

is the statically determinate case where the structure is rigid and
non-redundant. The map T is one to one and onto, V = W , and the
matrix [A] is square and non-singular.

The bottom left case corresponds to a truss that is rigid and
redundant. The map to is onto but not one to one. The columns of
[A] are linearly dependent and it has more columns than rows (it is
wide).

The top right case is not rigid and not redundant. Some
loads cannot be equilibrated and those that can be are equilibrated
uniquely. T is one to one but not onto. The columns of [A] are
linearly independent but they do not span W . The matrix [A] has
more rows than columns and is thus tall.

The bottom right case is the most perverse. The structure is not
rigid but is redundant. Not all loads can be equilibrated but those
that can be equilibrated are equilibrated non-uniquely. The matrix
[A] could have any shape but its columns are linearly dependent and
do not span W . The map T is neither one to one nor onto.

• • •

Not redundant
• T is one to one
• columns of A are 
   linearly 
   independent

A is square and invertible

T is one to one and onto

bar & react.
forces   

bar & react.
forces   

bar & react.
forces   

bar & react.
forces   

Loads

A is tall

T is one to one but not onto

Loads

Redundant
• T is not one to one
• columns of A are 
   linearly dependent

A is wide

T is onto but not one to one

Loads

A can be wide, square, or tall

T is neither one to one nor onto

Loads

Not rigid
• T is not onto

                      • col(A) ≠ W

Rigid
• T is onto

                     • col(A) = W

V

V V

V
W

W W

W
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c) d) 

2D TRUSS
CLASSIFICATION

(page 1)

Rigid
• Not overdeterminate
• loads can be equilibriated with bar forces

Not redundant
• Not indeterminate
• If there are bar forces that 
   can equilibriate the loads 
   they are unique
• No locked in stresses

Statically determinate,
rigid and not redundant,
b + r =2 j,
One and only one set of bar 
forces can equilibriate any given load. j=3, b=3, r=3

j=8, b=8, r=8
j=6, b=9, r=3j=9, b=15, r=3

j=3, b=2, r=4

a)                              b)

e) no
joint

Redundant
• indeterminate
• locked in stress possible 
• solutions not unique 
   if they exist

b + r > 2j,       "too few equations",  rigid and redundant,
Every possible load can be equilibrated
but the bar forces are not unique.

j=2, b=1, r=4

j=7, b=12, r=3

l) n)m)

j=4, b=6, r=3

o)

j=4, b=4, r=5

p)

j=3, b=3, r=4

q)

j=4, b=6, r=3

Figure 4.36: Examples of 2D trusses. These two pages concern the 2-fold system for identifying trusses. Trusses can be rigid or not rigid (the
two columns) and they can be redundant or not redundant (the two rows). Elementary truss analysis is only concerned with rigid and not redundant
trusses (statically determinate trusses). Note that the only difference between trusses (b) and (s) is a change of shape (likewise for the far more subtle
examples (e) and (u)). Truss (e) is interesting as a rare example of a determinate truss with no triangles.

(Filename:tfigure.trussclass1)
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Not rigid and redundant

b + r > 2j b + r = 2j

r)

s)

u)  regular hexagonj=8
b=14
r=3

j=5
b=4
r=7

j=4
b=3
r=4

j=4
b=5
r=3

b + r < 2j

w)

x) z)

j=8
b=12
r=3

v)

y)

j=6
b=9
r=3

t)

j=4
b=3
r=5

j=3, b=2, r=4

j=6, b=9, r=3

b + r < 2j , not rigid and not redundant,     "too many equations"
Unique bar forces for some loads,
no solution for other loads.

f)

j) k)

h)

i)

g)

j=8, b=8, r=7

j=3, b=3, r=2

j=3, b=2, r=3
j=6, b=8, r=3

j=4, b=4, r=3

j=2
b=1
r=2

Not rigid
• 'overdeterminate'

 Not redundant
• Not indeterminate
• If there are bar forces that 
   can equilibriate the loads 
   they are unique
• No locked in stresses

Redundant
• indeterminate
• locked in stress possible 
• solutions not unique 
   if they exist

2D TRUSS
CLASSIFICATION

(page 2)

no
joint

no
joint

Figure 4.37: (Second page of a two page table.) (Filename:tfigure.trussclass2)
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SAMPLE 4.9 An indeterminate truss: For the truss shown in the figure, find all

�

� �

�

�

�

�

1 m

1 m

F3

F2

F1
30o

15o

30o

Figure 4.38: (Filename:sfig4.truss.over)

support reactions.

Solution The free body diagram of the truss is shown in Fig. 4.39. We need to find
the support reactions Ax , Ay, By , and Dx .

�

� � �

�

�

�

�

F3

F2

Ay By

Ax

Dx

F1

BA

CD

F E

G

ı̂

̂

θ1 θ1

θ2

Figure 4.39: (Filename:sfig4.truss.over.a)

The force equilibrium,
∑ ⇀

F = ⇀

0, gives

(Ax + Dx + F3 cos θ1)ı̂ + (Ay + By − F3 sin θ1 − F2 − F1)̂ = ⇀

0 (4.30)

[eqn. (4.30)] · ı̂ ⇒ Ax + Dx = −F3 cos θ1 (4.31)

[eqn. (4.30)] · ̂ ⇒ Ay + By = F1 + F2 + F3 sin θ1 (4.32)

Now we apply moment balance about point A,
∑ ⇀

MA = ⇀

0. Let A be the origin of
our xy-coordinate system (so that we can write ⇀

rD/A = ⇀
rD, etc.).

⇀
rD × ⇀

Dx + ⇀
rF × ⇀

F3 + ⇀
rG × ⇀

F1 + ⇀
rE × ⇀

F2 + ⇀
rB × ⇀

B y = 0

where,

⇀
rD × ⇀

Dx = �̂ × Dx ı̂ = −Dx�k̂
⇀
rF × ⇀

F3 = (
⇀
rD + ⇀

rF/D) × ⇀
F3 = [�̂ + �(sin θ1 ı̂ + cos θ1̂)] × F3(cos θ1 ı̂ − sin θ1̂)

= F3� cos θ1k̂ − F3�k̂ = −F3�(1 + cos θ1)k̂
⇀
rG × ⇀

F1 = (rGx ı̂ + rG y ̂) × (−F1̂) = −rGx F1k̂

= −F1�(1 + sin θ1 + cos θ2)k̂
⇀
rE × ⇀

F2 = −F2(� + � sin θ1k̂ = −F2�(1 + sin θ1)k̂

⇀
rB × ⇀

B y = �ı̂ × By ̂ = By�k̂

Adding them together and dotting with k̂ we get

−Dx� − F3�(1 + cos θ1) − F1�(1 + sin θ1 + cos θ2) − F2�(1 + sin θ1) + By� = 0

⇒ By − Dx = F1(1 + sin θ1 + cos θ2)

+ F2(1 + sin θ1) + F3(1 + cos θ1). (4.33)

We have three equations (4.31–4.33) containing four unknowns Ax , Ay, By , and Dx .
So, we cannot solve for the unknowns uniquely. This was expected as the truss is
indeterminate. However, if we assume a value for one of the unknowns, we can solve
for the rest in terms of the assumed one. For example, let Dx = α. For simplicity
let the right hand sides of eqns. (4.31, 4.32, and 4.33) be C1, C2, and C3 (computed
values), respectively. Then, we get Ax = C1 − α, Ay = C2 − C3 − α, and By =
C3 +α. The equilibrium is satisfied for any value of α. Thus there are infinite number
of solutions! This is true for all indeterminate systems. However, when deformations
of structures are taken into account (extra constraint equations), then solutions do turn
out to be unique. You will learn about such things in courses dealing with strength
of materials.
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4.4 Internal forces
“Take one.”

Consider two people pulling on the frayed rope of fig. 4.40a. A free body dia-
a)

b)

Figure 4.40: a) Two people pulling on a
rope that is likely to break in the middle, b)
A free body diagram of the rope.

(Filename:tfigure.ropeexternal)

gram of the rope is shown in fig. 4.40b. The laws of mechanics use the external
forces on an isolated system. These are the forces that show on a free body diagram.
For the rope these are the forces at the ends. The free body diagram does not include
internal forces. Thus nothing about the ‘internal forces’ at the fraying part of the rope
shows up in the mechanics equations describing the rope.

Mechanics has nothing to say about so called ‘internal forces’ and thus nothing
to say about the rope breaking in the middle. ‘Internal forces’ are meaningless in
mechanics. End of section.

“Cut! There’s got to be more to it than that. Let’s try again.”
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4.4 Internal forces
a)

c)

TT
d)

T T

b)

Fy

T

M

Fx

Figure 4.41: a) free body diagram of the
right part of the rope, b)the same free body
diagram, with the force distribution at the
cut replaced with an equivalent force cou-
ple system, c) further simplified by using
the laws of mechanics, and d) a free body
diagram of the left portion of the rope.

(Filename:tfigure.ropeinternal)

“Take two.”

On page 1 we advertised mechanics as being useful for predicting when things will
break. And our intuitions strongly tell us that there is something about the forces in
the rope that make it break. Yet mechanics equations are based on the forces that
show on free body diagrams. And free body diagrams only show external forces.
How can we use mechanics to describe the ‘forces’ inside a body? We use an idea
whose simplicity hides its utility and depth:

You cut the body, and what was inside it is now the outside of a smaller body.

In the case of the rope, we cut it in the middle. Then we fool the rope into
thinking it wasn’t cut using forces (remember, ‘forces are the measure of mechanical
interaction’), one force, say, at each fiber that is cut. Then we get the free body
diagram of fig. 4.41a. We can simplify this to the free body diagram of fig. 4.41b
because we know that every force system is equivalent to a force and couple at any
point, in this case the middle of the rope. If we apply the equilibrium conditions to
this cut rope we see that

Sum of vertical forces is zero ⇒ Fy = 0
Sum of horizontal forces is zero ⇒ Fx = −T

Sum of moments about the cut is zero ⇒ M = 0.

Thus we get the simpler free body diagram of fig. 4.41c as you probably already knew
without using the equilibrium equations explicitly.

Tension
We have just derived the concept of ‘tension in a rope’ also sometimes called the
‘axial force’. The tension is the pulling force on a free body diagram of the cut rope.
If we had used the same cut for a free body diagram of the left half of the rope we
would see the free body diagram of fig. 4.41d. Either by the principle of action and
reaction, or by the equilibrium equations for the left half of the rope, you see also a
tension T . The force vector is the opposite of the force vector on the right half of
the rope. So it doesn’t make sense to talk about the tension force vector in the rope
since different (opposite) force vectors manifest themselves on the two sides of the
cut (−T ı̂ on the left end of the right half and T ı̂ on the right end of the left half).
Instead we talk about the scalar tension T which expresses the force vector at the cut
as

⇀
F = T λ̂

where λ̂ is a unit vector pointing out from the free body diagram cut. Because λ̂

switches direction depending on which half rope you are looking at, the same scalar
T works for both pieces.

The tension in a rope, cable, or bar is the amount of force pulling out on a
free body diagram of the cut rope, cable, or bar. Tension is a scalar.
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Note our abuse of language: force is a vector, tension is an ‘internal force’ and
tension is a scalar. What we call ‘internal forces’ are not really forces. We can’t talk
about the internal force vector at a point in the string because there are two different
vectors for each cut, one for each string half. An ‘internal force’ isn’t a force unless
it is made external by a free body diagram cut, in which case it is not internal. We
use this confusing language because of its strong place in engineering practice and
its constant reinforcement by our intuitions which sense ‘internal forces’. Whenever
you see the phrase ‘internal force’ you should substitute in your mind ‘a scalar with
dimensions of force from which you can find the force on a free body diagram cut’
1©.1© Calling tension a scalar is one of the

practical lies we tell you for relative sim-
plicity. The clearest representation of ‘in-
ternal forces’ is with tensors. But that idea
is too advanced for this book.

For a two force body the tension is a constant along the length (because we found
T without ever using information about the location of the free body diagram cut).
We used this idea without comment in trusses when we included a small stub of each
bar in the free body diagrams of the joints and showed a tension force along the stub.

Getting back to the question of whether or not the rope will break, we can now
characterize the rope by the tension it can carry. A 10k N cable can carry a tension
of 10, 000 N all along its length. This means a free body diagram of the rope, cut
anywhere along its length, could show forces up to but not bigger than 10, 000 N. If
the rope is frayed it make break at, say, a tension of 2, 000 N, meaning a free body
diagram with a cut at the fray can only show forces up to 2, 000 N.

As noted in the context of trusses, tension is not always positive. A negative
tension (negative pulling out from the ends) is also called a positive compression
(positive pushing in at the ends).

Shear force and bending moment
To characterize the strength of more than just 2-force bodies. we need to generalize
the concept of tension. The main idea, which was emphasized in chapter 2, is this:

You can make a free body diagram cut anywhere on any body no matter how
it is loaded.

As for tension, we define internal forces in terms of the forces (and moments) that
show up on a free body diagram cut. Again we consider things (bars) that are rather
longer than they are wide or thick because

• Long narrow pieces are commonly used in construction of buildings, machines,
plants and animals (not just in trusses).

• Internal forces in long narrow things are easier to understand than in bulkier
objects, and so are studied first.

V

V

M

M

T

T

C

C

C

partial FBDs

(a)

(b)

(c)

Figure 4.42: a) A piece of a structure,
loads not shown; b) a partial free body dia-
gram of the right part of the bar; c) a partial
free body diagram of the left part of the bar.

(Filename:tfigure.signs)

For now we limit ourselves to 2D statics. At an arbitrary cut we break the force into
two components (see fig. 4.42).

• The tension T is the scalar part of the force directed along the bar assumed
positive when pulling away from the free body diagram cut.

• The shear force V is the force perpendicular to the bar (tangent to the free body
diagram cut. Our sign convention is that shear is positive if it tends to rotate
the cut object clockwise. An equivalent statement of the sign convention is that
shear is positive if down on cuts at the right of a bar and positive if up on a cut
on the left of bar (and to the right on top and to the left on the bottom).

Since we are just doing 2D problems now, the moment is always in the out of plane
(typically k̂) direction.

M M

Figure 4.43: The smiling beam sign con-
vention for bending moment. For a hori-
zontal beam, moments which tend to make
the beam smile (curve up) are called posi-
tive.

(Filename:tfigure.smilingbeam)
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• The bending moment M is the scalar part of the bending moment. The sign
convention is that for a smiling beam (Fig. 4.43): A clockwise (−k̂) couple is
positive on a left cut and a counterclockwise (k̂) couple is positive on a right
cut 1©. 1© Note that neither V nor T changes if you

rotate your paper until the picture is upside
down. However, this definition for the sign
convention for M has the disadvantage that
the bending moment does changes sign if
you turn your paper upside down. Here is
a more precise definition which gets rid of
this flaw. Choose the x and ı̂ direction to be
along the bar. Bending moment is positive
for a cut with normal in the −ı̂ direction
if clockwise. Bending moment is positive
for a cut with a normal in the ı̂ direction if
counterclockwise. More concisely, if n̂ is
the normal to the cut, bending moment is
positive in the n̂× ̂ direction.

The tension T , shear V , and bending moment M on fig. 4.42 follows these sign
conventions.

C

B

ı̂

̂

45o

1 m

1 m

1 m

100 N

C
45o

100 N1 m

VM
T

(a) (b)

Example: Internal forces in a bent rod

The internal forces at B can be found by making a free body diagram of
a portion of the structure with a cut at B.

Sum of vertical forces is zero ⇒ V = (100/
√

2) N
Sum of horizontal forces is zero ⇒ T = (100/

√
2) N

Sum of moments about the cut at B is zero ⇒ M = −100
√

2 N m.

✷

Tension, shear force, and bending moment diagrams
Engineers often want to know how the internal forces vary from point to point in a
structure. If you want to know the internal forces at a variety of points you can draw a
variety of free body diagrams with cuts at those points of interest. Another approach,
which we present now, is to leave the position of the free body diagram cut a variable,
and then calculate the internal forces in terms of that variable.

Example: Tension in a rod from its own weight.

The uniform 1 cm2 steel square rod with density ρ = 7.7 gm/ cm3 and
length � = 100 m has total weight W = mg = ρ�Ag (see fig. 4.44).
What is the tension a distance xD from the top? Using the free body
diagram with cut at xD we get:

ı̂

̂

xD

T

ρA(� - xD)

D D

�

g

cross
section A

Figure 4.44: a) Rod hanging with gravity.
b) free body diagram with cut at xD.

(Filename:tfigure.tensioncut)

{∑
⇀
Fi = ⇀

0
}

· ı̂
⇒ T = ρ Ag(� − xD)

= (7.7 gm/ cm3)(1 cm2)(9.8 N/ kg)(100 m − xD)

= 7.7 · 9.8 gm N m
cm kg

(
100 − xD

m

) (
1 kg

1000 gm

)
︸ ︷︷ ︸

1

(
100 cm

1 m

)
︸ ︷︷ ︸

1
= 7.5

(
100 − xD

m

)
N.

So, at the bottom end at xD = 100 m we get T = 0 and at the top end
where xD = 0 m we get T = 750 N and in the middle at xD = 50 m we
get T = 375 N. ✷
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Because the free body diagram cut location is variable, we can plot the internal
forces as a function of position. This is most useful in civil engineering where an
engineer wants to know the internal forces in a horizontal beam carrying vertical
loads. Common examples include bridge platforms and floor joists.

Example: Cantilever M and V diagram

�

� - x

F

F

(a)

(b)

(c)

VM
T

x
C

x

V

(d)

x

M

F

-F� m = F(x - �)

ı̂

̂

Figure 4.45: a) Cantilever beam, b) free
body diagram, c) Shear force diagram, d)
Bending moment diagram

(Filename:tfigure.bendandsheardiag)

A cantilever beam is mounted firmly at one end and has various loads
orthogonal to its length, in this case a downwards load F at the end
(fig. 4.45a). By drawing a free body diagram with a cut at the arbitrary
point C (fig. 4.45b) we can find the internal forces as a function of the
position of C.{∑ ⇀

Fi = ⇀

0
} · ̂ ⇒ V = F{∑ ⇀

Fi = ⇀

0
} · ı̂ ⇒ T = 0{∑ ⇀

MC = ⇀

0
} · k̂ ⇒ M(x) = F(x − �).

That the tension is zero in these problems is so well known that the
tension is often not drawn on the free body diagram and not calculated.
We can now plot V (x) and M(x) as in figs. 4.45c and 4.45d. In this
case the shear force is a constant and the bending moment varies from its
maximum magnitude at the wall (M = −F�) to 0 at the end. It is the big
value of |M | at the fixed support that makes cantilever beams typically
break there. ✷

Often one is interested in distributed loads from gravity on the structure itself or from
a distribution (say of people on a floor). The method is the same.

Example: Distributed load

�

(a)

(b)

(c)

VM

x x'

x

V

x

M

w�

�

�

w(� - x)

w = force per unit length

w

w- �2

2
w (�−x)2

2

C

Figure 4.46: a) Cantilever beam, b) free
body diagram, c) Shear force diagram, d)
Bending moment diagram

(Filename:tfigure.uniformcant)

A cantilever beam has a downwards uniformly distributed load of w per
unit length (fig. 4.46a). Using the free body diagram shown (fig. 4.46b)
we can find:{∑ ⇀

Fi = ⇀

0
} · ̂ ⇒ {

V (x)̂ + ∫
d

⇀
F

} · ̂ = 0
⇒ V (x) = ∫ �

x w dx ′
= w · (� − x)

{∑ ⇀
MC = ⇀

0
} · k̂ ⇒

{
M(x)(−k̂) + ∫

⇀
r/C × d

⇀
F

}
· k̂ = 0

⇒ M(x) = ∫ �

x (x ′ − x)wdx ′

= w · (x ′2/2 − x ′x)

∣∣∣�
x

= (�2/2 − �x) − (x2/2 − x2)

= −w · (� − x)2/2.

The integrals were used because of their general applicability for dis-
tributed loads. For this problem we could have avoided the integrals
by using an equivalent downwards force w · (� − x) applied a distance
(� − x)/2 to the right of the cut. Shear and bending moment diagrams
are shown in figs. 4.46a and 4.46b. ✷

As for all problems based on the equilibrium equations and a given geometry, the
principle of superposition applies.
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Example: Superposition

Consider a cantilever beam that simultaneously has both of the loads
from the previous two examples. By the principle of superposition:

V = F + w(� − x)

M(x) = F(x − �) + −w(� − x)2/2.

The shear force at every point is the sum of the shear forces from the
previous examples. The bending moment at every point is the sum of
the bending moments. ✷

If there are concentrated loads in the middle of the region of interest the calculation
gets more elaborate; the concentrated force may or may not show up on the free body
diagram of the cut bar, depending on the location of the cut.

Example: Simply supported beam with point load in the middle

F

F

F

F/2

F/2

F/2

F/2

F/2

-F/2

�/2 �/2

(a)

(b)

(c)

(e)

(f)
C

V
M

x < �/2

(d)
C

V
M

x > �/2

x-�/2

x

V

F�/2

x

M

Figure 4.47: a) Simply supported beam, b) free body diagram of whole beam, c) free body diagram
with cut to the left of the applied force, d) free body diagram with cut to the right of the applied force
e) Shear force diagram, f) Bending moment diagram

(Filename:tfigure.simplesup)

A simply supported beam is mounted with pivots at both ends (fig. 4.47a).
First we draw a free body diagram of the whole beam (fig. 4.47a) and
then two more, one with a cut to the left of the applied force and one
with a cut to the right of the applied force (figs. 4.47c and 4.47d). With
the free body diagram 4.47c we can find V (x) and M(x) for x < �/2
and with the free body diagram 4.47d we can find V (x) and M(x) for
x > �/2.{∑ ⇀

Fi = ⇀

0
} · ̂ ⇒ V = F/2 for x < �/2

= −F/2 for x > �/2{∑ ⇀
MC = ⇀

0
} · k̂ ⇒ M(x) = Fx/2 for x < �/2

= F(� − x)/2 for x > �/2

These relations can be plotted as in figs. 4.47e and 4.47f. Some obser-
vations: For this beam the biggest bending moment is in the middle, the
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place where simply supported beams often break. Instead of the free
body diagram shown in (c) and (d) we could have drawn a free body
diagrams of the bar to the right of the cut and would have got the same
V (x) and M(x). We avoided drawing a free body diagram cut at the
applied load where V (x) has a discontinuity. ✷

How to find T , V , and M

Here are some guidelines for finding internal forces and drawing shear and bending
moment diagrams.

• Draw a free body diagram of the whole bar.
• Using the free body diagram above find the reaction forces .
• Draw a free body diagram(s) of the cut bar of interest.

– For each region between concentrated loads draw one free body diagram.
– Show the piece from the cut to one or the other end (So that all but the

internal forces are known).
– Don’t make cuts at intermediate points of connection or load application.

• Use the equilibrium equations to find T , V , or M (Moment balance about a
point at the cut is a good way to find M .)

• Use the results above to plot V (x) and M(x) (T (x) is rarely plotted).

– Use the same x scale for this plot as for the free body diagram of the
whole bar.

– Put the plots directly under the free body diagram of the bar (so you
can most easily relate features of the loads to features of the V and M
diagrams).

Stress is force per unit area

σ = T
A

T

A = cross
section area

(a)

(b)

Figure 4.48: a) Tension on a free body
diagram cut is equivalent to b) uniform ten-
sion stress.

(Filename:tfigure.tension)

For a given load, if you replace one bar in tension with two bars side by side you
would imagine the tension in each bar would go down by a factor of 2. Thus the pair
of bars should be twice as strong as a single bar. If you glued these side by side bars
together you would again have one bar but it would be twice as strong as the original
bar. Why? Because it has twice the cross sectional area.

What makes a solid break is the force per unit area carried by the material. For
an applied tension load T , the force per unit area on an interior free body diagram
cut is T/A. Force per unit area normal to an internal free body diagram cut is called
tension stress and denoted σ (lower case ‘sigma’, the Greek letter s).

σ = T/A
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Example: Stress in a hanging bar

Look at the hanging bar in the example on page 149. We can find the
tension stress in this bar as a function of position along the bar as:

σ = T

A
= ρg A(� − x)

A
= ρg(� − x).

Note that the stress for this bar doesn’t depend on the cross sectional
area. The bigger the area the bigger the volume and hence the load. But
also, the bigger the area on which to carry it. ✷

For reasons that are beyond this book, the tension stress tends to be uniform in
homogeneous (all one material) bars, no matter what their cross sectional shape, so
that the average tension stress T

A is actually the tension stress all across the cross
section.

We can similarly define the average shear stress τave (‘tau’) on a free body diagram
cut as the average force per unit area tangent to the cut,

τave = V

A
.

For reasons you may learn in a strength of materials class, shear stress is not so
uniformly distributed across the cross section. But the average shear stress τave does
give an indication of the actual shear stress in the bar (e.g., for a rectangular elastic
bar the peak shear stress is 50% larger than τave).

The biggest stresses typically come from bending moment. Motivating formulas
for these stresses here is too big a digression. The formulas for the stresses due to
bending moment are a key part of elementary strength of materials. But just knowing
that these stresses tend to be big, gives you the important notion that bending moment
is a common cause of structural failure.

Internal force summary
‘Internal forces’ are the scalars which describe the force and moment on potential
internal free body diagram cuts. They are found by applying the equilibrium equa-
tions to free body diagrams that have cuts at the points of interest. The internal forces
are intimately associated with the internal stresses (force per unit area) and thus are
important for determining the strength of structures.

“Cut. OK it’s a take. Lets quit for the day.”
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SAMPLE 4.10 Support reactions on a simply supported beam: A uniform beam
P

d

q

�-d

A B

Figure 4.49: (Filename:sfig4.intern.ssup)

of length 3 m is simply supported at A and B as shown in the figure. A uniformly
distributed vertical load q = 100 N/m acts over the entire length of the beam. In
addition, a concentrated load P = 150 N acts at a distance d = 1 m from the left end.
Find the support reactions.

Solution Since the beam is supported at A on a pin joint and at B on a roller, the
unknown reactions are

⇀

A = Ax ı̂ + Ay ̂ ,
⇀
B = By ̂

The uniformly distributed load q can be replaced by an equivalent concentrated load
W = q� acting at the center of the beam span. The free body diagram of the beam,
with the concentrated load replaced by the equivalent concentrated load is shown in
Fig. 4.50. The moment equilibrium about point A,

∑ ⇀
MA = ⇀

0, gives
P

W

�/2
Ay

Ax

By

d

x

y

Figure 4.50: (Filename:sfig4.intern.ssup.a)

(−Pd − W
�

2
+ By�)k̂ = ⇀

0

⇒ By = P
d

�
+ 1

2
W

= 150 N · 1

3
+ 1

2
· 300 N = 200 N

The force equilibrium,
∑ ⇀

F = ⇀

0, gives

⇀

A+ By ̂ − P ̂ − W ̂ = ⇀

0

⇒ ⇀

A = (−By + P + W )̂

= (−200 N + 150 N + 300 N)̂ = 250 N̂

⇀

A = 250 N̂ ,
⇀
B = 200 N̂

SAMPLE 4.11 Support reactions on a cantilever beam: A 2 kN horizontal force

A
2 m

0.5 m

2 kN

Figure 4.51: (Filename:sfig4.intern.cant)

acts at the tip of an ’L’ shaped cantilever beam as shown in the figure. Find the support
reactions at A.

Solution The free body diagram of the beam is shown in Fig. 4.52. The reaction
force at A is

⇀

A and the reaction moment is
⇀
M = M k̂. Writing moment balance

equation about point A,
∑ ⇀

MA = ⇀

0, we get

A

B

C

h

F

⇀

A

�

⇀
M

Figure 4.52: (Filename:sfig4.intern.cant.a)

⇀
M + ⇀

rC/A × ⇀
F = ⇀

0
⇀
M + (�ı̂ + h̂) × (−F ı̂) = ⇀

0

⇒ ⇀
M = −Fh k̂

= −2 kN · 0.5 m k̂

= −1 kN · m k̂

The force equilibrium,
∑ ⇀

F = ⇀

0, gives

⇀

A+ ⇀
F = ⇀

0

⇒ ⇀

A = − ⇀
F = −(−2 kN ı̂) = 2 kN ı̂

⇀

A = 2 kN ı̂,
⇀
M = −1 kN · m k̂
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SAMPLE 4.12 Net force of a uniformly distributed system: A uniformly distributed

�

100 N/m

Figure 4.53: (Filename:sfig2.vec3.uniform)

vertical load of intensity 100 N/macts on a beam of length � = 2 m as shown in the
figure.

(a) Find the net force acting on the beam.
(b) Find an equivalent force-couple system at the mid-point of the beam.
(c) Find an equivalent force-couple system at the right end of the beam.

Solution

(a) The net force: Since the load is uniformly distributed along the length, we

�

x

y

dx

q dx

Figure 4.54: (Filename:sfig2.vec3.uniform.a)

can find the total or the net load by calculating the load on an infinitesimal
segment of length dx of the beam and then integrating over the entire length
of the beam. Let the load intensity (load per unit length) be q (q = 100 N/m,
as given). Then the vertical load on segment dx is (see Fig. 4.54),

d
⇀
F = q dx(−̂).

Therefore, the net force is,

⇀
Fnet =

∫ �

0
q dx(−̂) = q �̂ = −100 N/m · 2 m̂ = −200 N̂ .

⇀
Fnet = −200 N̂

(b) The equivalent system at the mid-point: We have already calculated the net

x

y

dx dx

q dxq dx
x-x

C

Figure 4.55: (Filename:sfig2.vec3.uniform.b)

force that can replace the uniformly distributed load. Now we need to calculate
the couple at the mid-point of the beam to get the equivalent force-couple
system. Again, consider a small segment of the beam of length dx located at
distance x from the mid-point C (see Fig. 4.55). The moment about point C due
to the load on dx is (q dx)x(−k̂). But, we can find a similar segment on the
other side of C with exactly the same length dx , at exactly the same distance
x , that produces a moment of (q dx)x(+k̂). The two contributions cancel each
other and we have a net zero moment about C. Now, you can imagine the whole
beam made up of these pairs that contribute equal and opposite moment about
C and thus the net moment about the mid-point is zero. You can also find the
same result by straight integration:

⇀
MC =

∫ +�/2

−�/2
qx dx(−k̂) = qx2

2

∣∣∣∣
+�/2

−�/2
(−k̂) = ⇀

0.

⇀
Fnet = −200 N̂ , and

⇀
MC = ⇀

0

(c) The equivalent system at the end: The net force remains the same as above.
We compute the net moment about the end point B, referring to Fig. 4.56, as
follows.

q dx

Fnet

MB

-x

x

y

B

Figure 4.56: (Filename:sfig2.vec3.uniform.c)

⇀
MB =

∫ �

0
(−x ı̂) × (−q dx ̂) = −q

∫ �

0
x dx k̂

= −q�2

2
k̂ = −100 N/m · 4 m2

2
k̂ = −200 N·mk̂.

⇀
Fnet = −200 N̂ and

⇀
MB = −200 N·mk̂
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SAMPLE 4.13 For the uniformly loaded, simply supported beam shown in the

A
C

C

4 m

250 N/m

B

Figure 4.57: (Filename:sfig4.intern.ssvm)

figure, find the shear force and the bending moment at the mid-section c-c of the
beam.

Solution To determine the shear force V and the bending moment M at the mid-

A
C

V4 m⇀

A

�/2

⇀
M

A

P

V⇀

A

�/4

⇀
M

≡
ı̂

̂

Figure 4.58: (Filename:sfig4.intern.ssvm.a)

section c-c, we cut the beam at c-c and draw its free body diagram as shown in Fig. 4.58.
For writing force and moment balance equations we use the second figure where we
have replaced the distributed load with an equivalent single load F = (q�)/2 acting
vertically downward at distance �/4 from end A.

The force balance,
∑ ⇀

F = ⇀

0, implies that

Ax ı̂ + Ay ̂ − V ̂ − F ̂ = ⇀

0

Dotting with ı̂ and ̂ , respectively, we get

Ax = 0

V = Ay − F (4.34)

= Ay − q�

2
(4.35)

From the moment equilibrium about point A,
∑ ⇀

MA = ⇀

0, we get

M k̂ −
(

q�

2
· �

4

)
k̂ − V �k̂ = 0

⇒ M = q�2

8
+ V � (4.36)

Thus, to find V and M we need to know the support reaction
⇀

A. From the free body

A
C

B

By
⇀

A

⇀

Q

Figure 4.59: (Filename:sfig4.intern.ssvm.b)

diagram of the beam in Fig. 4.59 and the moment equilibrium equation about point
B,

∑ ⇀
MB = ⇀

0, we get

⇀
rA/B × ⇀

A+ ⇀
rC/B × ⇀

Q = ⇀

0

(−Ay� + q�
�

2
)k̂ = ⇀

0

⇒ Ay = q�

2
= 500 N

Thus
⇀

A = 500 N̂ . Substituting
⇀

A in eqns. (4.35) and (4.36), we get

V = 500 N − 500 N = 0

M = 250 N · (4 m)2

8
+ 0

= 500 N·m

V = 0, M = 500 N·m
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SAMPLE 4.14 The cantilever beam AD is loaded as shown in the figure where

2' 2' 2'

B

2W

W

A C D

Figure 4.60: (Filename:sfig4.intern.cantvm)

W = 200 lbf. Find the shear force and bending moment on a section just left of point
B and another section just right of point B.

Solution To find the desired internal forces, we need to make a cut at a section just
to the left of B and one just to the right of B. We first take the one that is to the right of
point B. The free body diagram of the right part of the cut beam is shown in Fig. 4.61.
Note that if we selected the left part of the beam, we would need to determine support
reactions at A. The uniformly distributed load 2W of the block sitting on the beam

a a/2

B+ C D
V +

2W

M +

B+ C D
V +

M +

≡

Figure 4.61: (Filename:sfig4.intern.cantvm.a)

can be replaced by an equivalent concentrated load 2W acting at point E, at distance
a/2 from the end D of the beam.

Let us denote the the shear force by V + and the bending moment by M+ at the
section of our interest. Now, from the force equilibrium of the part-beam BD we get

V +̂ − 2W ̂ = ⇀

0

⇒ V + = 2W

= 400 lbf

The moment equilibrium about point B,
∑ ⇀

MB = ⇀

0, gives

−M+k̂ − 2W · 3a

2
k̂ = ⇀

0

⇒ M+ = −3Wa

= −1200 lb·ft

Now, we determine the internal forces at a section just to the left of point B. Let the
shear and bending moment at this section be V − and M−, respectively, as shown in
the free body diagram (Fig. 4.62). Note that load W acting at B is now included in
the free body diagram since the beam is now cut just a teeny bit left of this load.

3a/2

2W

W

B-

C D
V -

M -

Figure 4.62: (Filename:sfig4.intern.cantvm.b)

From the force equilibrium of the part-beam, we have

V −̂ − W ̂ − 2W ̂ = ⇀

0

⇒ V − = 3W

= 600 lbf

and, from moment equilibrium about point B,
∑ ⇀

MB = ⇀

0, we get

−M−k̂ − 2W · 3a

2
k̂ = ⇀

0

⇒ M− = −3Wa

= −1200 lb·ft

M+ = M− = −1200 lb·ft, V + = 400 lbf, V + = 600 lbf

Note that the bending moment remains the same on either side of point B but the
shear force jumps by V + − V − = 200 lbf = W as we go from right to the left. This
jump is expected because a concentrated load W acts at B, in between the two sections
we consider. Concentrated external forces cause a jump in shear, and concentrated
external moments cause a jump in the bending moment.
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SAMPLE 4.15 A simple frame: A 2 m high and 1.5 m wide rectangular frame ABCD

A

B

e e

1.5 m

1.5 kN

2 m

2 kN

D

C

Figure 4.63: (Filename:sfig4.intern.frame)

is loaded with a 1.5 kN horizontal force at B and a 2 kN vertical force at C. Find the
internal forces and moments at the mid-section e-e of the vertical leg AB.

Solution To find the internal forces and moments, we need to cut the frame at the
specified section e-e and consider the free body diagram of either AE or EBCD. No
matter which of the two we select, we will need the support reactions at A or D to
determine the internal forces. Therefore, let us first find the support reactions at A
and D by considering the free body diagram of the whole frame (Fig. 4.64). The

A

BF1

F2

h

D

C

�

⇀

A
⇀
D

ı̂

̂

Figure 4.64: (Filename:sfig4.intern.frame.a)

moment balance about point A,
∑ ⇀

MA = ⇀

0, gives

⇀
rB × ⇀

F1 + ⇀
rC × ⇀

F2 + ⇀
rD × ⇀

D = ⇀

0

h̂ × F1 ı̂ + (h̂ + �ı̂) × (−F2̂) + �ı̂ × D̂ = ⇀

0

−F1hk̂ − F2�k̂ + D�k̂ = ⇀

0

⇒ D = F1
h

�
+ F2

= 1.5 kN · 2

1.5
+ 2 kN

= 4 kN

From force equilibrium,
∑ ⇀

F = ⇀

0, we have

⇀

A = − ⇀
F1 − ⇀

F2 − ⇀
D

= −F1 ı̂ + F2̂ − D̂

= −1.5 kNı̂ − 2 kN̂

Now we draw the free body diagram of AE to find the shear force V , axial (tensile)
force T , and the bending moment M at section e-e.

ı̂

̂
E

A

M
V

T

Figure 4.65: (Filename:sfig4.intern.frame.b)

From the force equilibrium of part AE, we get

⇀

A− V ı̂ + T ̂ = ⇀

0

(Ax − V )ı̂ + (Ay + T )̂ = ⇀

0

⇒ V = Ax = −1.5 kN

T = −Ay = 2 kN

From the moment equilibrium about point A,
∑ ⇀

MA = ⇀

0, we have

M k̂ + h

2
̂ × (−V ı̂) = ⇀

0

M k̂ + V
h

2
k̂ = ⇀

0

⇒ M = −V
h

2

= −(−1.5 kN) · 2 m

2
= 1.5k N·m

V = 1.5 kN, T = 2 kN, M = 1.5k N·m
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SAMPLE 4.16 Shear force and bending moment diagrams: A simply supported

A B

�

Fa

Figure 4.66: (Filename:sfig4.intern.ssvmx)

beam of length � = 2 m carries a concentrated vertical load F = 100 N at a distance
a from its left end. Find and plot the shear force and the bending moment along the
length of the beam for a = �/4.

Solution We first find the support reactions by considering the free body diagram
of the whole beam shown in Fig. 4.67. By now, we have developed enough intuition
to know that the reaction at A will have no horizontal component since there is no
external force in the horizontal direction. Therefore, we take the reactions at A and B
to be only vertical. Now, from the moment equilibrium about point B,

∑ ⇀
MB = ⇀

0,

A B

�

Fa

Ay By

ı̂

̂

Figure 4.67: (Filename:sfig4.intern.ssvmx.a)

we get

F(� − a)k̂ − Ay�k̂ = ⇀

0

⇒ Ay = F(� − a)

�

= F
(

1 − a

�

)
and from the force equilibrium in the vertical direction, (

∑ ⇀
F = ⇀

0) · ̂ , we get

By = F − Ay = F
a

�

Now we make a cut at an arbitrary (variable) distance x from A where x < a (see
x

a

x
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�

)
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F(1 - a
�

)

Figure 4.68: (Filename:sfig4.intern.ssvmx.b)

Fig. 4.68). Carrying out the force balance and the moment balance about point A, we
get, for 0 ≤ x < a,

V = Ay = F
(

1 − a

�

)
(4.37)

M = V x = F
(

1 − a

�

)
x (4.38)

Thus V is constant for all x < a but M varies linearly with x .
Now we make a cut at an arbitrary x to the right of load F , i.e., a < x ≤ �.

Again, from the force balance in the vertical direction, we get

V = −F + F
(

1 − a

�

)
= −F

a

�
(4.39)

and from the moment balance about point A,

M = Fa + V x

= Fa − F
a

�
x

= Fa
(

1 − x

�

)
(4.40)

Although eqn. (4.38) is strictly valid for x < a and eqn. (4.40) is strictly valid for x

V

x

M

0

0

Fa(1 -

-

a
�

)

Fa(1 − x
�

)
x

F a
�

a �

a �

F(1 - a
�

)

F(1 - a
�

)

Figure 4.69: (Filename:sfig4.intern.ssvmx.c)

x > a, sustituting x = a in these two equations gives the same value for M(=
Fa(1 − a/�)) as it must because there is no reason to have a jump in the bending
moment at any point along the length of the beam. The shear force V , however, does
jump because of the concentrated load F at x = a.

Now, we plug in a = �/4 = 0.5 m, and F = 100 N, in eqns. (4.37)–(4.40) and
plot V and M along the length of the beam by varying x . The plots of V (x) and M(x)

are shown in Fig. 4.69.
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SAMPLE 4.17 Shear force and bending moment diagrams by superposition: For
100 N

1 m

3 m

100 N

50 N/m

A B

Figure 4.70: (Filename:sfig4.intern.cantvmx)

the cantilever beam and the loading shown in the figure, draw the shear force and the
bending moment diagrams by

(a) considering all the loads together, and
(b) considering each load (of one type) at a time and using superposition.

Solution

(a) V (x) and M(x) with all forces considered together: The horizontal forces
acting at the end of the cantilever are equal and opposite and, therefore, produce
a couple. So, we first replace these forces by an equivalent couple Mapplied =
100 N · 1 m = 100 N·m. Since we have a cantilever beam, we can consider the
right hand side of the beam after making a cut anywhere for finding V and M
without first finding the support reactions.

C B

M Mapplied
V

x
ı̂
̂

q
qx

Figure 4.71: (Filename:sfig4.intern.cantvmx.a)

Let us cut the beam at an arbitrary distance x from the right hand side. The free
body diagram of the right segment of the beam is shown in Fig. 4.71. From the
force balance,

∑ ⇀
F = ⇀

0, we find that

−V ̂ + qx ̂ = ⇀

0

⇒ V = qx (4.41)

= (50 N/m)x

Thus the shear force varies linearly along the length of the beam with

V (x = 0) = 0,

and V (x = 3 m) = 150 N

The moment balance about point C,
∑ ⇀

MC = ⇀

0, gives

−M k̂ − qx · x

2
k̂ + Mappliedk̂ = ⇀

0

where the moment due to the distributed load is most easily computed by
considering an equivalent concentrated load qx acting at x/2 from the end B.
Thus,

⇒ M = Mapplied − q
x2

2
(4.42)

= 100 N·m − 50 N/m · x2

2
(4.43)

Thus, the bending moment varies quadratically with x along the length of the

(�-x)

V

(�-x)

M
(N˙m)

0

-125

100

3 m

2 m

150 N

Figure 4.72: (Filename:sfig4.intern.cantvmx.b)

beam. In particular, the values at the ends are

M(x = 0) = 100 N·m
and M(x = 3 m) = −125 N·m

The shear force and the bending moment diagrams obtained from eqns. (4.41)
and (4.42) are shown in Fig. 4.72. Note that M = 0 at x = 2 m as given by
eqn. (4.42).
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C B

M V q

qx

x

x/2

Figure 4.73: (Filename:sfig4.intern.cantvmx.c)

(b) V (x) and M(x) by superposition: Now we consider the cantilever beam with
only one type of load at a time. That is, we first consider the beam only with
the uniformly distributed load and then only with the end couple. We draw
the shear force and the bending moment diagrams for each case separately and
then just add them up. That is superposition.

So, first let us consider the beam with the uniformly distributed load. The free
body diagram of a segment CB, obtained by cutting the beam at a distance x
from the end B, is shown in Fig. 4.73. Once again, from force balance, we get

(�-x)
(m)

V
(N)

(�-x)

M
(N˙m)

0

0

-225

3

3

150

Figure 4.74: (Filename:sfig4.intern.cantvmx.d)

V = qx for 0 ≤ x ≤ � (4.44)

and from the moment balance about point C,
∑ ⇀

MC = ⇀

0, we get

M = −qx · x

2
= −q

x2

2
for 0 ≤ x ≤ � (4.45)

Figure 4.74 shows the plots of V and M obtained from eqns. (4.44) and (4.45),
respectively, with the values computed from x = 0 to x = 3 m with q =
50 N/m as given.

M
100 N˙m
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A

B

V
V=0

B

M Mapplied
V

Figure 4.75: (Filename:sfig4.intern.cantvmx.e)

Now we take the beam with only the end couple and repeat our analysis. A cut
section of the beam is shown in Fig. 4.75. In this case, it should be obvious
that from force balance and moment balance about any point, we get

V = 0

and M = Mapplied

Thus, both the shear force and the bending moment are constant along the
length of the beam as shown in Fig. 4.75.
Now superimposing (adding) the shear force diagrams from Figs. 4.74 and
4.75, and similarly, the bending moment diagrams from Figs. 4.74 and 4.75,
we get the same diagrams as in Fig. 4.76.
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Figure 4.76: (Filename:sfig4.intern.cantvmx.f)
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4.5 Springs

In the same way that machines and buildings are built from bricks, gears, beams,
bolts and other standard pieces, elementary mechanics models of the world are made
from a few elementary building blocks. Conspicuous so far, roughly categorized, are:

• Special objects:

– Point masses.
– Rigid bodies:

∗ Two force bodies,
∗ Three force bodies,
∗ Pulleys, and
∗ Wheels.

• Special connections:

– Hinges,
– Welds,
– Sliding contact, and
– Rolling contact.

Each of these things has a dual life. On the one hand a mechanical hinge corre-

(b)

�0 + ��

�0

T

T = k ˙��

(c)

(a)

B

A

⇀
FB

⇀
FA

⇀
rAB

Figure 4.77: An ideal spring with rest
length �0 and stretched length �o +��. The
tension in the spring is T and the vector
forces at the ends are

⇀
FA and

⇀
FB.

(Filename:tfigure2.spring2)

sponds to a product you can buy in a hardware store called a hinge. On the other hand
a hinge in mechanics represents a constraint that restricts certain motions and freely
allows others. A hinge in a mechanics model may or may not correspond to hardware
called a hinge. When considering a box balanced on an edge, we may model the
contact as a hinge meaning we would use the same equations for the forces of contact
as we would use for a hinge. We might buy a pulley, but we might model a rope
sliding around a post as a rope on a pulley even though there was no literal pulley in
sight. We might buy a brick because it is fairly rigid, and model it in mechanics as a
rigid body. But a rigid body model might well be used for human body parts that we
know deform noticeably. Thus the mechanics model for these things may correspond
more or less with the properties of physical objects with the same names.

This section is devoted to a new building block that similarly has a dual personality:
a spring.

Springs, in various forms but most characteristically as helices made of steel wire,
can be purchased from hardware stores and mechanical parts suppliers. Springs are
used to hold things in place (a clothes pin), to store energy (a clock or toy spring),
to reduce contact forces (spring bumpers), and to isolate something from vibrations
(a car suspension spring). You will find springs in most any complicated machine.
Take apart a disposable camera, an expensive printer, a gas lawn mower, or a washing
machine and you will find springs.

On the other hand, springs are used in mechanical ‘models’ of many things that
are not explicitly springs. For much of this book we approximate solids as rigid.
But sometimes the flexibility or elasticity of an object is an important part of its
mechanics. The simplest way of accounting for this is to use a spring. So a tire
may be modeled as a spring as might be the near-surface-material of a bouncing ball,
a strut in a truss, the snap-back of the earth’s crust in an earthquake, your achilles
tendon, or the give of soil under a concrete slab. Engineer Tom McMahon idealized
the give of a running track as that of a spring when he designed the record breaking
track used in the Harvard stadium.

In this section we consider an ideal spring (see also page 88 in section 3.1). You
may view an ideal spring as an approximation to a hardware product or as an idealized
building block for mechanical models.
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An ideal spring is a massless two-force body characterized by its rest length
�0 (also called the ‘relaxed length’, or ‘reference length’), its stiffness k, and
defining equation (or constitutive law):

T = k · (� − �0) or T = k · ��

where � is the present length and �� is the increase in length or stretch (see
Fig. 4.77). This model of a spring goes by the name Hooke’s law.

This spring is linear because of the formula k�� and not, say, k(��)3. It is elastic
because the tension only depends on length and not on, say, rate of extension. The
spring formula is sometimes quoted as ‘F = kx’ 1©. A plot of tension verses length 1© The form ‘F = kx’ can lead to sign

errors because the direction of the force is
not evident. The safest way to avoid sign
errors when dealing with springs is to
• Draw a free body diagram of the spring;
• Write the increase in length �� in terms
of geometry variables in your problem;
• Use T = k�� to find the tension in the
spring; and then
• Use the principle of action and reaction to
find the forces on the objects to which the
spring is connected.

for an ideal spring is shown in Fig. 4.78a.
A comment on notation. Often in engineering we write �(something) to mean

the change of ‘something.’ Most often one also has in mind a small change. In the
context of springs, however, �� is allowed to be a rather large change. We use the
notation δ� for small increments to avoid confusion. A useful way to think about
springs is that increments of force are proportional to increments of length change,
whether the force or length is already large or small:

δT = kδ� or
δT

δ�
= k or

δ�

δT
= 1

k
.

The reciprocal of stiffness 1
k is called the compliance. A compliant spring stretches

a lot when the tension is changed. A compliant spring is not stiff. A stiff spring has
small stretch when the tension is changed. A stiff spring is not compliant.

�

T

�

T

�

T

1
k

1
k

1
k

(a)

(c)

(b)

�0

Figure 4.78: a) Tension verses length for
an ideal spring, b) for a zero-length spring,
and c) for a strip of rubber.

(Filename:tfigure.tensionvslength)

Because the spring force is along the spring, we can write a vector formula for
the force on the B (say) end of the spring as ( see Fig. 4.77)

⇀
FB = k · (|⇀

rAB| − �0
)︸ ︷︷ ︸

��

( ⇀
rAB

|⇀
rAB|

)
︸ ︷︷ ︸

λ̂AB

. (4.46)

where λ̂AB is a unit vector along the spring. This explicit formula is useful for, say,
numerical calculations.

Zero length springs
A special case of linear springs that has remarkable mechanical consequences is a
zero-length spring that has rest length �0 = 0. The defining equations in scalar and
vector form are thus simplified to

T = k� and
⇀
FB = k · ⇀

rAB.

The tension verses length curve for a zero-length spring is shown in Fig. 4.78b.
At first blush such a spring seems non-physical, meaning that it seems to represent

something which is not a reasonable approximation to any real thing. If you take a
coil spring all the metal gets in the way of the spring possibly relaxing to the point
of the ends coinciding. In fact, however, there are many ways to build things which
act something like zero length springs. For example, the tension verses length curve
of a rubber band (or piece of surgical tubing) looks something like that shown in
Fig. 4.78c. Over some portion of the curve the zero-length spring approximation may
be reasonable. For other physical implementations of zero-length springs see box 4.5
on page 164.
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Assemblies of springs
Here and there throughout the rest of the book you will see how springs are put
together with others of the basic building blocks in mechanics. Here we see how
springs are put together with other springs.

In short, the result of attaching springs to each other in various ways is a new
spring with a stiffness that depends on the stiffnesses of the components and on how
the springs are connected.

Springs in parallel

(a)

(b)

(c)

TT
K1

K2

A B

TT

TT

K1

K2

K1

K2

�

Figure 4.79: a) Schematic of paral-
lel springs, b) genuinely parallel springs,
c) a reasonable approximation of parallel
springs.

(Filename:tfigure.parallelsprings)

Two springs that share a load and stretch the same amount are said to be in
parallel.

4.4 Examples of zero length springs

The mathematics in many mechanics problems is simplified by the
zero-length spring approximation. When is it reasonable?

Rubber bands. As shown in Fig. 4.78c straps of rubber be-
have like zero-length springs over some of their length. If this is
the working length of your mechanism then the zero-length spring
approximation may be good.

A stretchy conventional spring. Some springs are so
stretchy that they are used at lengths much larger than their rest

lengths. Thus the approximation that k(� − �0) = k�

(
1 − �0

�

)
≈

k� may be reasonable.

A pre-stressed coil spring. Some door springs and many
springs used in desk lamps are made tightly wound so that each coil
of wire is pressed against the next one. It takes some tension just to
start to stretch such a spring. The tension verses length curve for such
springs can look very much like a zero-length spring once stretch
has started. In fact, in the original elegant 1930’s patent, which
commonly seen present-day parallelogram-mechanism lamps imi-
tate, specifies that the spring should behave as a zero-length spring.
Such a pre-stressed zero-length coil spring was a central part of the
design of the long period seismometer featured on a 1959 Scientific
American cover.

�0

��0

T

A spring, string, and pulley. If a spring is connected to a
string that is wrapped around a pulley then the end of the string can
feel like a zero force spring if the attachment point is at the pulley
when the spring is relaxed.

��

�
�

T
B

A string pulled from the side. If a taught string is pulled
from the side it acts like a zero-length spring in the plane orthogonal
to the string.

W
T

"��"

A ‘U’ clip. If a springy piece of metal is bent so that its unloaded
shape is a pinched ‘U’ then it acts very much like a zero length spring.
This is perhaps the best example in that it needs no anchor (unlike
the pulley) and can be relaxed to almost zero length (unlike a pre-
stressed coil).

metal wire

T

T



4.5. Springs 165

The standard schematic for this is shown in Fig. 4.79a where the springs are visibly
parallel. This schematic is a non-physical cartoon since applied tension would cause
the end-bars to rotate unless the attachment points A and B are located carefully.
What is meant by the schematic in Fig. 4.79a is the somewhat clumsy constrained
mechanism of Fig. 4.79b. In engineering practice one rarely builds such a structure. A
simpler partial constraint against rotations is provided by the triangle of cables shown
in Fig. 4.79c; rotations are quite limited if the triangles are much longer than wide.
For the purposes of discussion here, we assume that any of Fig. 4.79abc represent a
situation where the springs both stretch the same amount.

TT
T1 T1 T1 T1

T2 T2 T2 T2

Figure 4.80: Free body diagrams of the
components of a parallel spring arrange-
ment.

(Filename:tfigure.parallelfbds)

The stretches and tensions of the two springs are ��1, ��2, T1, and T2. For each
spring we have the defining constitutive relation:

T1 = k1��1 and T2 = k2��2. (4.47)

As usual, they key to understanding the situation is through appropriate free body
diagrams (see Fig. 4.80). Force balance for one of the end supports shows that

T = T1 + T2 (4.48)

showing that the load is shared by the two springs. Springs in parallel stretch the
same amount thus we have the kinematic relation:

��1 = ��2 = ��. (4.49)

Determining the relation between T and �� is a matter of manipulating these equa-
tions:

T = T1 + T2
= k1��1 + k2��2
= k1�� + k2��

= (k1 + k2)︸ ︷︷ ︸
k

�� .

Thus we get that the effective spring constant of the pair of springs in parallel is,
intuitively:

k = k1 + k2. (4.50)

The loads carried by the springs are

T1 = k1

k1 + k2
T and T2 = k2

k1 + k2
T

which add up to T as they must.

Example: Two springs in parallel.

Take k1 = 99 N/ cm and k2 = 1 N/ cm. The effective spring constant of
the parallel combination is:

k = k1 + k2 = 99 N/ cm + 1 N/ cm = 100 N/ cm.
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Note that T1/T = .99 so even though the two springs share the load, the
stiffer one carries 99% of it. For practical purposes, or for the design of
this system, it would be reasonable to remove the much less stiff spring.
✷

The reasoning above with two springs in parallel is easy enough to reproduce with
3 or more springs. The result is:

ktot = k1 + k2 + k3 + . . . and T1 = T k1/ktot, T2 = T k2/ktot . . .

That is,

• The net spring constant is the sum of the constants of the separate springs; and
• The load carried by springs is in proportion to their spring constants.

F

Figure 4.81: A mechanics joke to make
a point. The bars in the open square above
are rigid. The deformation into a diamond
is resisted by the two springs shown. They
share the load and they have stretches that
are linked by the kinematics. Thus these
two perpendicular springs are ‘in parallel.’
(By the way, you are not expected to be able
to analyze the compliance of this structure
at this point.)

(Filename:tfigure.paralleljoke)

Some comments on parallel springs
Once you understand the basic ideas and calculations for two side-by-side springs
connected to common ends, there are a few things to think about for context.

For the purposes of drawing pictures (e.g., Fig. 4.79a) parallel springs are drawn
side by side. But in the mechanics analysis we treated them as if they were on top
of each other. A pair of parallel springs is like a two bar truss where the bars are
on top of each other but connected at their ends. With 2 bars and 2 joints we have
2 j < b + 3, and a redundant truss. In fact this is the simplest redundant truss, as one
spring (read bar) does exactly the same job as the other (carries the same loads, resists
the same motions). With statics alone we can not find the tensions in the springs since
the statics equation T1 + T2 = T has non-unique solutions.

In the context of trusses you may have had the following reasonable thought:
The laws of statics allow multiple solutions to redundant problems. But a bar in a
real physical structure has, at one instant of time, some unique bar tension. What
determines this tension? Now we know the answer: the deformations and material
properties. This is the first, and perhaps most conspicuous, occasion in this book that
you see a problem where the three pillars of mechanics are assembled in such clear
harmony, namely, material properties (eq. 4.47), the laws of mechanics (eq. 4.48),
and the geometry of motion and deformation (eq. 4.49). In strength of materials
calculations, where the distribution of stress is not determinable by statics alone, this
threesome (geometry of deformation, material properties and statics) clearly come
together in almost every calculation.

Finally, in the discussion above ‘in parallel’ corresponded to the springs being
geometrically parallel. In common mechanics usage the words ‘in parallel’ are more
general and mean that the net load is the sum of the loads carried by the two springs,
and the stretches of the two springs are the same (or in a ratio restricted by kinematics).
You will see cases where ‘in parallel’ springs are not the least bit parallel (e.g., see
Fig. 4.81).

Springs in series
T

T T1 TT2

K1 K2 T
�

�1 �2

(a)

(b)

Figure 4.82: Schematic of springs in se-
ries.

(Filename:tfigure.seriessprings)

Two springs that share a displacement and carry the same load are in series.

A schematic of two springs in series is shown in Fig. 4.82a where the springs are
aligned serially, one after the other. To determine the net stiffness of this simple
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spring network we again assemble the three pillars of mechanics, using the free body
diagram of Fig. 4.82b.

Constitutive law: T1 = k1(�1 − �10), T2 = k2(�2 − �20),

Kinematics: �0 = �10 + �20 , � = �1 + �2,

Force Balance: T1 = T, and T2 = T .

(4.51)

(where,e.g., �10 reads ‘ell sub one zero’ and is the rest length of spring 1). We can
manipulate these equations much as we did for the similar equations for springs in
parallel. The manipulation differs in structure the same way the equations do. For
springs in parallel the tensions add and the displacements are equal. For springs in
series the displacements add and the tensions are equal.

�� = � − �0
= (�1 + �2) − (�10 + �20)

= (�1 − �10) + (�2 − �20)

= ��1 + ��2

= T1
k1

+ T2
k2

= T
k1

+ T
k2

=
(

1

k1
+ 1

k2

)
︸ ︷︷ ︸

1
k

T .

Thus we get that the net compliance is the sum of the compliances:

1

k
= 1

k1
+ 1

k2
or k = 1

1/k1 + 1/k2
= k1k2

k1 + k2
,

which you might compare with springs in parallel (Eqn. 4.50). The sharing of the net
stretch is in proportion to the compliances:

��1 = 1/k1

1/k1 + 1/k2
�� and ��2 = 1/k2

1/k1 + 1/k2
��

which add up to �� as they must.

Example: Two springs in series.

Take 1/k1 = 99 cm/ N and 1/k2 = 1 cm/ N. The effective compliance
of the parallel combination is:

1

k
= 1

k1
+ 1

k2
= 99 cm/ N + 1 cm/ N = 100 cm/ N.

Note that ��1/�� = .99 so even though the two springs share the
displacement, the more compliant one has 99% of it. For design purposes,
or for modeling this system, it would be fair to replace the much more
stiff spring with a rigid link. ✷

Much of what you need to know about the words ‘in parallel’ and ‘in series’ follows
easily from these phrases:

In parallel, forces and stiffnesses add.
In series, displacements and compliances add.



168 CHAPTER 4. Statics

Rigid bodies, springs and air
As the previous two examples illustrate, springs can sometimes be replaced with ‘air’
(nothing) or with rigid links without changing the system or model behavior much.
One way to think about this is that in the limit as k → ∞ a spring becomes a rigid
bar and in the limit k → 0 a spring becomes air.

These ideas are used by engineers, often intuitively or even subconsciously and
with no substantiating calculations, when making a model of a mechanical system.
If one of several pieces in series is much stiffer than the others it is often replaced
with a rigid link. If one of several pieces in parallel is much more compliant than the
others it is often replaced with air. For example:

• When a coil spring is connected to a linkage, the other pieces in the linkage,
though undoubtedly somewhat compliant, are typically modelled as rigid. They
are stiffer than the spring and in series with it.

• A single hinge resists rotation about axes perpendicular to the hinge axis. But
a door connected at two points along its edge is stiffly prevented against such
rotations. Thus the hinge stiffness is in parallel with the greater rotational
stiffness of the two connection points and is thus often neglected (see the
discussion and figures in section 3.1 starting on page 86).

• Welded joints in a determinate truss are modeled as frictionless pins. The
rotational stiffness of the welds is ‘in parallel’ with the axial stiffness of the
bars. To see this look at two bars welded together at an angle. Imagine trying
to break this weld by pulling the two far bar ends apart. Now imagine trying to
break the weld if the two far ends are connected to each other with a third bar.
The third bar is ‘in parallel’ with the weld material. See the first few sentences
of section 4.2 for a do-it-yourself demonstration of the idea.

• Human bones are often modeled as rigid because, in part, when they interact
with the world they are in series with more compliant flesh.

a)  series

b)  parallel

Figure 4.83: a) The two springs shown
are in series because the carry the same load
and their displacements add. b) These two
springs are in parallel because the have a
common displacement and their forces add.

(Filename:tfigure.parallelconfusion)

Note, again, that the mechanics usage of the words ‘in parallel’ and ‘in series’
don’t always correspond to the geometric arrangement. For example the two springs
in Fig. 4.83a are in series and the two springs in Fig. 4.83b are in parallel.

T

T5 cm

a)

b)

c)

1 m

1 m0

5 cm

T

�

1 m
1

k

1.001 m.999 m

500,000 N

-500,000 N

T

�

Figure 4.84: a) a steel rod in tension, b)
tension verses length curve, c) zoom in on
the tension verses length curve

(Filename:tfigure.steelrodspring)

Solid bars are linear springs
When a structure or machine is built with literal springs (e.g., a wire helix) it is
common to treat the other parts as rigid. But when a structure has no literal springs
the small amount of deformation in rigid looking objects can be important, especially
for determining how loads are shared in redundant structures.

Let’s consider a 1 m (about a yard) steel rod with a 5 cm square (about (2 in)2)
cross section (Fig. 4.84a). If we plot the tension verses length we get a curve like
Fig. 4.84b. The length just doesn’t visibly change (unless the tension got so large as to
damage the rod, not shown.) But, when you pull on anything, it does deform at least
a little. If we zoom in on the tension verses length plot we get Fig. 4.84c. To change
the length by one part in a thousand we have to apply a tension of about 500, 000 N
(about 60 tons). Nonetheless the plot reveals that the solid steel rod behaves like a
(very stiff) linear spring.

Surprisingly perhaps this little bit of compliance is important to structural engi-
neers who often like to think of solid metal rods as linear springs. How does their
stiffness depend on their shape and composition? 1©.

1© Because it is hard to picture steel de-
forming, your intuition may be helped by
thinking of all solids as being rubber, or,
if you want to look inside, like a chunk of
Jello. (Jello is colored water held together
by long gelatine molecules extracted from
animal hooves. Those who are Kosher or
vegetarian may substitute a sea-weed based
Agar jell in their imagined deformation ex-
periments. )

Let’s take a reference bar with cross sectional area A0 and rest length �0 and pull
it with tension T and measure the elongation ��0 (Fig. 4.85ab). The stiffness of this
reference rod is k0 = T0/��0. Now put two such rods side by side and you have
parallel springs. You might imagine this sequence: two bars are near each other,
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then side by side, then touching each other, then glued together, then melted together
into one rod with twice the cross section. The same tension in each causes the same
elongation, or it takes twice the tension to cause the same elongation when you have
twice the cross sectional area. Likewise with three side by side bars and so on, so for
bars of equal length

T

A0

�0

�0
�0

��

��

2��

T

T

T

T

T

T

T

a)

b)

c)

d)

e)

Figure 4.85: a) reference rod, b) refer-
ence rod in tension, c) two reference rods
side by side, d) and e) two reference rods
glued end to end.

(Filename:tfigure.steelparallel)

k = A

A0
k0.

On the other hand we could put the reference rods end to end in series. Then the
same tension causes twice the elongation. We could be three or more rods together
in series thus for bars with equal cross sections:

k = �0

�
k0.

Putting these together we get:

k =
(

A

A0

) (
�0

�

)
k0 =

(
k0�0

A0

)
A

�
.

Now presumably if we took a rod with a given material, length, and cross section the

stiffness would be k, no matter what the dimensions of the reference rod. So
(

k0�0
A0

)
has to be a material constant. It is called E , the modulus of elasticity or Young’s
modulus. For all steels E ≈ 30 · 106 lbf/ in2 ≈ 210 · 109 N/ m2 (consistent with
Fig. 4.84c). Aluminum has about a third this stiffness. So, a solid bar is a linear
spring, obeying the spring equations:

k = E A

�
or �� = T �

E A
or T = �� E A

�

Strength and stiffness
Most often when you build a structure you want to make it stiff and strong. The ideas
of stiffness and strength are so intimately related that it is sometimes hard to untangle
them. For example, you might examine a product in discount store by putting your
hand on it, applying small forces and observing the motion. Then you might say:
“pretty shaky, I don’t think it will hold up” meaning that the stiffness is low so you
think the thing may break if the loads get high.

Although stiffness and strength are often correlated, they are distinct concepts.
Something is stiff if the force to cause a given motion is high. Something is strong if
the force to cause any part of it to break is high. In fact, it is possible for a structure
to be made weaker by making it stiffer.

Example: Stiffer but weaker.

k0 , T0
(a)

F

(b)

A B

F

Say all springs have stiffness k0 and break when the tension in them
reaches T0. Because of the mixture of parallel and series springs, the net
stiffness of the structure in (a) is knet = k0. Its strength is 2T0 because
none of the springs reaches its breaking tension until F = T0.
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By doubling up one of the springs in (b) the structure is made 16%
stiffer (knet = 7k0/6. But spring AB now reaches its breaking point T0
when the applied load F = 21T0/12, a 12.5% lower load than the 2T0
the structure could carry before the stiffening.

The structure is made stiffer by reducing the deflection of point A. But
this causes spring AB to stretch more and thus break at a smaller load. In
some approximate sense, the load is thus concentrated in spring AB. This
concentration of load into one part of structure is one reason that stiffness
and strength need to be considered separately. Load concentration (or
stress concentration) is a major cause of structural failure. ✷

Why aren’t springs in all mechanical models?
All things deform a little under load. Why don’t we take this deformation into
account in all mechanics calculations by, for example, modeling solids as elastic
springs? Because many problems have solutions which would be little effected by
such deformation. In particular, if a problem is statically determinate then very small
deformations only have a very small effect on the equilibrium equations and calculated
forces.

Linear springs are just one way to model ‘give’
If it is important to consider the deformability of an object, the linear spring model
is just one simple model. It happens to be a good model for the small deformation
of many solids. But the linear spring model is defined by the two words ‘linear’ and
‘elastic’. For some purposes one might want to model the force due to deformation as
being non-linear, like T = k1(��)+ k2(��)3. And one may want to take account of
the dissipative or in-elastic nature of something. The most common example being
a linear dashpot T = c�̇. Various mixtures of non-linearity and inelasticity may be
needed to model the large deformations of a yielding metal, for example.
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4.5 A puzzle with two springs and three ropes.

This is a tricky puzzle.
Consider a weight hanging from 3 strings (BD,BC, and AC)

and 2 springs (AB and CD) as in the left picture below. Point B is
above point C and all ropes and springs are somewhat taught (none
is slack).

D

K,�0

K,�0

�1

�
�1

d

B

A

a) ? b) ? c) ?

C

W

When rope BC is cut does the weight go (a) down?, (b)
up?, or (c) stay put?

If you have the energy and curiosity you should stop reading and try
thinking, experimenting, or calculating when you see three dots.

• • •
In 15 minutes or so you can set up this experiment with 3 pieces of
string, 2 rubber bands and a soda bottle. Hang the partially filled
soda bottle from a door knob (or the top corner of a door, or a ruler
cantilevered over the top of a refrigerator). Adjust the string lengths
and amount of weight so that no strings or rubber bands are slack and
make sure point B is above point C. The two points A can coincide
as can the two points D. You might want to separate them a little
with, say, a small wad of paper so you can see which string is which.

• • •
Looking at your experimental setup, but not pulling and poking at
it, try to predict whether your bottle will go up down or not move
when you cut the middle string.

• • •
The answer is, by experiment, that: When you cut the middle string the weight goes up a

little. This violates many people’s intuitions. In fact, this puzzle was
published as one of a class of problems for which people have poor
intuitions.

• • •
Now try to figure out why the experiment comes out the way it does?
Also, try to figure out the error in your thinking if you got it wrong
(like most people do).

• • •
All simple explanations are based on the assumption that the lengths
of the strings AC and BD are constant at �1.

• • •
To simplify the reasoning let’s assume that springs AB and CD
are identical and carry the same tension Ts and that the ropes AC
and BD carry the same tension Tr . As usual, we need free body
diagrams. (With the symmetry we have assumed diagrams (a) and
(c) provide identical information.) The three free body diagrams
can be considered before and after the middle string removal by
having Td > 0 or Td = 0, respectively. Vertical force balance gives
(approximating Td as vertical):

Ts +Tr = W and 2Tr +Td = W ⇒ Ts = (W +Td )/2.

Because we approximate AC as rigid with length �1, the downwards
position of the weight is the string length �1 plus the rest length of
the spring �0 plus the stretch of the spring Ts/k:

� = �1 + �0 + Ts/k = �1 + �0 + (W + Td )/(2k).

In the course of this experiment �1, �0, W and k are constants. So
as the tension Td goes from positive to zero (when the rope BC is
cut) � decreases. So the weight goes up.

• • •
More intuitively, start with the configuration with the rope already
cut and apply a small upwards force at C. It has no effect on the
tension in spring CD thus the weight does not move. Now apply a
small downwards force at B. This does stretch spring AB and thus
lower point B, thus lowering the weight since �1 is constant. Ap-
plying both simultaneously is like attaching the middle rope. Thus
attaching the middle rope lowers the weight and cutting the middle
rope raises it again.

• • •
Here is another intuitive approach. Point C can’t move. Point B
moves up and down just as much as the weight does. Point B is
a distance d above point C. Since the rope BC is taught, releasing
it will allow B and C to separate, thus increasing d and raising the
weight.

• • •
What about springs in parallel and series? Here is a quick but wrong
explanation for the experimental result, though it happens to predict
the right answer, or at least the right direction of motion.

“Before rope BC is cut the two springs are more or
less in series because the load is carried from spring
through BC to spring. Afterwards they are more or
less in parallel because they have the same stretch
and share the load. Two springs in parallel have 4
times the stiffness of the same two springs in series.
So in the parallel arrangement the deflection is less.
So the weight goes up when the springs switch from
series to parallel.”

What is the error in this thinking? The position of the weight
comes from spring deflection added to the position when there is
no weight. For the argument just presented to make sense, the rest
position of the mass (with gravity switched off) would have to be
the same for the supposed ‘series’ and ‘parallel’ cases, which it is
not (�1 + �0 �= �0 + d + �0).

Ts

Tr

TsTr

W

B

a)

c)

b)C

D

Td
TrTr

W

C

D

W

D

Another way to see the fallacy of this ‘parallel verses series’
argument is that the incremental stiffness of the system is, assuming
inextensible ropes, infinite. That is, if you add or subtract a small
load to the bottle it doesn’t move until one or another rope goes
slack. (The small deformation you do see has to do with the stretch
of the ropes, something that none of the simple explanations take
into account.) If the springs were in series or parallel we would
expect an incremental stiffness that was related to spring stretch not
rope stretch.
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SAMPLE 4.18 Springs in series versus springs in parallel: Two springs with

k2

A

B

k2

k1 k1

F

(b)(a)

y

Fy

Figure 4.86: (Filename:sfig4.2springs)

spring constants k1 = 100 N/m and k2 = 150 N/m are attached together as shown in
Fig. 4.86. In case (a), a vertical force F = 10 N is applied at point A, and in case (b),
the same force is applied at the end point B. Find the force in each spring for static
equilibrium. Also, find the equivalent stiffness for (a) and (b).

Solution In static equilibrium, let �y be the displacement of the point of application
of the force in each case. We can figure out the forces in the springs by writing force
balance equations in each case.

• Case (a): The free body diagram of point A is shown in Fig. 4.87. As point A

F

k2∆y

k1∆yF1 =

F1 =

Figure 4.87: Free body diagram of point
A.

(Filename:sfig4.2springs.a)

is displaced downwards by �y, spring 1 gets stretched by �y whereas spring 2
gets compressed by �y. Therefore, the forces applied by the two springs, k1�y
and �k2 y, are in the same direction. Then, the force balance in the vertical
direction, ̂ · (

∑ ⇀
F = ⇀

0), gives:

F = F1 + F2 = (k1 + k2)�y

⇒ �y = F

k1 + k2
= 10 N

(100 + 150) N/m
= 0.04 m

⇒ F1 = k1�y = 100 N/m · 0.04 m = 4 N

⇒ F2 = k2�y = 150 N/m · 0.04 m = 6 N

The equivalent stiffness of the system is the stiffness of a single spring that will
undergo the same displacement �y under F . From the equilibrium equation
above, it is easy to see that,

ke = F

�y
= k1 + k2 = 250 N/ m.

F1 = 4 N, F2 = 6 N, ke = 250 N/ m
• Case (b): The free body diagrams of the two springs is shown in Fig. 4.88

∆y

action-reaction 
pair

action-reaction 
pair

k1y1

k1y1

k1y1

k2y2

k2y2

Figure 4.88: Free body diagrams
(Filename:sfig4.2springs.b)

along with that of point B. In this case both springs stretch as point B is displaced
downwards. Let the net stretch in spring 1 be y1 and in spring 2 be y2. y1 and
y2 are unknown, of course, but we know that

y1 + y2 = �y (4.52)

Now, using the free body diagram of point B and writing the force balance
equation in the vertical direction, we get F = k2 y2 and from the free body
diagram of spring 2, we get k2 y2 = k1 y1. Thus the force in each spring is the
same and equals the applied force, i.e.,

F1 = k1 y1 = F = 10 N and F2 = k2 y2 = F = 10 N.

The springs in this case are in series. Therefore, their equivalent stiffness, ke,
is

ke =
(

1

k1
+ 1

k2

)−1

=
(

1

100 N/m
+ 1

150 N/m

)−1

= 60 N/m.

Note that the displacements y1 and y2 are different in this case. They can be
easily found from y1 = F/k1 and y2 = F/k2.

F1 = F2 = 10 N, ke = 60 N/m

Comments: Although the springs attached to point A do not visually seem to be in
parallel, from mechanics point of view they are parallel. Springs in parallel have the
same displacement but different forces. Springs in series have different displacements
but the same force.
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SAMPLE 4.19 Stiffness of three springs: For the spring networks shown in
F

(b)

(a)

2 kk

k

F

2 kk

k

Figure 4.89: (Filename:sfig4.3springs)

Fig. 4.89(a) and (b), find the equivalent stiffness of the springs in each case, given
that each spring has a stiffness of k = 20 N/m.

Solution

(a) In Fig. 4.89(a), all springs are in parallel since all of them undergo the same
displacement �x in order to balance the applied force F . Each of the two
springs on the left stretches by �x and the spring on the right compresses by
�x . Therefore, the equivalent stiffness of the three springs is

kp = k + k + 2k = 4k = 80 kN/ m.

Pictorially,

2 k

2 k 2 k 4 k

k

k
x∆ x∆ x∆

Figure 4.90: (Filename:sfig4.3springs.a)

kequiv = 80 kN/ m

(b) In Fig. 4.89(b), the first two springs (on the left) are in parallel but the third
spring is in series with the first two. To see this, imagine that for equilibrium
point A moves to the right by �xA and point B moves to the right by �xB . Then
each of the first two springs has the same stretch �xA while the third spring has
a net stretch = �xB −�xA. Therefore, to find the equivalent stiffness, we can
first replace the two parallel springs by a single spring of equivalent stiffness
kp = k + k = 2k. Then the springs with stiffnesses kp are 2k are in series and
therefore their equivalent stiffness ks is found as follows.

1

ks
= 1

kp
+ 1

2k
= 1

2k
+ 1

2k
= 1

k

⇒ ks = k = 20 kN/ m.

2 k 2 k 2 k  kk

k
xA xB xA xB

xB∆ ∆∆ ∆ ∆

Figure 4.91: (Filename:sfig4.3springs.b)

kequiv = 20 kN/ m
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SAMPLE 4.20 Stiffness vs strength: Which of the two structures (network of springs)
shown in the figure is stiffer and which one has more strength if each spring has
stiffness k = 10 kN/m and strength F0 = 10 kN.

Figure 4.92: (Filename:sfig4.manysprings)

Solution In structure (a), all the three springs are in parallel. Therefore, the equiv-
alent stiffness of the three springs is

ka = k + k + k = 3k = 30 kN/ m.

For figuring out the strength of the structure, we need to find the force in each spring.

Figure 4.93: (Filename:sfig4.manysprings.a)

From the free body diagram in Fig. 4.93 we see that,

k�x + k�x + k�x = F ⇒ �x = F

3k
Therefore, the force in each spring is

Fs = k�x = F

3
But the maximum force that a spring can take is (Fs)max = F0 = 10 kN. Therefore,
the maximum force that the structure can take, i.e., the strength of the structure, is

Fmax = 3F0 = 30 kN.

Stiffness = 30 kN/m, Strength = 30 kN

Now we carry out a similar analysis for structure (b). There are four parallel chains
in this structure, with each chain containing two springs in series. The stiffness of
each chain, kc, is found from

1

kc
= 1

k
+ 1

k
= 2

k
⇒ kc = k

2
= 5 kN/ m.

So, the stiffness of the entire structure is

kb = kc + kc + kc + kc = 4kc = 20 kN/ m.

We find the force in each spring to be F/4 from the free body diagram shown in

Figure 4.94: (Filename:sfig4.manysprings.b)

Fig. 4.94. Therefore, the maximum force that the structure can take is

Fmax = 4F0 = 40 kN.

Stiffness = 20 kN/m, Strength = 40 kN

Thus, the structure in Fig. 4.92(a) is stiffer but the structure in (b) is stronger (more
strength).
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SAMPLE 4.21 Compliance matrix of a structure: For the two-spring structure shown

θ = 30o C
A

k1

k2

B

⇀
F

Figure 4.95: (Filename:sfig4.springs.compl)

in the figure, find the deflection of point C when

(a)
⇀
F = 1 Nı̂,

(b)
⇀
F = 1 N̂ ,

(c)
⇀
F = 30 Nı̂ + 20 N̂ ,

The spring stiffnesses are k1 = 10 kN/m and k2 = 20 kN/m.

Solution

(a) Deflections with unit force in the x-direction: Let �
⇀
r = �x ı̂ + �y̂ be the

θ

Ck1F1
F1

F2

F2

F

k2

ı̂

̂

Figure 4.96: (Filename:sfig4.springs.compl.a)

displacement of point C of the structure due to the applied load. We can figure
out the deflections in each spring as follows. Let λ̂AC and λ̂BC be the unit vectors
along AC and BC, respectively. Then, the change in the length of spring AC
due to the displacement of point C is

�AC = λ̂AC · �
⇀
r

= ı̂ · (�x ı̂ + �y̂) = �x

Similarly, the change in the length of spring BC is

�BC = λ̂AC · �
⇀
r

= (cosθ ı̂ − sin θ ̂) · (�x ı̂ + �y̂) = �x cos θ − �y sin θ.

Now we can find the force in each spring since we know the deflection in each
spring.

Force in spring AB = F1 = k1�x (4.53)

Force in spring BC = F2 = k2(�x cos θ − �y sin θ). (4.54)

The forces in the springs, however, depend on the applied force, since they
must satisfy static equilibrium. Thus, we can determine the deflection by first
finding F1 and F2 in terms of the applied load and substituting in the equations
above to solve for the deflection components.

Figure 4.97: (Filename:sfig4.springs.compl.b)

Let
⇀
F = fx ı̂ = 1 Nı̂, (we have adopted a special symbol fx for the unit load).

Then, from the free body diagram of the springs and the end pin shown in
Fig. 4.97 and the force equilibrium (

∑ ⇀
F = ⇀

0), we have,

fx ı̂ − F1 ı̂ + F2(− cos θ ı̂ + sin θ ̂) = ⇀

0

Dotting with ̂ and ı̂ we get,

F2 = 0

F1 = fx = 1 N.

Substituting the values of F1 and F2 from above in eqns. (4.53 and 4.54), and
solving for �x and �y we get,(

�x
�y

)
⇀
F= fx ı̂

=
(

1
k1

1
k1

cot θ

)
fx . (4.55)

Substituting the given values of θ and k1 and fx = 1 N, we get

�
⇀
r = �x ı̂ + �y̂ = (100ı̂ + 173̂) × 10−6 m.

�
⇀
r = (100ı̂ + 173̂) × 10−6 m
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(b) Deflections with unit force in the y-direction: We carry out a similar analysis for
this case. We again assume the displacement of point C to be �

⇀
r = �x ı̂+�y̂ .

Since the geometry of deformation and the associated results are the same,
eqns. (4.53) and (4.54) remain valid. We only need to find the spring forces
from the static equilibrium under the new load. From the free body diagram in
Fig. 4.98 we have,

(−F1 − F2 cos θ)ı̂ + (F2 sin θ + F)̂ = ⇀

0

⇒ F2 = − F

sin θ
and F1 = −F2 cos θ = F cot θ.

Substituting these values of F1 and F2 in terms of fy in eqns. (4.53) and (4.54),
θ

Ck1F1
F1

F2

F2

F

k2

ı̂

̂

Figure 4.98: (Filename:sfig4.springs.compl.c)

we get

fy cot θ = k1�x ⇒ �x = fy

k1
cot θ

− fy

sin θ
= k2(�x cos θ − �y sin θ)

⇒ �y = 1

sin θ
(�x cos θ + fy

k2 sin θ
)

= fy

(
1

k1
cot2 θ + 1

k2
csc2 θ

)

Thus, (
�x
�y

)
⇀
F= fy ̂

=
(

1
k1

cot θ
1
k1

cot2 θ + 1
k2

csc2 θ

)
fy . (4.56)

Substituting the values of θ, k1, and k2, and fy = 1 N, we get

�
⇀
r = �x ı̂ + �y̂ = (173ı̂ + 500̂) × 10−6 m.

�
⇀
r = (173ı̂ + 500̂) × 10−6 m

(c) Deflection under general load: Since we have already got expressions for
deflections in the x and y-directions under unit loads in the x and y-directions,
we can now combine the results to find the deflection under any general load
⇀
F = Fx ı̂ + Fy ̂ as follows.

�
⇀
r =

(
�x
�y

)
= Fx ·

(
�x
�y

)
⇀
F=1ı̂

+ Fy ·
(

�x
�y

)
⇀
F=1̂

=
[

k−1
1 k−1

1 cot θ
k−1

1 cot θ k−1
1 cot2 θ + k−1

2 csc2 θ

] (
Fx

Fy

)
.

Once again, substituting all given values and Fx = 30 N and Fy = 20 N, we
get

�
⇀
r = (6.4ı̂ + 15.2̂) × 10−3 m.

�
⇀
r = (6.4ı̂ + 15.3̂) × 10−3 m

Note: The matrix obtained above for finding the deflection under general load is
called the compliance matrix of the structure. Its inverse is known as the stiffness
matrix of the structure and is used to find forces given deflections.
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SAMPLE 4.22 Zero length springs are special! A rigid and massless rod AB of

4

Figure 4.99: (Filename:sfig4.zerospring)

length 2 m supports a weight W = 100 kg hung from point B. The rod is pinned at O
and supported by a zero length (in relaxed state) spring attached at mid-point A and
point C on the vertical wall. Find the equilibrium angle θ and the force in the spring.

Solution The free body diagram of the rod is shown in Fig. 4.100 in an assumed

Figure 4.100: (Filename:sfig4.zerospring.a)

equilibrium state. Let λ̂ = − sin θ ı̂ + cos θ ̂ be a unit vector along OB. The spring
force can be written as

⇀
Fs = k ⇀

rC/A. We need to determine θ and δ.

Let us write moment equilibrium equation about point O, i.e., ,
∑ ⇀

MO = ⇀

0,

⇀
rB/O × ⇀

W + ⇀
rA/O × ⇀

Fs = ⇀

0

Noting that

⇀
rB/O = �λ̂,

⇀
rA/O = �

2
λ̂,

⇀
Fs = k ⇀

rC/A = k(
⇀
rC − ⇀

rA)

= k(h̂ − �

2
λ̂),

we get,

�λ̂× (−W ̂) + �

2
λ̂× k(h̂ − �

2
λ̂) = ⇀

0

−W�(λ̂× ̂) + kh
�

2
(λ̂× ̂) = ⇀

0

Dotting this equation with (λ̂× ̂), we get,

−W� + kh
�

2
= 0

⇒ kh = 2W.

Thus the result is independent of θ ! As long as the spring stiffness k and the height of
point C, h, are such that their product equals 2W , the system will be in equilibrium
at any angle. This is why zero length springs are special.

Equilibrium is satisfied at any angle if kh = 2W
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4.6 Structures and machines

The laws of mechanics apply to one body shown in one free body diagram. Yet
engineers design things with many pieces each of which may be thought of as a body.
One class of examples are trusses which you learned to analyze in section 4.2.

We would now like to analyze things built of pieces that are connected in a more
complex way. These things include various structures which are designed to not move
and various machines which are designed to move. Our general goal here is to find
the interaction forces and the ‘internal’ forces in the components.

The secret to our success with trusses was that all of the pieces in a truss are
two-force members. Thus free body diagrams of joints involved forces that were in
known directions. Because now the pieces are not all two-force bodies, we will not
know the directions of the interaction forces a priori and the method of joints will be
nearly useless.

Example: An X structure

J J

M1M4

M2

M3

F2

F4

F6

F8
F1F7

F3F5

FBD of 'joint' J

Two bars are joined in an ‘X’ by a pin at J. Neither of the bars is a two-
force body so a free body diagram of the ‘joint’ at J, made by cutting and
leaving stubs as we did with trusses, has 12 unknown force and moment
components. ✷

Instead of drawing free body diagrams of the connections, our approach here is to
draw free body diagrams of each of the structure or machine’s parts. Sometimes, as
was the case with trusses, it is also useful to draw a free body diagram of a whole
structure or of some multi-piece part of the structure 1©.

1© You might wonder why we didn’t ana-
lyze trusses this way, by drawing free body
diagrams of each of the bars. This seldom
used approach to trusses, the ‘method of
bars and pins’ is discussed in box 4.6 on 187.

Example: Stamp machine

Pulling on the handle (below) causes the stamp arm to press down
with a force N at D. We can find N in terms of Fh by draw-
ing free body diagrams of the handle and stamp arm, writing
three equilibrium equations for each piece and then solving these
6 equations for the 6 unknowns (Ax , Ay , FC , N , Bx , and By).
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stamp arm

FBDs

handle

C

C

A

A

C

FC

N

d

h

Ax

Ay

B

B

D

D

FC

Fh

Fh

Bx

By

ı̂

̂

�

w

For this problem, the answer can be found more quickly with a judicious
choice of equilibrium equations.

For the handle,
{∑ ⇀

M/B = ⇀

0
}

· k̂ ⇒ −hFh + d Fc = 0

For the stamp arm,
{∑ ⇀

M/A = ⇀

0
}

· k̂ ⇒ −(d + w)Fc + �N = 0

eliminating Fc ⇒ N = h(d + w)

d�
Fh .

Note that the stamp force N can be made very large by making d small
and thus the handle nearly vertical. Often in structural or machine design
one or another force gets extremely large or small as the design is changed
to put pieces in near alignment. ✷

Static determinacy

A statically determinate structure has a solution for all possible applied loads, has only
one solution, and this solution can be found by using equilibrium equations applied
to each of the pieces. As for trusses, not all structures are statically determinate. The
simple counting formula that is necessary for determinacy but does not guarantee
determinacy is:

number of equations = number of unknowns

Where, in 2D, there are three equilibrium equations for each object. There are
two unknown force components for every pin connection, whether to the ground
or to another piece. And there is one unknown force component for every roller
connection whether to the ground or between objects. Applied forces do not count in
this determinacy check, even if they are unknown.
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Example: ’X’ structure counting

In the ‘X’ structure above we can count as follows.

number of equations
?= number of unknowns

(3 eqs per bar) · (2 bars)
?= (2 unknown force comps per pin) · (3 pins)

6 eqs
√
= 6 unknown force components

So the ‘X’ structure passes the counting test for static determinacy. ✷

Indeterminate structures are mechanisms
An indeterminate structure cannot carry all loads and, if not also redundant, has more
equilibrium equations than unknown reaction or interaction force components. Such
a structure is also called a mechanism. The stamp machine above is a mechanism if
there is assumed to be no contact at D. In particular the equilibrium equations cannot
be satisfied unless Fh = 0. Mechanisms have variable configurations. That is, the
constraints still allow relative motion.

An attempt to design a rigid structure that turns out to be a mechanism is a design
failure. But for machine design, the mechanism aspect of a structure is essential.
Even though mechanisms are called ‘statically indeterminate’ because they cannot
carry all possible loads, the desired forces can often be determined using statics. For
the stamp machine above the equilibrium equations are made solvable by treating
one of the applied forces, say N , as an unknown, and the other, F in this case, as a
known. This is a common situation in machine design where you want to determine
the loads at one part of a mechanism in terms of loads at another part. For the purposes
of analysis, a trick is to make a mechanism determinate by putting a pin on rollers
connection to ground at the location of any forces with unknown magnitudes but
known directions.

Example: Stamp machine with roller

Putting a roller at D, the location of the unknown stamp force, turns the
stamp machine into a determinate structure.

stamp arm

handle

C

A

B

D

Fh

✷
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Redundant structures
A redundant structure can carry whatever loads it can carry in more than one way.
If not also indeterminate, a redundant structure has fewer equilibrium equations than
unknown reaction or interaction force components.

We generally avoid trying to find those force components which cannot
be found uniquely from the equilibrium equations. Finding them depends on
modeling the deformation, a topic emphasized in advanced structural courses.

Example: Overbraced ‘X’

The structure above is evidently redundant because it has a bar added to
a structure which was already statically determinate. By counting we get

number of equations
?= number of unknowns

3 · (number of bars︸ ︷︷ ︸
3

)
?= 2 · (number of joints︸ ︷︷ ︸

5

)

9 eqs < 10 unknown force components

thus demonstrating redundancy. ✷

Some common mechanical designs
Rigid bodies can be connected in various arrangements for various purposes. Here
we describe several basic machine fragments.

A lever
FA

FC

FB
C

A

b a
c

Figure 4.101: A lever can have the pivot
in various places. The free body diagram
looks the same in any case.

(Filename:tfigure.lever)

Maybe the simplest machine, and one we have mentioned several times, is a lever
(fig. 4.101). An ideal lever is a rigid body held in place with a frictionless hinge and
with two other applied loads. The hinge could be at point A, B or C and the free
body diagram of fig. 4.101 is the same. The study of the lever precedes the change
of mechanics from a taxonomic to a quantitative subject. So there is specialized
antiquated vocabulary of levers, classifying them depending on where the pivot is
located, and on which force you think of as input and which you think of as output.
For historical curiosity: A ‘class one’ lever has the pivot in the middle; a ‘class two’
lever has the pivot at one end and the input force at the other; and a ‘class three’ lever
has the pivot at one end and the input force in the middle.

Lots of things can be viewed as levers including, for example, a wheelbarrow, a
hammer pulling a nail, a boat oar, one half of a pair of tweezers, a break lever, a gear,
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and, most generally, any three-force body. Using the equilibrium relations on the free
body diagram in fig. 4.101 you can find that

FA

a
= FB

b
= FC

c

from which you can find the relation between any pair of the forces. In practice
it is undoubtedly easier to use moment balance about an appropriate point than to
memorize this formula.

Gears

A

A

B

RAi
RBi

RAo

RAi

FA

FB

FB

MB

FA

RBo

B
RB

RA

RAo

RBi

RBo

F

F

MA

MB

MA

F

F

c)

d)

a)

b)

Figure 4.102: a) Two gear pairs pulled
out of a transmission with forces on the
teeth, b) Free body diagrams, c) The same
gear pair, but loaded with tooth-forces from
unseen gears, d) the consequent free body
diagrams.

(Filename:tfigure.gears)

A transmission is used to ‘transmit’ motion caused at one place to motion at another
and, generally to also speed it up or slow it down. Simultaneously force or moment
is transmitted from one point to another, generally being attenuated or amplified.
One type of transmission is based on gears (Fig. 4.102a). If we think of the input
and output as the moments on the two gears, we find from the free body diagram in
Fig. 4.102b that

For gear A,
{∑ ⇀

Mi/A = ⇀

0
}

· k̂ ⇒ −RA F + MA = 0

For gear B,
{∑ ⇀

Mi/B = ⇀

0
}

· k̂ ⇒ −RB F + MB = 0

eliminating F ⇒ MB = RB

RA
MA or MA = RA

RB
MB

depending on which you want to think of input and which as output. The force
amplification or attenuation ratio is just the radius ratio, just like for a lever.

Because the spacing of gear teeth for both of a meshed pair of gears is the same,
a gears circumference, and hence its radius is proportional to the number of teeth.
And formulas involving radius ratios can just as well be expressed in terms of ratios
of numbers of teeth. The tooth ratio is not just used as an approximation to the radius
ratio. Averaged over the passage of several teeth, it is exactly the reciprocal ratio of
the turning rates of the meshed gears.

Two gears pulled out of a bigger transmission are shown in Fig. 4.102c. Gear A
has an inner part with radius RAi welded to an outer part with radius RAo . Gear B
also has an inner part welded to an outer part.

Moment balance about A in the first free body diagram in Fig. 4.102d gives
that RAi FA = RAo F . You can think of the one gear as a lever (see Fig. 4.103).

Figure 4.103: One gear may be thought
of as a lever.

(Filename:tfigure.gearisalever)

Moment balance about B in the second free body diagram gives that RBi F = RBo FB .
Combining we get

FB = RAi

RAo

RBi

RBo

FA or FA = RAo

RAi

RBo

RBi

FB

depending on which force you want to find in terms of the other. The transmission
attenuates the force if you think of FA as the input and amplifies the force if you think
of FB as the input. If the inner gears have one tenth the radius of the outer gears than
the multiplication or attenuation is a factor of 100.

An ideal wedge

Wedges are kind of machine. For an ideal wedge one neglects friction, effectively
replacing sliding contact with rolling contact (see Fig. 4.104ab). Although this ap-
proximation may not be accurate, it is helpful for building intuition. For the free
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body diagrams of Fig. 4.104c we have not fussed over the exact location of the con-
tact forces since the key idea depends on force balance and not moment balance.
Neglecting gravity,

For block A,
{∑ ⇀

Fi = ⇀

0
} · ̂ ⇒ −FA + F sin θ = 0

For block B,
{∑ ⇀

Fi = ⇀

0
} · ı̂ ⇒ −FB + F cos θ = 0

eliminating F ⇒ FB = 1

tan θ
FA.

To multiply the force FA by 10 takes a wedge with a taper of θ = tan−1 0.1 ≈ 6o.

A

B

FA

FB

FA

FB

FA

NA

NB

FB
F

F

A

B

ı̂

̂

θ

θ

θ

(a)

(b)

(c)

Figure 4.104: a) A wedge, b) treated as
frictionless in the ideal case, c) free body
diagrams

(Filename:tfigure.wedge)

With this taper, an ideal wedge could also be viewed as a device to attenuate the force
FB by a factor of 10, although wedges are never used for force attenuation in practice,
as we now explain.

A wedge with friction

In the real world frictionless things are hard to find. Nonetheless the concept of a
frictionless bearing can be a reasonable idealization because of rollers, grease, and
the big lever-arm that the wheel periphery has compared to the axle radius. In the
case of wedges, neglecting friction is not generally an accurate model.

Consideration of friction qualitatively changes the behavior of the machine. For
simplicity we still take the wall and floor interactions to be frictionless.

Figure 4.105 shows free body diagrams of wedge blocks. We draw separate free
body diagrams for the case when (a) block A is sliding down and block B to the right,
and (b) block A is sliding up and block B to the right. In both cases the friction resists
relative slip and obeys the sliding friction relation

Ff = tan φ︸︷︷︸
µ

N

where Fig. 4.105 shows the resultant contact force (normal component plus frictional
component) and its angle φ to the surface normal.

FA

NA

NB

FB
F

F

F

Ff

F

FA

NA

NB

FB

θ

a)

b)

φ φ

φ

φ

Figure 4.105: Free body diagrams of a
wedge a) assuming A slides down, b) as-
suming A slides up

(Filename:tfigure.wedgefriction)

Assuming block A is sliding down we get from free body diagram 4.105a that

For block A,
{∑ ⇀

Fi = ⇀

0
} · ̂ ⇒ −FA + F sin(θ + φ) = 0

For block B,
{∑ ⇀

Fi = ⇀

0
} · ı̂ ⇒ −FB + F cos(θ + φ) = 0

eliminating F ⇒ FB = 1

tan(θ + φ)
FA. (4.57)

If we take a taper of 6o and a friction coefficient of µ = .3 (⇒ φ ≈ 17o) we get
that FB/FA ≈ 2.5 instead of 10 as we got when neglecting friction. The wedge
still serves as a way to multiply force, but substantially less so than the frictionless
idealization led us to believe. Now lets consider the case when force FB is pushing
block B to the left, pinching block A, and forcing it up. The only change in the
calculation is the change in the direction of the friction interaction force. From free
body diagram 4.105b

For block A,
{∑ ⇀

Fi = ⇀

0
} · ̂ ⇒ −FA + F sin(θ − φ) = 0

For block B,
{∑ ⇀

Fi = ⇀

0
} · ı̂ ⇒ −FB + F cos(θ − φ) = 0

eliminating F ⇒ FA = tan(θ − φ)FB . (4.58)

Again using θ = 6o and φ = 17o we see that if FB = 100 lbf that FA = tan(−11o) ·
100 lbf ≈ −20 lbf. That is, the 100 pounds doesn’t push block A up at all, but even
with no gravity you need to pull up with a 20 pound force to get it to move. If we
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insist that the downwards force FA is positive or zero, that the pushing force FB is
positive, and that block A is sliding up then there is no solution to the equilibrium
equations whenever φ > θ . (Actually we didn’t need to do this second calculation at
all. Eqn 4.57 shows the same paradox when θ + φ > 90o. Trying to squeeze block
B to the right for large θ is exactly like trying to squeeze block A up for small θ .)

This self locking situation is intuitive. In fact it’s hard to picture the contrary, that
pushing a block like B would lift block A. If you view this wedge mechanism as a
transmission, it is said to be non-backdrivable whenever φ > θ . That is, pushing
down on A can ‘drive’ block B to the right, but pushing to the left on block B cannot
push block A ‘back’ up. Non-backdrivability is a feature or a defect depending on
context.

The borderline case of backdrivability is when θ = φ and FB = FA/ tan 2θ .
Assuming θ is a fairly small angle we get

FB = FA

tan 2θ
≈ FA

2θ
≈ 1

2

FA

tan θ
≈ 1

2
· (the value of FB had there been no friction).

Thus the design guideline: non-back-drivable transmissions are generally 50% or
less efficient, they transmit 50% or less of the force they would transmit if they were
frictionless.

To use a wedge in this backwards way requires very low friction. A rare case
where a narrow wedge is back drivable is with fresh wet watermelon seed squeezed
between two pinched fingers.

Pulley and chain drives

chain/belt

sprockets/
pulleys

A B

MA

MB

MB
MA

RA

FA

T1 T1

T2 T2

RB

Figure 4.106: a) A chain or pulley drive
involving two sprockets or pulleys and one
chain or belt, b) free body diagrams of each
of the sprockets/pulleys.

(Filename:tfigure.chainpulley)

Chain and pulley drives are kind of like spread out gears (Fig. 4.106). The rotation
of two shafts is coupled not by the contact of gear teeth but by a belt around a pulley
or a chain around a sprocket. For simple analysis one draws free body diagrams for
each sprocket or pulley with a little bit of chain as in Fig. 4.106b. Note that T1 	= T2,
unlike the case of an ideal undriven pulley. Applying moment balance we find,

For gear A,
{∑ ⇀

Mi/A = ⇀

0
}

· k̂ ⇒ −RA(T2 − T1) + MA = 0

For gear B,
{∑ ⇀

Mi/B = ⇀

0
}

· k̂ ⇒ RB(T1 − T2) − MB = 0

eliminating (T2 − T1) ⇒ MB = RB

RA
MA or MA = RA

RB
MB

exactly as for a pair of gears. Note that we cannot find T2 or T1 but only their
difference. Typically in design if, say, MA is positive, one would try to keep T1 as
small as possible without the belt slipping or the chain jumping teeth. If T1 grows
then so must T2, to preserve their difference. This increase in tension increases the
loads on the bearings as well as the chain or belt itself.

4-bar linkages

Four bar linkages often, confusingly, have 3 bars, the fourth piece is the something
bigger. A planar mechanism with four pieces connected in a loop by hinges is a

1

2

3

4

a)

b)

c)

d)

e)

1 1

1

2

2

3

3

4

4wall

door closer

ladder

door

2
4

3

F2

F2

Figure 4.107: Four bar linkages. a) A
bicycle, thigh, calf, and crank, b) a door
closer, c) a folding ladder, d) a generic
mechanism, e) free body diagrams of the
parts of a generic mechanism.

(Filename:tfigure.fourbar)

four bar linkage. Four bar linkages are remarkably common. After a single body
connected at a hinge (like a gear or lever) a four bar linkage is one of the simplest
mechanisms that can move in just one way (have just one degree of freedom).

A reasonable model of seated bicycle pedaling uses a 4-bar linkage (Fig. 4.107a).
The whole bicycle frame is one bar, the human thigh is the second, the calf is the
third, and the bicycle crank is the fourth. The four hinges are the hip joint, the knee
joint, the pedal axle, and the bearing at the bicycle crank axle. A more sophisticated
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model of the system would include the ankle joint and the foot would make up a fifth
bar.

A standard door closing mechanism is part of a 4-bar linkage (Fig. 4.107b). The
door jamb and door are two bars and the mechanism pieces make up the other two.

A standard folding ladder design is, until locked open, a 4-bar linkage
(Fig. 4.107c).

An abstracted 4-bar linkage with two loads is shown in Fig. 4.107d with free body
diagrams in Fig. 4.107e. If one of the applied loads is given, then the other applied
load along with interaction and reaction forces make up nine unknown components
(after using the principle of action and reaction). With three equilibrium equations
for each of the three bars, all these unknowns can be found.

Slider crank

A mechanism closely related to a four bar linkage is a slider crank (Fig. 4.108a). An
umbrella is one example (rotated 90o in Fig. 4.108b). If the sliding part is replaced
by a bar, as in Fig. 4.108c, the point C moves in a circle instead of a straight line. If
the height h is very large then the arc traversed by C is nearly a straight line so the
motion of the four-bar linkage is almost the same as the slider crank. For this reason,
slider cranks are sometimes regarded as a special case of a four-bar linkage in the
limit as one of the bars gets infinitely long.

C

C

h

a)

c)

b)

Figure 4.108: a) a slider crank, b) an um-
brella has a slider-crank mechanism, c) the
equivalent four-bar linkage, at least when
h → ∞.

(Filename:tfigure.slidercrank)

Summary of structures and machines

The basic approach to the statics of structures and machines in 2D is straightforward
and involves no tricks:

(a) Draw free body diagrams for each of the components.
(b) On the free body diagram use the principle of action and reaction to relate the

forces on interacting components.
(c) Write three independent equilibrium equations for each piece (Say, force bal-

ance and moment balance, or moment balance about three non-colinear points).
(d) Solve these equations for the desired unknowns.

If you are lazy and resourceful, you can sometimes save work by

• drawing a free body diagram of the whole structure or some collection of pieces,
or

• using appropriate equilibrium equations that avoid variables that you don’t
know and don’t care about.
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4.6 The ‘method of bars and pins’ for trusses

A statically determinate truss is a special case of the type of structure
discussed in this section. So the methods of this section should work.
They do and the resulting method, which is essentially never used
in such detail, we will call ‘the method of bars and pins’.

In the method of bars and pins you treat a truss like any other
structure. You draw a free body diagram of each bar and of each pin.
You use the principle of action and reaction to relate the forces on the
different bars and pins. Then you solve the equilibrium equations.

Assuming a frictionless round pin at the hinge, all the bar forces
on the pin pass through its center.

Thus, in 2D, you get two equilibrium equations for each pin and
three for each bar. If you apply the three bar equations to a given
bar you find that it obeys the two-force body relations. Namely, the
reactions on the two bar ends are equal and opposite and along the
connecting points. Now application of the pin equilibrium equations
is identical to the joint equations we had previously. Thus, the
‘method of bars and pins’ reduces to the method of joints in the end.

Another approach is to ignore the pins and just think of a truss as
bars that are connected with forces and no moments. Draw free body
diagrams of each piece, use the principle of action and reaction, and
write the equilibrium equations for each bar. This is the approach
that is used in this section for other structures.

However this approach leads to a difficulty if more than two bars
are connected at one hinge. The law of action and reaction is stated
for pair-wise interactions not for triples or quadruples. Nonetheless,
one can proceed by the following trick.

At each joint where say bars A, B, and C are connected, brake
the connection into pair-wise interactions. For example, imagine
a frictionless hinge connecting A to B and one connecting B to C
but ignore the connection of A with C. That the two connections are
spatially coincident is confusing but not a problem. On the free body
diagram of A a force will show from B. On the free body diagram of
B forces will show from A and C. And on the free body diagram of C
a force will show from B. (Beware not to assume that the force from
B onto A or C is along B.) The truss is thus analyzable by writing
the equilibrium equations for these bars in terms of the unknown
interaction forces.

Partial Structure

Partial FBD's

A C

B

FB FA

FB FA
The trick above can also be used for the analysis of structures

and machines that have multiple pieces connected at one point. In
the machines treated in this section we have avoided the difficulty
above by only considering connections between pairs of bodies. This
covers many mechanisms and structures but unfortunately does not
cover many trusses. For trusses this trickiness can be avoided by use
of the method of joints.
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SAMPLE 4.23 A slider crank: A torque M = 20 N·m is applied at the bearing end

A

D

B C

Figure 4.109: (Filename:sfig4.mech.slider)

A of the crank AD of length � = 0.2 m. If the mechanism is in static equilibrium in
the configuration shown, find the load F on the piston.

Solution The free body diagram of the whole mechanism is shown in Fig. 4.110.

D

Figure 4.110: (Filename:sfig4.mech.slider.a)

From the moment equilibrium about point A,
∑ ⇀

MA = ⇀

0, we get

⇀
M + ⇀

rB/A × (
⇀
B + ⇀

F ) = ⇀

0

−M k̂ + 2� cos θ ı̂ × (By ̂ − F ı̂) = ⇀

0

(−M + 2By� cos θ)k̂ = ⇀

0

⇒ By = M

2� cos θ

The force equilibrium,
∑ ⇀

F = ⇀

0, gives

(Ax − F)ı̂ + (Ay + By)̂ = 0

Ax = F

Ay = −By

Note that we still need to find F or Ax . So far, we have had only three equations

θ

Figure 4.111: (Filename:sfig4.mech.slider.b)

in four unknowns (Ax , Ay, By, F). To solve for the unknowns, we need one more
equation. We now consider the free body diagram of the mechanism without the
crank, that is, the connecting rod DB and the piston BC together. See Fig. 4.111.
Unfortunately, we introduce two more unknowns (the reactions) at D. However, we
do not care about them. Therefore, we can write the moment equilibrium equation
about point D,

∑ ⇀
MD = ⇀

0 and get the required equation without involving Dx and
Dy .

⇀
rB/D × (−F ı̂ + By ̂) = ⇀

0

�(cos θ ı̂ − sin θ ̂) × (−F ı̂ + By ̂) = ⇀

0

By� cos θ k̂ − F� sin θ k̂ = ⇀

0

Dotting the last equation with k̂ we get

F = By
cos θ

sin θ

= M

2� cos θ
· cos θ

sin θ

= M

2� sin θ

= 20 N·m
2 · 0.2 m · √

3/2
= 57.74 N.

F = 57.74 N

Note that the force equilibrium carried out above is not really useful since we are not
interested in finding the reactions at A. We did it above to show that just one free
body diagram of the whole mechanism was not sufficient to find F . On the other
hand, writing moment equations about A for the whole mechanism and about D for
the connecting rod plus the piston is enough to determine F .
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SAMPLE 4.24 There is more to it than meets the eye! A flyball governor is shown in

A

Figure 4.112: (Filename:sfig4.mech.gov)

the figure with all relevant masses and dimensions. The relaxed length of the spring
is 0.15 m and its stiffness is 500 N/m.

(a) Find the static equilibrium position of the center collar.
(b) Find the force in the strut AB or CD.
(c) How does the spring force required to hold the collar depend on θ?

Solution Let �0(= 0.15 m) denote the relaxed length of the spring and let � be the
stretched length in the static equilibrium configuration of the flyball, i.e., the collar
is at a distance � from the fixed support EF. Then the net stretch in the spring is
δ ≡ �� = � − �0. We need to determine �, the spring force kδ, and its dependence
on the angle θ of the ball-arm.

Figure 4.113: (Filename:sfig4.mech.gov.a)

The free body diagram of the collar is shown in Fig. 4.113. Note that the struts
AB and CD are two-force bodies (forces act only at the two end points on each strut).
Therefore, the force at each end must act along the strut. From geometry (AB = BE
= d), then, the strut force F on the collar must act at angle θ from the vertical. Now,
the force balance in the vertical direction, i.e., [

∑ ⇀
F = ⇀

0] · ̂ , gives

− 2F cos θ + kδ = mg (4.59)

Thus to find δ we need to find F and θ . Now we draw the free body diagram of arm

Figure 4.114: (Filename:sfig4.mech.gov.b)

EBG as shown in Fig. 4.114. From the moment balance about point E, we get

⇀
rG/E × (−2mg̂) + ⇀

rB/E × ⇀
F = ⇀

0

2dλ̂ × (−2mg̂) + dλ̂ × F(−sinθ ı̂ + cos θ ̂) = ⇀

0

−4mgd( λ̂ × ̂︸ ︷︷ ︸
− sin θ k̂

) + Fd[− sin θ(λ̂ × ı̂︸ ︷︷ ︸
cos θ k̂

) + cos θ( λ̂ × ̂︸ ︷︷ ︸
− sin θ k̂

)] = ⇀

0

4mgd sin θ k̂ + Fd(− sin θ cos θ k̂ − cos θ sin θ k̂) = ⇀

0

(4mgd sin θ − 2Fd sin θ cos θ)k̂ = ⇀

0

Dotting this equation with k̂ and assuming that θ 	= 0, we get

2F cos θ = 4mg (4.60)

Substituting eqn. (4.60) in eqn. (4.59) we get

kδ = mg + 2F cos θ = mg + 4mg = 5mg

⇒ δ = 5mg

k
= 5 · 2 kg · 9.81 m/s2

500 N/m
= 0.196 m

(a) The equilibrium configuration is specified by the stretched length � of the spring
(which specifies θ ). Thus,

� = �0 + δ = 0.15 m + 0.196 m = 0.346 m

Now, from � = 2d cos θ , we find that θ = 30.12o.
(b) The force in strut AB (or CD) is

F = 2mg/ cos θ = 45.36 N

(c) The force in the spring kδ = 5mg as shown above and thus, it does not depend
on θ ! In fact, the angle θ is determined by the relaxed length of the spring.

(a) � = 0.346 m, (b) F = 45.36 N, (c) kδ 	= f (θ)
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SAMPLE 4.25 : A motor housing support: A slotted arm mechanism is used to
0

m

motor

Figure 4.115: (Filename:sfig4.mech.motor)

support a motor housing that has a belt drive as shown in the figure. The motor
housing is bolted to the arm at B and the arm is bolted to a solid support at A. The
two bolts are tightened enough to be modeled as welded joints (i.e., they can also
take some torque). Find the support reactions at A.

Solution Although the mechanism looks complicated, the problem is straightfor-

B

θ

Α Α

Figure 4.116: (Filename:sfig4.mech.motor.a)

ward. We cut the bolt at A and draw the free body diagram of the motor housing plus
the slotted arm. Since the bolt, modeled as a welded joint, can take some torque, the
unknowns at A are

⇀

A(= Ax ı̂ + Ay ̂) and
⇀
MA. The free body diagram is shown in

Fig. 4.116. Note that we have replaced the tension at the two belt ends by a single
equivalent tension 2T acting at the center of the axle. Now taking moments about
point A, we get

⇀
MA + ⇀

rC/A × 2
⇀
T + ⇀

rG/A × m ⇀
g = ⇀

0

where

⇀
rC/A × 2

⇀
T = (�ı̂ + h̂) × 2T (− cos θ ı̂ + sin θ ̂)

= 2T (� sin θ + h cos θ)k̂
⇀
rG/A × m ⇀

g = [(� + d)ı̂ + (anything)̂ ] × (−mg̂)

= −mg(� + d)k̂

Therefore,

⇀
MA = −⇀

rC/A × 2
⇀
T − ⇀

rG/A × m ⇀
g

= −2T (� sin θ + h cos θ)k̂ + mg(� + d)k̂

= −2(5 N)(0.1 m · sin 60o + 0.04 m · cos 60o)k̂

+ 2 kg · 9.81 m/s2 · (0.1 + 0.01) mk̂

= 1.092 N·mk̂

The reaction force
⇀

A can be determined from the force balance,
∑ ⇀

F = ⇀

0 as follows.

⇀

A + 2
⇀
T + m ⇀

g = ⇀

0

⇒ ⇀

A = −2
⇀
T − m ⇀

g

= −10 N(−1

2
ı̂ +

√
3

2
̂) − (−19.62 N̂)

= 5 Nı̂ + 10.96 N̂

⇀
MA = 1.092 N·mk̂ and

⇀

A = 5 Nı̂ + 10.96 N̂
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SAMPLE 4.26 A gear train: In the compound gear train shown in the figure, the

O

A
C

Figure 4.117: (Filename:sfig4.mech.gear)

various gear radii are: RA = 10 cm, RB = 4 cm, RC = 8 cm and RD = 5 cm. The
input load Fi = 50 N. Assuming the gears to be in static equilibrium find the machine
load Fo.

Solution You may be tempted to think that a free body diagram of the entire gear
train will do since we only need to find Fo. However, it is not so because there
are unknown reactions at the axle of each gear and, therefore, there are too many
unknowns. On the other hand, we can find the load Fo easily if we go gear by gear
from the left to the right.

Figure 4.118: (Filename:sfig4.mech.gear.a)

The free body diagram of gear A is shown in Fig. 4.118. Let F1 be the force at
the contact tooth of gear A that meshes with gear B. From the moment balance about
the axle-center O,

∑ ⇀
MO = ⇀

0, we have

⇀
rM × ⇀

Fi + ⇀
rN × ⇀

F1 = ⇀

0

−Fi RAk̂ + F1 RAk̂ = ⇀

0

⇒ F1 = Fi

Similarly, from the free body diagram of gear B and C (together) we can write the
moment balance equation about the axle-center P as

x

y

N

F1 F2

P Q
B

C

Figure 4.119: (Filename:sfig4.mech.gear.b)

F1 RB k̂ + F2 RC k̂ = ⇀

0

⇒ F2 = RB

RC
F1

= RB

RC
Fi

Finally, from the free body diagram of the last gear D and the moment equilibrium
about its center R, we get

−F2 RD k̂ + Fo RD k̂ = ⇀

0

⇒ Fo = F2

= RB

RC
Fi

= 4 cm

8 cm
· 50 N = 25 N

Fo = 25 N
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SAMPLE 4.27 Push-up mechanics: During push-ups the body, including the legs,

A 1

2

Figure 4.120: (Filename:sfig4.mech.pushup)

usually moves as a single rigid unit; the ankle is almost locked, and the push-up is
powered by the shoulder and the elbow muscles. A simple model of the body during
push-ups is a four-bar linkage ABCDE shown in the figure. In this model, each link
is a rigid rod, joint B is rigid (thus ABC can be taken as a single rigid rod), joints C,
D, and E are hinges, but there is a motor at D that can supply torque. The weight
of the person, W = 150 lbf, acts through G. Find the torque at D for θ1 = 30o and
θ2 = 45o.

Solution The free body diagram of part ABC of the mechanism is shown in
l

A
θ

Figure 4.121: (Filename:sfig4.mech.pushup.a)

Fig. 4.121. Writing moment balance equation about point A,
∑ ⇀

MA = ⇀

0, we get

⇀
rC × ⇀

C + ⇀
rG × ⇀

W = ⇀

0

Let ⇀
rC = rCx

ı̂ + rCy
̂ and ⇀

rG = rGx
ı̂ + rG y

̂ for now (we can figure it out later).
Then, the moment equation becomes

(rCx
ı̂ + rCy

̂) × (Cx ı̂ + Cy ̂) + (rGx
ı̂ + rG y

̂) × (−W ̂) = ⇀

0

[(CyrCx
− CxrCy

)k̂ − WrGx
k̂ = ⇀

0]

[ ] · k̂ ⇒ CyrCx
− CxrCy

= WrGx
(4.61)

We now draw free body diagrams of the links CD and DE separately (Fig. 4.122) and
write the moment and force balance equations for them.

For link CD, the force equilibrium
∑ ⇀

F = ⇀

0 gives

Figure 4.122: (Filename:sfig4.mech.pushup.b)

(−Cx + Dx )ı̂ + (Dy − Cy)̂ = ⇀

0

Dotting with ı̂ and ̂ gives

Dx = Cx

Dy = Cy
(4.62)

and the moment equilibrium about point D, gives

M k̂ − a(cos θ2 ı̂ + sin θ2̂) × (−Cx ı̂ − Cy ̂) = ⇀

0

M k̂ + (Cya cos θ2 − Cx a sin θ2)k̂ = ⇀

0 (4.63)

Similarly, the force equilibrium for link DE requires that

Ex = Dx

Ey = Dy
(4.64)

and the moment equilibrium of link DE about point E gives

− M + Dx a sin θ1 + Dya cos θ1 = 0. (4.65)

Now, from eqns. (4.62) and (4.65)

− M + Cx a sin θ1 + Cya cos θ1 = 0 (4.66)

Adding eqns. (4.63) and (4.66) and solving for Cx we get

Cx = cos θ1 + cos θ1

sin θ2 − sin θ1
Cy
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For simplicity, let

f (θ1, θ2) = cos θ1 + cos θ1

sin θ2 − sin θ1

so that
Cx = f (θ1, θ2)Cy (4.67)

Now substituting eqn. (4.67) in (4.61) we get

Cy = rGx

rCx
− rCy

f
W

Now substituting Cy and Cx into eqn. (4.66) we get

M = rGx
a(cos θ1 + f sin θ1)

rCx
− rCy

f
W

where

rGx
= (�/2) cos θ − h sin θ

rCx
= � cos θ − h sin θ

rCy
= � sin θ + h cos θ

Now plugging all the given values: W = 160 lbf, θ1 = 30o, θ2 = 45o, � = 5 ft, h =
1 ft, a = 1.5 ft, and, from simple geometry, θ = 9.49o,

f = 7.60

rCx
= 4.77 ft, rCy

= 1.81 ft, rGx
= 2.30 ft

⇒ M = −269.12 lb·ft

M = −269.12 lb·ft
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SAMPLE 4.28 A spring and rod buckling model: A simple model of sideways

A

P

O

B

θ
�

Figure 4.123: (Filename:sfig4.mech.buckling)

buckling of a rod can be constructed with a spring and a rod as shown in the figure.
Assume the rod to be in static equilibrium at some angle θ from the vertical. Find the
angle θ for a given vertical load P , spring stiffness k, and bar length �. Assume that
the spring is relaxed when the rod is vertical.

Solution When the rod is displaced from its vertical position, the spring gets com-
pressed or stretched depending on which side the rod tilts. The spring then exerts a
force on the rod in the opposite direction of the tilt. The free body diagram of the
rod with a counterclockwise tilt θ is shown in Fig. 4.124. From the moment balance

A

P

R

Fs

O

B

θ
�

λ̂

Figure 4.124: (Filename:sfig4.mech.buckling.a)

∑ ⇀
MO = ⇀

0 (about the bottom support point O of the rod), we have

⇀
rB × ⇀

P + ⇀
rB × ⇀

Fs = ⇀

0

Noting that

⇀
rB = �λ̂,

⇀
P = −P ̂ ,

and
⇀
Fs = k(

⇀
rA − ⇀

rB)

= k(�̂ − �λ̂),

we get

�λ̂ × (P ̂) + �λ̂ × k�(̂ − λ̂) = ⇀

0

−P�(λ̂ × ̂) + k�2(λ̂ × ̂) = ⇀

0

Dotting this equation with (λ̂ × ̂) we get

−P� + k�2 = 0

⇒ P = k�.

Thus the equilibrium only requires that P be equal to k� and it is independent of θ !
That is, the system will be in static equilibrium at any θ as long as P = k�.

If P = k�, any θ is an equilibrium position.



4.7. Hydrostatics 195

4.7 Hydrostatics
Hydrostatics is primarily concerned with finding the net force and moment of still
water on a surface. The surfaces are typically the sides of a pool, dam, container, or
pipe, or the outer surfaces of a floating object such as a boat or of a submerged object
like a toilet bowl float, or the imagined surface that separates some water of interest
from the other water. Although the hydrostatics of air helps explain the floating of hot
air balloons, dirigibles, and chimney smoke; and the hydrostatics of oil is important
for hydraulics (hydraulic breaks for example), often the fluid of concern for engineers
is water, and we will use the word ‘water’ as an informal synonym for ‘fluid.’

Besides the basic laws of mechanics that you already know, elementary hydro-
statics is based on the following two constitutive assumptions:

1) The force of water on a surface is perpendicular to the surface; and
2) The density of water, ρ (pronounced ‘row’) is a constant (doesn’t

vary with depth or pressure),

The first assumption, that all static water forces are perpendicular to surfaces on
which they act, can be restated: still water cannot carry any shear stress. For near-
still water this constitutive assumption is abnormally good (in the world of constitutive
assumptions), approximately as good as the laws of mechanics.

The assumption of constant density is called incompressibility because it cor-
responds to the idea that water does not change its volume (compress) much under
pressure. This assumption is reasonable for most purposes. At the bottom of the deep-
est oceans, for example, the extreme pressure (about 800 atmospheres) only causes
water to increase its density about 4% from that of water at the surface. That water
density does depend measurably on salinity and temperature is, however, important
for some hydrostatic calculations, in particular for determining which water floats on
which other water. Sometimes instead of talking about the mass per unit of volume
ρ we will use the weight per unit volume γ = gρ (‘gammuh = gee row’).

Surface area A, outward normal n̂, pressure p, and force ⇀
F

Figure 4.125: A bit of area �A on a sur-
face on which pressure p acts. The outward
(into the water) normal of the surface is n̂ so
the increment of force is �

⇀
F = −pn̂�A.

(Filename:tfigure.deltaA)

We are going to be generalizing the high-school physics fact

force = pressure × area

to take account that force is a vector, that pressure varies with position, and that not
all surfaces are flat. So we need a clear notation and sign convention. The area of
a surface is A which we can think of as being the sum of the bits of area �A that
compose it:

A =
∫

d A.

Every bit of surface area has an outer normal n̂ that points from the surface out into
the fluid. The (scalar) force per unit area on the surface is called the pressure p, so
that the force on a small bit of surface is

�
⇀
F = p (�A) (−n̂),

pointing into the surface, assuming positive pressure, and with magnitude proportional
to both pressure and area. Thus the total force and moment due to pressure forces on
a surface :
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⇀
F = ∫

d
⇀
F = − ∫

A p n̂ d A

⇀
MC = ∫

A d
⇀
M/C = − ∫

A
⇀
r/C × (p n̂) d A

(4.68)

Hydrostatics is the evaluation of the (intimidating-at-first-glance) integrals 4.68 and
their role in equilibrium equations. In the rest of this section we consider a variety of
important special cases.

Water in equilibrium with itself
Before we worry about how water pushes on other things, lets first understand what
it means for water to be in static equilibrium. These first important facts about
hydrostatics follow from drawing free body diagrams of various chunks of water and
assuming static equilibrium.

Pressure doesn’t depend on direction

wa

ı̂
̂

k̂

px

py

p

ı̂

̂ n̂

g
θ

θ

a cos θ

a sin θ

Figure 4.126: A small prism of water
is isolated from some water in equilibrium.
The free body diagram does not show the
forces in the z direction.

(Filename:tfigure.waterprism)

We assume that the pressure p does not vary in wild ways from point to point, thus
if we look at a small enough region we can think of the pressure as constant in that
region. Now if we draw a free body diagram of a little triangular prism of water
the net forces on the prism must add to zero (see Fig. 4.126). For each surface the
magnitude of the force is the pressure times the area of the surface and the direction
is minus the outward normal of the surface. We assume, for the time being, that the
pressure is different on the differently oriented surfaces. So, for example, because
the area of the left surface is a cos θw and the pressure on the surface is px , the net
force is a cos θwpx ı̂. Calculating similarly for the other surfaces:

⇀

0 = ∑ ⇀
F i

= (a cos θ)w px ı̂ + (a sin θ)w py ̂ − a w p n̂︸ ︷︷ ︸
pressure terms

− a2 cos θ sin θw

2
ρg︸ ︷︷ ︸

weight

̂

= aw


cos θ px ı̂ + sin θ py ̂ − p (cos θ ı̂ + sin θ ̂︸ ︷︷ ︸

n̂

) − a cos θ sin θ
2 ρg̂




If a is arbitrarily small, the weight term drops out compared to the pressure terms.
Dividing through by aw we get

⇀

0 = cos θpx ı̂ + sin θ py ̂ − p (cos θ ı̂ + sin θ) ̂ .

Taking the dot product of both sides of this equation with ı̂ and ̂ gives that p =
px = py . Since θ could be anything, force balance for the free body diagram of a

small prism tells us that for a fluid in static equilibrium 1©

1© That pressure has to be the same in any
pair of directions could also be found by
drawing a prism with a cross section which
is an isosceles triangle. The prism is ori-
ented so that two surfaces of the prism have
equal area and have the desired orientations.
Force balance along the base of the triangle
gives that the pressures on the equal area
surfaces are equal. The argument that pres-
sure must not depend on direction is also
sometimes based on equilibrium of a small
tetrahedron.

pressure is the same in every direction.
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Pressure doesn’t vary with side to side position

Consider the equilibrium of a horizontally aligned box of water cut out of a bigger
body of water (Fig. 4.127a). The forces on the end caps at A and B are the only forces
along the box. Therefor they must cancel. Since the areas at the two ends are the
same, the pressure must be also. This box could be anywhere and at any length and
any horizontal orientation. Thus for a fluid in static equilibrium

A

B
a)

b)

g

y

H

h 

y+h

p(y+h)

p(y)

aa

Figure 4.127: Free body diagram of a
horizontally aligned box of water cut out of
a bigger body of water.

(Filename:tfigure.waterbox)

pressure doesn’t depend on horizontal position.

If we take the ̂ or y direction to be up, then we have

p(x, y, z) = p(y).

Pressure increases linearly with depth

Consider the vertically aligned box of Fig. 4.127b.{∑ ⇀
Fi = ⇀

0
} · ̂ ⇒ p(y)a2 − p(y + h)a2︸ ︷︷ ︸

pressure terms

− ρga2h︸ ︷︷ ︸
weight

= 0

⇒ pbottom − ptop = ρgh.

So the pressure increases linearly with depth. If the top of a lake, say, is at atmospheric
pressure pa then we have that

p = pa + ρgh = pa + γ h = pa + (H − y)γ

where h is the distance down from the surface, H is the depth to some reference point
underwater and y is the distance up from that reference point (so that h = H − y).
Neglecting atmospheric pressure at the top surface we have the useful and easy to
remember formula:

p = γ h. (4.69)

Because the pressure at equal depths must be equal and because the pressure at
the top surface must be equal to atmospheric pressure, the top surface must be flat
and level. Thus waves and the like are a definite sign of static disequilibrium as are
any bumps on the water surface even if they don’t seem to move (as for a bump in the
water where a stream goes steadily over a rock).

The buoyant force of water on water.

In a place under water in a still swimming pool where there is nothing but water,
imagine a chunk of water the shape of a sea monster. Now draw a free body diagram
of that water. Because your sea monster is in equilibrium, force balance and moment
balance must apply. The only forces are the complicated distribution of pressure
forces and the weight of water. The pressure forces must exactly cancel the weight
of the water and, to satisfy moment balance, must pass through the center of mass of
the water monster. So, in static equilibrium:
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The pressure forces acting on a surface enclosing a volume of water is equiv-
alent to the negative weight passing through the center of mass of the water.

The force of water on submerged and floating objects
The net pressure force and moment on a still object surrounded by still water can be
found by a clever argument credited to Archimedes. The pressure at any one point on
the outside of the object does not depend on what’s inside. The pressure is determined
by how far the point of interest is below the surface by eqn. 4.69 1©. So if you can1© If there is no column of water from the

point up to the surface it is still true that
the pressure is γ h, as you can figure out
by tracking the pressure changes along on a
staircase-like path from the surface to that
point.

find the resultant force on any object that is the shape of the submerged object, but
replacing the submerged object, it tells you what you want to know.

The clever idea is to replace your object with water. In this new system the water
is in equilibrium, so the pressure forces exactly balance the weight. We thus obtain
Archimedes’ Principle:

The resultant of all pressure forces on a totally submerged object is minus
the weight of the displaced water. The resultant acts at the centroid of the
displaced volume:

⇀
Fbuoyancy = γ V k̂ acting at ⇀

r =
∫

⇀
r/0 dV

V
.

The result can also be found by adding the effects of all the pressure forces on the
outside surface (see box 4.7 on page 201).

For floating objects, the same argument can be carried out, but since the replaced
fluid has to be in equilibrium we cannot replace the whole object with fluid, but only
the part which is below the level of the water surface.

Displaced fluid
Sometimes people discuss Archimedes’ principle in terms of the displaced fluid. A
floating object in equilibrium displaces an amount of fluid with the same weight as
the object; this is also the amount of volume of the floating object that is below the
water level. On the other hand an object that is totally under water, for whatever
reason (it is resting on the bottom, or it is being held underwater by a string, etc),
occupies exactly as much space as it occupies. Putting these two ideas together one
can remember that

A floating object displaces its weight, a submerged object displaces its vol-
ume.
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The force of constant pressure on a totally immersed object
When there is no gravity, or gravity is neglected, the pressure in a static fluid is
the same everywhere. Exactly the same argument we have just used shows that the
resultant of the pressure forces is zero. We could derive this result just by setting
γ = 0 in the formulas above.

The force of constant pressure on a flat surface
The net force of constant pressure on one flat surface (not all the way around a
submerged volume) is the pressure times the area acting normal to the surface at the
centroid of the surface:

⇀
Fnet = ∫

A −p n̂ d A
= −p An̂.

That this force acts at the centroid can be checked by calculating the moment of the
pressure forces relative to the centroid C.

⇀
M/C,net = ∫

A
⇀
r/C × (−p n̂ d A

)
=

(∫
A

⇀
r/Cd A

)
︸ ︷︷ ︸

0

× (−p n̂
)

= 0

where the zero follows from the position of the center of mass relative to the center
of mass being zero.

Figure 4.128: The resultant force from a
constant pressure p on a flat plate is

⇀
F =

−p An̂ acting at the centroid of the plate.
(Filename:tfigure.centroidpressure)

The force of water on a rectangular plate

Figure 4.129: The resultant force from
a constant depth-increasing pressure on a
rectangular plate.

(Filename:tfigure.plateunder)

Consider a rectangular plate with width into the page w and length �. Assume the
water-side normal to the plate is n̂ and that the top edge of the plate is horizontal.
Take ̂ to be the up direction with y being distance up from the bottom and the total
depth of the water is H . Thus the area of the plate is A = �w. If the bottom and top
of the plate are at y1 and y2 the net force on the plate can be found as:

⇀
Fnet = − ∫

A pn̂ d A
= − ∫

A γ (H − y)n̂ d A

= −w
∫ �

0 γ (H − y(s))n̂ ds

= −w
∫ �

0 γ
(
H − (y1 + n̂ · ̂ s)

)
n̂ ds

= −wγ
(
H� − y1� − n̂ · ̂ �2/2

)
n̂

= −w�γ
(
H − (y1 + n̂ · ̂ �/2)

)
n̂

= −w�γ (H − (y1 + (y2 − y1)/2)) n̂

= −w� (γ (H − y1)/2 + γ (H − y2)/2)) n̂

= −w�
p1+p2

2 n̂.

= −(area)(average pressure)(outwards normal direction)

The net water force is the same as that of the average pressure acting on the whole
surface. To find where it acts it is easiest to think of the pressure distribution as the
sum of two different pressure distributions. One is a constant over the plate at the
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pressure of the top of the plate. The other varies linearly from zero at the top to
γ (y2 − y1) at the bottom.

p = γ (H − y) = γ (H − y2)︸ ︷︷ ︸
✂✂✍

Constant pressure, the pres-
sure at the top edge.

+ γ (y2 − y)︸ ︷︷ ︸
❇❇�

Varies linearly from 0 at the
top to γ (y2 − y1) at the bot-
tom.

The first corresponds to a force of w�γ (H − y2) acting at the middle of the plate.
The second corresponds to a force of w�γ

y2−y1
2 acting a third of the way up from the

bottom of the plate.
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4.7 THEORY
Adding forces to derive Archimedes’ principle

Archimedes’ principle follows from adding up all the pressure
forces on the outer surfaces of an arbitrarily shaped submerged solid,
say something potato shaped.

First we find the answer by cutting the potato into french fries.
This approach is effectively a derivation of a theorem in vector calcu-
lus. After that, for those who have the appropriate math background,
we quote the vector calculus directly.

First cut the potato into horizontal french-fries (horizontal
prisms) and look at the forces on the end caps (there are no wa-
ter forces on the sides since those are inside the potato).

The pressure on two ends is the same (because they have the
same water depth). The areas on the two ends are probably different
because your potato is probably not box shaped. But the area is big-
ger at one end if the normal to the surface is more oblique compared
to the axis of the prism. If the cross sectional area of the prism is
�A0 then the area of one of the prism caps is

�A = �A0/(n̂ · λ̂) where λ̂ is along the axis of the prism and
n̂ is the outer unit normal to the end cap (Note �A ≥ �A0 because

n̂ · λ̂ ≤ 1).

So the net force on the cap is −p�A0n̂/(n̂·λ̂). The component

of the force along the prism is
[
−p�A0n̂/(n̂ · λ̂)

]
· λ̂ which is

−p�A0. An identical calculation at the other end of the french fry
gives minus the same answer. So the net force of the water pressure
along the prism is zero for this and every prism and thus the whole
potato. Likewise for prisms with any horizontal orientation. Thus

the net sideways force of water on any submerged object is zero.
To find the net vertical force on the potato we cut it into vertical

french fries. The net forces on the end caps are calculated just as
in the above paragraph but taking account that the pressure on the
bottom of the french fry is bigger than at the top. The sum of the
forces of the top and bottom caps is an upwards force that is

net upwards force on vertical french fry = �p�A0
= (γ h)�A0
= γ (h�A0)

= γ �V0

where �V0 is the volume of the french fry. Adding up over all the
french fries that make up the potato one gets that the net upwards
force is γ V The net result, summarized by the figure below, is that the
resultant of the pressure forces on a submerged solid is an upwards
force whose magnitude is the weight of the displaced water. The
location of the force is the centroid of the displaced volume. (Note
that the centroid of the displaced volume is not necessarily at the
center of mass of the submerged object.)

• • •

A vector calculus derivation
Here is a derivation of Archimedes’ principle, at least the net

force part, using multi-variable integral calculus. Only read on if
you have taken a math class that covers the divergence theorem. The
net pressure force on a submerged object is

⇀
Fbuoyancy = −

∫
A

p n̂ d A
= −

∫
S

p n̂ d S

= −
∫

S
(H − z)γ n̂ d S

= −
∫

V

⇀∇ ((H − z)γ ) dV

= −
∫

V
(−k̂) γ dV

=
∫

V
γ dV k̂

= (weight of displaced water) k̂.

In this derivation we first changed from calling bits of surface area
d Ato d S because that is a common notation in calculus books. The
depth from the surface, of a point with vertical component z from
the bottom, is H − z. The

⇀∇ symbol indicates the gradient and its
place in this equation is from the divergence theorem:∫

S

(any scalar)n̂ d S =
∫

V

⇀∇(the same scalar) dV .

The gradient of (H − z)γ is −k̂γ because H and γ are constants.
Note, where we write

∫
S

some books would write
∫∫

S
, and where

we write
∫

V
some books would write

∫∫∫
V

.
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SAMPLE 4.29 The force due to the hydrostatic pressure: The hydrostatic pressure

10 m

P0 = 100 kPa
ı̂

̂

Figure 4.130: (Filename:sfig4.hydro.force1)

distribution on the face of a wall submerged in water up to a height h = 10 m is shown
in the figure. Find the net force on the wall from water. Take the length of the wall
(into the page) to be unit.

Solution Since the pressure varies across the height of the submerged part of the

dy

dy

y

y

P(y)

h

P0

�

Figure 4.131: (Filename:sfig4.hydro.force1.a)

wall, let us take an infinitesimal strip of height dy along the full length � of the wall
as shown in Fig. 4.131. Since the height of the strip is infinitesimal, we can treat the
water pressure on this strip to be essentially constant and to be equal to p0

y
h . Then

the force on the string due to the water pressure is

d
⇀
F = p(y) · y · �ı̂

= p0
y

h
� dy ı̂

The net force due to the pressure distribution on the whole wall can now be found by
integrating d

⇀
F along the wall.

⇀
F =

∫
d

⇀
F

=
∫ h

0
p0

y

h
� dy ı̂

= p0

h
�

∫ h

0
y dy ı̂

= p0

h
�

h2

2
ı̂

= 1

2
p0h�ı̂

= 1

2
· (100

kN

m2 ) · (10 m) · (1 m)ı̂

= 500 kNı̂

⇀
F = 500 kNı̂

Alternatively, the net force can be computed by calculating the area of the pressure
triangle and multiplying by the unit length (� = 1 m), i.e.,

⇀
F = (

1

2
· h · p0 ı̂)�

= 1

2
· 10 m · 100

kN

m2 · 1 mı̂

= 500 kN
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SAMPLE 4.30 The equivalent force due to hydrostatic pressure: Find the net force

60

Figure 4.132: (Filename:sfig4.hydro.force2)

and its location on each face of the dam due to the pressure distributions shown in the
figure. Take unit length of the dam (into the page).

Solution We can determine the net force on each face of the dam by considering

l

L
G

G

Figure 4.133: (Filename:sfig4.hydro.force2.a)

the given pressure distribution on one face at a time and finding the net force and its
point of action.

On the left face of the dam we are given a trapezoidal pressure distribution. We
break the given distribution into two parts — a triangular distribution given by ABE,
and a rectangular distribution given by EBCD. We find the net force due to each
distribution by finding the area of the distribution and multiplying by the unit length
of the dam.

⇀
F1 = (area of ABE) · �ı̂ = 1

2
(p2 − p1)hl�ı̂

= 1

2
(60kPa − 10kPa) · 5 m · 1 mı̂

= 125 kNı̂
⇀
F2 = (area of EBCD) · �ı̂ = p1hl�ı̂

= 10kPa · 5 m · 1 mı̂

= 50 kNı̂

The two forces computed above act through the centroids of the triangle ABE and
the rectangle EBCD, respectively. The centroid are marked in Fig. 4.133. Now the
net force on the left face is the vector sum of these two forces, i.e.,

⇀
FL = ⇀

F1 + ⇀
F2 = 175 kNı̂

The net force
⇀
FL acts through point G which is determined by the moment balance

of the two forces
⇀
F1 and

⇀
F2 about point G:

⇀
rG1/G × ⇀

F1 = −⇀
rG2/G × ⇀

F2

F1(hG − hl

3
)k̂ = −F2(

hl

2
− hG)(−k̂)

⇒ hG = F1
hl
3 + F2

hl
2

F1 + F2

= 125 kN · 1.667 m + 50 kN · 2.5 m

175 kN
= 1.905 m

Similarly, we compute the force on the right face of the dam by calculating the area

Figure 4.134: (Filename:sfig4.hydro.force2.b)

of the triangular distribution shown in Fig. 4.134.

⇀
FR = 1

2
p0(hr/ sin θ︸ ︷︷ ︸

d

)(− sin θ ı̂ − cos θ ̂︸ ︷︷ ︸
−n̂

)

= 1

2
p0hr (−ı̂ − tan θ ̂)

= −20(ı̂ +
√

3̂) kN

and this force acts though the centroid of the triangle as shown in Fig. 4.134.
⇀
FL = 175 kNı̂, and

⇀
FR = −20(ı̂ + √

3̂ kN
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SAMPLE 4.31 Forces on a submerged sluice gate: A rectangular plate is used as a

Figure 4.135: (Filename:sfig4.hydro.gate)

gate in a tank to prevent water from draining out. The plate is hinged at A and rests
on a frictionless surface at B. Assume the width of the plate to be 1 m. The height of
the water surface above point A is h. Ignoring the weight of the plate, find the forces
on the hinge at A as a function of h. In particular, find the vertical pull on the hinge
for h = 0 and h = 2 m.

Solution Let γ = ρg be the weight density (weight per unit volume) of water. Then
the pressure due to water at point A is pA = γ h and at point B is pB = γ (h +� sin θ).
The pressure acts perpendicular to the plate and varies linearly from pA at A to pB at
B. The free body diagram of the plate is shown in Fig. 4.136. Let λ̂ be a unit vector

A
A

AAB

Figure 4.136: (Filename:sfig4.hydro.gate.a)

along BA and n̂ be a unit vector normal to BA. For computing the reaction forces on
the plate at points A and B, we first replace the distributed pressure on the plate by
two equivalent concentrated forces F1 and F2 by dividing the pressure distribution
into a rectangular and a triangular region and finding their resultants.

F1 = pA� = γ h�, F2 = (pB − pA)
�

2
= 1

2
γ �2 sin θ

Now, we carry out moment balance about point A,
∑ ⇀

MA = ⇀

0, which gives

⇀
rB/A × ⇀

B + ⇀
rD/A × ⇀

F2 + ⇀
rC/A × ⇀

F1 = ⇀

0

−�λ̂ × Bnn̂ − 2�

3
λ̂ × (−F1n̂) − �

2
λ̂ × (−F2n̂) = ⇀

0

−Bn�k̂ + F1
2�

3
k̂ + F2

�

2
k̂ = ⇀

0

⇒ Bn = 2F1

3
+ F2

2
= γ �(

2

3
h + 1

4
� sin θ)

and, from force balance,
∑ ⇀

F = ⇀

0, we get

⇀

A = −Bnn̂ + F1n̂ + F2n̂

=
(

−γ �(
2

3
h + 1

4
� sin θ) + γ h� + 1

2
γ �2 sin θ

)
n̂

=
(

1

3
γ h� + 1

2
γ �2 sin θ

)
n̂ = γ �(

1

3
h + 1

2
� sin θ)n̂

The force
⇀

A computed above is the force exerted by the hinge at A on the plate.

A

Figure 4.137: (Filename:sfig4.hydro.gate.b)

Therefore, the force on the hinge, exerted by the plate, is − ⇀

A as shown in Fig. 4.137.
From the expression for this force, we see that it varies linearly with h.

Let the vertical pull on the hinge be Ahinge y . Then

Ahinge y = − ⇀

A · ̂ = −γ �(
1

3
h + 1

2
� sin θ)

cos θ︷︸︸︷
n̂ · ̂ = 1

4
γ � sin 2θ + (

1

3
γ � cos θ)h

Now, substituting γ = 9.81 kN/ m3, � = 2 m, θ = 30o, the two specified values of
h, and multiplying the result (which is force per unit length) with the width of the
plate (1 m) we get,

Ahinge y(h = 0) = 4.25 kN, Ahinge y(h = 2 m) = 15.58 kN

Ahinge y |h=0 = 4.25 kN, Ahinge y |h=2 m = 15.58 kN
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SAMPLE 4.32 Tipping of a dam: The cross section of a concrete dam is shown in

4

Figure 4.138: (Filename:sfig4.hydro.dam1)

the figure. Take the weight-density γ (= ρg) of water to be 10 kN/ m3 and that of
concrete to be 25 kN/ m3. For the given design of the cross-section, find the ratio
h/H that is safe enough for the dam to not tip over (about the downstream edge E).

Solution Let us imagine the critical situation when the dam is just about to tip over
about edge E. In such a situation, the dam bottom would almost lose contact with the
ground except along edge E. In that case, there is no force along the bottom of the
dam from the ground except at E. 1©With this assumption, the free body diagram of

1© This assumption is valid only if water
does not leak through the edge B to the bot-
tom of the dam. If it does, there would be
some force on the bottom due to the water
pressure. See the following sample where
we include the water pressure at the bottom
in the analysis.

F

Figure 4.139: (Filename:sfig4.hydro.dam1.a)

the dam is shown in Fig. 4.139.

To compute all the forces acting on the dam, we assume the width w (into the
paper) to be unit (i.e., w = 1 m). Let γw and γc denote the weight-densities of water
and concrete, respectively. Then the resultant force from the water pressure is

F = 1

2
γwh · h · w = 1

2
γwh2w

This is the horizontal force (in the -ı̂ direction) that acts through the centroid of
triangle ABC.

To compute the weight of the dam, we divide the cross-section into two sections
— the rectangular section CDGH and the triangular section DEF. We compute the
weight of these sections separately by computing their respective volumes:

W1 = αH2 · w︸ ︷︷ ︸
volume

·γc = γcαH2w

W2 = 1

2
· 3αH · 3αH tan θ · w︸ ︷︷ ︸

volume

·γc = 9

2
γcα

2 H2w tan θ

Now we apply moment balance about point E,
∑ ⇀

ME = ⇀

0, which gives

⇀
rG1

× ⇀
W 1 + ⇀

rG2
× ⇀

W 2 + ⇀
rG3

× ⇀
F = ⇀

0

−(3αH + 1

2
αH)W1k̂ − 2

3
(3αH)W2k̂ + h

3
F k̂ = ⇀

0

Dotting this equation with k̂, we get

h

3
F = (3αH + 1

2
αH) · γcαH2w + 2

3
(3αH) · 9

2
γcα

2 H2w tan θ

1

2
γw

h3

3
= 9γcα

3 H3 tan θ + 7

2
γcα

2 H3

⇒
(

h

H

)3

= γc

γw

(54α3 tan θ + 21α2)

= 2.5(54 · 0.13 ·
√

3 + 21 · 0.12) = 0.7588

⇒ h

H
= 0.91

Thus, for the dam to not tip over, h ≤ 0.91H or 91% of H .

h
H ≤ 0.91
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SAMPLE 4.33 Dam design: You are to design a dam of rectangular cross section
(b × H ), ensuring that the dam does not tip over even when the water level h reaches
the top of the dam (h = H ). Take the specific weight of concrete to be 3. Consider
the following two scenarios for your design.

(a) The downstream bottom edge of the dam is plugged so that there is no leakage
underneath.

(b) The downsteram edge is not plugged and the water leaked under the dam bottom
has full pressure across the bottom.

Solution Let γc and γw denote the weight densities of concrete and water, respec-
tively. We are given that γc/γw = 3. Also, let b/H = α so that b = αH . Now we
consider the two scenarios and carry out analysis to find appropriate cross-section of
the dam. In the calculations below, we consider unit length (into the paper) of the
dam.

F

Figure 4.140: (Filename:sfig4.hydro.dam2.a)

(a) No water pressure on the bottom: When there is no water pressure on the
bottom of the dam, then the water pressure acts only on the downstream side of
the dam. The free body diagram of the dam, considering critical tipping (just
about to tip), is shown in Fig. 4.140 in which F is the resultant force of the
triangular water pressure distribution. The known forces acting on the dam are
W = γcαH2, and F = (1/2)γwh2. The moment balance about point A gives

F · h

3
= W · αH

2
1

2
γw

h3

3
= γc

α2 H3

2
⇒ α2 = (1/3)(γw/γc)(h/H)3

Considering the case of critical water level up to the height of the dam,
i.e., h/H = 1, and substituting γc/γw = 3, we get

α2 = 1/9 ⇒ α = 1/3 = 0.333

Thus the width of the cross-section needs to be at least one-third of the height.
For example, if the height of the dam is 9 m then it needs to be at least 3 m
wide.

b/H = 0.33

A

F

Figure 4.141: (Filename:sfig4.hydro.dam2.b)

(b) Full water pressure on the bottom: In this case, the water pressure on the bottom
is uniformly distributed and its intensity is the same as the lateral pressure at B,
i.e., p = γwh. The free body diagram diagram is shown in Fig. 4.141 where the
known forces are W = γcαH2, F = (1/2)γwh2, and R = γwαh H . Again,
we carry out moment balance about point A to get

F · h

3
= (W − R) · αh

2
γwh3 = 3(γcαH2 − γwαh H)αH

α2 = (h/H)3

3(γc/γw − h/H)

Once again, substituting the given values and h/H = 1, we get

α2 = 1/6 ⇒ α = 0.408

Thus the width in this case needs to be at least 0.41 times the height H , slightly
wider than the previous case.

b/H ≥ 0.41
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4.8 Advanced statics
We now continue our study of statics, but with the goal of developing facility at some
harder problems. One way that the material is expanded here is to take the three
dimensionality of the world a little more seriously. Each subsection here corresponds
to one of the six previous sections, namely, statics of one body, trusses, internal forces,
springs, machines and mechanisms, and hydrostatics.

Primarily, the subject of 3D statics is the same as for 2D. However, generally one
needs to take more care with vectors when working problems.

Statics of one body in 3D
The consideration of statics of one body in 3D follows the same general principles as
for 2D.

• Draw a free body diagram.
• Using the forces and moments shown, write the equilibrium equations

– force balance (one 3D vector equation, three scalar equations), and
– moment balance (one 3D vector equation, three scalar equations).

As for the case in 2D when one could use moment balance about 3 non-colinear
points and not use force balance at all, in 3D one can use moment balance about 6
sufficiently different axes. If a is a distance, then one such set is, for example: the ı̂,
̂ , and k̂ axis through ⇀

r = ⇀

0, the ̂ axis through ⇀
r = aı̂, the k̂ axis through ⇀

r = a̂ ,
and the ı̂ axis through ⇀

r = ak̂. Other combinations of force balance and moment
balance are also sufficient. One can test the sufficiency of the equations by seeing if
they imply that, if a force at the origin and a couple are the only forces applied to a
system, that they must be zero.

For 2D problems we used the phrase ‘moment about a point’ to be short for
‘moment about an axis in the z direction that passes through the point. In 3D moment
about a point is a vector and moment about an axis is a scalar.

Two- and three-force bodies

The concepts of two-force and three-force bodies are identical in 3D. If there are
only two forces applied to a body in equilibrium they must be equal and opposite
and acting along the line connecting the points of application. If there are only three
force applied to a body they must all be in the plane of the points of application and
the three forces must have lines of action that intersect at one point.

What does it mean for a problem to be ‘2D’?

The world we live in is three dimensional, all the objects to which we wish to study
mechanically are three dimensional, and if they are in equilibrium they satisfy the
three-dimensional equilibrium equations. How then can an engineer justify doing 2D
mechanics? There are a variety of overlapping justifications.

• The 2D equilibrium equations are a subset of the 3D equations. In both 2D
and 3D,

∑
Fx = 0,

∑
Fy = 0, and

∑ ⇀
M/0 · k̂ = 0. So, if when doing 2D

mechanics, one just neglects the z component of any applied forces and the x
and y components of any applied couples, one is doing correct 3D mechanics,
just not all of 3D mechanics. If the forces or conditions of interest to you
are contained in the 2D equilibrium equations then 2D mechanics is really 3D
mechanics, ignoring equations you don’t need.
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• If the xy plane is a plane of symmetry for the object and any applied loading,
then the three dimensional equilibrium equations not covered by the two di-
mensional equations, are automatically satisfied. For a car, say, the assumption
of symmetry implies that the forces in the z direction will automatically add to
zero, and the moments about the x and y axis will automatically be zero.

• If the object is thin and there are constraint forces holding it near the xy plane,
and these constraint forces are not of interest, then 2D statics is also appropriate.
This last case is caricatured by all the poor mechanical objects you have drawn
so. They are constrained to lie in your flat paper by invisible slippery glass in
front of and behind the paper. The 2D equations describe the forces between
the slippery glass plates.

Trusses
The basic theory of trusses is the same in 3D as 2D. The method of joints is the primary
basic approach. In ideal 3D truss theory the connections are ‘ball and socket’ not
pins. That is the joints cannot carry any moments. For each joint the force balance
equation can be reduced to three (rather than two for 2D trusses) scalar equations.

For the whole structure and for sections of the structure, the equilibrium equations
can be reduced to two (rather than three for 2D trusses) scalar equations. The method
of sections is less likely to be as useful a short-cut as in 2D because it is unlikely to
find a section cut and equilibrium equation where only one bar force is unknown.

The counts for determinacy by matching the number of equations and number of
unknowns change as follows. Instead of the 2D eqn. 4.28 from page 139 we have

3 j = b + r (4.70)

where j is the number of joints, including joints at reaction points, b is the number of
bars, and r is the number of reaction components that shows on a free body diagram
of the whole structure.

Example: A tripod

 

Figure 4.142: A tripod is the simplest
rigid 3D truss.

(Filename:tfigure.tripod)

A tripod is the simplest rigid 3D structure. With four joints ( j = 4), three
bars (b = 3), and nine unknown reaction components (r = 3 × 3 = 9),
it exactly satisfies the equation 3 j = b + r , a check for determinacy of
rigidity of 3D structures.

A tripod is the 3D equivalent of the two-bar truss shown in Fig. 4.35a
on page 141. ✷

The check for determinacy of a floating (unattached) structure is

3 j = b + 6. (4.71)

There are various ways to think about the number six in the equation above. Assuming
the structure is more than a point, six is the number of ways a structure can move in
three dimensional space (three translations and three rotations), six is the number of
equilibrium equations for the whole structure (one 3D vector moment, and one 3D
vector force, and six is the number of constraints needed to hold a structure in place.
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Example: A tetrahedron

 

Figure 4.143: A tetrahedron is the sim-
plest rigid truss in 3D that does not depend
on grounding.

(Filename:tfigure.tetrahedron)

The simplest 3D rigid floating structure is a tetrahedron. With four joints
( j = 4) and six bars (b = 6) it exactly satisfies the equation 3 j = b + 6
which is a check for determinacy of rigidity of 3D structures.

A tetrahedron is thus, in some sense the 3D equivalent of a triangle
in 2D. ✷

Internal forces
At a free body diagram cut on a long narrow structural piece in 2D there showed two
force components, tension and shear, and one scalar moment. In 3D such a cut shows
a force

⇀
F and a moment

⇀
M each with three components. If one picks a coordinate

system with the x axis aligned with the bar at the cut, the concept of tension remains
the same. Tension is the force component along the bar.

T = Fx = ⇀
F · ı̂.

The two other force components, Fx and Fy , are two components of shear. The net
shear force is a vector in the plane orthogonal to ı̂.

The new concept, often called torsion is the component of
⇀
M along the axis:

torsion = Mx = ⇀
M · ı̂

Torsion is the part of the moment that twists the shaft.
The remaining part of the

⇀
M , in the yz plane, is the bending moment. It has two

components Mx and My .

Springs
Ideal springs are simple two force bodies, whether in 2D or 3D. The equation de-
scribing the force on end B of a spring, in terms of the relative positions of the ends
⇀
rAB, the rest length of the spring �0, and the spring constant k is still eqn. 4.46 from
page 163, namely,

⇀
FB = k · (|⇀

rAB| − �0
)︸ ︷︷ ︸

��

( ⇀
rAB

|⇀
rAB|

)
︸ ︷︷ ︸

λ̂AB

. (4.72)

Machines and structures
The approach to analysis of general machines and structures in 3D is the same as in
2D. One should draw a free body diagrams of the whole machine and of each of its
parts, taking advantage of the principle of action and reaction. For each free body
diagram the two vector equilibrium equations now lead to 6 scalar equations. Thus,
for any but the simplest of 3D structures and machines one either tries to make a two
dimensional model or one must resort to numerical solution.

Hydrostatics
The basic results of hydrostatics are 3D results.
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SAMPLE 4.34 Can a stack of three balls be in static equilibrium? Three identical

C1

E

A B

D

C2

C3

m

m m

µ µ

µµ

Figure 4.144: (Filename:sfig4.single.3balls)

spherical balls, each of mass m and radius R, are stacked such that the top ball rests
on the lower two balls. The two balls at the bottom do not touch each other. Let the
coefficient of friction at each contact surface be µ. Find the minimum value of µ so
that the three balls are in static equilibrium.

Solution Let us assume that the three balls are in equilibrium. We can then find the

O

E

mg

mg
D

B

C2

C3

x

y

FD

FD

FB

FE

Figure 4.145: (Filename:sfig4.single.3balls.a)

forces required on each ball to maintain the equilibrium. If we can find a plausible
value of the friction coefficient µ from the required friction force on any of the balls,
then we are done, otherwise our initial assumption of static equilibrium is wrong.

The free body diagrams of the upper ball and the lower right ball (why the right
ball? No particular reason) are shown in Fig. 4.145. The contact forces,

⇀
FE and

⇀
FD,

act on the upper ball at points E and D, respectively. Each contact force is the resultant
of a tangential friction force and a normal force acting at the point of contact. From
the free body diagrams, we see that each ball is a three-force-body. Therefore, all the
three forces — the two contact forces and the force of gravity — must be concurrent.
This requires that the two contact forces must intersect on the vertical line passing
through the center of the ball (the line of action of the force of gravity). Now, if we
consider the free body diagram of the lower right ball, we find that force

⇀
FD has to

pass through point B since the other two forces intersect at point B. Thus, we know
the direction of force

⇀
FD.

Let α be the angle between the contact force
⇀
FD and the normal to the ball surface

at D. Now, from geometry, 	 C3DO+ 	 C3OD+OC3D = 180o. But, α = 	 C3DO =
	 C3OD. Therefore,

30
D

G

Figure 4.146: (Filename:sfig4.single.3balls.b)

α = 1

2
(180o − 	 OC3D) = 1

2
( 	 GC3D)

= 1

2
30o = 15o

where 	 GC3D = 30o follows from the fact that C1C2C3 is an equilateral triangle and
C3G bisects 	 C1C3C2.

Now, from Fig. 4.146, we see that

tan α = Fs

N

But, the force of friction Fs ≤ µN . Therefore, it follows that

µ ≥ tan α = tan 15o = 0.27

Thus, the friction coefficient must be at least 0.27 if the three balls have to be in static
equilibrium.

µ ≥ 0.27
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SAMPLE 4.35 A simple 3-D truss: The 3-D truss shown in the figure has 12 bars

45

&

F1 F2F3

Figure 4.147: (Filename:sfig4.3d.truss1)

and 6 joints. Nine of the 12 bars that are either horizontal or vertical have length
� = 1 m. The truss is supported at A on a ball and socket joint, at B on a linear
roller, and at C on a planar roller. The loads on the truss are

⇀
F1 = −50 Nk̂,

⇀
F2 =

−60 Nk̂, and
⇀
F3 = 30 N̂ . Find all the support reactions and the force in the bar BC.

Solution The free body diagram of the entire structure is shown in Fig. 4.148. Let the

θ

F1 F2
F3

Figure 4.148: (Filename:sfig4.3d.truss1.a)

support reactions at A, B, and C be
⇀

A = Ax ı̂+Ay ̂+Az k̂,
⇀
B = Bx ı̂+Bz k̂, and

⇀

C =
Cz k̂. Then the moment balance about point A,

∑ ⇀
MA = ⇀

0 gives

⇀
rB/A × ⇀

B + ⇀
rC/A × ⇀

C + ⇀
rE/A × ⇀

F2 + ⇀
rF/A × ⇀

F3 = ⇀

0 (4.73)

Note that
⇀
F1 passes through A and, therefore, produces no moment about A. Now we

compute each term in the equation above.

⇀
rB/A × ⇀

B = �̂ × (Bx ı̂ + Bz k̂) = −Bx�k̂ + Bz�ı̂,
⇀
rC/A × ⇀

C = �(cos 60o̂ − sin 60o ı̂) × Cz k̂ = Cz
�
2 ı̂ + Cz

√
3�
2 ̂

⇀
rE/A × ⇀

F2 = (�̂ + �k̂) × (−F2k̂) = −F2�ı̂,
⇀
rF/A × ⇀

F3 = [�(cos 60o̂ − sin 60o ı̂) + �k̂] × F3̂ = −F3�ı̂ − F3

√
3�
2 k̂

Substituting these products in eqn. (4.73), and dotting the resulting equation with
̂ , k̂, and ı̂, respectively, we get

Cz = 0

Bx = −
√

3

2
F3 = −15

√
3 N

Bz = −1

2
Cz + F2 + F3 = 90 N

Thus,
⇀
B = Bx ı̂ + Bz k̂ = −15

√
3 Nı̂ + 30 Nk̂ and

⇀

C = ⇀

0. Now from the force
balance,

∑ ⇀
F = ⇀

0, we find
⇀

A as

⇀

A = − ⇀
B − ⇀

C − ⇀
F1 − ⇀

F2 − ⇀
F3

= −(−15
√

3 Nı̂ + 90 Nk̂) − (−50 Nk̂) − (−60 Nk̂) − (30 N̂)

= 15
√

3 Nı̂ − 30 N̂ + 20 Nk̂

To find the force in bar BC, we draw a free body diagram of joint B (which connects

T
T

T T

BA

BC

BD
BE

Figure 4.149: (Filename:sfig4.3d.truss1.b)

BC) as shown in Fig. 4.149. Now, writing the force balance for the joint in the
x-direction, i.e., [

∑ ⇀
F = ⇀

0] · ı̂, gives

Bx + ⇀
TBC · ı̂ = 0

or Bx + TBC sin 60o = 0

⇒ TBC = − Bx

sin 60o

= −−15
√

3 N√
3/2

= 30 N

Thus the force in bar BC is TBC = 30 N (tensile force).

⇀

A = 15
√

3 Nı̂ − 30 N̂ + 20 Nk̂,
⇀
B = −15

√
3 Nı̂ + 90 Nk̂,

⇀

C = ⇀

0, TBC = 30 N
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SAMPLE 4.36 A 3-D truss solved on the computer: The 3-D truss shown in the

Figure 4.150: (Filename:sfig4.3d.truss2)

figure is fabricated with 12 bars. Bars 1–5 are of length � = 1 m, bars 6–9 have
length �/

√
2(≈ 0.71 m), and bars 10–12 are cut to size to fit between the joints they

connect. The truss is supported at A on a ball and socket, at B on a linear roller, and at
C on a planar roller. A load F = 2 kN is applied at D as shown. Write all equations
required to solve for all bar forces and support reactions and solve the equations using
a computer.

Solution There are 12 bars and 6 joints in the given truss. The unknowns are 12 bar
forces and six support reactions (3 at A (Ax , Ay, Az), 2 at B (By, Bz), and 1 at E (Ez)).
Therefore, we need 18 independent equations to solve for all the unknowns. Since
the force equilibrium at each joint gives one vector equation in 3-D, i.e., three scalar
equations, the 6 joints in the truss can generate the required number (6 × 3 = 18) of
equations. Therefore, we go joint by joint, draw the free body diagram of the joint,
write the force equilibrium equation, and extract the 3 scalar equations from each
vector equation.

At each joint we use the following convention for force labels. At joint A, the
force from bar AB is

⇀
FAB = T1λ̂AB and at joint B, the force from the same bar AB is

⇀
FBA = T1λ̂BA = T1(−λ̂AB) = − ⇀

FAB. We switch from the letters to denote the bars
in the force vectors to numbers in its scalar representation (T1, T2, etc.) to facilitate
computer solution.

Figure 4.151: (Filename:sfig4.3d.truss2.a)

Joint A: ∑
⇀
F = ⇀

0 ⇒ ⇀
FAB + ⇀

FAC + ⇀
FAF + ⇀

FAE + ⇀

A = ⇀

0

T1 ı̂ + T6√
2
(ı̂ + k̂) + T10√

6
(ı̂ + 2̂ + k̂) + T4̂ + Ax ı̂ + Ay ̂ + Az k̂ = ⇀

0(4.74)

Joint B: ∑
⇀
F = ⇀

0 ⇒ ⇀
FBA + ⇀

FBC + ⇀
FBD + ⇀

FBE + ⇀
B = ⇀

0

−T1 ı̂ + T7√
2
(−ı̂ + k̂) + T2̂ + T12√

2
(−ı̂ + ̂) + By ̂ + Bz k̂ = ⇀

0(4.75)

Joint C: ∑
⇀
F = ⇀

0 ⇒ ⇀
FCA + ⇀

FCB + ⇀
FCF + ⇀

FCD = ⇀

0

− T6√
2
(ı̂ + k̂) − T7√

2
(−ı̂ + k̂) + T5̂ + T11√

6
(ı̂ + 2̂ − k̂) = ⇀

0 (4.76)

Joint D: ∑
⇀
F = ⇀

0 ⇒ ⇀
FDB + ⇀

FDC + ⇀
FDE + ⇀

FDF + ⇀
F = ⇀

0

−T2̂ − T11√
6
(ı̂ + 2̂ − k̂) − T3 ı̂ + T9√

2
(−ı̂ + k̂) − F k̂ = ⇀

0 (4.77)

Joint E: ∑
⇀
F = ⇀

0 ⇒ ⇀
FEA + ⇀

FEB + ⇀
FED + ⇀

FEF + ⇀
E = ⇀

0

−T4̂ + T12√
2
(ı̂ − ̂) + T3 ı̂ + T8√

2
(ı̂ + k̂) + Ez k̂ = ⇀

0 (4.78)

Joint F: ∑
⇀
F = ⇀

0 ⇒ ⇀
FFC + ⇀

FFE + ⇀
FFA + ⇀

FFD = ⇀

0

−T5̂ − T8√
2
(ı̂ + k̂) − T10√

6
(ı̂ + 2̂ + k̂) − T9√

2
(−ı̂ + k̂) = ⇀

0 (4.79)
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Now we can separate out 3 scalar equations from each of the vector equations from
eqn. (4.74)–eqn. (4.79) by dotting them with ı̂, ̂ , and k̂.

Eqn. [Eqn.] · ı̂ [Eqn.] · ̂ [Eqn.] · k̂

(1) T1 + 1√
2

T6 + 1√
6

T10 + Ax = 0, 2√
6

T10 + T4 + Ay = 0, 1√
2

T6 + 1√
6

T10 + Az = 0

(2) −T1 − 1√
2

T7 − 1√
2

T12 = 0, T2 + 1√
2

T12 + By = 0, 1√
2

T7 + Bz = 0

(3) − 1√
2

T6 + 1√
2

T7 + 1√
6

T11 = 0, T5 + 2√
6

T11 = 0, 1√
2

T6 + 1√
2

T7 + 1√
6

T11 = 0

(4) − 1√
6

T11 − T3 − 1√
2

T9 = 0, −T2 − 2√
6

T11 = 0, 1√
6

T11 + 1√
2

T9 = F

(5) 1√
2

T12 + T3 + 1√
2

T8 = 0, −T4 − 1√
2

T12 = 0, 1√
2

T8 + Ez = 0

(6) − 1√
2

T8 − 1√
6

T10 + 1√
2

T9 = 0, −T5 − 2√
6

T10 = 0, 1√
2

T8 + 1√
6

T10 + 1√
2

T9 = 0

Thus, we have 18 required equations for the 18 unknowns. Before we go to the
computer, we need to do just one more little thing. We need to order the unknowns
in some way in a one-dimensional array. So, let

x = [Ax Ay Az Bx By Ez T1 . . . T12]

Thus x1 = Ax , x2 = Ay, . . . , x7 = T1, x8 = T2, . . . , x18 = T12. Now we are
ready to go to the computer, feed these equations, and get the solution. We enter each
equation as part of a matrix [A] and a vector {b} such that [A]{x} = {b}. Here is
the pseudocode:

sq2i = 1/sqrt(2) % define a constant
sq6i = 1/sqrt(6) % define another constant
F = 2 % specify given load

A(1,[1 7 12 16]) = [1 1 sq2i sq6i]
A(2,[2 10 16]) = [1 1 2*sq6i]
.
.
A(18,[14 15 16]) = [sq2i sq2i sq6i]
b(12,1) = F
form A and b setting all other entries to zero
solve A*x = b for x

The solution obtained from the computer is the one-dimensional array x which after
decoding according to our numbering scheme gives the following answer.

Ax = Ay = 0, Az = −2 kN, By = 0, Bz = 2 kN, Ez = 2 kN,

T1 = T3 = −2 kN, T2 = T4 = T5 = −4 kN, T6 = 0,

T7 = T8 = −2.83 kN, T9 = 0, T10 = T11 = 4.9 kN, T12 = 5.66 kN,
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SAMPLE 4.37 An unsolvable problem? A 0.6 m × 0.4 m uniform rectangular plate

Figure 4.152: (Filename:sfig4.3d.plate)

of mass m = 4 kg is held horizontal by two strings BE and CF and linear hinges at A
and D as shown in the figure. The plate is loaded uniformly with books of total mass
6 kg. If the maximum tension the strings can take is 100 N, how much more load can
the plate take?

Solution The free body diagram of the plate is shown in Fig. 4.153. Note that we

z

A

Figure 4.153: (Filename:sfig4.3d.plate.a)

model the hinges at A and D with no resistance in the y-direction. Since the plate
has uniformly distributed load (including its own weight), we replace the distributed
load with an equivalent concentrated load

⇀
W acting vertically through point G.

The various forces acting on the plate are

⇀
W = −W k̂,

⇀
T1 = T1λ̂BE,

⇀
T2 = T2λ̂CF,

⇀

A = Ax ı̂ + Az k̂,
⇀
D = Dx ı̂ + Dz k̂

Here λ̂BE = λ̂CF = − cos θ ı̂ + sin θ k̂ = λ̂(let). Now, we apply moment equilibrium
about point A, i.e.,

∑ ⇀
MA = ⇀

0.

⇀
rB × ⇀

T1 + ⇀
rC × ⇀

T2 + ⇀
rG × ⇀

W + ⇀
rD × ⇀

D = ⇀

0 (4.80)

where,

⇀
rB × ⇀

T1 = aı̂ × T1λ̂ = −aT1 sin θ ̂

⇀
rC × ⇀

T2 = (aı̂ + b̂) × T2λ̂ = T2b sin θ ı̂ − T2a sin θ ̂ + T2b cos θ k̂

⇀
rG × ⇀

W = 1

2
(aı̂ + b̂) × (−W k̂) = −Wa

2
ı̂ + Wa

2
̂

⇀
rD × ⇀

D = b̂ × (Dx ı̂ + Dz k̂) = Dzbı̂ − Dx bk̂

Substituting these products in eqn. (4.80) and dotting with ı̂, ̂ and k̂, we get

T2 sin θ + Dz = W

2
(4.81)

T2 cos θ − Dx = 0 (4.82)

(T1 + T2) sin θ = W

2
(4.83)

The force equilibrium,
∑ ⇀

F = ⇀

0, gives

⇀

A + ⇀
D + ⇀

T1 + ⇀
T2 + ⇀

W = ⇀

0

Again, substituting the forces in their component form and dotting with ı̂ and k̂ (there
are no ̂ components), we get

Ax + Dx − (T1 + T2) cos θ = 0

⇒ Ax − T1 cos θ = 0 (4.84)

Az + Dz + (T1 + T2) sin θ = 0

⇒ Az + T1 sin θ = W

2
(4.85)

These are all the equations that we can get. Now, note that we have five independent
equations (eqns. (4.81) to (4.85)) but six unknowns. Thus we cannot solve for the
unknowns uniquely. This is an indeterminate structure! No matter which point we
use for our moment equilibrium equation, we will always have one more unknown
than the number of independent equations. We can, however, solve the problem with
an extra assumption (see comments below) — the structure is symmetric about the
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axis passing through G and parallel to x-axis. From this symmetry we conclude that
T1 = T2. Then, from eqn. (4.84) we have

2T sin θ = W

2
⇒ T = W

4 sin θ

We can now find the maximum load that the plate can take subject to the maximum
allowable tension in the strings.

W = 4T sin θ

⇒ Wmax = 4Tmax sin θ

= 4(100 N) · 1

2
= 200 N

The total load as given is (6 + 4) kg · 9.81 m/s2 = 98.1 N ≈ 100 N. Thus we can
double the load before the strings reach their break-points. Now the reactions at D
and A follow from eqns. (4.81), (4.82), (4.84), and (4.85).

Dz = Az = W

2
− T sin θ = W

2

Dx = Ax = T cos θ = W

4
cot θ

Wmax = 200 N

Comments:

(a) We got only five independent equations (instead of the usual 6) because the
force equilibrium in the y-direction gives a zero identity (0 = 0). There are no
forces in the y-direction. The structure seems to be unstable in the y-direction
— if you push a little, it will move. Remember, however, that it is so because we
chose to model the hinges at A and D that way keeping in mind the only vertical
loading. The actual hinges used on a bookshelf will not allow movement in
the y-direction either. If we model the hinges as ball and socket joints, we
introduce two more unknowns, one at each joint, and get just one more scalar
equation. Thus we are back to square one. There is no way to determine Ay

and Dy from equilibrium equations alone.
(b) The assumption of symmetry and the consequent assumption of equality of the

two string tensions is, mathematically, an extra independent equation based
on deformations (strength of materials). At this point, you may not know any
strength of material calculations or deformation theory, but your intuition is
likely to lead you to make the same assumption. Note, however, that this
assumption is sensitive to accuracy in fabrication of the structure. If the strings
were slightly different in length, the angles were slightly off, or the wall was not
perfectly vertical, the symmetry argument would not hold and the two tensions
would not be the same.
Most real problems are like this — indeterminate. Our modelling, which
requires understanding of mechanics, makes them determinate and solvable.
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SAMPLE 4.38 3-D moment at the support: A ’T’ shaped cantilever beam is loaded

Figure 4.154: (Filename:sfig4.intern.cant3D)

as shown in the figure. Find all the support reactions at A.

Solution The free body diagram of the beam is shown in Fig. ??. Note that the
forces acting on the beam can produce in-plane as well as out of plane moments.
Therefore, we show the unknown reactions

⇀

A and
⇀
MA as general 3-D vectors at A.

The moment equilibrium about point A,
∑ ⇀

MA = ⇀

0, gives

Figure 4.155: (Filename:sfig4.intern.cant3D)

⇀
MA + ⇀

rC/A × (
⇀
F1 + ⇀

F2) + ⇀
rD/A × ⇀

F3 = ⇀

0

⇒ ⇀
MA = (

⇀
rB/A + ⇀

rC/B) × (
⇀
F1 + ⇀

F2) + (
⇀
rB/A + ⇀

rD/B) × ⇀
F3

= (�ı̂ + a̂) × (−F1k̂ − F2 ı̂) + (�ı̂ − a̂) × F3 ı̂

But F3 = −F2 = F (say). Therefore,

= (�ı̂ + a̂) × (−F1k̂ − F k̂) + (�ı̂ − a̂) × F ı̂

= F1�̂ − F1aı̂ − 2Fak̂

= 30 lbf · 3 ft̂ − 30 lbf · 1 ftı̂ − 2(30 lbf · 1 ft)k̂

= (−30ı̂ + 90̂ − 60k̂) lb·ft

The force equilibrium,
∑ ⇀

F = ⇀

0, gives

⇀

A = − ⇀
F1 − ⇀

F2 − ⇀
F3

= − ⇀
F1 − ⇀

F + ⇀
F

= −(−F1k̂) = F1k̂

= 30 lbfk̂

⇀

A = 30 lbfk̂, and
⇀
MA = (−30ı̂ + 90̂ − 60k̂) lb·ft



5 Dynamics of particles

We now progress from statics to dynamics. Although we treated statics as an inde-
pendent topic, statics is really a special case of dynamics. In statics we neglected the
inertial terms (the terms involving acceleration times mass) in the linear and angular
momentum balance equations. In dynamics these terms are of central interest. In
statics all the forces and moments cancel each other. In dynamics the forces and
moments add to cause the acceleration of mass. As the names imply, statics is gen-
erally concerned with things that don’t move, or at least don’t move much, whereas
dynamics with things that move a lot. How to quantify what is ‘still’ (statics) vs
‘moving’ (dynamics) is itself a dynamics question.

A big part of learning dynamics is learning to keep track of motion, kinematics.
In addition, kinematic analysis is also useful for work and energy methods in statics.
We are going to develop our understanding of dynamics by considering progressively
harder-to-understand motions.

This chapter is limited to the dynamics of particles. A particle is a system totally
characterized by its position (as a function of time) and its (fixed) mass. Often one
imagines that a particle is something small. But the particle idealization is used, for
example, to describe a galaxy in the context of its motion in a cluster of galaxies.
Rather, a particle is something whose spatial extent is neglected in the evaluation
of mechanics equations. An object’s spatial extent might be neglected because the
object is small compared to other relevant distances, or because distortion and rotation
happen to be of secondary interest.

In this chapter we further limit our study of the dynamics of particles to cases
where the applied forces are given as a function of time or can be determined from
the positions and velocities of the particles. The time-varying thrust from an engine
might be thought of as a force given as a function of time. Gravity and springs cause
forces which are functions of position. And the drag on a particle as it moves through

217
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air or water can be modeled as a force depending on velocity. Discussion of geometric
constraints, as for particles connected with strings or rods, where some of the forces
depend on finding the accelerations, begins in chapter 6.

The most important equation in this chapter is linear momentum balance applied
to one particle. If we start with the general form in the front cover, discussed in
general terms in chapter 1, we get:∑

⇀
Fi = ˙⇀L Linear momentum balance for any system

=
∑

mi
⇀
ai for a system of particles

= m ⇀
a for one particle

If we define
⇀
F to be the net force on the particle (

⇀
F = ∑ ⇀

Fi) then we get

⇀
F = m ⇀

a (5.1)

which is sometimes called ‘Newton’s second law of motion.’ In his words,

“Any change of motion is proportional to the force that acts, and it is
made in the direction of the straight line in which that force is acting.”

In modern language, explicitly including the role of mass, the net force on a particle
is its mass times its acceleration. Intuitively people think of this law as saying force
causes motion, and, more precisely, that force causes acceleration of mass. Actually,
what causes what, causality, is just a philosophical question. The important fact
is that when there is a net force there is acceleration of mass, and when there is
acceleration of mass there is a net force. When a car crashes into a pole there is a big
force and a big deceleration of the car. You could think of the force on the bumper as
causing the car to slow down rapidly. Or you could think of the rapid car deceleration
as necessitating a force. It is just a matter of personal taste because in both cases
equation 5.1 applies.

Acceleration is the second derivative of position

What is the acceleration of a particle? Lets assume that ⇀
r (t) is the position of the

particle as a function of time relative to some origin. Then its acceleration is

⇀
a ≡ d

dt
⇀
v = d

dt

( d
dt

⇀
r
) = d2

dt2
⇀
r

= ˙⇀v = d
dt (

˙⇀r ) = ¨⇀r

where one or two dots over something is a short hand notation for the first or second
time derivative.

Newton’s laws are accurate in a Newtonian reference frame

When the acceleration is calculated from position it is calculated using a particular
coordinate system. A reference frame is, for our purposes at the moment, a coordinate
system. The calculated acceleration of a particle depends on how the coordinate
system itself is moving. So the simple equation

⇀
F = m ⇀

a
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has as many different interpretations as there are differently moving coordinate sys-
tems (and there are an infinite number of those). Sir Isaac was standing on earth
measuring position relative to the ground when he noticed that his second law accu-
rately described things like falling apples. So the equation

⇀
F = m ⇀

a is valid using
coordinate systems that are fixed to the earth. Well, not quite. Isaac noticed that the
motion of the planets around the sun only followed his law if the acceleration was
calculated using a coordinate system that was still relative to ‘the fixed stars.’ With
a fixed-star coordinate system you calculate very slightly different accelerations for
things like falling apples than you do using a coordinate system that is stuck to the
earth. And nowadays when astrophysicists try to figure out how the laws of mechan-
ics explain the shapes of spiral galaxies they realize that none of the so-called ‘fixed
stars’ are so totally fixed. They need even more care to pick a coordinate system
where eqn. 5.1 is accurate.

Despite all this confusion, it is generally agreed that there exists some coordinate
system for which Newton’s laws are incredibly accurate. Further, once you know one
such coordinate system there are rules (which we will discuss in later chapters) to
find many others. Any such reference frame is called a Newtonian reference frame.
Sometimes people also call such a frame a Fixed frame, as in ‘fixed to the earth’ or
‘fixed to the stars’.

For most engineering purposes, not counting, for example, trajectory control of
interplanetary missions, a coordinate system attached to the ground under your feet
is good approximation to a Newtonian frame. Fortunately. Or else apples would fall
differently. Newton might not have discovered his laws. And this book would be
much shorter.

The organization of this chapter

In the first four sections of this chapter we give a thorough introduction to the one-
dimensional mechanics of single particle. This is a review and deepening of material
covered in freshman physics. These sections introduce you to the time-varying nature
of dynamics without the complexity of vector geometry. The later sections concern
dynamics with more particles or more spatial dimensions or both.

5.1 Force and motion in 1D
We now limit our attention to the special case where one particle moves on a given
straight line. We postpone until Chapter 6 issues about what forces might be required
to keep the particle on that line. For problems with motion in only one direction, the
kinematics is particularly simple. Although we use vectors here because of their help
with signs, they are really not needed.

x
⇀
v = ẋ ı̂

⇀
a = v̇ı̂ = ẍ ı̂

Figure 5.1: One-dimensional position,
velocity, and acceleration in the x direction.
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Position, velocity, and acceleration in one dimension
If, say, we call the direction of motion the ı̂ direction, then we can call x the position
of the particle we study (see figure 5.1). Even though we are neglecting the spatial
extent of the particle, to be precise we can define x to be the x coordinate of the
particle’s center. We can write the position ⇀

r , velocity ⇀
v and acceleration ⇀

a as

0

dx

dt

dv

dt

x(t)

v(t)
t* t

0
t* t

Figure 5.2: Graphs of x(t) and v(t) = dx
dt

versus time. The slope of the position curve
dx/dt at t∗ is v(t∗). And the slope of the
velocity curve dv/dt at t∗ is a(t∗).

(Filename:tfigure3.4.1a)

⇀
r = x ı̂ and ⇀

v = vı̂ = dx

dt
ı̂ = ẋ ı̂ and ⇀

a = aı̂ = dv

dt
ı̂ = d2x

dt2 ı̂ = ẍ ı̂,

Figure 5.2 shows example graphs of x(t) and v(t) versus time. When we don’t use
vector notation explicitly we will take v and a to be positive if they have the same
direction as increasing x (or y or whatever coordinate describes position).
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Example: Position, velocity, and acceleration in one dimension

If position is given as x(t) = 3e4t/ s m then v(t) = dx/dt =
12e4t/ s( m/s) and a(t) = dv/dt = 48e4t/ s( m/s2). So at, say, time
t = 2 s the acceleration is a|t=2 s = 48e4·2 s/ s( m/s2) = 48 · e8 m/s2 ≈
1.43 · 105 m/s2. ✷

We can also, using the fundamental theorem of calculus, look at the integral
versions of these relations between position, velocity, and acceleration (see Fig. 5.3).

v(t*)-v0=area1

area1

area2

v(t)

a(t)

t*
t

t

t

x(t*)-x0=area2

0

0

0

x(t)

(a)

(b)

(c)

Figure 5.3: One-dimensional kinematics
of a particle: (a) is a graph of the accelera-
tion of a particle a(t); (b) is a graph of the
particle velocity v(t) and the integral of a(t)
from t0 = 0 to t∗, the shaded area under the
acceleration curve; (c) is the position of the
particle x(t) and the integral of v(t) from
t0 = 0 to t∗, the shaded area under the ve-
locity curve.

(Filename:tfigure3.4.1b)

x(t) = x0 +
∫ t

to
v(τ) dτ with x0 = x(t0), and

v(t) = v0 +
∫ t

to
a(τ ) dτ with v0 = v(t0).

With more informal notation, these equations can also be written as:

x = ∫
v dt

v = ∫
a dt.

So one-dimensional kinematics includes almost all elementary calculus problems.
You are given a function and you have to differentiate it or integrate it. To put it
the other way around, almost every calculus question could be phrased as a question
about your bicycle speedometer. On your bicycle speedometer (which includes an
odometer) you can read your speed and distance travelled as functions of time. Given
one of those two functions, find the other. 1©As of this writing, common bicycle

1© To cover the range of calculus problems
you need to be a very good rider, however,
able to ride frontwards, backwards, at zero
speed and infinitely fast.

computers don’t have accelerometers. But acceleration as a function of time is also
of interest. For example, if you are given the (scalar part of) velocity v(t) as a function
of time and are asked to find the acceleration a(t) you have to differentiate. If instead
you were asked to find the position x(t), you would be asked to calculate an integral
(see figure 5.3).

If acceleration is given as a function of time, then position is found by integrating
twice.

Differential equations

A differential equation is an equation that involves derivatives. Thus the equation
relating position to velocity is

dx

dt
= v or, more explicitly

dx(t)

dt
= v(t),

is a differential equation. An ordinary differential equation (ODE) is one that contains
ordinary derivatives (as opposed to partial differential equations which we will not
use in this book).

Example: Calculating a derivative solves an ODE

Given that the height of an elevator as a function of time on its 5 seconds
long 3 meter trip from the first to second floor is

y(t) = (3 m)

(
1 − cos

(
π t
5 s

))
2
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we can solve the differential equation v = dy
dt by differentiating to get

v = dy

dt
= d

dt

[
(3 m)

(
1 − cos

(
π t
5 s

))
2

]
= 3π

10
sin

(
π t

5 s

)
m/s

(Note: this would be considered a harsh elevator because of the jump in
the acceleration at the start and stop.) ✷

A little less trivial is the case when you want to find a function when you are given
the derivative.

Example: Integration solves a simple ODE

Given that you start at home (x = 0) and, over about 30 seconds, you
accelerate towards a steady-state speed of 4 m/s according to the function

v(t) = 4(1 − e−t/(30 s)) m/s

and your whole ride lasts 1000 seconds (about 17 minutes). You can find
how far you travel by solving the differential equation

ẋ = v(t) with the initial condition x(0) = 0

which can be accomplished by integration. Say, after 1000 seconds

x(t = 1000 s) = ∫ 1000 s
0 v(t) dt = ∫ 1000 s

0 4(1 − e−t/(30 s))( m/s) dt

= (
4t + (120 s)e−t/(30 s)

)∣∣1000 s
0 m/s

= (
(4 · 1000 s + (120 s)e−100/3) − (0 + (120 s)e0)

)
m/s

= (
4000 − 120 + 120e−100/3)

)
m

≈ 3880 m (to within an angstrom or so)

The distance travelled is only 120 m less than would be travelled if the
whole trip was travelled at a steady 4 m/s (4 m/s × 1000 s = 4000 m).
✷

Unlike the integral above, many integrals cannot be evaluated by hand.

Example: An ODE that leads to an intractable integral

If you were told that the velocity as a function of time was

v(t) = 4t

t + e−t/(30 s) s
m

you would, as for the previous example, be describing a bike trip where
you started at zero speed and exponentially approached a steady speed
of 4 m/s. Thus your position as a function of time should be similar. But
what is it? Let’s proceed as for the last example to solve the equation

ẋ = v(t) with the initial condition x(0) = 0

and the given v(t). We can set up the integral to get

x(t = 1000 s) = ∫ 1000 s
0 v(t) dt = ∫ 1000 s

0
4t

t+e−t/(30 s) s
m dt

= . . .

(5.2)
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which is the kind of thing you have nightmares about seeing on an exam.
This is an integral that you couldn’t do if your life depended on it. No-one
could. There is no formula for x(t) that solves the differential equation
ẋ = v(t), with the given v(t), unless you regard eqn. 5.2 as a formula. In
days of old they would say ‘the problem has been reduced to quadrature’
meaning that all that remained was to evaluate an integral, even if they
didn’t know how to evaluate it. But you can always resort to numerical
integration. One of many ways to evaluate the integral numerically is
by the following pseudo code (note that the problem is formulated with
consistent units so they can be dropped for the numerics).

ODE = { xdot = 4 t / (t+e^(-t/30)) }
IC = { x(0) = 0 }
solve ODE with IC and evaluate at t=1000

The result is x ≈ 3988 m which is also, as expected because of the
similarity with the previous example, only slightly shy of the steady-
speed approximation of 4000 m. ✷

The equations of dynamics
Linear momentum balance

For a particle moving in the x direction the velocity and acceleration are ⇀
v = vı̂ and

⇀
a = aı̂. Thus the linear momentum and its rate of change are

⇀
L ≡ ∑

mi
⇀
v i = m ⇀

v = mvı̂, and
˙⇀L ≡ ∑

mi
⇀
a i = m ⇀

a = maı̂.

Thus the equation of linear momentum balance 1©, eqn. I from the front inside cover,1© We do not concern ourselves with an-
gular momentum balance in this section.
Assuming we pick an origin on the line of
travel, all terms on both sides of all angular
momentum balance equations are zero. The
angular momentum balance equations are
thus automatically satisfied and have noth-
ing to offer here.

or equation 5.1 reduces to:

F ı̂ = maı̂ or F = ma (5.3)

where F is the net force to the right and a is the acceleration to the right.
Now the force could come from a spring, or a fluid or from your hand pushing

the particle to the right or left. The most general case we want to consider here is
that the force is determined by the position and velocity of the particle as well as the
present time. Thus

F = f (x, v, t).

Special cases would be, say,

F = f (x) = −kx for a linear spring,
F = f (v) = −cv for a linear viscous drag,
F = f (t) = F0 sin(βt) for an oscillating load, and
F = f (x, v, t) = −kx − cv + F0 sin(βt) for all three forces at once.

So all elementary 1D particle mechanics problems can be reduced to the solution of
this pair of coupled first order differential equations,

dv
dt = f (x, v, t)/m︸ ︷︷ ︸

a(t)

(a)

dx
dt = v(t) (b)

(5.4)

where the function f (x, v, t) is given and x(t) and v(t) are to be found.
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Example: viscous drag

If the only applied force is a viscous drag, F = −cv, then linear mo-
mentum balance would be −cv = ma and Eqns. 5.4 are

dv
dt = −cv/m

dx
dt = v

where c and m are constants and x(t) and v(t) are yet to be determined
functions of time. Because the force does nothing but slow the particle
down there will be no motion unless the particle has some initial veloc-
ity. In general, one needs to specify the initial position and velocity in
order to determine a solution. So we complete the problem statement by
specifying the initial conditions that

x(0) = x0 and v(0) = v0

where x0 and v0 are given constants. Before worrying about how to solve
such a set of equations, on should first know how to recognize a solution
set. In this case the two functions

v(t) = v0e−ct/m, and
x(t) = x0 + mv0(1 − e−ct/m)/c

solve the equations. You can check that the initial conditions are satisfied
by evaluating the expressions at t = 0. To check that the differential
equations are satisfied, you plug the candidate solutions into the equation
and see if an identity results. ✷

Just like the case of integration (or equivalently the solution for x of ẋ = v(t)), one
often cannot find formulas for the solutions of differential equations.

Example: A dynamics problem with no pencil and paper solution

Consider the following case which models a particle in a sinusoidal
force field with a second applied force that oscillates in time. Using the
dimensional constants c, d, F0, β, and m,

dv
dt = (c sin(x/d) + F0 sin(βt)) /m

dx
dt = v

with initial conditions x(0) = 0 and v(0) = 0.

There is no known formula for x(t) that solves this ODE. ✷

Just writing the ordinary differential equations and initial conditions is quite analogous
to setting up an integral in freshman calculus. The solution is reduced to quadrature.
Because numerical solution of sets of ordinary differential equations is a standard
part of all modern computation packages you are in some sense done when you get
to this point. You just ask your computer to finish up.
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Special methods and special cases in 1D mechanics
In some problems, the acceleration can be found as a function of position (as opposed
to time) easily. In this case, one can find velocity as a function of position by the
following formula (see Box 5.1:

(v(x))2 = (v(x0))
2 + 2

∫ x

x0

a(x∗) dx∗. (5.5)

An especially simple case is constant acceleration. Then we get the following kine-
matics formulas which are greatly loved and hated in high school and freshman
physics:

a = const ⇒ x = x0 + v0t + at2/2

a = const ⇒ v = v0 + at

a = const ⇒ v = ±
√

v2
0 + 2ax .

Some of these equations are also discussed in box 5.2 about the solution of the simplest
ordinary differential equations on page 226.

Example: Ramping up the acceleration at the start

If you get a car going by gradually depressing the ‘accelerator’ so that
its acceleration increases linearly with time, we have

a = ct (take t = 0 at the start)
⇒ v(t) = ∫ t

0 adτ + v0 = ∫ t
0 cτdτ = ct2/2

(since v0 = 0)
⇒ x(t) = ∫ t

0 vdτ + x0 = ∫ t
0 (cτ 2/2)dτ = ct3/6

(since x0 = 0).

The distance the car travels is proportional to the cube of the time that
has passed from dead stop. ✷
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5.1 THEORY
Finding v(x) from a(x)

Equation 5.5 for velocity as a function of position can be derived as
follows. Two derivations are given.
Derivation 1:

dv

dt
= a

⇒ v
dv

dt

dt

dx
= a, since

(
1

v
= dt

dx

)
⇒

[
d

dt

(
1

2
v2

)]
dt = a dx,

since
(

d

dt

(
1

2
v2

)
= v

dv

dt

)
⇒ 1

2
v2 − 1

2
v2

0 =
∫ x

x0

a(x∗)dx∗.

Derivation 2:

dv

dt
= a

⇒ dv

dx
· dx

dt
= a,

⇒ v dv = a dx,

⇒
∫ v

v0

v∗ dv∗ =
∫ x

x0

a(x∗) dx∗,

⇒ 1

2
v2 − 1

2
v2

0 =
∫ x

x0

a(x∗)dx∗.
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5.2 The simplest ODEs, their solutions, and heuristic explanations

Sometimes differential equations you want to solve are sim-
ple enough that you might quickly find their solution. This table
presents some of the simplest ODEs for u(t) and their general so-
lution. Each of these solutions can be used to solve one or another
simple mechanics problem. In order to make these simplest ordi-
nary differential equations (ODE’s) feel like more than just a group
of symbols, we will try to make each of them intuitively plausible.
For this purpose, we will interpret the variable u as the distance an
object has moved to the right of its ‘home’, the origin at 0. The
velocity of motion to the right is thus u̇ and its acceleration to the
right is ü. If u̇ < 0 the particle is moving to the left. If ü < 0 the
particle is accelerating to the left.

In all cases we assume that A and B are constants and that λ is
a positive constant. C1, C2, C3, and C4 are arbitrary constants in
the solutions that may be chosen to satisfy any initial conditions.

C1
zero velocity

a)

t

u

a) ODE: u̇ = 0 ⇒ Soln: u = C1.
u̇ = 0 means that the velocity is zero. This equation would arise in
dynamics if a particle has no initial velocity and no force is applied
to it. The particle doesn’t move. Its position must be constant. But
it could be anywhere, say at position C1. Hence the general solution
u = C1, as can be found by direct integration.

• • •

C1

constant velocity

A
1

b)

t

u

b) ODE: u̇ = A ⇒ Soln: u = At + C1.
u̇ = A means the object has constant speed. This equation describes
the motion of a particle that starts with speed v0 = A and because it
has no force acting on it continues to move at constant speed. How
far does it go in time t? It goes v0t . Where was it at time t = 0?
It could have been anywhere then, say C1. So where is it at time t?
It’s at its original position plus how far it has moved, u = v0t + C1,
as can also be found by direct integration.

• • •

zero acceleration

1

c)

C1

C2

t

u

c) ODE: ü = 0 ⇒ Soln: u = C1t + C2.
ü = 0 means the acceleration is zero. That is, the rate of change of
velocity is zero. This constant-velocity motion is the general equa-
tion for a particle with no force acting on it. The velocity, if not
changing, must be constant. What constant? It could be anything,
say C1. Now we have the same situation as in case (b). So the
position as a function of time is anything consistent with an object
moving at constant velocity: u = C1t + C2, where the constants
C1 and C2 depend on the initial velocity and initial position. If you
know that the position at t = 0 is u0 and the velocity at t = 0 is v0,
then the position is u = u0 + v0t .

• • •

t

u

C2
C1

C1+At

constant acceleration

1

1

d)

d) ODE: ü = A
⇒ Soln: u = At2/2 + C1t + C2.

This constant acceleration A, constant rate of change of velocity,
is the classic (all-too-often studied) case. This situation arises for
vertical motion of an object in a constant gravitational field as well
as in problems of constant acceleration or deceleration of vehicles.
The velocity increases in proportion to the time that passes. The
change in velocity in a given time is thus At and the velocity is
v = u̇ = v0 + At (given that the velocity was v0 at t = 0). Because
the velocity is increasing constantly over time, the average velocity
in a trip of length t occurs at t/2 and is v0 + At/2. The distance
traveled is the average velocity times the time of travel so the dis-
tance of travel is t · (v0 + At/2) = v0t + At2/2. The position is
the position at t = 0, u0, plus the distance traveled since time zero.
So u = u0 + v0t + At2/2 = C2 + C1t + At2/2. This solution can
also be found by direct integration.

• • •
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exponential growth

1/λ

e)

t

u

C1

eC1

e) ODE: u̇ = λu ⇒ Soln: u = C1eλt .
The displacement u grows in proportion to its present size. This
equation describes the initial falling of an inverted pendulum in a
thick viscous fluid. The bigger the u, the faster it moves. Such
situations are called exponential growth (as in population growth or
monetary inflation) for a good mathematical reason. The solution u
is an exponential function of time: u(t) = C1eλt , as can be found
by separating variables or guessing.

• • •

exponential decay

1/λ

f)
C1

C1/e

t

u

f) ODE: u̇ = −λu ⇒ Soln: u = C1e−λt .
The smaller u is, the more slowly it gets smaller. u gradually ta-
pers towards nothing: u decays exponentially. The solution to the
equation is: u(t) = C1e−λt . This expression is essentially the same
equation as in (e) above.

• • •

1

g)

C3 C4 t

u

g) ODE: ü = λ2u
⇒ Soln: : u = C1eλ t + C2e−λ t

⇒ u = C3 cosh(λ t) + C4 sinh(λ t).
Note, sinh and cosh are just combinations of exponentials. For
ü = λ2u, the point accelerates more and more away from the origin
in proportion to the distance from the origin. This equation describes
the falling of a nearly vertical inverted pendulum when there is no
friction. Most often, the solution of this equation gives roughly
exponential growth. The pendulum accelerates away from being
upright. The reason there is also an exponentially decaying solution
to this equation is a little more subtle to understand intuitively: if a
not quite upright pendulum is given just the right initial velocity it
will slowly approach becoming just upright with an exponentially
decaying displacement. This decaying solution is not easy to see
experimentally because without the perfect initial condition the ex-
ponentially growing part of the solution eventually dominates and
the pendulum accelerates away from being just upright.

• • •

C2
C1

harmonic oscillator

2π/λ

1

h)

t

u

h) ODE: ü = −λ2u or ü + λ2u = 0
⇒ Soln: u = C1 sin(λ t) + C2 cos(λ t).

This equation describes a mass that is restrained by a spring which is
relaxed when the mass is at u = 0. When u is positive, ü is negative.
That is, if the particle is on the right side of the origin it accelerates
to the left. Similarly, if the particle is on the left it accelerates to
the right. In the middle, where u = 0, it has no acceleration, so it
neither speeds up nor slows down in its motion whether it is moving
to the left or the right. So the particle goes back and forth: its po-
sition oscillates. A function that correctly describes this oscillation
is u = sin(λ t), that is, sinusoidal oscillations. The oscillations are
faster if λ is bigger. Another solution is u = cos(λ t). The general
solution is u = C1 sin(λ t) + C2 cos(λ t). A plot of this function
reveals a sine wave shape for any value of C1 or C2, although the
phase depends on the relative values of C1 and C2. The equation
ü = −λ2u or ü + λ2u = 0 is called the ‘harmonic oscillator’ equa-
tion and is important in almost all branches of science. The solution
may be found by guessing or other means (which are usually guess-
ing in disguise).

• • •

i) There are a few other not-too-hard ODEs besides those listed
in the box. For example, the general second order, constant coeffi-
cient ODE with sinusoidal forcing: Aü + Bu̇ + Cu = F sin(Dt).
But the solution is a little more complicated and not quite so easily
verified. So we save it for chapter 10 on vibrations. Most engineers,
when confronted with an equation not on this list, will resort to a
numerical computer solution.

• • •
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SAMPLE 5.1 Time derivatives: The position of a particle varies with time as ⇀
r (t) =

(C1t + C2t2)ı̂, where C1 = 4 m/s and C2 = 2 m/s2.

(a) Find the velocity and acceleration of the particle as functions of time.
(b) Sketch the position, velocity, and acceleration of the particle against time from

t = 0 to t = 5 s.
(c) Find the position, velocity, and acceleration of the particle at t = 2 s.

Solution

(a) We are given the position of the particle as a function of time. We need to find
the velocity (time derivative of position) and the acceleration (time derivative
of velocity).

⇀
r = (C1t + C2t2)ı̂ = (4 m/s t + 2 m/s2 t2)ı̂ (5.6)

⇀
v ≡ d ⇀

r

dt
= d

dt
(C1t + C2t2)ı̂

= (C1 + C2t)ı̂ = (4 m/s + 2 m/s2 t)ı̂ (5.7)

⇀
a ≡ d ⇀

v

dt
= d

dt
(C1 + C2t)ı̂

= C2 ı̂ = (2 m/s2)ı̂ (5.8)

⇀
v = (4 m/s + 2 m/s2 t)ı̂, ⇀

a = (2 m/s2)ı̂.

Thus, we find that the velocity is a linear function of time and the acceleration
is time-independent (a constant).
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Figure 5.4: (Filename:sfig5.1.vraplot)

(b) We plot eqns. (5.6,5.7, and 5.8) against time by taking 100 points between
t = 0 and t = 5 s, and evaluating ⇀

r ,
⇀
v and ⇀

a at those points. The plots are
shown below.

(c) We can find the position, velocity, and acceleration at t = 2 s by evaluating
their expressions at the given time instant:

⇀
r (t = 2 s) = [(4 m/s) · (2 s) + (2 m/s2) · (2 s)2]ı̂

= (16 m)ı̂
⇀
v(t = 2 s) = [(4 m/s) + (2 m/s2) · (2 s)]ı̂

= (8 m/s)ı̂
⇀
a(t = 2 s) = (2 m/s2)ı̂ = ⇀

a(at all t)

At t = 2 s, ⇀
r = (16 m)ı̂,

⇀
v = (8 m/s)ı̂, ⇀

a = (2 m/s2)ı̂.
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SAMPLE 5.2 Math review: Solving simple differential equations. For the following
differential equations, find the solution for the given initial conditions.

(a) dv
dt = a, v(t = 0) = v0, where a is a constant.

(b) d2x
dt2 = a, x(t = 0) = x0, ẋ(t = 0) = ẋ0, where a is a constant.

Solution

(a)

dv

dt
= a ⇒ dv = a dt

or
∫

dv =
∫

a dt = a
∫

dt

or v = at + C, where C is a constant of integration

Now, substituting the initial condition into the solution, v(t = 0) = v0 =
a · 0 + C ⇒ C = v0. Therefore,

v = at + v0.

v = v0 + at

Alternatively, we can use definite integrals:∫ v

v0

dv =
∫ t

0
a dt ⇒ v − v0 = at ⇒ v = v0 + at.

(b) This is a second order differential equation in x . We can solve this equation by
first writing it as a first order differential equation in v ≡ dx/dt , solving for v

by integration, and then solving again for x in the same manner.

d2x

dt2 = a or
dv

dt
= a

or
∫

dv =
∫

a dt

⇒ v ≡ ẋ = at + C1 (5.9)

but, v ≡ dx

dt
, ⇒

∫
dx =

∫
at dt +

∫
C1 dt

or x = 1

2
at2 + C1t + C2, (5.10)

where C1 and C2 are constants of integration. Substituting the initial condition
for ẋ in Eqn. (5.9), we get

ẋ(t = 0) = ẋ0 = a · 0 + C1 ⇒ C1 = ẋ0.

Similarly, substituting the initial condition for x in Eqn. (5.10), we get

x(t = 0) = x0 = 1

2
a · 0 + ẋ0 · 0 + C2 ⇒ C2 = x0.

Therefore,

x(t) = x0 + ẋ0t + 1

2
at2.

x(t) = x0 + ẋ0t + 1
2 at2
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SAMPLE 5.3 Constant speed motion: A ship cruises at a constant speed of 15 knots
per hour due Northeast. It passes a lighthouse at 8:30 am. The next lighthouse is
approximately 35 knots straight ahead. At what time does the ship pass the next
lighthouse?

Solution We are given the distance s and the speed of travel v. We need to find how
long it takes to travel the given distance.

s = vt

⇒ t = s

v
= 35 knots

15 knots/hour
= 2.33 hrs.

Now, the time at t = 0 is 8:30 am. Therefore, the time after 2.33 hrs (2 hours 20
minutes) will be 10:50 am.

10 : 50 am

SAMPLE 5.4 Constant velocity motion: A particle travels with constant velocity
⇀
v = 5 m/sı̂. The initial position of the particle is ⇀

r 0 = 2 mı̂ + 3 m̂ . Find the
position of the particle at t = 3 s.

Solution Here, we are given the velocity, i.e., the time derivative of position:

⇀
v ≡ d ⇀

r

dt
= v0 ı̂, where v0 = 5 m/s.

We need to find ⇀
r at t = 3 s, given that ⇀

r at t = 0 is ⇀
r 0.

x

v

y

3m

2m 15m

r (t=0) r (t=3s)

Figure 5.5: (Filename:sfig5.1.new1)

d ⇀
r = v0 ı̂dt

⇒
∫ ⇀

r (t)

⇀
r 0

d ⇀
r =

∫ t

0
v0 ı̂dt = v0 ı̂

∫ t

0
dt

⇀
r (t) − ⇀

r 0 = v0 ı̂t
⇀
r (t) = ⇀

r 0 + v0t ı̂
⇀
r (3 s) = (2 mı̂ + 3 m̂) + (5 m/s) · (3 s)ı̂

= 17 mı̂ + 3 m̂ .

⇀
r = 17 mı̂ + 3 m̂
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SAMPLE 5.5 Constant acceleration: A 0.5 kg mass starts from rest and attains a
speed of 20 m/sı̂ in 4 s. Assuming that the mass accelerates at a constant rate, find
the force acting on the mass.

Solution Here, we are given the initial velocity ⇀
v(0) = ⇀

0 and the final velocity ⇀
v

after t = 4 s. We have to find the force acting on the mass. The net force on a particle
is given by

⇀
F = m ⇀

a . Thus, we need to find the acceleration ⇀
a of the mass to calculate

the force acting on it. Now, the velocity of a particle under constant acceleration is
given by

⇀
v(t) = ⇀

v0 + ⇀
a t

. Therefore, we can find the acceleration ⇀
a as

⇀
a =

⇀
v(t) − ⇀

v(0)

t

= 20 m/sı̂ − ⇀

0
4 s

= 5 m/s2 ı̂.

The force on the particle is

⇀
F = m ⇀

a = (0.5 kg) · (5 m/s2 ı̂) = 2.5 Nı̂.

⇀
F = 2.5 Nı̂

SAMPLE 5.6 Time of travel for a given distance: A ball of mass 200 gm falls freely
under gravity from a height of 50 m. Find the time taken to fall through a distance of
30 m, given that the acceleration due to gravity g = 10 m/s2.

Solution The entire motion is in one dimension — the vertical direction. We
can, therefore, use scalar equations for distance, velocity, and acceleration. Let y
denote the distance travelled by the ball. Let us measure y vertically downwards,
starting from the height at which the ball starts falling (see Fig. 5.6). Under constant

g 30 m

y (t=0)

y (t)

Figure 5.6: (Filename:sfig5.2.new3)

acceleration g, we can write the distance travelled as

y(t) = y0 + v0t + 1

2
gt2.

Note that at t = 0, y0 = 0 and v0 = 0. We are given that at some instant t (that we
need to find) y = 30 m. Thus,

y = 1

2
gt2

t =
√

2y

g
=

√
2 × 30 m

10 m/s2 = 2.45 s

t = 2.45 s
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SAMPLE 5.7 Numerical integration of ODE’s:

(a) Write the second order linear nonhomogeneous differential equation, ẍ + cẋ +
kx = a0 sin ωt , as a set of first order equations that can be used for numerical
integration.

(b) Write the second order nonlinear homogeneous differential equation, ẍ +cẋ2 +
kx3 = 0, as a set of first order equations that can be used for numerical
integration.

(c) Solve the nonlinear equation given in (b) by numerical integration taking c =
0.05, k = 1, x(0) = 0, and ẋ(0) = 0.1. Compare this solution with that of
the linear equation in (a) by setting a0 = 0 and taking other values to be the
same as for (b).

Solution

(a)

If we let ẋ = y,

then ẏ = ẍ = −cẋ − kx + a0 sin ωt

= −cy − kx + a0 sin ωt

or

{
ẋ
ẏ

}
=

[
0 1

−k −c

] {
x
y

}
+

{
0

a0 sin ωt

}
. (5.11)

Equation (5.11) is written in matrix form to show that it is a set of linear first-
order ODE’s. In this case linearity means that the dependent variables only
appear linearly, not as powers etc.

0 20 40 60 80 100 120 140 160 180 200
0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

t

x 
a
n

d
 y

x

y

Nonlinear Oscillator

Figure 5.7: Numerical solution of the
nonlinear ODE ẍ +cẋ2 +kx3 = 0 with ini-
tial conditions x(0) = 0 and ẋ(0) = 0.1.

(Filename:sfig5.1.nonlin)
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Figure 5.8: Numerical solution of the lin-
ear ODE ẍ +cẋ2 +kx = 0 with initial con-
ditions x(0) = 0 and ẋ(0) = 0.1.

(Filename:sfig5.1.lin)

(b)

If ẋ = y

then ẏ = ẍ = cẋ − kx3 = −cy − kx3

or

{
ẋ
ẏ

}
=

{
y

−cy − k3

}
. (5.12)

Equation (5.12) is a set of nonlinear first order ODE’s. It cannot be arranged
as Eqn. 5.11 because of the nonlinearity in x and x . It is, however, in an
appropriate form for numerical integration.

(c) Now we solve the set of first order equations obtained in (b) using a numerical
ODE solver with the following pseudocode.

ODEs = {xdot = y, ydot = -c y - k x^3}
IC = {x(0) = 0, y(0) = 0.1}
Set k=1, c=0.05
Solve ODEs with IC for t=0 to t=200
Plot x(t) and y(t)

The plot obtained from numerical integration using a Runge-Kutta based in-
tegrator is shown in Fig. 5.7. A similar program used for the equation in (a)
with a0 = 0 gives the plot shown in Fig. 5.8. The two plots show how a simple
nonlinearity changes the response drastically.
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5.2 Energy methods in 1D
Energy is an important concept in science and is even a kind of currency in human
trade. But for us now, an energy equations is primarily a short-cut for solving some
mechanics problems.

The work-energy equation

On the inside cover the third basic law of mechanics is energy balance. Energy
balance takes a number of different forms, depending on context. The kinetic energy
of a particle is defined as

EK = 1

2
mtotv

2.

The power balance equation is thus, in rate form,

P = d

dt

(
1

2
mv2

)
,

where P = Fv is the power of the applied force F . Integrating in time we get, using
that v = dx/dt ,

⇒ ∫
Fvdt = ∫ d

dt

( 1
2 mv2

)
dt

⇒ ∫
F dx = �

( 1
2 mv2

)
.

⇒ W = �EK

(5.13)

The integral W = ∫
Fdx is called the work. The derivations above, from the

general equations to the particle equations, are the opposite of historical. As Box 5.1
on page 225 shows, in this case the work-energy equation can be derived from the
momentum-balance equation. In fact it is this one-dimensional mechanical case that
first led to the discovery of energy as a concept. But now that we know that F = ma
implies that work is change in kinetic energy, we can use the result without deriving
it every time.

Conservation of energy

One of the most useful intuitive concepts for simple mechanics problems is conserva-
tion of energy. So far we know that the work of a force on a particle gives its change
of energy (eqn. 5.13). But some forces come from a source that has associated with
it a potential energy. If, for example, the force to the right on a particle is a function
of x (and not, say, of ẋ) then we have a force field. In one dimension we can define a
new function of x that we will call EP(x) as the integral of the force with respect to
x :

EP(x) = −
∫ x

0
F(x ′)dx ′ = −(Work done by the force in moving from 0 to x .)

(5.14)

Note also, by the fundamental theorem of calculus, that given EP(x) we can find F(x)

as

F(x) = −d EP(x)

dx
.

Now let’s consider the work done by the force on the particle when the particle moves
from point x1 to x2. It is

Work done by force from x1 to x2 = −(EP2 − EP1) = −�EP.
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That is, the decrease in EP is the amount of work that the force does. Or, in other
words, EP represents a potential to do work. Because work causes an increase in
kinetic energy, EP is called the potential energy of the force field. Now we can
compare this result with the work-energy equation 5.13 to find that

−�EP = �EK ⇒ 0 = � (EP + EK)︸ ︷︷ ︸
ET

.

The total energy ET doesn’t change (�ET = 0) and thus is a constant. In other
words,

as a particle moves in the presence of a force field with a potential energy,
the total energy ET = EK + EP is constant.

This fact goes by the name of conservation of energy.

Example: Falling ball

mgh

ı̂

̂

Figure 5.9: Free body diagram of a falling
ball, assuming gravity is the only significant
external force acting on the ball.

(Filename:tfigure1.falling.ball)

Consider the ball in the free body diagram 5.9. If we define gravitational
potential energy as minus the work gravity does on a ball while it is lifted
from the ground, then

EP = −
∫ y

0
(−mg) dy′ = mgy = mgh.

For vertical motion

EK = 1

2
mẏ2.

So conservation of energy says that in free fall:

Constant = EP + EK = mgy + mẏ2

which you can also derive directly from mÿ = −mg. Alternatively, we
could start with conservation of energy and differentiate to get

ET = constant ⇒ 0 = d
dt ET

= d
dt (EP + ET)

= d
dt (mgy + mẏ2/2)

= (mgẏ + mẏ ÿ)

⇒ mÿ = −mg

where we had to assume (and this is just a technical point) that ẏ 	= 0 in
one of the cancellations. Thus, for this problem, energy balance can be
used to derive linear-momentum balance.

We could also start with the power-balance equation,

power of gravity force = rate of change in particle’s kinetic energy

P = d

dt
(EK)

⇀
F · ⇀

v = d

dt
(EK)

(−mg̂) · (ẏ̂) = d

dt

[
1

2
mv2

]
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−mgẏ = 1

2
m

d

dt

(
v2

)
−mgẏ = 1

2
m

d

dt

(
ẏ2

)
mÿ = −mg,

and again get the same result. Thus, for one dimensional particle motion,
momentum balance, power balance, and energy balance can each be
derived from either of the others. ✷

5.3 THEORY
Derivation of the work energy equation

Because F = ma, all our kinematics calculations above turn into
dynamics calculations by making the substitution F/m every place
that a appears. Equation 5.5, for example, becomes

(v(x))2 = (v(x0))
2 + 2

m

∫ x

x0

F(x∗) dx∗.

In box 5.1 on page 225 we found that

1

2
v2 − 1

2
v2

0 =
∫ x

x0

a(x∗)dx∗.

If we multiply both sides of all equations in the above derivation by
m and substitute F for ma the derivation above shows that

1

2
mv2 − 1

2
mv2

0︸ ︷︷ ︸
�EK

=
∫ x

0

ma(x∗)︷ ︸︸ ︷
F(x∗) dx∗

︸ ︷︷ ︸
work done by a force

For straight-line motion with a force in only one direction on a
particle, we have no heat flow, dissipation, or internal energy to fuss
over so that the energy equation (III) from the inside front cover has
been derived.

Alternatively, if you can remember the work-energy equation
(‘The positive work of a force on a particle is the positive change
in kinetic energy’), you can use it to recall the related kinematics
equation. For example, if F and a are constant, and x is the total
displacement,

�(
1

2
mv2) = F�x, and

⇒ �(
1

2
v2) = a�x .
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SAMPLE 5.8 How much time does it take for a car of mass 800 kg to go from 0 mph
to 60 mph, if we assume that the engine delivers a constant power P of 40 horsepower
during this period. (1 horsepower = 745.7 W)

Solution

P = Ẇ ≡ dW

dt
dW = Pdt

W12 =
∫ t1

t0
Pdt = P(t1 − t0) = P�t

�t = W12

P
.

Now, from IIIa in the inside front cover,

W12 = (EK)2 − (EK)1

= 1

2
m(v2

2 − v2
1)

= 800 kg[(60 mph)2 − 0]

2

= 1

2
· 800 kg

(
60

mi

hr
· 1.61 × 103 m

1 mi
· 1 hr

3600 s

)2

= 288.01 × 103 kg · m · m/s2

= 288 KJoule.

Therefore,

�t = 288 × 103 J

40 × 745.7 W
= 9.66 s.

Thus it takes about 10 s to accelerate from a standstill to 60 mph.

�t = 9.66 s

Note 1: This model gives a roughly realistic answer but it is not a realistic model,
at least at the start, at time t0. In the model here, the acceleration is infinite
at the start (the power jumps from zero to a finite value at the start, when
the velocity is zero), something the finite-friction tires would not allow.

Note 2: We have been a little sloppy in quoting the energy equation. Since there
are no external forces doing work on the car, somewhat more properly we
should perhaps have written

0 = ĖK + Ėint + ĖP

and set −(Ėint + ĖP) = ‘the engine power’ where the engine power is
from the decrease in gasoline potential energy (−ĖP is positive) less the
increase in ‘heat’ (Ėint) from engine inefficiencies.



5.2. Energy methods in 1D 237

SAMPLE 5.9 Energy of a mass-spring system. A mass m = 2 kg is attached to

k

A

k

B

h

�

m

m

Figure 5.10: (Filename:sfig2.6.1)

a spring with spring constant k = 2 kN/ m. The relaxed (unstretched) length of the
spring is � = 40 cm. The mass is pulled up and released from rest at position A
shown in Fig. 5.10. The mass falls by a distance h = 10 cm before reaching position
B, which is the relaxed position of the spring. Find the speed at point B.

Solution The total energy of the mass-spring system at any instant or position consists
of the energy stored in the spring and the sum of potential and kinetic energies of the
mass. For potential energy of the mass, we need to select a datum where the potential
energy is zero. We can select any horizontal plane to be the datum. Let the ground
support level of the spring be the datum. Then, at position A,

Energy in the spring = 1

2
k (stretch)2 = 1

2
kh2

Energy of the mass = EK + EP = 1

2
m v2

A︸︷︷︸
0

+mg(� + h) = mg(� + h).

Therefore, the total energy at position A

E A = 1

2
kh2 + mg(� + h).

Let the speed of the mass at position B be vB . When the mass is at B, the spring is
relaxed, i.e., there is no stretch in the spring. Therefore, at position B,

Energy in the spring = 1

2
k (stretch)2 = 0

Energy of the mass = EK + EP = 1

2
mv2

B + mg�,

and the total energy

EB = 1

2
mv2

B + mg�.

Because the net change in the total energy of the system from position A to position
B is

0 = �E

= E A − EB = 1

2
kh2 + mg(� + h) − 1

2
mv2

B − mg�

= 1

2
(kh2 − mv2

B) + mgh

⇒ v2
B = kh2/m + 2gh

⇒ |vB | =
(

kh2/m + 2gh
)1/2

=
(
(2000 N/ m · (0.1 m)2/2 kg) + 2 · 9.81 m/s2 · 0.1 m

)1/2

= 3.46 m/s.

|vB | = 3.46 m/s
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SAMPLE 5.10 Which is the best bicycle helmet? Assume a bicyclist moves with
speed 25 mph when her head hits a brick wall. Assume her head is rigid and that
it has constant deceleration as it travels through the 2 inches of the bicycle helmet.
What is the deceleration? What force is required? (Neglect force from the neck on
the head.)

v = v0 v = 0

d = 2 in
x

Figure 5.11: (Filename:sfig3.2.ouchie)

Solution 1 – Kinematics method 1: We are given the initial speed of V0, a final
speed of 0, and a constant acceleration a (which is negative) over a given distance of
travel d . If we call tc the time when the helmet is fully crushed,

v(t) = v0 +
∫ tc

0
a(t ′)dt ′

= v0 + atc
0 = v(tc) = v0 + atc ⇒ tc = −v0/a (5.15)

x(t) = x0 +
∫ tc

0
v(t ′)dt ′

= 0 +
∫ tc

0
(v0 + at)dt

d = x(tc) = 0 + v0tc + at2
c /2

d = v0

(−v0

a

)
+ a

(v0

a

)2
/2 ⇒ d = −v2

0

2a
(using (5.15))

⇒ a = −v2
0

2d

= −(25 mph)2

2 · (2 in)

= −252

4
· mi2

hr2 · in
·
(

5280 ft

mi

)2

︸ ︷︷ ︸
1

·
(

1 hr

3600 s

)2

︸ ︷︷ ︸
1

·
(

12 in

ft

)
︸ ︷︷ ︸

1

·
(

1g

32.2 ft/s2

)
︸ ︷︷ ︸

1

= −25

4
· 52802

36002 · 12 · 1

32.2
g

a = −125g

To stop from 25 mph in 2 inches requires an acceleration that is 125 times that of
gravity.
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Solution 2 – Kinematics method 2:

dv

dt
= a ⇒ dv = adt

⇒ vdv = avdt ⇒ vdv = a
dx

dt
dt

⇒ vdv = adx

⇒
∫

vdv =
∫

adx

⇒ �
v2

2
= ax (since a = constant)

⇒ 0 − v2
0

2
= ad ⇒ a = −v2

0

2d
(as before)

Solution 3 – Quote formulas:

“v =
√

2ad”

⇒ a = v2

2d
which is right if you know how to interpret it!

Solution 4 – Work-Energy:
Constant acceleration ⇒ constant force

F

FBD

ı̂

Figure 5.12: F is the force of the helmet
on the moving head.

(Filename:sfig3.2.ouchie.fbd)

Work in = �EK

−Fd = 0 − mv2
0

2

F = mv2
0

2d
But

⇀
F = m ⇀

a ⇒ −F ı̂ = −maı̂

⇒ a = −F

m

So a = −v2
0

2d
(again)

Assuming a head mass of 8 lbm, the force on the head during impact is

|F | =
mv2

0
2d = ma = 8 lbm · 125g

|F | = 1000 lbf

During a collision in which an 8 lbm head decelerates from 25 mph to 0 in 2
inches, the force applied to the head is 1000 lbf.

|F|

x

more realistic
helmet model

the helmet
we assumed

O d

Figure 5.13: (Filename:sfig3.2.ouchie.graph)

Note 1: The way to minimize the peak acceleration when stopping from a given
speed over a given distance is to have constant acceleration. The ‘best’
possible helmet, the one we assumed, causes constant deceleration. There
is no helmet of any possible material with 2 in thickness that could make
the deceleration for this collision less than 125g or the peak force less
than 1000 lbf.

Note 2: Collisions with head decelerations of 250g or greater are often fatal. Even
125g usually causes brain injury. So, the best possible helmet does not
insure against injury for fast riders hitting solid objects.

Note 3: Epidemiological evidence suggests that, on average, chances of serious
brain injury are decreased by about a factor of 5 by wearing a helmet.
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5.3 The harmonic oscillator
Most engineering materials are nearly elastic under working conditions. And, of
course, all real things have mass. These ingredients, elasticity and mass, are what
make vibration possible. Even structures which are fairly rigid will vibrate if encour-
aged to do so by the shaking of a rotating motor, the rough rolling of a truck, or the
ground motion of an earthquake. The vibrations of a moving structure can also excite
oscillations in flowing air which can in turn excite the structure further. This mutual
excitement of fluids and solids is the cause of the vibrations in a clarinet reed, and may
have been the source of the wild oscillations in the famous collapse of the Tacoma
Narrows bridge. Mechanical vibrations are not only the source of most music but
also of most annoying sounds. They are the main function of a vibrating massager,
and the main defect of a squeaking hinge. Mechanical vibrations in pendula or quartz
crystals are used to measure time. Vibrations can cause a machine to go out of control,
or a buildings to collapse. So the study of vibrations, for better or for worse, is not
surprisingly one of the most common applications of dynamics.

When an engineer attempts to understand the oscillatory motion of a machine or
structure, she undertakes a vibration analysis. A vibration analysis is a study of the
motions that are associated with vibrations. Study of motion is what dynamics is all
about, so vibration analysis is just a part of dynamics.

A vibration analysis could mean the making of a dynamical model of the structure
one is studying, writing equations of motion using the momentum balance or energy
equations and then looking at the solution of these equations. But, in practice, the
motions associated with vibrations have features which are common to a wide class of
structures and machines. For this reason, a special vocabulary and special methods of
approach have been developed for vibration analysis. For example, one can usefully
discuss resonance, normal modes, and frequency response, concepts which we will
soon discuss, without ever writing down any equations of motion. We will first
approach these concepts within the framework of the differential equations of motion
and their solutions. But after the concepts have been learned, we can use them without
necessarily referring directly to the governing differential equations.

The unforced oscillations of a spring and mass is the basic model for all
vibrating systems.

So it is worth knowing well.

We start with a free body diagram of a mass which is cut from a spring in an
extended state, as shown in figure 5.14. The mass slides on a frictionless surface.

k
m

m

x(t)�0

Fs = kx

FBD
ı̂
©

Figure 5.14: A spring mass system.
(Filename:tfigure3.MS)

The spring is relaxed at x = 0. The spring is thus stretched from �0 to �0 + ��, a
stretch of �� = x . The free body diagram at the bottom shows the force on the mass.
Gravity is neglected.

Linear momentum balance in the x direction ({∑ ⇀
F = ˙⇀L} · ı̂) gives:

∑
Fx = L̇ x

−kx = mẍ .

Rearranging this equation we get one of the most famous and useful differential
equations of all time:
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ẍ + k

m
x = 0. (5.16)

This equation appears in many contexts both in and out of dynamics. In non-
mechanical contexts the variable x and the parameter combination k/m are replaced
by other physical quantities. In an electrical circuit, for example, x might represent a
voltage and the term corresponding to k/m might be 1/LC , where C is a capacitance
and L an inductance. But even in dynamics the equation appears with other physical
quantities besides k/m multiplying the x , and x itself could represent rotation, say,
instead of displacement. In order to avoid being specific about the physical system
being modeled, the harmonic oscillator equation is often written as

ẍ + λ2x = 0. (5.17)

The constant in front of the x is called λ2 instead of just, say, λ (‘lambda’) 1©, for two 1©Caution: Most books use p2 or ω2 in the
place we have put λ2. Using ω (‘omega’)
can lead to confusion because we will later
use ω for angular velocity. If one is study-
ing vibrations of a rotating shaft then there
would be two very different ω’s in the prob-
lem. One, the coefficient of a differential
equation and, the other, the angular veloc-
ity. To add to the confusion, this coinci-
dence of notation is not accidental. Simple
harmonic oscillations and circular motion
have a deep connection. Despite this deep
connection, the ω in the differential equa-
tion is not the same thing as the ω describ-
ing angular motion of a physical object. We
avoid this confusion by using λ instead of
ω. Note that this λ is unrelated to the unit
vector λ̂ that we use in some problems.

reasons:

(a) This convention shows that λ2 is positive,
(b) In the solution we need the square root of this coefficient, so it is convenient to

have
√

λ2 = λ.

For the spring-block system, λ2 is k/m and in other problems λ2 is some other
combination of physical quantities.

Solution of the harmonic oscillator differential equation

Finding solutions to the harmonic oscillator differential equation 5.17 from first prin-
ciples is a topic for a math class. Here we content ourselves with remembering its
general solution, namely

x(t) = A cos(λ t) + B sin(λ t),
or x(t) = C1 cos(λ t) + C2 sin(λ t). (5.18)

This sum of sine waves 2©is a solution of differential equation 5.17 for any values of 2© A cosine function is also a sine wave.

the constants A (or C1) and B (or C2).
What does it means to say “u = C1 sin(λ t) + C2 cos(λ t) solves the equation:

ü = −λ2u?” The solution is a function that has the property that its second derivative
is the same as minus the original function multiplied by the constant λ2. That is, the
function u(t) = C1 sin(λ t) + C2 cos(λ t) has the property that its second derivative
is the original function multiplied by −λ2. You need not take this property on faith.
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To check if a function is a solution, plug it into the differential equation and see if an
identity is obtained.

d2

dt2 u

Is this equality correct for the
proposed u(t)?

❇❇� = −λ2u

d2

dt2 [C1 sin(λ t) + C2 cos(λ t)]︸ ︷︷ ︸
u(t)

?= −λ2 [C1 sin(λ t) + C2 cos(λ t)]︸ ︷︷ ︸
u(t)

d

dt

(
d

dt
[C1 sin(λ t) + C2 cos(λ t)]

)
?= −λ2[C1 sin(λ t) + C2 cos(λ t)]

d

dt
[C1λ cos(λ t) − C2λ sin(λ t)]

?= −λ2[C1 sin(λ t) + C2 cos(λ t)]

−C1λ
2 sin(λt) − C2λ

2 cos(λ t)︸ ︷︷ ︸
ü

√
=

❇❇�

The equation ü = −λ2u does
hold with the given u(t)

−λ2 [C1 sin(λ t) + C2 cos(λ t)]︸ ︷︷ ︸
u(t)

This calculation verifies that, no matter what the constants C1 and C2, the proposed
solution satisfies the given differential equation.

Although we have checked the solution, we have not proved its uniqueness. That
is, there might be other solutions to the differential equation. There are not. We leave
discussion of uniqueness to your math classes.

Interpreting the solution of the harmonic oscillator equation
The solution above means that if we built a system like that shown in figure 5.14
and watched how the mass moved, it would move (approximately) so that x(t) =
A cos(λ t) + B sin(λ t), as shown in the graph in figure 5.15.

x

t

2π/λ︸ ︷︷ ︸
T

√
A2 + B2

Figure 5.15: Position versus time for
an undamped, unforced harmonic oscil-
lator. x is the position of the mass, t is
time.

(Filename:tfigure12.sinewave)

This back and forth motion is called vibration. One might think that vibrations are
fast oscillations. But in mechanics anything that oscillates a vibration. For example,
the slow rocking of a ship might be called a vibration.

Angular frequency, period, and frequency

Three related measures of the rate of oscillation are angular frequency, period, and
frequency. The simplest of these is angular frequency λ = √

(k/m), sometimes called
circular frequency. The period T is the amount of time that it takes to complete one
oscillation. One oscillation of both the sine function and the cosine function occurs
when the argument of the function advances by 2π , that is when

λT = 2π, so T = 2π

λ
= 2π√

(k/m)
,

formulas often memorized in elementary physics courses. The natural frequency f
is the reciprocal of the period

f = 1

T
= λ

2π
=

√
(k/m)

2π
.
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Typically, natural frequency f is measured in cycles per second or Hertz and the an-
gular frequency λ in radians per second. Mechanical vibrations can have frequencies
from millions of cycles per second, for the vibrations of a microscopic quartz timing
crystal, to thousandths of a cycle per second (i.e. thousands of seconds per cycle),
say, for the free vibrations of the whole earth.

The amplitude of the sine wave that results from the addition of the sine function
and the cosine function is given by the square root of the sum of the squares of the two
amplitudes. That is, the amplitude of the resulting sine wave is

√
A2 + B2. Another

way of describing this sum is through the trigonometric identity:

A cos(λ t) + B sin(λ t) = R cos(λ t − φ), (5.19)

where R = √
A2 + B2 and tan φ = B/A. So,

the only possible motion of a spring and mass is a sinusoidal oscillation which
can be thought of either as the sum of a cosine function and a sine function
or as a single cosine function with phase shift φ.

What are the constants A and B in the solution?
The general motion of the harmonic oscillator, equation 5.18, has the constants A
and B which could have any value. Or, equivalently, the amplitude R and phase
φ in equation 5.19 could be anything. They are determined by the way motion is
started, the initial conditions. Two special initial conditions are worth getting a feel
for: release from rest and initial velocity with no spring stretch.

5.4 THEORY
Visualization of A cos(λt) + B sin(λt) = R cos(λt − φ)

Here is a demonstration that the sum of a cosine function and a sine
function is a new sine wave. By sine wave we mean a function whose
shape is the same as the sine function, though it may be displaced
along the time axis. First, consider the line segment A spinning
in circles about the origin at rate λ; that is, the angle the segment
makes with the positive x axis is λt . The projection of that segment
onto the x axis is A cos(λt). Now consider the segment labeled B
in the figure, glued at a right angle to A. The length of its projection
on the x-axis is B sin(λt). So, the sum of these two projections is
A cos(λt) + B sin(λt). The two segments A and B make up a right

triangle with diagonal R =
√

A2 + B2.

The projection or ‘shadow’ of R on the x axis is the same as
the sum of the shadows of A and B. The angle it makes with
the x axis is λt − φ where one can see from the triangle drawn
that φ = arctan (B/A). So, by adding the shadow lengths, we see

A cos(λt) + B sin(λt) =
√

A2 + B2 cos(λt − φ).

√ A
R=

2 + B
2

λt

λ λt - φt
φ

A

A

cos(λt) B

B

sin(λt)

√
A2 + B2 cos[λt −φ]

φ = tan−1(B/A)
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Release from rest

The simplest motion to consider is when the spring is stretched a given amount and
the mass is released from rest, meaning the initial velocity of the mass is zero. For
example, if the mass in figure 5.14 is 0.5 kg, the spring constant is k = 50 N/m, and
the initial displacement is 2 cm, we find the motion by looking at the general solution

x(t) = A cos(
√

(k/m) t) + B sin(
√

(k/m) t).

At t = 0, this general solution has to agree with the initial condition that the displace-
ment is 1 cm, so

x(0) = A cos(0)︸ ︷︷ ︸
1

+B sin(0)︸ ︷︷ ︸
0

= A ⇒ A = 2 cm.

The initial velocity must also match, so first we find the velocity by differentiating
the position to get

t

x(t)

0

1cm

-1cm

(2π/10) sec

Figure 5.16: The position of a mass as
a function of time if k = 50 N/m, m =
0.5 kg, x(0) = 1 cm and v(0) = 0.

(Filename:tfigure12.cosine)

v(t) = ẋ(t) = −A
√

(k/m) sin(
√

(k/m) t) + B
√

(k/m) cos(
√

(k/m) t).

Now, we evaluate this expression at t = 0 and set it equal to the given initial velocity
which in this case was zero: 1©

1©Caution: It is tempting, but wrong, to
evaluate x(t) at t = 0 and then differentiate
to get v(0). This procedure is wrong be-
cause x(0) is just a number, differentiating
it would always give zero, even when the
initial velocity is not zero.

v(0) = −A
√

(k/m) sin(0)︸ ︷︷ ︸
0

+B
√

(k/m) cos(0)︸ ︷︷ ︸
1

= B
√

(k/m) ⇒ B = 0.

Substituting in the values for k = 5 N/m and m = 0.5 kg, we get

x(t) = 2 cos




√√√√√√
(

0.5 kg

50 N/m

)
︸ ︷︷ ︸

0.01 s−1

t


 cm = 2 cos(0.1t/ s) cm

which is plotted in figure 5.16.

Initial velocity with no spring stretch

Another simple case is when the spring has no initial stretch but the mass has some
initial velocity. Such might be the case just after a resting mass is hit by a hammer.
Using the same 0.5 kg mass and k = 50 N/m spring, we now consider an initial
displacement of zero but an initial velocity of 10 cm/s. We can find the motion for
this case from the general solution by the same procedure we just used. We get

x(t) = B sin(
√

(k/m) t)

with B
√

(k/m) = 10 cm/s ⇒ B = 1 cm. The resulting motion, x(t) =
(1 cm) · sin( 0.1t

s ), is shown in figure 5.17.
t

x(t)

0

1cm

10 cm/sec
1

-1cm

(2π/10) sec

Figure 5.17: The position of a mass as
a function of time if k = 50 N/m, m =
0.5 kg, x(0) = 0 and v(0) = 10 cm/ s.

(Filename:tfigure12.sine)

Work, energy, and the harmonic oscillator
Various energy concepts give another viewpoint for looking at the harmonic oscillator.
We can derive energy balance from momentum balance. Or, if we already trust
energy balance, we can use it instead of momentum balance to derive the governing
differential equation. Energy balance can be used as a check of a solution. Energy
accounting gives an extra intuitive way to think about what happens in an oscillator.
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The work of a spring

Associated with the force of a spring on a mass is a potential energy. Because the
force of a spring on a mass is −kx , and the work of a force on a mass is

∫ x
0 F(x ′)dx ′

we find the potential for work, measured from the relaxed state x = 0, on the mass
to be

EP = −
∫ x

0
F(x ′) dx ′ −

∫ x

0
−kx ′ dx ′ = 1

2
kx2.

Conservation of energy

Because there is no damping or dissipation, the total mechanical energy of the har-
monic oscillator is constant in time. That is, the sum of the kinetic energy EK = 1

2 mv2

and the potential energy EP = 1
2 k(�L)2 is constant.

ET = EK + EP = constant.

As the oscillation progresses, energy is exchanged back and forth between kinetic and
potential energy. At the extremes in the displacement, the spring is most stretched,
the potential energy is at a maximum, and the kinetic energy is zero. When the mass
passes through the center position the spring is relaxed, so the potential energy is at
a minimum (zero), the mass is at its maximum speed, and the kinetic energy reaches
its maximum value.

Although energy conservation is a basic principle, this is a case where it can be
derived, or more easily, checked. Using the special case where the motion starts from
rest (i.e., x(t) = A cos(

√
k/m t)), we can make sure that the total energy really is

constant.

ET = EK + EP

= 1

2
kx2 + 1

2
mv2

= 1

2
k(A cos(

√
k/mt)︸ ︷︷ ︸

x

)2 + 1

2
m(A

√
k/m sin(

√
k/mt)︸ ︷︷ ︸

v

)2

= 1

2
k A2 {cos2(

√
k/mt) + sin2(

√
k/mt)}︸ ︷︷ ︸

1

= 1

2
k A2 = initial energy in spring

which does not change with time.

x

Po
si

tio
n

V
el

oc
ity

A
cc

el
er

at
io

n
E

ne
rg

y

Position

V
el

oc
ity

0

t

t

t

t

EK

EP

ET

a ab bc d

d

b

b,dc a

c a

spring

EK = kinetic energy
EP = potential energy
ET = ETotal = EK + EP

PP P

spring is relaxed
when P is here at x=0

Cross plot or phase plane portrait

x

ẋ
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Figure 5.18: Various plots of the motion
of the harmonic oscillator. Points a,b,c,d
show what is happening at different parts
of the motion. The spring is relaxed at
x = 0. Some things to note are the follow-
ing: The acceleration curve is proportional
to the negative of the displacement curve.
The displacement is at a maximum or min-
imum when the velocity is zero. The ve-
locity is at a maximum or minimum when
the displacement is zero. The kinetic and
potential energy fluctuate at twice the fre-
quency as the position. The motion is an
ellipse in the cross plot of velocity vs. po-
sition.

(Filename:tfigure12.oscplots)

Using energy to derive the oscillator equation

Rather than just checking the energy balance, we could use the energy balance to
help us find the equations of motion. As for all one-degree-of-freedom systems, the
equations of motion can be derived by taking the time derivative of the energy balance
equation. Starting from ET = constant, we get

0 = d

dt
ET

= d

dt
(EP + EK)

= d

dt
(
1

2
kx2 + 1

2
mv2)

= kx ẋ︸︷︷︸
v

+mv v̇︸︷︷︸
a
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= kx	v + m	v a︸︷︷︸
ẍ

0 = kx + mẍ

which is the differential equation for the harmonic oscillator. (A technical defect of
this derivation is that it does not apply at the instant when v = 0.)

Power balance can also be used as a starting point to find the harmonic oscillator
equation. Referring to the FBD in figure 5.14, the equation of energy balance for the
block during its motion after release is:

P︸︷︷︸
✂✂✍

Power in

= ĖK︸︷︷︸
❇❇�

Rate of change of internal en-
ergy

⇀
F spring · ⇀

v A = d

dt
(
1

2
m ⇀

v A · ⇀
v A)

−kxA ı̂ · ẋ A ı̂ = d

dt
(
1

2
mẋ2

A)

−kxAẋA = mẋAẍA

Dividing both sides by ẋ A (assuming it is not zero), we again get

m

mg

k

g

xA(t)

y

FBD of block A

kxA(t)
N

A

A

�0 
O

Figure 5.19: (Filename:t.ex.2.7.1)

−kxA = mẍA or mẍA + kxA = 0,

the familiar equation of motion for a spring-mass system.

We can now talk through a cycle of oscillation in terms of work and energy. Let’s
assume the block is released from rest at x = xA > 0.

After the mass is released, the mass begins to move to the left and the spring does
positive work on the mass since the motion and the force are in the same direction.
After the block passes through the rest point x = O , it does work on the spring until
it comes to rest at its left extreme. The spring then commences to do work on the
block again as the block gains kinetic energy in its rightward motion. The block then
passes through the rest position and does work on the spring until its kinetic energy
is all used up and it is back in its rest position.

A spring-mass system with gravitym

k
g

y

�0

v

datum: EP (due to gravity) = 0

�� ≡ y - �0

Figure 5.20: Spring and mass with grav-
ity.

(Filename:t.ex.2.6.1)

When a mass is attached to a spring but gravity also acts one has to take some care to
get things right (see fig. 5.20). Once a good free body diagram is drawn using well
defined coordinates, all else follows easily.
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SAMPLE 5.11 Math review: Solution of a second order ODE: Solve the equation:

ẍ + k2x = 0, with initial conditions x(0) = x0, ẋ(0) = u0. (5.20)

Solution Let us guess a solution. We need a function x(t) whose second derivative
is equal to −k2 times the function itself. We know at least two such functions: sine
and cosine. To check, let

x(t) = sin kt

⇒ ẍ = −k2 sin kt = −k2x .

Similarly, let

x(t) = cos kt

⇒ ẍ = −k2 cos kt = −k2x .

Thus both functions satisfy the equation. Because Eqn. (5.20) is a linear differential
equation, a linear combination of the two solutions will also satisfy it. Therefore, let

x(t) = A sin kt + B cos kt. (5.21)

Substituting in Eqn. (5.20), we get

ẍ + k2x = −Ak2 sin kt − Bk2 cos kt + k2(A sin kt + B cos kt) = 0,

which shows that the solution in Eqn. (5.21) satisfies the given differential equation.
Now we evaluate the two constants A and B using the given initial conditions.

x(0) = x0 = A · 0 + B · 1

⇒ B = x0

ẋ(0) = u0 = (Ak cos kt − Bk sin kt)|t=0

= Ak · 1 − Bk · 0

⇒ A = u0

k
.

Therefore, the solution is

x(t) = u0

k
sin kt + x0 cos kt.

x(t) = u0
k sin kt + x0 cos kt

Alternatively, you could also guess x(t) = ert , plug it into the given equation, and
find that you must have r = ±ik satisfy the equation. Now take a linear combination
of the two solutions, say x(t) = A eikt + B e−ikt , and find the constants A and B
from the given initial conditions.
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SAMPLE 5.12 A block of mass m = 20 kg is attached to two identical springs each

k

k

x

static equilibrium position

m

Figure 5.21: (Filename:sfig10.1.1.1)

with spring constant k = 1 kN/m. The block slides on a horizontal surface without
any friction.

(a) Find the equation of motion of the block.
(b) What is the oscillation frequency of the block?
(c) How much time does the block take to go back and forth 10 times?

Solution

mg

N

kx

kx

ı̂

̂

Figure 5.22: (Filename:sfig10.1.1.1a)

(a) The free body diagram of the block is shown in Figure 5.22. The linear mo-
mentum balance,

∑ ⇀
F = m ⇀

a , for the block gives

−2kx ı̂ + (N − mg)̂ = m ⇀
a

Dotting both sides with ı̂ we have,

−2kx = max = mẍ (5.22)

or mẍ + 2kx = 0 (5.23)

or ẍ + 2k

m
x = 0. (5.24)

ẍ + 2k
m x = 0

(b) Comparing Eqn. (5.24) with the standard harmonic oscillator equation, ẍ +
λ2x = 0, where λ is the oscillation frequency, we get

λ2 = 2k

m

⇒ λ =
√

2k

m

=
√

2·(1 kN/m)

20 kg

= 10 rad/s.

λ = 10 rad/s

(c) Time period of oscillation T = 2π
λ

= 2π
10 rad/s = π

5 s. Since the time period
represents the time the mass takes to go back and forth just once, the time it
takes to go back and forth 10 times (i.e., to complete 10 cycles of motion) is

t = 10T = 10·π
5

s = 2π s.

t = 2π s
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SAMPLE 5.13 A spring-mass system executes simple harmonic motion: x(t) =

m
k

x

equilibrium position

Figure 5.23: (Filename:sfig10.1.3)

A cos(λt − φ). The system starts with initial conditions x(0) = 25 mm and ẋ(0) =
160 mm/ s and oscillates at the rate of 2 cycles/sec.

(a) Find the time period of oscillation and the oscillation frequency λ.
(b) Find the amplitude of oscillation A and the phase angle φ.
(c) Find the displacement, velocity, and acceleration of the mass at t = 1.5 s.
(d) Find the maximum speed and acceleration of the system.
(e) Draw an accurate plot of displacement vs. time of the system and label all

relevant quantities. What does φ signify in this plot?

Solution

(a) We are given f = 2 Hz. Therefore, the time period of oscillation is

T = 1

f
= 1

2 Hz
= 0.5 s,

and the oscillation frequency λ = 2π f = 4π rad/s.

T = 0.5 s, λ = 4π rad/s.

(b) The displacement x(t) of the mass is given by

x(t) = A cos(λt − φ).

Therefore the velocity (actually the speed) is

ẋ(t) = −Aλ sin(λt − φ)

At t = 0, we have

x(0) = A cos(−φ) = A cos φ (5.25)

ẋ(0) = −Aλ sin(−φ) = Aλ sin φ (5.26)

By squaring Eqn (5.25) and adding it to the square of [Eqn (5.26) divided by
λ], we get

A2 cos2 φ + A2λ2 sin2 φ

λ2 = A2 = x2(0) + ẋ2(0)

λ2

⇒ A =
√

(25 mm)2 + (160 mm/ s)2

(4π rad/s)2

= 28.06 mm.

Substituting the value of A in Eqn (5.25), we get

φ = cos−1 x(0)

A

= cos−1 25 mm

28.06 mm
= 0.471 rad ≈ 27o.

A = 28.06 mm. φ = 0.471 rad.
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(c) The displacement, velocity, and acceleration of the mass at any time t can now
be calculated as follows

x(t) = A cos(λt − φ)

⇒ x(1.5 s) = 28.06 mm· cos(6π − 0.471)

= 25 mm.

ẋ(t) = −Aλ sin(λt − φ)

⇒ ẋ(1.5 s) = 28.06 mm·(4π rad/s)· sin(6π − 0.471)

= 160 mm/ s.

ẍ(t) = −Aλ2 cos(λt − φ)

⇒ ẍ(1.5 s) = 28.06 mm·(4π rad/s)2· cos(6π − 0.471)

= −3.95 × 103 mm/ s2

= −3.95 m/ s2.

1© 1© We can find the displacement and veloc-
ity at t = 1.5 s without any differentiation.
Note that the system completes 2 cycles in 1
second, implying that it will complete 3 cy-
cles in 1.5 seconds. Therefore, at t = 1.5 s,
it has the same displacement and velocity
as it had at t = 0 s.

x(1.5 s) = 25 mm. ẋ(1.5 s) = 160 mm/ s. ẍ(1.5 s) = −3.93 m/ s2.

(d) Maximum speed:

|ẋmax| = Aλ = (28.06 mm)·(4π rad/s) = 0.35 m/s.

Maximum acceleration:

|ẍmax| = Aλ2 = (28.06 mm)·(4π rad/s)2 = 4.43 m/s2.

|ẋmax| = 0.35 m/s, |ẍmax| = 4.43 m/s2.

(e) The plot of x(t) versus t is shown in Fig. 5.24. The phase angle φ represents
the shift in cos(λt) to the right by an amount φ

λ
.
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Figure 5.24: (Filename:sfig10.1.3a)
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SAMPLE 5.14 Springs in series versus springs in parallel: Two massless springs

k2

A

B

k2

k1 k1

m

m

(b)(a)

Figure 5.25: (Filename:sfig3.4.2)

with spring constants k1 and k2 are attached to mass A in parallel (although they
look superficially as if they are in series) as shown in Fig. 5.25. An identical pair of
springs is attached to mass B in series. Taking m A = m B = m, find and compare the
natural frequencies of the two systems. Ignore gravity.

Solution Let us pull each mass downwards by a small vertical distance y and then
release. Measuring y to be positive downwards, we can derive the equations of motion
for each mass by writing the Balance of Linear Momentum for each as follows.

• Mass A: The free body diagram of mass A is shown in Fig. 5.26. As the mass

ym

k2y

k1y

Figure 5.26: Free body diagram of the
mass.

(Filename:sfig3.4.2a)

is displaced downwards by y, spring 1 gets stretched by y whereas spring 2
gets compressed by y. Therefore, the forces applied by the two springs, k1 y
and k2 y, are in the same direction. The LMB of mass A in the vertical direction
gives: ∑

F = may

or − k1 y − k2 y = mÿ

or ÿ +
(

k1 + k2

m

)
y = 0.

Let the natural frequency of this system be ωp. Comparing with the standard
simple harmonic equation ẍ + λ2x = 0 we get the natural frequency (λ) of the
system:

ωp =
√

k1 + k2

m
(5.27)

ωp =
√

k1+k2
m

• Mass B: The free body diagram of mass B and the two springs is shown in

ym

action-reaction pair

spring 1

spring 2

action-reaction pair

k1y1

k1y1

k1y1

k2y2

k2y2

Figure 5.27: Free body diagrams
(Filename:sfig3.4.2b)

Fig. 5.27. In this case both springs stretch as the mass is displaced downwards.
Let the net stretch in spring 1 be y1 and in spring 2 be y2. y1 and y2 are
unknown, of course, but we know that

y1 + y2 = y (5.28)

Now, using the free body diagram of spring 2 and then writing linear momentum
balance we get,

k2 y2 − k1 y1 = m︸︷︷︸
0

a = 0

y1 = k2

k1
y2 (5.29)

Solving (5.28) and (5.29) we get

y2 = k1

k1 + k2
y.

Now, linear momentum balance of mass B in the vertical direction gives:

−k2 y2 = may = mÿ

or mÿ + k2

y2︷ ︸︸ ︷
k1

k1 + k2
y = 0

or ÿ + k1k2

m(k1 + k2)
y = 0. (5.30)
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Let the natural frequency of this system be denoted by ωs . Then, comparing
with the standard simple harmonic equation as in the previous case, we get

ωs =
√

k1k2

m(k1 + k2)
. (5.31)

ωs =
√

k1k2
m(k1+k2)

From (5.27) and (5.31)
ωp

ωs
= k1 + k2√

k1k2
.

Let k1 = k2 = k. Then, ωp/ωs = 2, i.e., the natural frequency of the system
with two identical springs in parallel is twice as much as that of the system
with the same springs in series. Intuitively, the restoring force applied by two
springs in parallel will be more than the force applied by identical springs in
series. In one case the forces add and in the other they don’t and each spring
is stretched less. Therefore, we do expect mass A to oscillate at a faster rate
(higher natural frequency) than mass B.

Comments:

(a) Although the springs attached to mass A do not visually seem to be in
parallel, from mechanics point of view they are parallel. You can easily
check this result by putting the two springs visually in parallel and then
deriving the equation of mass A. You will get the same equations. For
springs in parallel, each spring has the same displacement but different
forces. For springs in series, each has different displacements but the
same force.

(b) When many springs are connected to a mass in series or in parallel,
sometimes we talk about their effective spring constant, i.e., the spring
constant of a single imaginary spring which could be used to replace
all the springs attached in parallel or in series. Let the effective spring
constant for springs in parallel and in series be represented by kpe and kse

respectively. By comparing eqns. (5.27) and (5.31) with the expression
for natural frequency of a simple spring mass system, we see that

kpe = k1 + k2 and
1

kse
= 1

k1
+ 1

k2
.

These expressions can be easily extended for any arbitrary number of
springs, say, N springs:

kpe = k1 + k2 + . . . + kN and
1

kse
= 1

k1
+ 1

k2
+ . . . + 1

kN
.
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SAMPLE 5.15 Figure 5.28 shows two responses obtained from experiments on two
spring-mass systems. For each system
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Figure 5.28: (Filename:sfig10.1.4)

(a) Find the natural frequency.
(b) Find the initial conditions.

Solution

(a) Natural frequency: By definition, the natural frequency f is the number of
cycles the system completes in one second. From the given responses we see
that:

Case(i): the system completes 1
2 a cycle in 1 s.

⇒ f = 1

2
Hz.

Case(ii): the system completes 1 cycle in 1 s.

⇒ f = 1 Hz.

It is usually hard to measure the fraction of cycle occurring in a short time. It
is easier to first find the time period, i.e., the time taken to complete 1 cycle.
1©Then the natural frequency can be found by the formula f = 1

T . From the1© To estimate the frequency of some re-
peated motion in an experiment, it is best
to measure the time for a large number of
cycles, say 5, 10 or 20, and then divide that
time by the total number of cycles to get an
average value for the time period of oscil-
lation.

given responses, we find the time period by estimating the time between two
successive peaks (or troughs): From Figure 5.28 we find that for
Case (i):

f = 1

T
= 1

2 s
= 1

2
Hz,

Case (ii):

f = 1

T
= 1

1 s
= 1 Hz

case (i) f = 1
2 Hz. case (ii) f = 1 Hz.

(b) Initial conditions: Now we are to find the displacement and velocity at t = 0 s
for each case. Displacement is easy because we are given the displacement
plot, so we just read the value at t = 0 from the plots:

Case (i): x(0) = 0.
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Case (ii): x(0) = 1 cm.

The velocity (actually the speed) is the time-derivative of the displacement.
Therefore, we get the initial velocity from the slope of the displacement curve
at t = 0.

Case (i): ẋ(0) = dx
dt (t = 0) = π cm

1 s = 3.14 cm/ s.

Case (ii): ẋ(0) = dx
dt (t = 0) = 6π cm

1 s = 18.85 cm/ s.

Thus the initial conditions are

Case (i) x(0) = 0, ẋ(0) = 3.14 cm/ s. Case (ii) x(0) = 1 cm, ẋ(0) = 18.85 cm/ s.

Comments: Estimating the speed from the initial slope of the displacement
curve at t = 0 is not a very good method because it is hard to draw an accu-
rate tangent to the curve at t = 0. A slightly different line but still seemingly
tangential to the curve at t = 0 can lead to significant error in the estimated
value. A better method, perhaps, is to use the known values of displacement
at different points and use the energy method to calculate the initial speed. We
show sample calculations for the first system:

Case(i): We know that x(0) = 0. Therefore the entire energy at t = 0
is the kinetic energy = 1

2 mv2
0. At t = 0.5 s we note that the displacement

is maximum, i.e., the speed is zero. Therefore, the entire energy is potential
energy = 1

2 kx2, where x = x(t = 0.5 s) = 1 cm.

Now, from the conservation of energy:

1

2
mv2

0 = 1

2
k(xt=0.5 s)

2

⇒ v0 =
√

k

m
· (xt=0.5 s)

=
√

k

m︸︷︷︸
λ

· (1 cm)

= 2π f ·(1 cm)

= 2π ·1

2
Hz·1 cm

= 3.14 cm/ s.

Similar calculations can be done for the second system.
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SAMPLE 5.16 Simple harmonic motion of a buoy. A cylinder of cross sectional

L0

x

mass = Md

specific wt. =  γ

γ

Figure 5.29: (Filename:sfig3.4.1)

area A and mass M is in static equilibrium inside a fluid of specific weight γ when
Lo length of the cylinder is submerged in the fluid. From this position, the cylinder is
pushed down vertically by a small amount x and let go. Assume that the only forces
acting on the cylinder are gravity and the buoyant force and assume that the buoy’s
motion is purely vertical. Derive the equation of motion of the cylinder using Linear
Momentum Balance. What is the period of oscillation of the cylinder?

Solution The free body diagram of the cylinder is shown in Fig. 5.30 where FB

represents the buoyant force. Before the cylinder is pushed down by x , the linear
momentum balance of the cylinder gives

FB − Mg = M a︸︷︷︸
0

= 0 ⇒ FB = Mg

Now FB = (volume of the displaced fluid)· (its specific weight) = ALoγ . Thus,

ALoγ = Mg. (5.32)

Now, when the cylinder is pushed down by an amount x ,

mg

FB

x

y

Figure 5.30: (Filename:sfig3.4.1a)

F ′
B = new buoyant force = (Lo + x)Aγ.

Therefore, from LMB we get

F ′
B − Mg = −Mẍ

or (Lo + x)Aγ − Mg = −Mẍ

or Mẍ + Aγ x =
=0 from (5.32).︷ ︸︸ ︷
−ALoγ + Mg

or Mẍ + Aγ x = 0

or ẍ + Aγ

M
x = 0.

ẍ + Aγ
M x = 0

Comparing this equation with the standard simple harmonic equation (e.g., eqn.(g),
in the box on ODE’s on page 226).

The circular frequency λ =
√

Aγ

M
,

Therefore, the period of oscillation T = 2π

λ
= 2π

√
M

Aγ

.

T = 2π
√

M
Aγ

Comments: Note this calculation neglects the fluid mechanics. The common way of
making a correction is to use ‘added mass’ to account for fluid that moves more-or-
less with the cylinder. The added mass is usually something like one-half the mass
of the fluid with volume equal to that of the cylinder. Another way to see the error is
to realize that the pressure used in this calculation assumes fluid statics when in fact
the fluid is moving.
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5.4 More on vibrations: damping
T = c�̇

�

T = c�̇

Figure 5.31: A damper or dashpot. The
symbol shown represents a device which re-
sists the relative motion of its endpoints.
The schematic is supposed to suggest a
plunger in a cylinder. For the plunger to
move, fluid must leak around the cylinder.
This leakage happens for either direction of
motion. Thus the damper resists relative
motion in either direction; i. e., for L̇ > 0
and L̇ < 0.

(Filename:tfigure12.dashpot)

The mother of all vibrating machines is the simple harmonic oscillator from the previ-
ous section. With varying degrees of approximation, car suspensions, violin strings,
buildings responding to earthquakes, earthquake faults themselves, and vibrating ma-
chines are modeled as mass-spring-dashpot systems. Almost all of the concepts in
vibration theory are based on concepts associated with the behavior of the harmonic
oscillator. The harmonic oscillator has no friction or inelastic deformation so that

k

c

m

x(t)

Figure 5.32: A mass spring dashpot sys-
tem, or damped harmonic oscillator.

(Filename:tfigure12.MSD)

Fs = kx

Fd = c(dx/dt)

Figure 5.33: Free body diagram of the
mass spring dashpot system.

(Filename:tfigure12.MSDFBD)

mechanical energy is conserved. Such vibrations will, once started, persist forever
even with no pushing, pumping, or energy supply of any kind. Total lack of fric-
tion does not describe any real system perfectly, but it is a useful approximation if
one is trying to understand the oscillations of a system and not the decay of those
oscillations.

But for any real system the oscillations will decay in time due to friction. We
would now like to study this decay.

Damping
The simplest system to study is the damped harmonic oscillator and the motions that
are of interest are damped oscillations.

Again the simplest model, and also the prototype of all models, is a spring and
mass system. But now we add a component called a damper or dashpot, shown in
figure 5.31. The dashpot provides resistance to motion by drawing air or oil in and out
of the cylinder through a small opening. Due to the viscosity of the air or oil, a pressure
drop is created across the opening that is related to the speed of the fluid flowing
through. Ideally, this viscous resistance produces linear damping, meaning that the
force is exactly proportional to the velocity. In a physical dashpot nonlinearities are
introduced from the fluid flow and from friction between the piston and the cylinder.
Also, dashpots that use air as a working fluid may have compressibility that introduces
non-negligible springiness to the system in addition to that of any metallic springs.

Adding a dashpot in parallel with the spring of a mass-spring system creates a
mass-spring-dashpot system, or damped harmonic oscillator. The system is shown
in figure 5.32. Figure 5.33 is a free body diagram of the mass. It has two forces acting
on it, neglecting gravity:

Fs = kx is the spring force, assuming a linear spring, and

Fd = c dx/dt = cẋ is the dashpot force assuming a linear dashpot.

The system is a one degree of freedom system because a single coordinate x is
sufficient to describe the complete motion of the system. The equation of motion for
this system is

mẍ = −Fd − Fs where ẍ = d2x/dt2. (5.33)

Assuming a linear spring and a linear dashpot this expression becomes

mẍ + cẋ + kx = 0. (5.34)

We have taken care with the signs of the various terms. You should check that you
can derive equation 5.34 without introducing any sign errors. 1©

1©Caution: When push comes to shove, so
to speak, many students have trouble deriv-
ing equations like 5.34 without getting sign
errors from figures like 5.32.



258 CHAPTER 5. Dynamics of particles

Solution of the damped-oscillator equations
The governing equation 5.34 has a solution which depends on the values of the
constants. There are cases where one wants to consider negative springs or negative
dashpots, but for the purposes of understanding classical vibration theory we can
assume that m, c, and k are all positive. Even with this restriction the solution
depends on the relative values of m, c, and k. You can learn all about these solutions
in any book that introduces ordinary differential equations; most freshman calculus
books have such a discussion.
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Figure 5.34: The effect of varying the
damping with a fixed mass and spring. In
all the plots the mass is released from rest
at x = x0. In the case of under-damping,
oscillations persist for a long time, forever
if there is no damping. In the case of over-
damping, the dashpot doesn’t relax for a
long time; it stays locked up forever in the
limit of c → ∞. The fastest relaxation
occurs for critical damping.

(Filename:tfigure12.damping)

The three solutions are categorized as follows:

• Under-damped: c2 < 4mk. In this case the damping is small and oscillations
persist forever, though their amplitude diminishes exponentially in time. The
general solution for this case is:

x(t) = e(− c
2m )t [A cos(λd t) + B sin(λd t)], (5.35)

where λd is the damped natural frequency and is given by λd =
√( c

2m

)2 − k
m .

• Critically damped: c2 = 4mk. In this case the damping is at a critical level
that separates the cases of under-damped oscillations from the simply decaying
motion of the over-damped case. The general solution is:

x(t) = Ae(− c
2m )t + Bte(− c

2m )t . (5.36)

• Over-damped: c2 > 4mk. Here there are no oscillations, just a simple return
to equilibrium with at most one crossing through the equilibrium position on
the way to equilibrium. The general solution in the over-damped case is:

x(t) = Ae(− c
2m +

√
( c

2m )2− k
m )t + Be(− c

2m −
√

( c
2m )2− k

m )t
. (5.37)

The solution 5.37 actually includes equations 5.36 and 5.35 as special cases.
To interpret equation refoverdampe as the general solution you need to know
the relation between complex exponentials and trigonometric functions for the
cases when the argument of the square root term is negative.

For a given mass and spring we can imagine the damping as a variable to adjust.
A system which has small damping (small c) is under-damped and does not come
to equilibrium quickly because oscillations persist for a long time. A system which
has a lot of damping (big c) is over-damped does not come to equilibrium quickly
because the dashpot holds it away from equilibrium. A system which is critically-
damped comes to equilibrium most quickly. In many cases, the purpose of damping
is to purge motions after disturbance from equilibrium. If the only design variable
available for adjustment is the damping, then the quickest purge is accomplished
by picking c = √

(4km) and achieving critical damping. This damping design is
commonly employed.

Measurement of damping: logarithmic decrement method
In the under-damped case, the viscous damping constant c may be determined exper-
imentally by measuring the rate of decay of unforced oscillations. This decay can be
quantified using the logarithmic decrement. The logarithmic decrement is the natural
logarithm of the ratio of any two successive amplitudes. The larger the damping,
the greater will be the rate of decay of oscillations and the bigger the logarithmic
decrement:

logarithmic decrement ≡ D = ln(
xn

xn+1
) (5.38)
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where xn and xn+1 are the heights of two successive peaks in the decaying oscillation
pictured in figure 5.35. Because of the exponential envelope that this curve has,
xn = (const.)e−( c

2m )t1 and xn+1 = (const.)e−( c
2m )t1+T .

D = ln[(e−( c
2m )t1)/(e−( c

2m )t1+T )]

Simplifying this expression, we get that

D = cT

2m

where T is the period of oscillation. Thus, the damping constant c can be measured
by measuring the logarithmic decrement D and the period of oscillation T as

c = 2m D

T
.

t 

x(t)

xn

xn+1

T

Figure 5.35: The logarithmic decre-
ment method. D = ln(xn/xn+1)

(Filename:tfigure12.decrement)

Summary of equations for the unforced harmonic oscillator
.

• ẍ + k
m x = 0, mass-spring equation

• ẍ + λ2x = 0, harmonic oscillator equation
• x(t) = A cos(λt)+ B sin(λt), general solution to harmonic oscillator equation
• x(t) = R cos(λt − φ), amplitude-phase version of solution to harmonic oscil-

lator solution, R = √
A2 + B2, φ = tan−1( B

A )

• ẍ + c
m ẋ + k

m x = 0, mass-spring-dashpot equation (see equations 5.35-5.37 for
solutions)

• D = ln
(

xn
xn+1

)
, logarithmic decrement. c = 2m D

T .
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SAMPLE 5.17 A block of mass 10 kg is attached to a spring and a dashpot as
ck

x(t)d0

m

Figure 5.36: Spring-mass dashpot.
(Filename:sfig10.2.1)

shown in Figure 5.36. The spring constant k = 1000 N/ m and a damping rate
c = 50 N· s/ m. When the block is at a distance d0 from the left wall the spring is
relaxed. The block is pulled to the right by 0.5 m and released. Assuming no initial
velocity, find

(a) the equation of motion of the block.
(b) the position of the block at t = 2 s.

mkx cẋ

Figure 5.37: free body diagram of system
at instant t goes here!

(Filename:sfig10.2.1a)

Solution

(a) Let x be the position of the block, measured positive to the right of the static
equilibrium position, at some time t . Let ẋ be the corresponding speed. The
free body diagram of the block at the instant t is shown in Figure 5.37.
Since the motion is only horizontal, we can write the linear momentum balance
in the x-direction (

∑
Fx = m ax ):

−kx − cẋ︸ ︷︷ ︸∑
Fx

= m ẍ︸︷︷︸
ax

or ẍ + c

m
ẋ + k

m
x = 0 (5.39)

which is the desired equation of motion of the block.

ẍ + c
m ẋ + k

m x = 0.

(b) To find the position and velocity of the block at any time t we need to solve
Eqn (5.39). Since the solution depends on the relative values of m, k, and c,
we first compute c2 and compare with the critical value 4mk.

c2 = 2500( N· s/ m)2

and 4mk = 4·10 kg·1000 N/ m = 4000( N· s/ m)2.

⇒ c2 < 4mk.

Therefore, the system is underdamped and we may write the general solution
as

x(t) = e− c
2m t [A cos λDt + B sin λDt] (5.40)

where

λD =
√

k

m
−

( c

2m

)2 = 9.682 rad/s.

Substituting the initial conditions x(0) = 0.5 m and ẋ(0) = 0 m/s in Eqn (5.40)
(we need to differentiate Eqn (5.40) first to substitute ẋ(0)), we get

x(0) = 0.5 m = A.

ẋ(0) = 0 = − c

2m
· A + λD·B

⇒ B = A c

2mλD
= (0.5 m)·(50 N· s/ m)

2·(10 kg)·(9.682 rad/s)
= 0.13 m.

Thus, the solution is

x(t) = e(−2.5 1
s )t [0.50 cos(9.68 rad/s t) + 0.13 sin(9.68 rad/s t)] m.

Substituting t = 2 s in the above expression we get x(2 s) = 0.003 m.

x(2 s) = 0.003 m.
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SAMPLE 5.18 A structure, modeled as a single degree of freedom system, exhibits
characteristics of an underdamped system under free oscillations. The response of
the structure to some initial condition is determined to be x(t) = Ae−ξλt sin(λDt)
where A = 0.3 m, ξ ≡ damping ratio = 0.02, λ ≡ undamped circular frequency =
1 rad/s, and λD ≡ damped circular frequency = λ

√
1 − ξ2 ≈ λ.

(a) Find an expression for the ratio of energies of the system at the (n + 1)th
displacement peak and the nth displacement peak.

(b) What percent of energy available at the first peak is lost after 5 cycles?

Solution

(a) We are given that
x(t) = Ae−ξλt sin(λDt).

The structure attains its first displacement peak when sin λDt is maximum,
i.e., λDt = π

2 , or t = π
2λD

. At this instant,

x(t) = Ae
−ξ ·λ· π

2λD = Ae
− π

2 · ξ√
1−ξ2 = (0.3 m) · e−0.0314 = 0.29 m.

Let xn and xn+1 be the values of the displacement at the nth and the (n + 1)th
peak, respectively. Since xn and xn+1 are peak displacements, the respective
velocities are zero at these points. Therefore, the energy of the system at these
peaks is given by the potential energy stored in the spring. That is

En = 1

2
kx2

n and En+1 = 1

2
kx2

n+1. (5.41)

Let tn be the time at which the nth peak displacement xn is attained, i.e.,

xn = Ae−ξλtn (5.42)

Since xn+1 is the next peak displacement, it must occur at t = tn + TD where
TD is the time period of damped oscillations. Thus

xn+1 = Ae−ξλ(tn+TD) (5.43)

From Eqns (5.41), (5.42), and (5.43)

En+1

En
=

1
2 k(Ae−ξλ(tn+TD )2

1
2 k(Ae−ξλtn )2

= e−2ξλTD .

En+1
En

= e−2ξλTD .

(b) Noting that TD = 2π
λD

and λD = λ
√

1 − ξ2, we get

En+1 = En e
−2ξ	λ· 2π

	λ√
1−ξ2 ≈ e−4πξ ⇒ En+1 = e−4πξ En .

Applying this equation recursively for n = n − 1, n − 2, . . . , 1, 0,, we get

En = e−4πξ ·En−1 = e−4πξ ·(e−4πξ ·En−2) = (e−4πξ )3·En−3 . . . = (e−4πξ )n ·E0.

Now we use this equation to find the percentage of energy of the first peak
(n = 0) lost after 5 cycles (n = 5):

�E5 = E0 − E5

E0
× 100 =

(
1 − e−4πξ · 5

)
× 100 = 71.5%.

�E5 = 71.5%.
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SAMPLE 5.19 A SDOF spring-mass model from given data: The following table is
obtained for successive peaks of displacement from the simulation of free vibration of
a mechanical system. Make a single degree of freedom mass-spring-dashpot model
of the system choosing appropriate values for mass, spring stiffness, and damping
rate.

Data:

peak number n 0 1 2 3 4 5 6

time ( s) 0.0000 0.6279 1.2558 1.8837 2.5116 3.1395 3.7674

peak disp. ( m) 0.5006 0.4697 0.4411 0.4143 0.3892 0.3659 0.3443

Solution Since the data provided is for successive peak displacements, the time be-
tween any two successive peaks represents the period of oscillations. It is also clear
that the system is underdamped because the successive peaks are decreasing. We can
use the logarithmic decrement method to determine the damping in the system.

First, we find the time period TD from which we can determine the damped
circular frequency λD . From the given data we find that

t2 − t1 = t3 − t2 = t4 − t3 = · · · = 0.6279 s

Therefore,

TD = 0.6279 s.

⇒ λD = 2π

TD
= 10 rad/s. (5.44)

Now we make a table for the logarithmic decrement of the peak displacements:

peak disp. xn ( m) 0.5006 0.4697 0.4411 0.4143 0.3892 0.3659 0.3443

xn
xn+1

1.0658 1.0648 1.0647 1.0645 1,0637 1.0627

ln
(

xn
xn+1

)
0.0637 0.0628 0.0627 0.0624 0.0618 0.0608

Thus, we get several values of the logarithmic decrement D = ln
(

xn
xn+1

)
1©.1© Theoretically, all of these values should

be the same, but it is rarely the case in prac-
tice. When xn’s are measured from an ex-
perimental setup, the values of D may vary
even more.

We take the average value of D:

D = D̄ = 0.0624. (5.45)

Let the equivalent single degree of freedom model have mass m, spring stiffness k,
and damping rate c. Then

λD = λ

√
1 − ξ2 ≈ λ =

√
k

m
.
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Thus, from Eqn (5.44),
k

m
= λ2 = 100( rad/s)2, (5.46)

and, since D = cTD
2m , from Eqn (5.45) we get

c = 2m D

TD

= 2m(0.0624)

0.6279 s

= (0.1988
1

s
)m. (5.47)

Equations (5.46) and (5.47) have three unknowns: k, m, and c. We cannot determine
all three uniquely from the given information. So, let us pick an arbitrary mass
m = 5 kg. Then

k = (100
1

s2 )·(5 kg)

= 500 N/ m,

and

c = (0.1988
1

s
)·(5 kg)

= 0.99 N· s/ m.

m = 5 kg,

k = 500 N/ m,

c = 0.99 N· s/ m.

Of course, we could choose many other sets of values for m, k, and c which would
match the given response. In practice, there is usually a little more information
available about the system, such as the mass of the system. In that case, we can
determine k and c uniquely from the given response.
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5.5 Forced oscillations and resonance
If the world of oscillators was as we have described them so far, there wouldn’t be
much to talk about. The undamped oscillators would be oscillating away and the
damped oscillators (all the real ones) would be all damped out. The reason vibrations
exist is because they are some how excited. This excitement is also called forcing
whether or not it is due to a literal mechanical force.

k

c

m

x(t)

F(t)

F(t)

Fs = kx

Fd = c(dx/dt)

Figure 5.38: A forced mass-spring-
dashpot is just a mass held in place by a
spring and dashpot but pushed by a force
F(t) from some external source.

(Filename:tfigure12.MSDforced)

The simplest example of a ‘forced’ harmonic oscillator is the mass-spring-dashpot
system with an additional mechanical force applied to the mass. A picture of such
a system is shown in figure 5.38. The governing equation for a forced harmonic
oscillator is:

mẍ + cẋ + kx = F(t). (5.48)

When F(t) = 0 there is no forcing and the governing equation reduces to that of the
un-forced harmonic oscillator, eqn. (5.34). There are two special forcings of common
interest:

• Constant force, and
• Sinusoidal forcing.

Constant force idealizes situations where the force doesn’t vary much as due say, to
gravity, a steady wind, or sliding friction. Sinusoidally varying forces are used to
approximate oscillating forces as caused, say, by vibrating machine parts or earth-
quakes. Sums of sine waves can accurately approximate any force that varies with
time 1©.1© The best approximation of a function

with a sum of sine waves is a Fourier series,
a topic we discuss no further here.

Forcing with a constant force
The case of constant forcing is both common and easy to analyze, so easy that it is
often ignored. If F = constant , then the general solution of equation 5.48 for x(t)
is the same as the unforced case but with a constant added. The constant is F/k.
The usual way of accommodating this case is to describe a new equilibrium point
at x = F/k and to pick a new deflection variable that is zero at that point. If we
pick a new variable w and define it as w = x − F/k, the amount of motion away
from equilibrium, then, substituting into equation 5.48 the forced oscillator equation
becomes

mẅ + cẇ + kw = 0, (5.49)

which is the unforced oscillator equation. The case of constant forcing reduces to
the case of no forcing if one merely changes what one calls the equilibrium point to
be the place where the mass is in equilibrium, taking account of the constant applied
force.

x(t) = A cos(λt) + B sin(λt)︸ ︷︷ ︸
xh

+ F/k︸︷︷︸
xp

An alternative approach is to use superposition. Here we say x(t) = xh(t)+xp(t)
where xh(t) satisfies mẍ+cẋ+kx = 0 and xp(t) is any solution of mẍ+cẋ+kx = F .
Such a solution is xp = F/k if F(t) is constant. So the net solution is F/k plus a
solution to the ‘homogeneous’ equation 5.49.
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Forcing with a sinusoidally varying force
The motion resulting from sinusoidal forcing is of central interest in vibration analysis.
In this case we imagine that F(t) = F0 cos(pt) where F0 is the amplitude of forcing
and p is the angular frequency of the forcing.

The general solution of equation 5.48 is given by the sum of two parts. One is
the general solution of equation 5.34, xh(t), and the other is any solution of equa-
tion 5.48, xp(t). The solution xh(t) of the damped oscillator equation 5.34 is called
the ‘homogeneous’ or ‘complementary’ solution. Any solution xp(t) of the forced
oscillator equation 5.48 is called a ‘particular’ solution.

We already know the solution xh(t) of the undamped governing differential equa-
tion 5.34. This solution is equation 5.35, 5.36, or 5.37, depending on the values of
the mass, spring and damping constants. So the new problem is to find any solution
to the forced equation 5.48. The easiest way to solve this (or any other) differential
equation is to make a fortuitous guess (you may learn other methods in your math
classes). In this case if F(t) = F0 cos(pt) we make the guess that

xp(t) = A cos(pt) + B sin(pt). (5.50)

If we plug this guess into the forced oscillator equation (5.48), we find, after much
tedious algebra, that we do in fact have a solution if

A =
F0
k

(
1 − p2(

k
m

))
(

c2

km

) (
p2

k
m

)
+

(
1 − p2(

k
m

))2 ,

and B =
F0
k

( cp
k

)
(

c2

km

) (
p2

k
m

)
+

(
1 − p2(

k
m

))2 .

So the response to the cosine-wave forcing is the sum of a sine wave and a cosine
wave.

xp(t) =

A︷ ︸︸ ︷


F0
k

(
1 − p2(

k
m

))
(

c2

km

) (
p2

k
m

)
+

(
1 − p2(

k
m

))2


 cos(pt)

+




F0
k

( cp
k

)
(

c2

km

) (
p2

k
m

)
+

(
1 − p2(

k
m

))2




︸ ︷︷ ︸
B

sin(pt)

Alternatively sum of sine waves can be written as a cosine wave that has been shifted
in phase as

xp(t) = C cos(pt − φ),

where C =
√

(A2 + B2) =
F0
k√(

c2

km

) (
p2

k
m

)
+

(
1 − p2(

k
m

))2
, (5.51)
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and φ = tan−1
(

B

A

)
= tan−1




(
c2

km

) (
p2

k
m

)
(

1 − p2(
k
m

))

 . (5.52)

The general solution, therefore, is

x(t) = xh(t) + xp(t). (5.53)

Uses of resonance
Though resonance is often a problem, it is also often of engineering use. Nuclear
Magnetic Resonance imaging is used for medical diagnosis. The resonance of quartz
crystals is used to time most watches now-a-days. In the old days, the resonant
excitation of a clock pendulum was used to keep time. Self excited resonance is what
makes musical instruments have such clear pitches.

Frequency response
One way to characterize a structures sensitivity to oscillatory loads is by a frequency
response curve. The frequency response curve might be found by a physical exper-
iment or from a calculation based on a simplified model of the structure. The curve
somewhat describes the answer to the following question about a structure:

How does the size of the motion of a structure depend on the frequency and
amplitude of an applied sinusoidal forcing?

5.5 A Loudspeaker cone is a forced oscillator.

voice coil

frame

mounting
flange

conefoam surround 
(suspension)

cloth
spider

electrical
connections

magnet
structure

Cross-sectional view

of a speaker.

A speaker, similar to the ones used in many home and auto
speaker systems, is one of many devices which may be conveniently
modeled as a one-degree-of-freedom mass-spring-dashpot system.
A typical speaker has a paper or plastic cone, supported at the edges
by a roll of plastic foam (the surround), and guided at the center
by a cloth bellows (the spider). It has a large magnet structure,
and (not visible from outside) a coil of wire attached to the point
of the cone, which can slide up and down inside the magnet. (The
device described above is, strictly speaking, the speaker driver. A
complete speaker system includes an enclosure, one or more drivers,
and various electronic components.) When you turn on your stereo,
it forces a current through the coil in time with the music, causing the
coil to alternately attract and repel the magnet. This rapid oscillation

of attraction and repulsion results in the vibration of the cone which
you hear as sound.

In the speaker, the primary mass is comprised of the coil and
cone, though the air near the cone also contributes as ‘added mass.’
The ‘spring’ and ‘dashpot’ effects in the system are due to the foam
and cloth supporting the cone, and perhaps to various magnetic ef-
fects. Speaker system design is greatly complicated by the fact that
the air surrounding the speaker must also be taken into account.
Changing the shape of the speaker enclosure can change the effec-
tive values of all three mass-spring-dashpot parameters. (You may
be able to observe this dependence by cupping your hands over a
speaker (gently, without touching the moving parts), and observing
amplitude or tone changes.) Nevertheless, knowledge of the basic
characteristics of a speaker (e.g., resonance frequency), is invaluable
in speaker system design.

Our approximate equation of motion for the speaker is iden-
tical to that of the ideal mass-spring-dashpot above, even though
the forcing is from an electromagnetic force, rather a than a direct
mechanical force:

mẍ + cẋ + kx = F(t) with F(t) = αi(t) (5.54)

where i(t) is the electrical current flow through the coil in amps, and
α is the electro-mechanical coupling coefficient, in force per unit
current.
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Here is how the method works. First, you must apply a sinusoidal force, say F =
F0 cos(pt), to the structure at a physical point of interest. Then you measure the
motion of a part of the structure of interest. You might instead measure a strain or
rotation, but for definiteness let’s assume you measure the displacement of some point
on the structure δ.

If the structure is linear and has some damping, the eventual motion of the structure
will be a sinusoidal oscillation. In particular, you will measure that

δ = C · cos(pt − φ). (5.55)

where C and φ have been defined previously in equation 5.51. If you had applied half
as big a force, you would have measured half the displacement, still assuming the
structure is linear, so the ratio of the displacement to the force C/F0 is independent
of the size of the force F0. Let’s define:

R = C

F0
(5.56)

That is, the response variable R is the ratio of the amplitude of the displacement sine
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Figure 5.39: (Filename:tfigure12.ampl.vs.freq)

wave to the amplitude of the forcing sine wave.
Now, this experiment can be repeated for different values of the angular forcing

frequency p. The ratio of the vibrating displacement δ to that of the applied forcing
F0 will depend on p. The structure has different sensitivities to forcing at different
frequencies. So the response ratio amplitude R depends on p. The function R = R(p)

is called the frequency response. A plot of the amplitude ratio R versus the driving
frequency p is shown in figure 5.39 for various values of the damping coefficient
c. Numerical values are shown for definiteness although the plot could be shown as
dimensionless.

Experimental measurement

To measure the frequency response function experimentally, one can apply forcing
at a whole range of forcing frequencies. Another approach is to apply a sudden,
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‘impulsive’, force and look at the response. This second method is equivalent, it
turns out, as you may learn in the context of Laplace transforms or Fourier analysis.

Why does on want to know the frequency response? The answer is because it is
one way to think about structural response. A car suspension may never be tested
on a sinusoidal road. But knowing how the suspension would respond to sine wave
shaped roads of all possible wave lengths somehow characterizes the car’s response
to roads with any kind of bumpiness.

Example: Resonance of a building

A mildly damped structure has a natural frequency of 17 hz and is forced
at 17 hz. Because the frequency response function has a peak at 17 hz,
resonance, the structures motions will be very large. ✷



5.5. Forced oscillations and resonance 269

SAMPLE 5.20 Particular solution: Find a particular solution of the forced oscillator
equation ẍ + λ2 x = F(t) where

(a) F(t) = mg (a constant),
(b) F(t) = At ,
(c) F(t) = C sin(pt).

Solution The given differential equation is a second order linear ordinary differential
equation with a non-zero right hand side. A particular solution of this equation must
satisfy the entire equation. For such equations, we guess a particular solution to have
the same functional form as the right hand side (the forcing function) and plug it into
the equation to see if our guess works. We can usually determine the values of any
unknown, assumed constants so that the assumed solution satisfies the equation. Let
us see how it works here.

(a) The forcing function is a constant, mg. So, let us assume the particular solution
to be a constant, i.e., let xp = C . Plugging it into the equation, we have

C̈︸︷︷︸
0

+λ2C = mg ⇒ C = mg/λ2 ⇒ xp = mg/λ2

xp = mg/λ2

(b) The forcing function is linear in t . So, let us assume a linear function as a
particular solution, xp = αt where α is a constant. Now, noting that ẋp =
α ⇒ ẍp = 0, and plugging back into the differential equation, we get

λ2αt = At ⇒ α = A/λ2 ⇒ xp(t) = (A/λ2)t.

xp(t) = (A/λ2)t

(c) The forcing function is a harmonic function. So, let xp = β sin(pt) where
β is a constant to be determined later. Now, plugging xp into the differential
equation and noting that ẍp = −βω2 sin(pt), we get

(−βp2 + βλ2) sin(pt) = C sin(pt) ⇒ β = C

λ2 − p2 .

Thus the particular solution in this case is

xp(t) = C

λ2 − p2 sin(pt).

xp(t) = C
λ2−p2 sin(pt)
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SAMPLE 5.21 Response to a constant force: A constant force F = 50 N acts on a
mass-spring system as shown in the figure. Let m = 5 kg and k = 10 kN/m.

m F
k A

�0 

Figure 5.40: (Filename:sfig5.5.forcedosc)

• Write the equation of motion of the system.
• If the system starts from the initial displacement x0 = 0.01 m with zero velocity,

find the displacement of the mass as a function of time.
• Plot the response (displacement) of the system against time and describe how

it is different from the unforced response of the system.

Solution

(a) The free body diagram of the mass is shown in Fig. 5.41 at a displacement
x (assumed positive to the right). Applying linear momentum balance in the
x-direction, i.e., (

∑ ⇀
F = m ⇀

a) · ı̂, we get

F

mg
g

kx(t)
N

A

x(t)

ı̂

̂

Figure 5.41: Free body diagram of the
mass.

(Filename:sfig5.5.forcedosc.a)

F − kx = mẍ

⇒ mẍ + kx = F (5.57)

which is the equation of motion of the system.
(b) The equation of motion has a non-zero right hand side. Thus, it is a nonho-

mogeneous differential equation. A general solution of this equation is made
up of two parts — the homogeneous solution xh which is the solution of the
unforced system (eqn. (5.57) with F = 0), and a particular solution xp that
satisfies the nonhomogeneous equation. Thus,

x(t) = xh(t) + xp(t). (5.58)

Now, let us find xh(t) and xp(t).

Homogeneous solution: xh(t) has to satisfy mẍ + kx = 0. Let λ = √
k/m.

Then, from the solution of unforced harmonic oscillator, we know that

xh(t) = A sin(λt) + B cos(λt)

where A and B are constants to be determined later from initial conditions.
Particular solution: xp must satisfy eqn. (5.57). Since the nonhomogeneous

part of the equation is a constant (F), we guess that xp must be a constant
too (of the same form as F). Let xp = C . Now we substitute xp =
C, ⇒ ẍp = (̈C) = 0 in eqn. (5.57) to determine C.

kC = F ⇒ C = F/k or xp = F/k.

Substituting xh and xp in eqn. (5.58), we get

x(t) = A sin(λt) + B cos(λt) + F/k. (5.59)

Now we use the given initial conditions to determine A and B.

x(t = 0) = B + F/k = x0 (given) ⇒ B = x0 − F/k

ẋ(t) = Aλ cos(λt) − Bλ sin(λt)

⇒ ẋ(t = 0) = A = 0 (given) ⇒ A = 0.

Thus,

x(t) = (x0 − F/k) cos(λt) + F/k.
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(c) Let us plug the given numerical values, k = 10 kN/m, m = 5 kg, ⇒ λ =√
k/m = 44.72 rad/s, F = 50 N and x0 = 0.01 m in eqn. (5.60). The dis-

placement is now given as

x(t) = −(.04 m) cos(44.72 · t) + .05 m.

This response is plotted in Fig. 5.42 against time. Note that the oscillations
of the mass are about a non-zero mean value, xeq = 0.04 m. A little thought
should reveal that this is what we should expect. When a mass hangs from a
spring under gravity, the spring elongates a little, by mg/k to be precise, to
balance the mass. Thus, the new static equilibrium position is not at the relaxed
length �0 of the spring but at �0 + mg/k. Any oscillations of the mass will be
about this new equilibrium.
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Figure 5.42: Displacement of the mass as a function of time. Note that the mass oscillates about a
nonzero value of x .

(Filename:sfig5.5.forcedosc.b)

This problem is exactly like a mass hanging from a spring under gravity, a
constant force, but just rotated by 90o. The new static equilibrium is at xeq =
F/k and any oscillations of the mass have to be around this new equilibrium.
We can rewrite the response of the system by measuring the displacement of
the mass from the new equilibrium. Let x̃ = x − F/k. Then, eqn. (5.60)
becomes

x̃ = x̃0 cos(λt)

where x̃0 = x0 − F/k is the initial displacement. Clearly, this is the response
of an unforced harmonic oscillator. Thus the effect of a constant force on a
spring-mass system is just a shift in its static equilibrium position.
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SAMPLE 5.22 Damping and forced response: When a single-degree-of-freedom
damped oscillator (mass-spring-dashpot system) is subjected to a periodic forcing
F(t) = F0 sin(pt), then the response of the system is given by

x(t) = C cos(pt − φ)

where C = F0/k√
(2ζr)2+(1−r2)2

, φ = tan−1 2ζr
1−r2 , r = p

λ
, λ = √

k/m and ζ is the

damping ratio.

(a) For r � 1, i.e., the forcing frequency p much smaller than the natural fre-
quency λ, how does the damping ratio ζ affect the response amplitude C and
the phase φ?

(b) For r � 1, i.e., the forcing frequency p much larger than the natural frequency
λ, how does the damping ratio ζ affect the response amplitude C and the phase
φ?

Solution

(a) If the frequency ratio r � 1, then r2 will be even smaller; so we can ignore r2

terms with respect to 1 in the expressions for C and φ. Thus, for r � 1,
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Figure 5.43: (Filename:sfig5.5.smallr)

C = F0/k√
(2ζr)2 + (1 − r2)2

≈ F0/k

1
= F0

k

φ = tan−1(2ζr) ≈ tan−1 0 = 0

that is, the response amplitude does not vary with the damping ratio ζ , and the
phase also remains constant at zero. As an example, we use the full expressions
for C and φ for plotting them against ζ for r = 0.01 in Fig. 5.43

For r � 1, C ≈ F0/k, and φ ≈ 0

(b) If r � 1, then the denominator in the expression for C , 4ζ 2r2 + (1−r2)2 ≈ r4

(because we can ignore all other terms with respect to r4. Similarly, we can
ignore 1 with respect to r2 in the expression for φ. Thus, for r � 1,
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C = F0/k√
(2ζr)2 + (1 − r2)2

C ≈ F0/k

r2 = 0

φ = tan−1 2ζr

−r2 ≈ tan−1 2ζ

−r
≈ tan−1(−0) = π.

Once again, we see that the response amplitude and phase do not vary with
ζ . This is also evident from Fig. 5.44 where we plot C and φ using their full
expressions for r = 10. The slight variation in φ around π goes away as we
take higher values of r .

For r � 1, C ≈ 0, and φ ≈ π

Thus, we see that the damping in a system does not affect the response of the system
much if the forcing frequency is far away from the natural frequency.
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SAMPLE 5.23 Energetics of resonance: Consider the response of a damped har-
monic oscillator to a periodic forcing. Find the work done on the system by the
periodic force during a single cycle of the force and show how this work varies with
the forcing frequency and the damping ratio.

Solution Let us consider the damped harmonic oscillator shown in Fig. 5.45 with
F(t) = F0 sin(pt). The equation of motion of the system is mẍ + cẋ + kx =
F0 sin(pt) and the response of the system may be expressed as X sin(pt − φ)

where X = (F0/k)/
√

(2ζr)2 + (1 − r2)2 and φ = tan−1(2ζr/(1 − r2)), with
r = p/λ, λ = √

k/m and ζ = c/
√

2km.
k

c

m

x(t)

F(t)

F(t)

m

Fs = kx

Fd = c(dx/dt)

Figure 5.45: (Filename:sfig5.5.reswork)

We can compute the work done by the applied force on the system in one cycle
by evaluating the integral

W =
∫

onecycle
F dx

But, x = X sin(pt − φ) ⇒ dx = X p cos(pt − φ)dt . Therefore,

W =
∫ 2π/λ

0
F0 sin(pt) · X p cos(pt − φ) dt

= F0 X p
∫ 2π/λ

0
sin(pt) cos(pt − φ) dt

= F0 X p
∫ 2π/λ

0
sin(pt)(cos(pt) cos φ + sin(pt) sin φ) dt

= F0 X p

[
cos φ · 1

2

∫ 2π/λ

0
sin(2pt) dt + sin φ · 1

2

∫ 2π/λ

0
(1 − cos(2pt)) dt

]

= F0 X p

2

[
cos φ

(
−cos(2pt)

2p

)∣∣∣∣2π/λ

0
+ sin φ

(
t − sin(2pt)

2p

)∣∣∣∣2π/λ

0

]

= F0 X p

2

[
cos φ

2p
(−1 + 1) + 2π

p
sin φ + 0

]

= F0 X p

2
· 2π

p
sin φ

= F0π X sin φ

Although the expression obtained above for W looks simple, we must substitute for
X and φ to see the dependence of W on the damping ratio ζ and the frequency ratio
r .

W = F2
0 π

π
√

(2ζr)2 + (1 − r2)2
· sin

(
tan−1 2ζr

1 − r2

)
(5.60)

Unfortunately, this expression is too complicated to see the dependence of W on ζ and
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r . However, we know that for small r(< 1), φ ≈ 0 and for large r(> 1), φ =≈ π ,
implying that W is almost zero in both these cases. On the other hand, for r close
to one, that is, close to resonance, φ ≈ π/2 ⇒ sin φ ≈ 1, but the response
amplitude X is large (for small ζ ), which makes W to be big near the resonance.
Figure 5.46 shows a plot of W against r , using eqn. (5.60), for different values of ζ . It
is clear from the plot that the work done on the system in a single cycle is much larger
close to the resonance for lightly damped systems. This explains why the response
amplitude keeps on growing near resonance.

W = F0π X sin φ
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5.6 Coupled motions in 1D
Many important engineering systems have parts that move independently. A simple
dynamic model using a single particle is not adequate. So here, still using one
dimensional mechanics, we consider systems that can be modelled as two or more
particles. Such one-dimensional coupled motion analysis is common in engineering
practice in situations where there are connected parts that all move in about the same
direction, but not the same amount at the same time.

suspension

ground

tire

mwheel

mcar{
{

Figure 5.47: (Filename:tefig3.4.car.susp)

Example: Car suspension.

A model of a car suspension treats the wheel as one particle and the car
as another. The wheel is coupled to the ground by a tire and to the car
by the suspension. In a first analysis the only motion to consider would
be vertical for both the wheel and the car. ✷

The simplest way of dealing with the coupled motion of two or more particles is to
write

⇀
F = m ⇀

a for each particle and use the forces on the free body diagrams to
evaluate the forces. Because the most common models for the interaction forces are
springs and dashpots (see chapter 3), one needs to account for the relative positions
and velocities of the particles.

Relative motion in one dimension

If the position of A is ⇀
r A, and B’s position is ⇀

r B, then B’s position relative to A is

⇀
r B/A = ⇀

r B − ⇀
r A.

Relative velocity and acceleration are similarly defined by subtraction, or by differ-
entiating the above expression, as

⇀
v B/A = ⇀

v B − ⇀
v A and ⇀

a B/A = ⇀
a B − ⇀

a A.

In one dimension, the relative position diagram of Fig. 2.5 on page 11 becomes

(b)

(a)

AO
xA xB/A

xB

B

⇀
rA

⇀
rB

⇀
rB/A

AO Bγ

Figure 5.48: The relative position of
points A and B in one dimension.

(Filename:tfigure.relpos1D)

Fig. 5.48. ⇀
r = x ı̂, ⇀

v = vı̂, and ⇀
a = aı̂. So, we can write,

xB/A ≡ xB − xA,

vB/A ≡ vB − vA, and

aB/A ≡ aB − aA.

Example: Two masses connected by a spring.

Consider the two masses on a frictionless support (Fig. 5.49). Assume
the spring is unstretched when x1 = x2 = 0. After drawing free body
diagrams of the two masses we can write

⇀
F = m ⇀

a for each mass:

T T

T T

k

x1 x2

FBDs

m1 m2

Figure 5.49: (Filename:tefig3.4.mass.springer)

mass 1:
⇀
F 1 = m ⇀

a1 ⇒ T ı̂ = m1 ẍ1 ı̂

mass 2:
⇀
F 2 = m ⇀

a2 ⇒ − T ı̂ = m2 ẍ2 ı̂
(5.61)

The stretch of the spring is

�� = x2 − x1

so T = k�� = k(x2 − x1). (5.62)



5.6. Coupled motions in 1D 275

Combining (5.61) and (5.62) we get

ẍ1 =
(

1
m1

)
k(x2 − x1)

ẍ2 =
(

1
m2

)
(−k(x2 − x1))

(5.63)

Note: Take care with signs when setting up this type of problem. You can
check for example that if x2 > x1, mass 1 accelerates to the right
(ẍ1 > 0) and mass 2 accelerates to the left(ẍ2 < 0).

✷

The differential equations that result from writing
⇀
F = m ⇀

a for the separate particles
are coupled second-order equations. They are often solved by writing them as a
system of first-order equations.

Example: Writing second-order ODEs as first-order ODEs.

Refer again to Fig. 5.49 If we define v1 = ẋ1 and v2 = ẋ2 we can rewrite
equation 5.63 as

ẋ1 = v1

v̇1 =
(

1

m1

)
k(x2 − x1)

ẋ2 = v2

v̇2 =
(

1

m2

)
(−k) (x2 − x1)

or, defining z1 = x1, z2 = v1, z3 = x2, z4 = v2, we get

ż1 = z2

ż2 = − ( k
m

)
z1 +

(
k

m1

)
z3

ż3 = z4

ż4 = k
m2

z1 − k
m2

z3 .

✷

Most numerical solutions depend on specifying numerical values for the various
constants and initial conditions.

Example: computer solution

If we take, in consistent units, m1 = 1, k = 1, m2 = 1, x1(0) =
0, x2(0) = 0, v1(0) = 1, and v2(0) = 0, we can set up a well de-
fined computer problem (please see the preface for a discussion of the
computer notation). This problem corresponds to finding the motion just
after the left mass was hit on the left side with a hammer.:
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time
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oc

k 
1 
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si
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n Position vs time

Figure 5.50: Plot of the position of the
left mass vs. time.

(Filename:tfig.coupledmasses)

ODEs = {z1dot = z2
z2dot = -z1 + z3
z3dot = z4
z4dot = z1 - z3}

ICs = {z1(0) 0, z2(0)=1, z3(0)=0, z4(0)=0}
solve ODEs with ICs from t=0 to t=10
plot z1 vs t.

This yields the plot shown in Fig. 5.50. ✷

As the samples show, the same methods work for problems involving connections
with dashpots.
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Center of mass
For both theoretical and practical reasons it is often useful to pay attention to the
motion of the average position of mass in the system. This average position is called
the center of mass. For a collection of particles in one dimension the center of mass
is

xCM =
∑

xi mi

mtot
, (5.64)

where mtot = ∑
mi is the total mass of the system. The velocity and acceleration of

the center of mass are found by differentiation to be

vCM =
∑

vi mi

mtot
and aCM =

∑
ai mi

mtot
. (5.65)

If we imagine a system of interconnected masses and add the
⇀
F = m ⇀

a equations
from all the separate masses we can get on the left hand side only the forces from
the outside; the interaction forces cancel because they come in equal and opposite
(action and reaction) pairs. So we get:∑

Fexternal =
∑

ai mi = mtotaCM. (5.66)

Thus, the center of mass of a system that may be deforming wildly, obeys the same
simple governing equation as a single particle. Although our demonstration here was
for particles in one dimension. The result holds for any bodies of any type in any
number of dimensions.

5.6 THEORY
What saith Newton about collisions?

Page 25 of Newton Principia, Motte’s translation revised, by Florian
Cajori (Univ. of CA press, 1947) He discusses collisions of spheres
as measured in pendulum experiments. He takes account of air
friction. He has already discussed momentum conservation.

“In bodies imperfectly elastic the velocity of the return is to be
diminished together with the elastic force; because that force (except
when the parts of bodies are bruised by their impact, or suffer some
such extension as happens under the strokes of a hammer) is (as
far as I can perceive) certain and determined, and makes bodies to
return one from the other with a relative velocity, which is in a given

ratio to that relative velocity with which they met. This I tried in
balls of wool, made up tightly, and strongly compressed. For, first,
by letting go the pendula’s bodies, and measuring their reflection, I
determined the quantity of their elastic force; and then, according
to this force, estimated the reflections that ought to happen in other
cases of impact. And with this computation other experiments made
afterwards did accordingly agree; the balls always receding one from
the other with a relative velocity, which was to the relative velocity
to which they met, as about 5 to 9. Balls of steel returned with almost
the same velocity; those of cork with a velocity something less; but
in balls of glass the proportion was as about 15 to 16. ”
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SAMPLE 5.24 For the given quantities and initial conditions, find x1(t). Assume
the spring is unstretched when x1 = x2.

x1 x2

kc
m2

ı̂

m1

Figure 5.51: (Filename:sfig3.4.unstr.ini)

m1 = 1 kg, m2 = 2 kg, k = 3 N/m, c = 5 N/( m/s)
x1(0) = 1 m, ẋ1(0) = 0, x2(0) = 2 m, ẋ2(0) = 0.

Solution

T1 T2 T2

T1 T1 T2 T2

FBDs

Figure 5.52: (Filename:sfig3.4.unstr.ini.fbd)

The spring and dashpot laws give

T1 = cẋ1 T2 = k(x2 − x1). (5.67)

LMB ∑ ⇀
F = m ⇀

a

mass 1: −T1 ı̂ + T2 ı̂ = m1 ẍ1 ı̂ (5.68)

mass 2: −T2 ı̂ = m2 ẍ2 ı̂.

Applying the constitutive laws (5.67) to the momentum balance equations (5.68) gives

ẍ1 = [k(x2 − x1) − cẋ1]/m1

ẍ2 = [−k(x2 − x1)]/m2.

Defining z1 = x1, z2 = ẋ1, z3 = x2, z4 = ẋ2 gives

ż1 = z2

ż2 = [k(z3 − z1) − cz2]/m1

ż3 = z4

ż4 = [−k(z3 − z1)]/m2.

The initial conditions are

z1(0) = 1 m, z2(0) = 0, z3(0) = 2 m, z4(0) = 0.

We are now set for numerical solution.
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SAMPLE 5.25 Flight of a toy hopper. A hopper model is made of two masses

y

y

1
1

0

2

m2

m
g

x

y

�

Figure 5.53: (Filename:sfig5.6.hopper)

m1 = 0.4 kg and m2 = 1 kg, and a spring with stiffness k = 100 N/m as shown in
Fig. ??. The unstretched length of the spring is �0 = 1 m. The model is released from
rest from the configuration shown in the figure with y1 = 25.5 m and y2 = 24 m.

(a) Find and plot y1(t) and y2(t) for t = 0 to 2 s.
(b) Plot the motion of m1 and m2 with respect to the center of mass of the hopper

during the same time interval.
(c) Plot the motion of the center of mass of the hopper from the solution obtained

for y1(t) and y2(t) and compare it with analytical values obtained by integrating
the center of mass motion directly.

Solution The free body diagrams of the two masses are shown in Fig. 5.54. From
the linear momentum balance in the y direction, we can write the equations of motion
at once.

1m g

2m g

y y
1 02 �- -k(              )

Figure 5.54: Free body diagram of the
two masses m1 and m2

(Filename:sfig5.6.hopper.a)

m1 ÿ1 = −k(y1 − y2 − �0) − m1g

⇒ ÿ1 = − k

m1
(y1 − y2) + k�0

m1
− g (5.69)

m2 ÿ2 = k(y1 − y2 − �0) − m2g

⇒ ÿ2 = k

m2
(y1 − y2) − k�0

m2
− g (5.70)

(a) The equations of motion obtained above are coupled linear differential equa-
tions of second order. We can solve for y1(t) and y2(t) by numerical integration
of these equations. As we have shown in previous examples, we first need to
set up these equations as a set of first order equations.
Letting ẏ1 = v1 and ẏ2 = v2, we get

ẏ1 = v1

v̇1 = − k

m1
(y1 − y2) + k�0

m1
− g

ẏ2 = v2

v̇2 = k

m2
(y1 − y2) − k�0

m2
− g

Now we solve this set of equations numerically using some ODE solver and
the following pseudocode.

ODEs = {y1dot = v1,
v1dot = -k/m1*(y1-y2-l0) - g,
y2dot = v2,
v1dot = k/m1*(y1-y2-l0) - g}

IC = {y1(0)=25.5, v1(0)=0, y2(0)=24, v2(0)=0}
Set k=100, m1=0.4, m2=1, l0=1
Solve ODEs with IC for t=0 to t=2
Plot y1(t) and y2(t)

The solution obtained thus is shown in Fig. 5.55.
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Figure 5.55: Numerically obtained solu-
tions y1(t) and y2(t)

(Filename:sfig5.6.hopper.b)



5.6. Coupled motions in 1D 279

(b) We can find the motion of m1 and m2 with respect to the center of mass by
subtraction the motion of the center of mass, ycm from y1 and y2. Since,
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t (sec)

y 2/
cm

 (
m

)

Figure 5.56: Numerically obtained solu-
tions y1/cm(t) and y1/cm(t).

(Filename:sfig5.6.hopper.c)

ycm = m1 y1 + m2 y2

m1 + m2
(5.71)

we get,

y1/cm = y1 − ycm = m2

m1 + m2
(y1 − y2)

y2/cm = y2 − ycm = − m1

m1 + m2
(y1 − y2).

The relative motions thus obtained are shown in Fig. 5.56. We note that the
motions of m1 and m2, as seen by an observer sitting at the center of mass, are
simple harmonic oscillations.

(c) We can find the center of mass motion ycm(t) from y1 and y2 by using
eqn. (5.71). The solution obtained thus is shown as a solid line in Fig. 5.58.
We can also solve for the center of mass motion analytically by first writing the
equation of motion of the center of mass and then integrating it analytically.

1m g

2m g

cm

Figure 5.57: Free body diagram of the
hopper as a single system. The spring force
does not show up here since it becomes an
internal force to the system

(Filename:sfig5.6.hopper.e)

The free body diagram of the hopper as a single system is shown in Fig. 5.57.
The linear momentum balance for the system in the vertical direction gives

(m1 + m2)ÿcm = −m1g − m2g

⇒ ÿcm = −g.

We recognize this equation as the equation of motion of a freely falling body
under gravity. We can integrate this equation twice to get

ycm(t) = ycm(0) + ẏcm(0)t − 1

2
gt2

Noting that ycm(0) = 24.43 m (from eqn. (5.71)), and ẏcm(0) = 0 (the system
is released from rest), we get

ycm(t) = 24.43 m − 1

2
· 9.81 m/s2 · t2.

The values obtained for the center of mass position from the above expression
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Figure 5.58: Numerically obtained solu-
tion for the position of the center of mass,
ycm(t).

(Filename:sfig5.6.hopper.d)

are shown in Fig. 5.58 by small circles.
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SAMPLE 5.26 Conservation of linear momentum. Mr. P with mass mp = 200 lbm

5 ft 5 ft
G

mp = 200 lbm 

mc = 100 lbm 

interesting
object

Figure 5.59: Mr. P spots an interesting
object.

(Filename:sfig2.6.5)

is standing on a cart with frictionless and massless wheels. The cart weighs half as
much as Mr. P. Standing at one end of the cart, Mr. P spots an interesting object at the
other end of the cart. Mr. P decides to walk to the other end of the cart to pick up the
object. How far does he find himself from the object after he reaches the end of the
cart?

Solution From your own experience in small boats perhaps, you know that when
Mr. P walks to the left the cart moves to the right. Here, we want to find how far the
cart moves.

Consider the cart and Mr. P together to be the system of interest. The free body
diagram of the system is shown in Fig. 5.60(a). From the diagram it is clear that

G

N1 N2 mcg 

mpg 

G

5 ft 5 ft

x xG

(b)(a)

object

x

y

x

y

Figure 5.60: (a) Free body diagram of Mr. P-and-the-cart system. (b) The cart has moved to the
right by distance x when Mr. P reaches the other end.

(Filename:sfig2.6.5a)

there are no external forces in the x-direction. Therefore,

L̇ x =
∑

Fx = 0 ⇒ Lx = constant

that is, the linear momentum of the system in the x-direction is ‘conserved’. But the
initial linear momentum of the system is zero. Therefore,

Lx = mtot (vcm)x = 0 all the time ⇒ (vcm)x = 0 all the time.

Because the horizontal velocity of the center of mass is always zero, the center of mass
does not change its horizontal position. Now let xcm and x ′

cm be the x-coordinates of
the center of mass of the system at the beginning and at the end, respectively. Then,

x ′
cm = xcm .

Now, from the given dimensions and the stipulated position at the end in Fig. 5.60(b),

xcm = mcxG + mpxp

mc + mp
and x ′

cm = mc(xG + x) + mpx

mc + mp
.

Equating the two distances we get,

mcxG + mpxp = mc(xG + x) + mpx

= mcxG + x(mc + mp)

⇒ x = mpxp

mc + mp

= 200 lbm · 10 ft

300 lbm
= 6

2

3
ft.

6.67 ft
[Note: if Mr. P and the cart have the same mass, the cart moves to the right the same
distance Mr. P moves to the left.]
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5.7 Time derivative of a vector: posi-

tion, velocity and acceleration
So far in this chapter we have only considered things that move in a straight line. Of
course we are interested also in things that move on more complicated paths. What
are the paths of a hit baseball, a satellite, or a crashing plane? We now need to think
about vector-valued functions of time. For example, the vectors linear momentum
⇀
L and angular momentum

⇀
H have a central place in the basic mechanics governing

equations. Evaluation of these terms depends, in turn, on understanding the relation
between position ⇀

r , its rate of change velocity ⇀
v , and between velocity ⇀

v and its rate
of change the acceleration ⇀

a .
What do we mean by the rate of change of a vector? The rate of change of any

quantity, including vectors, is the ratio of the change of that quantity to the amount
of time that passes, for very small amounts of time. 1©The notation for the rate of 1© Strictly speaking these words describe

the average rate of change over the small
time interval. Only in the mathematical
limit of vanishing time intervals is this ratio
not just approximately the rate of change,
but exactly the rate of change.

change of a vector ⇀
r is

˙⇀r = d ⇀
r

dt
.

Or, in the short hand ‘dot’ notation invented by Newton for just this purpose, ⇀
v = ˙⇀r .

The expression for the derivative of a vector d
⇀
r

dt or ˙⇀r has the same definition as the
derivative of a scalar that one learns in elementary calculus. That is,

d ⇀
r

dt
= lim

�t→0

�
⇀
r

�t
= lim

�t→0

⇀
r (t + �t) − ⇀

r (t)

�t
.

Vector differentiation is also sometimes needed for the calculation of the rate of
change of linear momentum ˙⇀L and rate of change of angular momentum ˙⇀HC for use
in the momentum balance equations.

Cartesian coordinates
The most primitive way to understand the motion of a system is to understand the
motion of each of its parts using cartesian coordinates. That is each bit of mass in a
system has a location ⇀

r , relative to the origin of a ‘good’ reference frame as shown
in figure 5.61, which can be written as:

⇀
r = rx ı̂ + ry ̂ + rz k̂ or ⇀

r = x ı̂ + y̂ + zk̂.

So velocity and acceleration are simply described by derivatives of ⇀
r . Since the

rx

rz

ry

z

y

x

⇀
r

Figure 5.61: Cartesian coordinates
(Filename:tfigure6.0)

base vectors ı̂, ̂ , and k̂ are constant, differentiation to get velocity and acceleration
is simple:

⇀
v = ẋ ı̂ + ẏ̂ + żk̂ and ⇀

a = ẍ ı̂ + ÿ̂ + z̈k̂.

So if x , y, and z are known functions of time for every particle in the system, we can
evaluate the rate of change of linear and angular momentum just by differentiating
the functions twice to get the acceleration and then summing (or integrating) to get
˙⇀L and ˙⇀H .

The idea is illustrated in figure 5.62. Let’s assume
x

y

ı̂

̂

�ry

ry(t)

⇀
r (t+�t)

⇀
r (t)

rx (t)

�rx

�
⇀
r

Figure 5.62: Change of position in �t
broken into components in 2-D . �

⇀
r is

⇀
r (t + �t) − ⇀

r (t). �
⇀
r has components

�rx and �ry . So �
⇀
r = �rx ı̂ +�ry ̂ . In

the limit as �t goes to zero, ⇀̇
r is the ratio

of �
⇀
r to �t .

(Filename:tfigure2.g)

⇀
r = rx ı̂ + ry ̂ + rz k̂

or
⇀
r (t) = rx (t)ı̂ + ry(t)̂ + rz(t)k̂.
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Now we apply the definition of derivative and find

˙⇀r (t) = lim
�t→0

⇀
r (t + �t) − ⇀

r (t)

�t

=

⇀
r (t+�t)︷ ︸︸ ︷(

rx (t + �t)ı̂ + ry(t + �t)̂ + rz(t + �t)k̂
)

−

⇀
r (t)︷ ︸︸ ︷(

rx (t)ı̂ + ry(t)̂ + rz(t)k̂
)

�t

= rx (t + �t) − rx (t)

�t
ı̂ + ry(t + �t) − ry(t)

�t
̂ + rz(t + �t) − rz(t)

�t
k̂

= ṙx (t)ı̂ + ṙy(t)̂ + ṙz(t)k̂.

We have found the palatable result that the components of the velocity vector are the
time derivatives of the components of the position vector 1©. Vector differentiation is

1©Caution: Later in the book we will use
base vectors that change in time, such as po-
lar coordinate base vectors, path basis vec-
tors, or basis vectors attached to a rotating
frame. For these vectors the components of
the vector’s derivative will not be the deriva-
tives of its components.

done to find the velocity and acceleration of particles or parts of bodies. The curve in
figure 5.63 shows a particle P’s path, that is, its position at a sequence of times. The
position vector ⇀

r P/O is the arrow from the origin to a point on the curve, a different
point on the curve at each instant of time. The velocity ⇀

v at time t is the rate of change
of position at that time, ⇀

v ≡ ˙⇀r .

p

p

path of
particle p

O

(a) Position

(b) Velocity is tangent to the
      path.  It is approximately
      in the direction of �

⇀
r .

(c) Acceleration is generally
      not tangent to the path.  It
      is approximately in the
      direction of �

⇀
v .

�
⇀
r p||⇀

vp

⇀
r p(t + �t)

⇀
r p(t)

O

⇀
vp(t + �t) ⇀
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p(t + �t)
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⇀
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Figure 5.63: A particle moving on a
curve. (a) shows the position vector is an
arrow from the origin to the point on the
curve. On the position curve the particle is
shown at two times: t and t + �t . The ve-
locity at time t is roughly parallel to the dif-
ference between these two positions. The
velocity is then shown at these two times in
(b). The acceleration is roughly parallel to
the difference between these two velocities.
In (c) the acceleration is drawn on the path
roughly parallel to the difference in veloci-
ties.

(Filename:tfigure2.2)

Example: Given position as a function of time, find the velocity.

Given that the position of a point is:

⇀
r (t) = C1 cos(ω t)ı̂ + C2 sin(ω t)̂

with C1 = 4 m, C2 = 2 m and ω = 10 rad/s. What is the velocity (a
vector) at t = 3 s?

First we note that the components of ⇀
r (t) have been given implicitly

as
rx (t) = C1 cos(ω t) and ry(t) = C2 sin(ω t).

Then we find the velocity by differentiating each of the components with
respect to time and re-assembling as a vector to get

⇀
v(t) = ˙⇀r = −C1ω sin(ω t)ı̂ + C2ω cos(ω t)̂

Now we evaluate this expression with the given values of C1 = 4 m,
C2 = 2 m, ω = 10 rad/s and t = 3 s to get the velocity at 3 s as:

⇀
v(3 s) = −(4 m)(10/s) sin((10/s)(3 s))ı̂ +

(2 m)(10/s) cos((10/s)(3 s))̂ (5.72)

= (−40 sin(30)ı̂ + 20 cos(30)̂
)

m/s (5.73)

= (
39.5ı̂ + 3.09̂

)
m/s (5.74)

Note that the last line is calculated using the angle as measured in
radians, not degrees. ✷

Product rule
We know three ways to multiply vectors. You can multiply a vector by a scalar, take
the dot product of two vectors, and take the cross product of two vectors. Because
these forms all show up in dynamics we nee to know a method for differentiating.



5.7. Time derivative of a vector: position, velocity and acceleration 283

The method is simple. All three kinds of vector multiplication obey the product rule
of differentiation that you learned in freshmen calculus.

d

dt
(a

⇀

A) = ȧ
⇀

A + a ˙⇀A
d

dt
(

⇀

A · ⇀
B) = ˙⇀A · ⇀

B + ⇀

A · ˙⇀B
d

dt
(

⇀

A × ⇀
B) = ˙⇀A × ⇀

B + ⇀

A × ˙⇀B.

The proofs of these identities is nearly an exact copy of the proof used for scalar
multiplication.

Example: Derivative of a vector of constant length.

Assume
d

dt
| ⇀

C| = 0

so
d

dt
| ⇀

C|2 = d

dt
(

⇀

C· ⇀

C) = 0.

Using the product rule above, we get

d

dt
(

⇀

C· ⇀

C) = ⇀

C· ˙⇀C + ˙⇀C· ⇀

C = 2
⇀

C· ˙⇀C = 0

so
⇀

C· ˙⇀C = 0 ⇒ ⇀

C ⊥ ˙⇀C.

The rate of change of a vector of constant length is perpendicular to that
vector. This observation is a useful fact to remember about time varying
unit vectors, a special case of time varying constant length vectors. ✷

The motion quantities
The various quantities that show up in the equations of dynamics are defined on
the inside cover. To calculate any of them you must multiply some combination of
position, velocity and acceleration by mass.

Rate of change of a vector depends on frame
We just explained that the time derivative of a vector can be found by differentiating
each of its components. This calculation depended on having a reference frame, an
imaginary piece of big graph paper, and a corresponding set of base (or basis) vectors,
say ı̂, ̂ and k̂. But there can be more than one piece of imaginary graph paper. You
could be holding one, Jo another, and Tanya a third. Each could be moving their graph
paper around and on each paper the same given vector would change in a different
way.

The rate of change of a given vector is different if calculated in different reference
frames.

When applying the laws of mechanics, we must be sure that when we differ-
entiate vectors we do so with respect to a Newtonian frame.

Because most often we use the “fixed” ground under us as a practical approxi-
mation of a Newtonian frame, we label a Newtonian frame with a curly script F , for
fixed. So, when being careful with notation we will write the velocity of point B as

F˙⇀r B/O
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Non-Newtonian frames
It is useful to understand frames that accelerate and rotate with respect to each
other and with reference to Newtonian frames. These non-Newtonian frames will
be discussed in chapter 9. Even though the laws of mechanics are not valid in non-
Newtonian frames, non-Newtonian frames are useful help with the understanding of
the motion and forces of systems composed of objects with complex relative motion.
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SAMPLE 5.27 Velocity and acceleration: The position vector of a particle is given
as a functions time:

⇀
r (t) = (C1 + C2t + C3t2)ı̂ + C4t ̂

where C1 = 1 m, C2 = 3 m/s, C3 = 1 m/s2, and C4 = 2 m/s.

(a) Find the position, velocity, and acceleration of the particle at t = 2 s.
(b) Find the change in the position of the particle between t = 2 s and t = 3 s.

Solution We are given,

⇀
r = (C1 + C2t + C3t2)ı̂ + C4t ̂ .

Therefore,

⇀
v ≡ ˙⇀r = d ⇀

r

dt
= (C2 + 2C3t)ı̂ + C4̂

⇀
a ≡ ¨⇀r = d2 ⇀

r

dt2 = 2C3 ı̂.

(a) Substituting the given values of the constants and t = 2 s in the equations above
we get,

⇀
r (t = 2 s) = (1 m + 3

m

s
· 2 s + 1

m

s2 · 4 s2)ı̂ + (2
m

s
· 2 s)̂

= 11 mı̂ + 4 m̂

⇀
v(t = 2 s) = (3

m

s
+ 2 · 1

m

s2 · 2 s)ı̂ + (2
m

s
)̂

= 7 m/sı̂ + 2 m/s̂
⇀
a(t = 2 s) = (2 · 1

m

s2 )ı̂ = 2 m/s2 ı̂.

⇀
r = (11ı̂ + 4̂) m,

⇀
v = (7ı̂ + 2̂) m/s, ⇀

a = 2 m/s2 ı̂

(b) The change in the position of the particle between the two time instants is,

�
⇀
r = ⇀

r (t = 3 s) − ⇀
r (t = 2 s)

We already have ⇀
r at t = 2 s. We need to calculate ⇀

r at t = 3 s.

⇀
r (t = 3 s) = (1 m + 3

m

s
· 3 s + 1

m

s2 · 9 s2)ı̂ + (2
m

s
· 3 s)̂

= 19 mı̂ + 6 m̂

Therefore,

�
⇀
r = (19 mı̂ + 6 m̂) − (11 mı̂ + 4 m̂)

= 8 mı̂ + 2 m̂ .

�
⇀
r = 8 mı̂ + 2 m̂
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SAMPLE 5.28 Find velocity and acceleration from position. Given that the position
of a particle is

⇀
r = A cos(ωt)ı̂ + B sin(ωt)̂ + Ct k̂,

with A, B, C, and ω constants, find

(a) the velocity as a function of time,
(b) the acceleration as a function of time.

Solution

(a) The velocity:

⇀
v = d ⇀

r

dt
= d

dt
[A cos(ωt)ı̂ + B sin(ωt)̂ + Ct k̂]

= −Aω sin(ωt)ı̂ + Bω cos(ωt)̂ + C k̂

⇀
v = −Aω sin(ωt)ı̂ + Bω cos(ωt)̂ + C k̂

(b) The acceleration:

⇀
a = d ⇀

v

dt
= d

dt
[−Aω sin(ωt)ı̂ + Bω cos(ωt)̂

= −Aω2 cos(ωt)ı̂ − Bω2 sin(ωt)̂

⇀
a = −Aω2 cos(ωt)ı̂ − Bω2 sin(ωt)̂

Note: The path is an elliptical helix with axis in the z direction. The component of
velocity in the z direction is constant so the acceleration is entirely in the xy plane.
In fact, the acceleration vector points from the particle towards the axis of the helix.

SAMPLE 5.29 Find a motion where, at least at one instant in time, the position,
velocity, and acceleration are mutually orthogonal.

Solution First, we recognize that if there is a solution, it must be in three dimensions
since there cannot be three mutually orthogonal vectors in a plane. Next we make a
sketch (see figure 5.64). We see that if we can make the acceleration orthogonal to

O ⇀
r

⇀
a

⇀
v

Figure 5.64: (Filename:sfig3.1.three.orthos)

the velocity we can put the origin on the line defined by their common normal.
One of many solutions is to take

⇀
r (t) = A̂ − Bt ı̂ + Ct2k̂

which is illustrated in figure 5.65. We can verify this guess as follows:

O
A

location
at t = 0path

ı̂

̂

k̂

Figure 5.65: (Filename:sfig3.1.three.orthos.a)

⇀
v = d ⇀

r

dt
= −B ı̂ + 2Ct k̂

⇀
a = d ⇀

v

dt
= 2C k̂.

So, at t = 0,

⇀
r = A̂ ,

⇀
v = −B ı̂, and ⇀

a = 2C k̂.

Because the dot products between the vectors above are: ⇀
r · ⇀

v = 0, ⇀
v · ⇀

a = 0, and
⇀
r · ⇀

a = 0, these vectors are mutually orthogonal. So, for the path shown the position,
velocity, and acceleration are mutually orthogonal at t = 0 as desired. (aside: Why
is there a −B in this solution? Answer: no reason, the solution could have been given
with +B as well.)
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SAMPLE 5.30 Assume the expression for velocity ⇀
v(= d

⇀
r

dt ) of a particle is given:
⇀
v = v0 ı̂ − gt ̂ . Find the expressions for the x and y coordinates of the particle at a
general time t , if the initial coordinates at t = 0 are (x0, y0).

Solution The position vector of the particle at any time t is

⇀
r (t) = x(t)ı̂ + y(t)̂ .

We are given that
⇀
r (t = 0) = x0 ı̂ + y0̂ .

Now

⇀
v ≡ d ⇀

r

dt
= v0 ı̂ − gt ̂

or dx ı̂ + dy̂ = (v0 ı̂ − gt ̂) dt.

Dotting both sides of this equation with ı̂ and ̂ , we get

dx = v0 dt

⇒
∫ x

x0

dx = v0

∫ t

0
dt

⇒ x = x0 + v0t,

and

dy = −gt dt

⇒
∫ y

y0

dy = −g
∫ t

0
t dt

⇒ y = y0 − 1

2
gt2.

Therefore,
⇀
r (t) = (x0 + v0t)ı̂ + (y0 − 1

2
gt2)̂

and the (x, y) coordinates are

x(t) = x0 + v0t

y(t) = y0 − 1

2
gt2.

(x0 + v0t, y0 − 1
2 gt2)
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SAMPLE 5.31 The path of a particle. A particle moves in the xy plane such
that its coordinates are given by x(t) = at and y(t) = bt2, where a = 2 m/s and
b = 0.5 m/s2.

(a) Find the velocity and acceleration of the particle at t = 3 s.
(b) Show that the path of the particle is neither a straight-line nor a circle.

Solution

(a) This problem is straightforward. We are given the position of the particle as a
function of time t . We can find the velocity and acceleration by differentiating
the position with respect to time:

⇀
r (t) =

x︷︸︸︷
at ı̂ +

y︷︸︸︷
bt2 ̂

⇀
v = d ⇀

r

dt
= aı̂ + 2bt ̂

= 2 m/sı̂ + 2 · 0.5 m/s2 · 3 s̂

= (2ı̂ + 3̂) m/s

⇀
a = d ⇀

v

dt
= 2b̂

= 1 m/s2̂ .

⇀
v = (2ı̂ + 3̂) m/s, ⇀

a = 1 m/s2̂

(b) There are many ways to show that the path of the particle is neither a straight
line nor a circle. One of the easiest ways is graphical. Calculate the position of
the particle at various times and plot a curve through the positions. This curve
is the path of the particle. Using a computer, for example, we can plot the path
as follows:

a = 2, b = 0.5 % specify constants
t = [0 4 8 ... 20] % take 6 points from 0-20 sec.
x = a*t, y = b*t^2 % calculate coordinates
plot x vs y % plot the particle path

0 2 4 6 8
0

1

2

3

4

5

6

7

8

x

y

Path of the particle

Figure 5.66: The path of the particle gen-
erated by computing its coordinates at var-
ious points in time.

(Filename:sfig6.1.1a.M)

A plot so generated is shown in Fig. 5.66. Clearly, the path is neither a straight
line nor a circle.
Another way to find the path of the particle is to find an explicit equation of the
path. We find this equation by eliminating t from the expressions for x and y
and thus relating x to y:

x = at ⇒ t = x

a
.

Substituting x/a for t in y = bt2, we get

y = b

a2 x2

which is clearly not the equation of a straight line or a circle. In fact, it is the
equation of a parabola, i.e., the path of the particle is parabolic.
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5.8 Spatial dynamics of a particle
One of Isaac Newton’s interests was the motion of the planets around the sun. By
applying his equation

⇀
F = m ⇀

a , his law of gravitation, his calculus, and his inimitable
geometric reasoning he learned much about the motions of celestial bodies. After
learning the material in this section you will know enough to reproduce many of
Newton’s calculations. You don’t need to be a Newton-like genius to solve Newton’s
differential equations. You can solve them on a computer. And you can use the same
equations to find motions that Newton could never find, say the trajectory of projectile
with a realistic model of air friction. In this chapter, the main approach we take to
celestial mechanics and related topics is as follows: 1© 1© Eventually you may develop analytic

skills which will allow you to shortcut this
brute-force numerical approach, at least for
some simple problems. For hard problems,
even the greatest analytic geniuses resort to
methods like those prescribed here.

(a) draw a free body diagram of each particle, n free body diagrams if there are n
particles,

(b) find the forces on each particle in terms of their positions and velocities and any
other external forces (for example, these forces could involve spring, dashpot,
gravity, or air friction terms),

(c) write the linear momentum balance equations for each particle, that is write
⇀
F = m ⇀

a once for each particle. That is, write n vector equations.

(d) break each vector equation into components to make 2 or 3 scalar equations
for each vector equation, in 2 or 3 dimensions, respectively.

(e) write the 2n or 3n equations in first order form. You now have 4n or 6n first
order ordinary differential equations in 2 or 3 dimensions, respectively.

(f) write these first order equations in standard form, with all the time derivatives
on the left hand side.

(g) feed these equations to the computer, substituting values for the various param-
eters and appropriate initial conditions.

(h) plot some aspect(s) of the solution and

(i) use the solution to help you find errors in your formulation, and

(ii) interpret the solution so that it makes sense to you and increases your
understanding of the system of study.

We can use this approach if the forces on all of the point masses composing the
system can be found in terms of their positions, velocities, and the present time. In
this section we will just look at the motion of a single particle with forces coming,
say, from gravity, springs, dashpots and air drag.

Some problems are of the instantaneous dynamics type. That is, they use the
equations of dynamics but do not involve tracking motion in time.

Example: Knowing the forces find the acceleration.

Say you know the forces on a particle at some instant in time, say
⇀
F 1

and
⇀
F 2, and you just want to know the acceleration at that instant. The

answer is given directly by linear momentum balance as

∑
⇀
F i = m ⇀

a ⇒ ⇀
a =

⇀
F 1 + ⇀

F 2

m

✷

Even some problems involving motion are simple and you can determine most all
you want to know with pencil and paper.
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Example: Parabolic trajectory of a projectile

If we assume a constant gravitational field, neglect air drag, and take the
y direction as up the only force acting on a projectile is

⇀
F == mg̂ .

Thus the “equations of motion” (linear momentum balance) are

−mg̂ = m ⇀
a .

If we take the dot product of this equation with ı̂ and ̂ (take x and y
components) we get the following two differential equations,

ẍ = 0 and ÿ = −g

which are decoupled and have the general solution

⇀
r = (A + Bt)ı̂ + (C + Dt − gt2/2)̂

which is a parametric description of all possible trajectories. By making
plots or simple algebra you might convince yourself that these trajectories
are parabolas for all possible A, B, C, and D. That is, neglecting air drag,
the predicted trajectory of a thrown ball is a parabola. ✷

Some problems are hard and necessitate computer solution.

Example: Trajectory with quadratic air drag.

For motions of things you can see with your bare eyes moving in air, the
drag force is roughly proportional to the speed squared and opposes the
motion. Thus the total force on a particle is

⇀
F = −mg̂ − Cv2(

⇀
v/v),

where ⇀
v/v is a unit vector in the direction of motion. So linear momen-

tum balance gives
−mg̂ − Cv

⇀
v = m ⇀

a .

If we dot this equation with ı̂ and ̂ we get

ẍ = −(C/m)

(√
ẋ2 + ẏ2

)
ẋ and ÿ = −(C/m)

(√
ẋ2 + ẏ2

)
ẏ−g.

These are two coupled second order equations that are probably not
solvable with pencil and paper. But they are easily put in the form of a
set of four first order equations and can be solved numerically. ✷

Some special problems turn out to be easy, though you might not realize it at first
glance.

Example: Zero-length spring

Imagine a massless spring whose unstretched length is zero (see chapter
2 for a discussion of zero length springs). Assume one end is connected
to a pivot at the origin and the other to a particle. Neglect gravity and air
drag. The force on the mass is thus proportional to its distance from the
pivot and the spring constant and pointed towards the origin:

⇀
F = −k ⇀

r .
Thus linear momentum balance yields

−k ⇀
r = m ⇀

a .

Breaking into components we get

ẍ = (−k/m)x and ÿ = (−k/m)y.
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Thus the motion can be thought of as two independent harmonic oscil-
lators, one in the x direction and one in the y direction. The general
solution is

⇀
r =

(
A cos

√
k

m
t + B sin

√
k

m
t

)
ı̂+

(
C cos

√
k

m
t + D sin

√
k

m
t

)
̂

which is always an ellipse (special cases of which are a circle and a
straight line). ✷

Some problems are within the reach of advanced analytic methods, but can also be
solved with a computer.

Example: Path of the earth around the sun.

Assume the sun is big and unmovable with mass M and the earth has
mass m. Take the origin to be at the sun. The force on the earth is
⇀
F = −(m MG/r2)(

⇀
r /r) where ⇀

r /r is a unit vector pointing from the
sun to the earth. So linear momentum balance gives

mMG ⇀
r

r3 = m ⇀
a .

This equation can be solved with pencil and paper, Newton did it. But
the solution is beyond this course. On the other hand the equation of
motion is easily broken into components and then into a set of 4 ODEs
which can be easily solved on the computer. Either by pencil and paper,
or by investigation of numerical solutions, you will find that all solutions
are conic sections (straight lines, parabolas, hyperbolas, and ellipses).
The special case of circular motion is not far from what the earth does.
✷

The work-energy equation
Energy balance is one of the basic governing equations. For a single particle with no
stored internal energy, the energy balance equation is

P = d

dt
EK (IIId)

Before getting into the technical definitions of the terms, let’s first summarize the
most basic of the energy equations in words.

The power P of all the external forces acting on a particle is the rate of change
of its kinetic energy ĖK.

From other physics texts and courses, you know energy principles help you solve
a variety of simple problems, both in mechanics and other parts of physics. In many
engineering applications, one can determine useful things about the motion of a
machine or object by thinking about its energy and change of energy.

For particles and rigid bodies that interact in the simple ways we consider in this
book, the energy equations can be derived from the momentum balance equations.
They follow logically.

However, in practice, one uses the various work-energy relations as if they were
independent. Sometimes energy equations can be used in place of, or as a check of,
momentum balance equations.
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Neglecting the right hand side
The right hand side of the energy equations is the rate of change of kinetic energy.
This term is not zero if the speeds of the various mass points change non-negligibly.
But, for negligible motion, we neglect all terms that involve motion, in this case vi

and v̇i . Thus, we assume that
ĖK = 0.

Thus, for better or worse, equation 5.8 reduces to

P = 0. (5.75)

The net power into the system is zero. Equation 5.75 is useful for system that can be
modeled as having constant (or zero) kinetic energy.

The power into a system P

In mechanics, the sources of power are applied forces. The power of an applied force
⇀
F acting on a particle is

P = ⇀
F · ⇀

v ,

where ⇀
v is the velocity of the point of the material body being acted on by the force.

If many forces are applied, then

P =
∑

⇀
F i · ⇀

v .

The work of a force ⇀
F : W12

Previously in Physics, and more recently in one dimensional mechanics, you learned
that

Work is force times distance.

This is actually a special case of the formula

P = ⇀
F · ⇀

v .

How is that? If
⇀
F is constant and parallel to the displacement �

⇀
x , then

Work =
∫

Ẇ dt =
∫

Pdt =
∫

⇀
F · ⇀

v dt︸︷︷︸
d

⇀
x

=
∫

⇀
F · d ⇀

x = ⇀
F ·

∫
d ⇀
x

= ⇀
F · �

⇀
x = F�x = Force · distance.

Or,
dW = Ẇ dt = Pdt = ⇀

F · ⇀
v dt = ⇀

F · d ⇀
x (or

⇀
F · d ⇀

r ).

Being a little more precise about notation, we can write that the work of a force acting
on a particle or body in moving from state 1 to state 2 is

W12 ≡
∫ ⇀

r 2

⇀
r 1

⇀
F · d ⇀

r (5.76)

where the path of integration is the path of the material point at which the force is
applied.
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Potential energy of a force
Some forces have the property that the work they do is independent of the path
followed by the material point (or pair of points between which the force acts). If
the work of a force is path independent in this way, then a potential energy can be
defined so that the work done by the force is the decrease in the Potential Energy EP:
W12 = EP1 − EP2. The common examples are listed below:

• linear spring: EP = (1/2)k(stretch)2.
• gravity near earth’s surface: EP = mgh
• gravity between spheres or points: EP = −MmG/r
• constant force

⇀
F acting on a point: EP = − ⇀

F · ⇀
r

In the cases of the spring and gravity between spheres, the change in potential
energy is the net work done by the spring or gravity on the pair of objects between
which the force acts. If both ends of a spring are moving, the net work of the spring
on the two objects to which it is connected is the decrease in potential energy of the
spring.

There is a possible source of confusion in our using the same symbol EP to
represent the potential work of an external force and for internal potential energy. In
practice, however, they are used identically, so we use the same symbol for both. The
potential energy in a stretched spring is the same whether it is the cause of force on
a system or it is internal to the system.

Forces that do no work
Fortunately for the evaluation of power and work one often encounters forces that do
no work or forces that come in pairs where the pair of forces does no net work.

The net work done by the interaction force between body A and body B is zero
if the force on body A dotted with the relative velocity of A and B is zero. Examples
are:

• frictionless sliding,
• the force caused by a magnetic field on a moving charged particle.

Summary
To find the motion of a particle you draw a free body diagram, write the linear
momentum balance equation and then solve it, most often on the computer. The
power and energy equations can sometimes be used to check your solution and to
determine special features of the solution, and in special case.
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5.7 THEORY
Angular momentum and energy of a point mass

For a point-mass particle, we can derive the angular momentum
equation (II) and the energy equation (III) from linear momentum
balance in a snap.

For a single particle we have
⇀
F = m

⇀
a . Taking the cross product

of both sides with the position relative to a point C gives:

⇀
r /C × ⇀

F = ⇀
r /C ×

(
m

⇀
a
)
.

For a single point-mass particle the angular momentum equation is
a direct un-refutable consequence of the linear momentum balance
equation.

The power equation is found with a shade more difficulty. We
take the equation

⇀
F = m

⇀
a and dot both sides with the velocity ⇀

v
of the particle:

⇀
F · ⇀

v = m
⇀
a · ⇀

v . (5.77)

Evaluating ⇀
v · ⇀

a is most easily done with the benefit of hindsight.
So we cheat and look at the time derivative of the speed squared:

d

dt

(
1

2
v2

)
= 1

2

d

dt
(
⇀
v · ⇀

v )

= 1

2

(
⇀̇
v · ⇀

v + ⇀
v · ⇀̇

v
)

= ⇀
v · ⇀̇

v

= ⇀
v · ⇀

a

Applying this result to equation 5.77 we get

⇀
F · ⇀

v︸︷︷︸
P

= d

dt

(
1

2
mv2

)
︸ ︷︷ ︸

EK

,

the energy (or power balance) equation for a particle.

So for one particle angular momentum balance and power bal-
ance (eqns. II and III on the inside cover) follow directly from
⇀
F = m

⇀
a .
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SAMPLE 5.32 Find
⇀
L, ˙⇀L,

⇀
HC, ˙⇀HC, EK , ĖK for a given particle P with mass

P

C

y

x
1m

1m

2m

z

Figure 5.67: (Filename:sfig1.1.DH1)

m P = 1 kg, given position, velocity, acceleration, and a point C. Specifically, we
are given ⇀

r P = (ı̂ + ̂ + k̂) m, ⇀
v P = 3 m/s(ı̂ + ̂), ⇀

a P = 2 m/s2(ı̂ − ̂ − k̂), and
⇀
r C = (2ı̂ + k̂) m.

Solution Since ⇀
r P = (ı̂ + ̂ + k̂) m and ⇀

r C = (2ı̂ + k̂) m,

⇀
r P/C = ⇀

r P − ⇀
r C = (−ı̂ + ̂) m.

So we have the motion quantities

⇀
L = m ⇀

v P

= (1 kg)·[(3 m/s)(ı̂ + ̂)]

= 3(ı̂ + ̂)
kg· m

s
= 3 N· s(ı̂ + ̂)

˙⇀L = m ⇀
a P

= (1 kg)[(2 m/s2)(ı̂ − ̂ − k̂)]

= 2(ı̂ − ̂ − k̂)
kg· m

s2

= 2 N(ı̂ − ̂ − k̂)

⇀
HC = ⇀

r P/C × m ⇀
v P

= [(−ı̂ + ̂) m] × [(1 kg)3 m/s(ı̂ + ̂)]

= −6
kg· m2

s
k̂ (5.78)

˙⇀HC = ⇀
r P/C × m ⇀

a

= [(−ı̂ + ̂)m] × [(1 kg)2 m/s2(ı̂ − ̂ − k̂)]

= −2
kg· m2

s2 (ı̂ + ̂)

EK = 1

2
m|⇀

v P |2

= 1

2
(1 kg)(3

√
2 m/s)2

= 9
kg· m2

s2

= 9 N· m

ĖK = d

dt
(
m

2
⇀
v P ·⇀

v P )

= m

2
[⇀
v P · ˙⇀v P + ˙⇀v P ·⇀

v P ]

= m ⇀
v P ·⇀

a P

= 1 kg[(3 m/s)(ı̂ + ̂)]·[(2 m/s2)(ı̂ − ̂ − k̂)]

= 0.

Note: d
dt (

1
2v2) 	= |⇀

v ||⇀
a |.
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SAMPLE 5.33 Linear momentum: direct application of formula. A 2 kg block is
moving with a velocity ⇀

v(t) = u0e−ct ı̂ + v0̂ , where u0 = 5 m/s, v0 = 10 m/s, and
c = 0.5/ s.

(a) Find the linear momentum
⇀
L and its rate of change ˙⇀L at t = 5 s.

(b) What is the net change in linear momentum of the block from t = 0 s to t = 5 s?

Solution Since
⇀
L = m ⇀

v and ˙⇀L = d
⇀
L

dt ; for the given block we have

(a)

⇀
L(t) = m(u0e−ct ı̂ + v0̂)

˙⇀L(t) = m(−u0ce−ct ı̂).

Substituting the given values, m = 2 kg, u0 = 5 m/s, v0 = 10 m/s, c = 0.5/ s
and t = 5 s, we get

⇀
L(5 s) = 2 kg(5 m/s · e−2.5 ı̂ + 10 m/s̂)

= (0.82ı̂ + 20̂) kg · m/s
˙⇀L(5 s) = 2 kg(−5 m/s · 0.5/ s · e−2.5 ı̂)

= −0.41 kg · m/s2 ı̂ = −0.41 Nı̂.

⇀
L = (0.82ı̂ + 20̂) kg · m/s, ˙⇀L = −0.41 Nı̂

(b)

⇀
L(0 s) = 2 kg(5 m/s · e0 ı̂ + 10 m/s̂)

= (10ı̂ + 20̂) kg · m/s.

Therefore, the net change in the linear momentum in t = 0 s to t = 5 s is,

�
⇀
L = ⇀

L(5 s) − ⇀
L(0 s)

= (0.82ı̂ + 20̂) kg · m/s − (10ı̂ + 20̂) kg · m/s

= −9.18 kg · m/sı̂.

Note that the net change is only in x-direction. This result makes sense because
the y-component of

⇀
L is constant and therefore, y-component of ˙⇀L is zero.

�
⇀
L = −9.18 kg · m/sı̂
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SAMPLE 5.34 Angular momentum: direct application of the formula. The position

x

m

y

h

2�

Figure 5.68: (Filename:sfig3.2.direct.appl)

of a particle of mass m = 0.5 kg is ⇀
r (t) = � sin(ωt)ı̂ + h̂ ; where ω = 2 rad/s, h =

2 m, � = 2 m, and ⇀
r is measured from the origin.

(a) Find the angular momentum
⇀
HO of the particle about the origin at t = 0 s and

t = 5 s.
(b) Find the rate of change of angular momentum ˙⇀H about the origin at t = 0 s

and t = 5 s.

Solution since
⇀
HO = ⇀

r/O × m ⇀
v and ˙⇀HO = ⇀

r/O × m ⇀
a , we need to find ⇀

r , ⇀
v and ⇀

a

to compute
⇀
HO and ˙⇀HO. Now,

⇀
r (t) = � sin(ωt)ı̂ + h̂

⇒ ⇀
v(t) = ˙⇀r (t) = � ω cos(ωt)ı̂ + 0̂

⇒ ⇀
a(t) = ¨⇀r (t) = −� ω2 sin(ωt)ı̂

(a) Since the position is measured from the origin,

⇀
r/O = � sin(ωt)ı̂ + h̂ .

Therefore,

⇀
HO = ⇀

r/O × m ⇀
v = (� sin(ωt)ı̂ + h̂) × m(� ω cos(ωt)ı̂)

= m�2ω sin(ωt) cos(ωt)(ı̂ × ı̂) + m�ωh cos(ωt)(̂ × ı̂)

= −m�ωh cos(ωt)k̂.

Now we can substitute the desired values:

⇀
HO(0 s) = −(0.5 kg) · (2 rad/s) · (2 m) · (2 m) · cos(0)k̂

= −4 kg · m2/ sk̂
⇀
HO(5 s) = −(4 kg · m2/ s) · cos(2 rad/s · 5 s) = 3.36 kg · m2/ sk̂.

⇀
HO(0 s) = −4 kg · m2/ sk̂,

⇀
HO(5 s) = 3.36 kg · m2/ sk̂

(b)

˙⇀HO = ⇀
r/O × m ⇀

a

= (� sin(ωt)ı̂ + h̂) × m(−� ω2 sin(ωt)ı̂)

= mlω2h sin(ωt)k̂

Substituting the values of constants and the time, we get ˙⇀HO(0 s) = ⇀

0, and

˙⇀HO(5 s) = (0.5 kg) · (2 m) · (2 rad/s)2 · (2 m) · sin(2 rad/s · 5 s)k̂

= −4.35( kg · m/s2) · mk̂ = −4.35 N · mk̂.

˙⇀HO(0 s) = ⇀

0, ˙⇀HO(5 s) = −4.35 N · mk̂

Comments: Note that both
⇀
H and ˙⇀H point out of the plane, in the k̂ direction.

⇀
H and ˙⇀H are always in the k̂ direction for all motions in the xy-plane for
all masses in the xy-plane (provided, of course, that the reference point about
which

⇀
H and ˙⇀H are calculated also lies in the xy plane).
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SAMPLE 5.35 Acceleration of a point mass in 3-D. A ball of mass m = 13 kg

15m
3m

12m

A

B

C

D

x

y

z

15m

4m

⇀
T

⇀
T

⇀
T

Figure 5.69: A ball in 3-D
(Filename:sfig2.1.10a)

is being pulled by three strings as shown in Fig. 5.69. The tension in each string is
T = 13 N. Find the acceleration of the ball.

Solution The forces acting on the body are shown in the free body diagram in
Fig.5.70. From geometry:

λ̂ =
⇀
r AB

|⇀
r AB | = −4ı̂ + 3̂ + 12k̂√

42 + 32 + 122

= −4ı̂ + 3̂ + 12k̂

13
.

Balance of linear momentum for the ball:

A

ı̂
̂

k̂

-mgk̂

T λ̂

T ı̂

-T̂

Figure 5.70: FBD of the ball
(Filename:sfig2.1.10b)

∑
⇀
F = m ⇀

a (5.79)

∑
⇀
F = T ı̂ − T ̂ + T λ̂ − mgk̂

= T

(
ı̂ − ̂ + −4ı̂ + 3̂ + 12k̂

13

)
− mgk̂

= T

13
(9ı̂ + 10̂ + 12k̂) − mgk̂.

Substituting
∑ ⇀

F in eqn. (5.79):

⇀
a = T

13m
(9ı̂ + 10̂ + 12k̂) − gk̂.

Now plugging in the given values: T = 13 N, m = 13 kg, and g = 10 m/s2,
we get

⇀
a = 	13 N

	13 · 13 kg
(9ı̂ − 10̂ + 12k̂) − 10 m/s2k̂

= (0.69ı̂ − 0.77̂ − 9.08k̂) m/s2.

⇀
a = (0.69ı̂ − 0.77̂ − 9.08k̂) m/s2
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SAMPLE 5.36 Trajectory of a food-bag. In a flood hit area relief supplies are
dropped in a 20 kg bag from a helicopter. The helicopter is flying parallel to the
ground at 200 km/h and is 80 m above the ground when the package is dropped. How
much horizontal distance does the bag travel before it hits the ground? Take the value
of g, the gravitational acceleration, to be 10 m/s2.

Solution You must have solved such problems in elementary physics courses. Usu-
ally, in all projectile motion problems the equations of motion are written separately
in the x and y directions, realizing that there is no force in the x direction, and then
the equations are solved. Here we show you how to write and keep the equations in
vector form all the way through.

x

y

Food

mg

FBD of the bag

d

h

⇀
vx

⇀
r 0

⇀
r

Figure 5.71: Free body diagram of the
bag and the geometry of its motion.

(Filename:sfig6.1.2a)

The free body diagram of the bag during its free flight is shown in Fig. 5.71.
The only force acting on the bag is its weight. Therefore, from the linear momentum
balance for the bag we get

m ⇀
a = −mg̂ .

Let us choose the origin of our coordinate system on the ground exactly below the
point at which the bag is dropped from the helicopter. Then, the initial position of the
bag ⇀

r (0) = h̂ = 80 m̂ . The fact that the bag is dropped from a helicopter flying
horizontally gives us the initial velocity of the bag:

⇀
v(0) ≡ ˙⇀r (0) = vx ı̂ = 200 km/hı̂.

So now we have a 2nd order differential equation (from linear momentum balance ):

¨⇀r = −g̂

with two initial conditions:

⇀
r (0) = h̂ and ˙⇀r (0) = vx ı̂

which we can solve to get the position vector of the bag at any time. Since the basis
vectors ı̂ and ̂ do not change with time, solving the differential equation is a matter
of simple integration:

¨⇀r ≡ d ˙⇀r
dt

= −g̂∫
d ˙⇀r = −̂

∫
g dt

or ˙⇀r = −gt ̂ + ⇀
c1 (5.80)

and integrating once again, we get

⇀
r =

∫
(−gt ̂ + ⇀

c1) dt

= −1

2
gt2̂ + ⇀

c1t + ⇀
c2 (5.81)

where ⇀
c1 and ⇀

c2 are constants of integration and are vector quantities. Now substi-
tuting the initial conditions in eq6.1.2.1 and eq6.1.2.2 we get

˙⇀r (0) = vx ı̂ = ⇀
c1, and

⇀
r (0) = h̂ = ⇀

c2.

Therefore, the solution is

⇀
r (t) = −1

2
gt2̂ + vx t ı̂ + h̂

= vx t ı̂ + (h − 1

2
gt2)̂ .
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So how do we find the horizontal distance traveled by the bag from our solution? The
distance we are interested in is the x-component of ⇀

r , i.e., vx t . But we do not know
t . However, when the bag hits the ground, its position vector has no y-component,
i.e., we can write ⇀

r = d ı̂ + 0̂ where d is the distance we are interested in. Now
equating the components of ⇀

r with the obtained solution, we get

d = vx t and 0 = h − 1

2
gt2.

Solving for t from the second equation and substituting in the first equation we get

d = vx

√
2h

g
= 200 km

3600 s
·
√

2 · 80 m

10 m/s2 = 2

9
km ≈ 222 m.

d = 222 m

Comments: Here we have tried to show you that solving for position from the given
acceleration in vector form is not really any different than solving in scalar form
provided the unit vectors involved are fixed in time. As long as the right hand side
of the differential equation is integrable, the solution can be obtained. If the method
shown above seems too “mathy” or intimidating to you then follow the usual scalar
way of doing this problem.

The scalar method:

From the linear momentum balance, −mg̂ = m ⇀
a , writing the acceleration as ⇀

a =
ax ı̂ + ay ̂ and equating the x and y components from both sides, we get

ax = 0 and ay = −g.

Now using the formula for distance under uniform acceleration from Chapter 3,
x = x0 + v0t + 1

2 at2, in both x and y directions, we get

d =
0︷︸︸︷
x0 +vx t + 1

2

0︷︸︸︷
ax t2

= vx t

0 =
h︷︸︸︷
y0 +

0︷︸︸︷
vy t + 1

2

−g︷︸︸︷
ay t2

= h − 1

2
gt2

⇒ t =
√

2h

g
.

Substituting for t in the equation for d we get

d = vx

√
2h

g
= 200 km

3600 s
·
√

2 · 80 m

10 m/s2 = 2

9
km ≈ 222 m.

as above.
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SAMPLE 5.37 Projectile motion with air drag. A projectile is fired into the air
at an initial angle θ0 and with initial speed v0. The air resistance to the motion
is proportional to the square of the speed of the projectile. Take the constant of
proportionality to be k. Find the equations of motion of the projectile in the horizontal
and vertical directions assuming the air resistance to be in the opposite direction of
the velocity.

Solution The free body diagram of the projectile is shown in the figure at some

R

mg

x

y

Figure 5.72: FBD of the projectile.
(Filename:sfig6.4.DH1)

x

y path

v

θ 

êt
ên

Figure 5.73: (Filename:sfig6.4.DH2)

constant t during motion. At the instant shown, let the velocity of the projectile be
⇀
v = vêt where

êt = cos θ ı̂ + sin θ ̂ .

Then the force due to air resistance is

⇀
R = −kv2êt .

Now applying the linear momentum balance on the projectile, we get

⇀
R + m ⇀

g = m ⇀
a

or − kv2êt − mg̂ = m

⇀
a︷ ︸︸ ︷

(ẍ ı̂ + ÿ̂) (5.82)

Noting that v = |⇀
v | = |ẋ ı̂+ ẏ̂ | =

√
ẋ2 + ẏ2, and dotting both sides of equation 5.82

with ı̂ and ̂ we get

−k(ẋ2 + ẏ2)·(êt ·ı̂) = mẍ

−k(ẋ2 + ẏ2)·(êt ·̂) − mg = mÿ

Rearranging terms and carrying out the dot products, we get

ẍ = − k

m
(ẋ2 + ẏ2) cos θ

ÿ = −g − k

m
(ẋ2 + ẏ2) sin θ

Note that θ changes with time. We can express θ in terms of ẋ and ẏ because θ is the
slope of the trajectory:

θ = tan−1 dy

dx
= tan−1 dy/dt

dx/dt
= tan−1 ẋ

ẏ
(i.e., tan θ = ẏ

ẋ
)

⇒ cos θ = ẋ√
ẋ2 + ẏ2

and sin θ = ẏ√
ẋ2 + ẏ2

.

Substituting these expression in to the equations for ẍ and ÿ we get

ẍ = − k
m ẋ

√
ẋ2 + ẏ2, ÿ = − k

m ẏ
√

ẋ2 + ẏ2 − g
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SAMPLE 5.38 Cartoon mechanics: The cannon. It is sometimes claimed that
students have trouble with dynamics because they built their intuition by watching
cartoons. This claim could be rebutted on many grounds.

1) Students don’t have trouble with dynamics! They love the subject.
2) Nowadays many cartoons are made using ‘correct’ mechanics, and
3) the cartoons are sometimes more accurate than the pedagogues anyway.

Problem: What is the path of a cannon ball? In the cartoon world the cannon ball
goes in a straight line out the cannon then comes to a stop and then starts falling. Of
course a good physicist knows the path is a parabola. Or is it?

Solution The drag force on a cannon ball moving through air is approximately pro-
portional to the speed squared and resists motion. Gravity is approximately constant.
Then

mg

ı̂

̂

⇀
F drag

Figure 5.74: (Filename:sfig3.5.cart.cannon)

⇀
F drag = cv2 · (unit vector opposing motion)

= cv2 ·
(−⇀

v

|⇀
v |

)
= −c|⇀

v |⇀
v

= −c
√

ẋ2 + ẏ2 (ẋ ı̂ + ẏ̂)

So LMB gives ∑ ⇀
F = ˙⇀L{

−mg̂ − c
√

ẋ2 + ẏ2(ẋ ı̂ + ẏ̂) = m(ẍ ı̂ + ÿ̂)
}

{} · ı̂ ⇒ ẍ =
[
−c

√
ẋ2 + ẏ2 ẋ/m

]

ÿ = −c
√

ẋ2 + ẏ2 ẏ/m − g

Solving these equations numerically with reasonable values 1©of ẋ0, ẏ0, m and c 1© To be precise, if the launch speed is
much faster than the ‘terminal velocity’ of
the falling ball.

gives

x

y

x

y

not

Figure 5.75: (Filename:sfig3.5.cart.cannon.graph)

which is closer to a cartoon’s triangle than to a naive physicist’s parabola.
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5.9 Central-force motion and celestial

mechanics
One of Isaac Newton’s greatest achievements was the explanation of Kepler’s laws
of planetary motion. Kepler, using the meticulous observations of Tycho Brahe
characterized the orbits of the planets about the sun with his 3 famous laws:

• Each planet travels on an ellipse with the sun at one focus.
• Each planet goes faster when it is close to the sun and slower when it is further.

It speeds and slows so that the line segment connecting the planet to the sun
sweeps out area at a constant rate.

• Planets that are further from the sun take longer to go around. More exactly,
the periods are proportional to the lengths of the ellipses to the 3/2 power.

Newton, using his equation
⇀
F = m ⇀

a and his law of universal gravitational attraction,
was able to formulate a differential equation governing planetary motion. He was
also able to solve this equation and found that it exactly predicts all three of Kepler’s
laws.

The Newtonian description of planetary motion is the most historically significant
example of central-force motion where,

• the only force acting on a particle is directed towards the origin of a given
coordinate system, and

• the magnitude of the force depends only on radius.

If we define the position of the particle as ⇀
r with magnitude r , linear momentum

balance for central-force motion is ∑
⇀
Fi = ˙⇀L

⇒ ⇀
F = m ⇀

a

⇒ F(r)

(−⇀
r

r

)
= m ¨⇀r , (5.83)

where −⇀
r /r is a unit vector pointed toward the origin and F(r) is the magnitude of

the origin-attracting force.
For the rest of this section we consider some of the consequences of eqn. (5.83).

We start with the most historically important example.

Earth

Earth

O

FBD

Sun x

y

⇀
r

⇀
F

Figure 5.76: The earth moving around
a fixed sun. The attraction force

⇀
F is

directed “centrally” towards the sun and
has magnitude proportional to both masses
and inversely proportional to the distance
squared.

(Filename:tfigure.earthfixedsun)

Motion of the earth around a fixed sun
For simplicity let’s assume that the sun does not move and that the motion of the earth
lies in a plane. Newton’s law of gravitation says that the attractive force of the sun on
the earth is proportional to the masses of the sun and earth and inversely proportional
to the distance between them squared (Fig. 5.76). Thus we have 1©1© Soon after Newton, Cavendish found G

in his lab by delicately measuring the small
attractive force between two balls. The
gravitational attraction between two 1 kg
balls a meter apart is about a ten-millionth of
a billionth of a Newton (a Newton is about
a fifth of a pound).

F = Gmems

r2

where me and ms are the masses of the earth and sun, r is the distance between the
earth and sun. ‘Big G’ is a universal constant G ≈ 6.67 · 10−17 N m2/ kg2. What
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is the vector-valued force on the earth? It is its magnitude times a unit vector in the
appropriate direction.

⇀
F =

(
Gmems

r2

) (−⇀
r

|⇀
r |

)

⇒ ⇀
F = −Gmems

( ⇀
r

r3

)

⇒ ⇀
F = −Gmems

(
x ı̂ + y̂

(x2 + y2)3/2

)
(5.84)

where we have used that ⇀
r = x ı̂ + y̂ , r = |⇀

r | =
√

x2 + y2, and ⇀
a = ẍ ı̂ + ÿ̂ . Now

we can write the linear momentum balance equation for the earth in great detail.

⇀
F = m ⇀

a ⇒ − Gmems

(
x ı̂ + y̂

(x2 + y2)3/2

)
= me

(
ẍ ı̂ + ÿ̂

)
(5.85)

Taking the dot product of equation 5.85 with ı̂ and ̂ successively (i.e., taking x and
y components) gives two scalar second order ordinary differential equations:

ẍ = −Gms x

(x2 + y2)3/2 and ÿ = −Gms y

(x2 + y2)3/2 . (5.86)

This pair of coupled second order differential equations describes the motion of the
earth. 1©Pencil and paper solution is possible, Newton did it, but is a little too hard 1© Note that G appears in the product Gms .

Newton didn’t know the value of big G,
but he could do a lot of figuring without
it. All he needed was the product Gms
which he could find from the period and
radius of the earth’s orbit. The entangle-
ment of G with the mass of the sun is why
some people call Cavendish’s measurement
of big G, “weighing the sun”. From New-
ton’s calculation of Gms and Cavendish’s
measurement of G you can find ms . Nat-
urally, the real history is a bit more com-
plicated. Cavendish presented his result as
weighing the earth.

for this book. So we resort to computer solution. To set this up we put equations
eqn. (5.86) in the form of a set of coupled first order ordinary differential equations.
If we define z1 = x , z2 = ẋ , z3 = y, and z4 = ẏ. We can now write equations 5.86
as

ż1 = z2

ż2 = −Gms z1/(z
2
1 + z2

3)
3/2

ż3 = z4

ż4 = −Gms z3/(z
2
1 + z2

3)
3/2. (5.87)

To actually solve these numerically we need a value for Gms and initial conditions.
The solutions of these equations on the computer are all, within numerical error,
consistent with Kepler’s laws.

Without a full solution, there are some things we can figure out relatively easily.

Circular orbits
We generally think of the motions of the planets as being roughly circular orbits. In
fact, for any attractive central force one of the possible motions is a circular orbit.
Rather than trying to derive this, let’s assume a circular solution and see if it solves
the equations of motion. A constant speed circular orbit with angular frequency ω

and radius ro obeys the parametric equation

⇀
r = ro

(
cos(ωt)ı̂ + sin(ωt)̂

)
differentiating twice ⇒ ¨⇀r = −ω2ro

(
cos(ωt)ı̂ + sin(ωt)̂

)
= −ω2 ⇀

r . (5.88)

Comparing eqn. (5.88) with eqn. (5.83) we see we have an identity (a solution to the
equation) if

ω2 = F(r)

mr
.
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In the case of gravitational attraction where m = me we have F(r) = Gmsme/r2 so
we get circular motion with

ω2 = Gms

r3 ⇒ T = 2π
√

Gms
r

3
2 (5.89)

because angular frequency is inversely proportional to the period (ω = 2π/T ). We
have, for the special case of circular orbits, derived Kepler’s third law. The orbital
period is proportional to the orbital size to the 3/2 power.

Conservation of energy
Any force of the form

⇀
F = −F(r)

⇀
r

r
is conservative and is associated with a potential energy given by the indefinite integral

EP =
∫

F(r)dr.

For the case of gravitational attraction, the potential energy is

EP = −Gmsme

r

where we could add an arbitrary constant. Thus, one of the features of planetary
motion is that for a given orbit the energy is constant in time:

Constant = EK + EP

= = 1

2
mv2 + −Gmsme

r

= 1

2
m(ẋ2 + ẏ2) + −Gmsme√

x2 + y2
. (5.90)

If that constant is bigger than zero than the orbit has enough energy to have positive
kinetic energy even when infinitely far from the sun. Such orbits are said to have
more than “escape velocity” and they do indeed have open hyperbola-shaped orbits,
and only pass close to the sun at most once.

Motion of rockets and artificial satellites
Rockets and the like move around the earth much like planets, comets and asteroids
move around the sun. All of the equations for planetary motion apply. But you need
to substitute the mass of the earth for ms and the mass of the satellite for me. Thus
we can write the governing equation eqn. (5.85) as

−G Mm

(
x ı̂ + y̂

(x2 + y2)3/2

)
= m

(
ẍ ı̂ + ÿ̂

)
(5.91)

where now M is the mass of the earth and m is the mass of the satellite. At the
surface of the earth r = R, the earth’s radius, and G M/R2 = g so we can rewrite the
governing equation for rockets and the like as

−gR2
(

x ı̂ + y̂

(x2 + y2)3/2

)
= (

ẍ ı̂ + ÿ̂
)
. (5.92)
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Another central-force example: force proportional to radius
A less famous, but also useful, example of central force is where the attraction force
is proportional to the radius. In this case the governing equations are:

⇀
F = m ⇀

a

−k ⇀
r = m ¨⇀r

−k(x ı̂ + y̂) = m
(
ẍ ı̂ + ÿ̂

)
. (5.93)

Dotting both sides with ı̂ and ̂ we get two uncoupled linear homogeneous constant
coefficient differential equations:

ẍ + k

m
x = 0 and ÿ + k

m
y = 0.

These you recognize as the harmonic oscillator equations so we can pick off the
general solutions immediately as:

x = A cos(λt) + B sin(λt) and y = C cos(λt) + D sin(λt) (5.94)

where A, B, C, and D are arbitrary constants which are determined by initial condi-
tions. For all A, B, C, and D eqn. (5.94) describes an ellipse (or a special case of an
ellipse, like a circle or a straight line). In the case of planetary motion we also had
ellipses. In this case, however, the center of attraction is at the center of the ellipse
and not at one of the foci.

Conservation of angular momentum and Kepler’s second law
If we take the linear momentum balance equation eqn. (5.83) and take the cross
product of both sides with ⇀

r we get the following.

⇀
F = m ⇀

a

⇒ F(r)

(−⇀
r

r

)
= m ¨⇀r

⇒ ⇀
r ×

(
F(r)

(−⇀
r

r

))
= ⇀

r × (
m ¨⇀r )

⇒ ⇀

0 = d

dt

(
m ⇀

r × ˙⇀r )
(because ˙⇀r × ˙⇀r = ⇀

0)

⇒ constant = m ⇀
r × ˙⇀r . (5.95)

But this last quantity is exactly the rate at which area is swept out by a moving particle.
Thus Kepler’s third law has been derived for all central-force motions (not just inverse
square attractions). The last quantity is also the angular momentum of the particle.
Thus for a particle in central force motion we have derived conservation of angular
momentum from

⇀
F = m ⇀

a .
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SAMPLE 5.39 Circular orbits of planets: Refer to eqn. (5.86) in the text that governs
the motion of planets around a fixed sun.

(a) Let x = A cos(λt) and y = A sin(λt). Show that x and y satisfy the equations
of planetary motion and that they describe a circular orbit.

(b) Show that the solution assumed in (a) satisfies Kepler’s third law by showing
that the orbital period T = 2π/λ is proportional to the 3/2 power of the size of
the orbit (which can be characterized by its radius).

Solution

(a) The governing equation of planetary motion can be written as

ẍ

x
= −Gms

(x2 + y2)3/2 = ÿ

y
⇒ ẍ y − ÿx = 0 (5.96)

Now,

x = A cos(λt) ⇒ ẍ = −λ2 A cos(λt)

y = A sin(λt) ⇒ ÿ = −λ2 A cos(λt)

Substituting these values in eqn. (5.96), we get

−λ2 A2 cos(λt) · sin(λt) + λ2 A sin(λt) · cos(λt)
√
= 0

Thus the assumed form of x and y satisfy the governing equations of plane-
tary motion, i.e., x(t) = A cos(λt) and y(t) = A sin(λt) form a solution of
planetary motion. Now, it is easy to show that

x2 + y2 = cos2(λt) + sin2(λt) = 1,

i.e., x and y satisfy the equation of a circle of radius A. Thus, the assumed
solution gives a circular orbit.

(b) Substituting x = A cos(λt) in eqn. (5.86), and noting that square of the radius
of the orbit is r2 = x2 + y2 = A2, we get

−λ2 A cos(λt) = −Gms
A cos(λt)

r3

⇒ λ2 = Gms

A3

or

(
2π

T

)2

= Gms

A3

⇒ T 2 = 4π2

Gms
A3

or T = K A3/2

where K = 2π/
√

Gms is a constant. Thus the orbital period T is proportional
to the 3/2 power of the radius, or the size, of the circular orbit.
Of, course, the same holds true for elliptic orbits too, but it is harder to show
that analytically using cartesian coordinates, x and y.

<
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SAMPLE 5.40 Numerical computation of satellite orbits: The following data is

x

y
v

v

Earth

m

Satellite

Figure 5.77: (Filename:sfig5.9.satorbit)

known for an earth satellite: mass = 2000 kg, the distance to the closest point (perigee)
on its orbit from the earth’s surface = 1100 km, and its velocity at perigee, which
is purely tangential, is 9500 km/s. The radius of the earth is 6400 km and the
acceleration due to gravity g = 9.8 m/s2.

(a) Solve the equations of motion of the satellite numerically with the given data
and show that the orbit of the satellite is elliptical. Find the apogee of the orbit
and the speed of the satellite at the apogee.

(b) From the data at apogee and perigee show that the angular momentum and the
energy of the satellite are conserved.

(c) Find the orbital period of the satellite and show that it satisfies Kepler’s third
law (in equality form).

Solution

(a) The equations of motion of a satellite around a fixed earth are

ẍ = −gR2x

(x2 + y2)3/2 and ÿ = −gR2 y

(x2 + y2)3/2 .

where g is the acceleration due to gravity and R is the radius of the earth (see
eqn. (5.91) in text). From the given data at perigee, the initial conditions are

x(0) = −7500 km, ẋ(0) = 0, y(0) = 0, ẏ(0) = 9500 m/s.

In order to solve the equations of motion by numerical integration, we first
rewrite these equations as four first order equations:

ż1 = z2

ż2 = −gR2z1/(z
2
1 + z2

3)
3/2

ż3 = z4

ż4 = −gR2z3/(z
2
1 + z2

3)
3/2.

Now the given initial conditions in terms of the new variables are

z1(0) = −7.5 × 106 m, z2(0) = 0, z3(0) = 0, z4(0) = 9500 m/s.

We are now ready to go to a computer. We implement the following pseudocode

0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
7

1.5

1

0.5

0

0.5

1

1.5

x 10
7

x (m)

y 
(m

)

Earth

Figure 5.78: The elliptical orbit of the
satellite, obtained from numerical integra-
tion of the equations of motion.

(Filename:sfig5.9.satorbit.a)

on the computer to solve the problem.

ODEs ={z1dot=z2, z2dot=-g*R^2*z_1/(z_1^2+z_3^2)^{3/2},
z3dot=z4, z4dot=-g*R^2*z_3/(z_1^2+z_3^2)^{3/2}}

IC ={z1(0)=-7.5E06, z2(0)=0, z3(0)=0, z4(0)=9500}
Set g = 9.81, R = 6.4E06
Solve ODEs with IC for t=0 to t=4E04
Plot z1 vs z3

Results obtained from implementing the code above with a Runge-Kutta
method based integrator is shown in Fig. 5.77 where we have also plotted
the earth centered at the origin to put the orbit in perspective. The orbit is
clearly elliptic. From the computer output, we find the following data for the
apogee.

x = 4.0049 × 107 m, ẋ = 0, y = 0, ẏ = −1.7791 × 103 m/s
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(b) The expressions for energy E and angular momentum H for a satellite are,

E = EK + EP = 1

2
m(ẋ2 + ẏ2) − G Mm

r
⇀
Ho = ⇀

r × m ⇀
v = (x ı̂ + y̂) × m(ẋ ı̂ + ẏ̂) = m(x ẏ − yẋ)k̂

At both apogee and perigee, y = 0 and the velocity (which is tangential) is in
the y direction, i.e., ẋ = 0. Therefore, the expressions for energy and angular
momentum become simpler:

E = 1

2
mẏ2 − G Mm

r
= 1

2
mẏ2 − gR2m

|x | and H = mx ẏ

Let E1 and H1 be the energy and the angular momentum of the satellite at the
perigee, respectively, and E2 and H2 be the respective quantities at the apogee.
Then, from the given data,

E1 = 1

2
mẏ2

1 − gR2m

|x1| = 1

2
2000 kg · (9500 m/s)2 − 9.81 m/s2 · (6.4 × 106 m)2

7.5 × 106 m

= −1.6901 × 1010 Joules

H1 = mx1 ẏ1 = 2000 kg · (−7.5 × 106 m) · (9500 m/s)

= −1.4250 × 1014 N·m · s

E2 = 1

2
mẏ2

2 − gR2m

|x2| = 1

2
2000 kg · (−1779 m/s)2 − 9.81 m/s2 · (6.4 × 106 m)2

4.0049 × 107 m

= −1.6901 × 1010Joules

H2 = mx2 ẏ2 = 2000 kg · (4.0049 × 107 m) · (−1779 m/s)

= −1.4250 × 1014 N·m · s

Clearly, the energy and the angular momentum are conserved.

x

y

v

v

Earth

x1 x2

2A

1
2

2

1 Perigee
Apogee

Figure 5.79: The elliptical orbit of the
satellite. The perigee and apogee are
marked as points 1 and 2 on the orbit.

(Filename:sfig5.9.satorbit.b)

(c) From the computer output, we find the time at which the satellite returns to the
perigee for the first time. This is the orbital period. From the output data, we
get the orbital period to be 3.6335 × 104 s = 10.09 hrs. Now let us compare
this result with the analytical value of the orbital period.
Let A be the semimajor axis of the elliptic orbit. Then the square of the orbital
time period T is given by

T 2 = 4π2 A3

gR2 .

For the orbit we have obtained by numerical integration,

2A = |x1| + |x2| = 7.5 × 106 m + 4.0049 × 107 m

= 4.7549 × 107 m

⇒ A = 2.3774 × 107 m

Hence,

T =
√

4π2 · (2.3774 × 107 m)3

9.81 m/s2 · (6.4 × 106 m)2

= 3.6335 × 104 s.

which is the same value as obtained from numerical solution.

T = 3.6335 × 104 s = 10.09 hrs



312 CHAPTER 5. Dynamics of particles

SAMPLE 5.41 Zero-length spring and central force motion: A zero-length spring

0

m

k

static 
equilibrium 
position

Figure 5.80: (Filename:sfig5.9.zerospring)

1©(the relaxed length is zero) is tied to a mass m = 1 kg on one end and fixed on the

1© No spring can have zero relaxed length,
however, a spring can be configured in var-
ious ways to make it behave as if it has zero
relaxed length. For example, let a spring
be fixed to the ground and let its free end
pass through a hole in a horizontal table.
Let the relaxed length of the spring be ex-
actly up to the top of the hole. Now, if the
spring is pulled further and tied to a mass
that is constrained to move on the horizontal
table, then the spring behaves like a zero-
length spring for the planar motion of the
mass around the hole in the table. This is
because the length of the position vector of
the mass is exactly the stretch in the spring.

other end. The spring stiffness is k = 1 N/m.

(a) Find appropriate initial conditions for the mass so that its trajectory is a straight
line along the y-axis.

(b) Find appropriate initial conditions for the mass so that its trajectory is a circle.
(c) Can you find any condition on initial conditions that guarantees elliptic orbits

of the mass?
(d) Let ⇀

r (0) = 0.5 mı̂ and ˙⇀r (0) = (0.5ı̂ + 0.6̂) m/s. Describe the motion of the
mass by plotting its trajectory for 12 s.

Solution Let the position of the mass be ⇀
r at some instant t . Since the relaxed

length of the spring is zero, the stretch in the spring is |⇀
r | and the spring force on the

mass is −k ⇀
r . Then the equation of motion of the mass is

−k ⇀
r = m ¨⇀r

−k(x ı̂ + y̂) = m
(
ẍ ı̂ + ÿ̂

)
⇒ ẍ + k

m
x = 0 and ÿ + k

m
y = 0.

Thus the equations of motion are decoupled in the x and y directions. The solutions,

0 r

kr m

Figure 5.81: Free body diagram of the
mass.

(Filename:sfig5.9.zerospring.a)

as discussed in the text (see eqn. (5.94)), are

x = A cos(λt) + B sin(λt) and y = C cos(λt) + D sin(λt) (5.97)

where the constants A, B, C , D are determined from initial conditions. Let us take
the most general initial conditions x(0) = x0, ẋ(0) = ẋ0, y(0) = y0, and ẏ(0) = ẏ0.
By substituting these values in x and y equations above and their derivatives, we get

A = x0, B = ẋ0/λ, C = y0, D = ẏ0/λ.

Substituting these values we get

x = x0 cos(λt) + ẋ0/λ sin(λt) and y = y0 cos(λt) + ẏ0/λ sin(λt) (5.98)

(a) For a straight line motion along the y-axis, we should have the x-component
of motion identically zero. We can, therefore, set x0 = 0, ẋ0 = 0 and take any
value for y0 and ẏ0 to give

x(t) = 0 and y(t) = y0 cos(λt) + ẏ0/λ sin(λt).

(b) For a circular trajectory, we must pick initial conditions such that we get
x2 + y2 = (a constant)2. We can easily achieve this by choosing, say,
x(0) = x0, ẋ(0) = 0, y(0) = 0, and ẏ(0) = x0λ. Substituting these val-
ues in eqn. (5.98), we get

x2 + y2 = x2
0 cos2(λt) +

(
x0λ

λ

)2

sin2(λt) = x2
0

which is a circular orbit of radius x0. Note that the initial position of the mass

0 x

y

 x0

y0 = λ x0
.

Figure 5.82: Circular trajectory of the
mass.

(Filename:sfig5.9.zerospring.b)

for this orbit is ⇀
r (0) = x0 ı̂), and the initial velocity is (⇀

v(0) = x0λ̂ ), i.e., the
velocity is normal to the position vector (⇀

r · ⇀
v = 0), and the magnitude of the

velocity is dependent on the magnitude of the position vector, in fact , it must
be exactly equal to the product of the distance from the center and the orbital
frequency λ.
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(c) In order to have elliptic orbits, the initial conditions should be selected such
that x and y satisfy the equation of an ellipse. By examining the solutions in
eqn. (5.98), we see that if we set ẋ0 = 0 and y0 = 0 and let the other two initial
conditions have any value, x0 and ẏ0, we get

x(t) = x0 cos(λt) and y(t) = (ẏ0/λ) sin(λt)

⇒ x2

x2
0

+ y2

(ẏ/λ)2 = cos2(λt) + sin2(λt) = 1

which is the equation of an ellipse with semimajor axis x0 and semiminor axis

- 1.5 - 1 - 0.5 0 0.5 1 1.5

- 1

- 0.5

0.5

1

x

y

y0 > λ x0

y0 = λ x0

y0 < λ x0

.

.

.

Figure 5.83: Elliptic orbits of the mass
obtained from the initial conditions x0 =
1 m, ẋ0 = 0, y0 = 0, and various values of
ẏ0.

(Filename:sfig5.9.zerospring.c)

ẏ/λ. Of course, the symmetry of the equations implies that we could also get
elliptic orbits by setting x0 = 0 and ẏ0 = 0, and letting the other two initial
conditions be arbitrary. Thus the condition for elliptic orbits is to have the
initial velocity normal to the position vector (either ⇀

r (0) = x0 ı̂, ˙⇀r (0) = ẏ0̂

or ⇀
r (0) = y0̂ , ˙⇀r (0) = ẋ0 ı̂, or more generally, ⇀

r (0) = r0λ̂, ˙⇀r (0) = vn̂

where λ̂ is a unit vector along the position vector of the mass and n̂ is normal
to λ̂.
Note that the condition obtained in (b) for circular orbits is just a special case of
the condition for elliptic orbits (well, a circle is just a special case of an ellipse).
Therefore, if we keep x0 fixed and vary ẏ0 we can get different elliptic orbits,
including a circular one, based on the same major axis. Taking x0 = 1 m, we
show different orbits obtained for the mass by varying ẏ0 in Fig. 5.83

(d) By substituting the given initial values x0 = 0.5 m, ẋ(0) = 0.5 m/s, y(0) = 0
and ẏ = 0.6 m/s in eqn. (5.98) and and noting that λ ≡ √

k/m =√
(1 N/m)/(1 kg) = (1/ s), we get

0.6 0.4 0.2 0 0.2 0.4 0.6

0.5

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

0.5

x

y

⇀
v

Figure 5.84: The orbit of the mass ob-
tained from the initial conditions x0 =
0.5 m, ẋ0 = 0.5 m/s, y0 = 0, and ẏ0 =
0.6 m/s.

(Filename:sfig5.9.zerospring.d)

x(t) = (0.5 m) · cos

(
1

s
· t

)
+

(
0.5 m/s

s

)
· sin

(
1

s
· t

)

y(t) =
(

0.6 m/s

s

)
· sin

(
1

s
· t

)

The functions x(t) and y(t) do not seem to describe any simple geometric path
immediately. We could, perhaps, do some mathematical manipulations and try
to get a relationship between x and y that we can recognize. In stead, let us plot
the orbit on a computer to see the path that the mass takes during its motion
with these initial conditions. To plot this orbit, we evaluate x and y at, say, 100
values of t between 0 and 10 s and then plot x vs y.

t = [0 0.1 0.2 ... 9.9 10]
x = 0.5 * cos(t) + 0.6 * sin(t)
y = 0.6 * sin(t)
plot x vs y

The plot obtained by performing these operations on a computer is shown in
Fig. 5.84.

<
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5.10 Coupled motions of particles in

space
In the previous two sections you have seen that once you know the forces on a particle,
or on how those forces vary with position, velocity and time, you can easily set up the
equations of motion. That is, the linear momentum balance equation for a particle

⇀
F = m ⇀

a

with initial conditions gives a well defined mathematical problem whose solution
is the motion of the particle. The solution may be hard or impossible to find with
pencil and paper, but can generally be found in a straightforward way with numerical
integration.

Now we generalize this simple point of view to two, three or more particles.
Assume you know enough about a system so that you know the forces on each particle
if someone tells you the time and the positions and velocities of all the particles. Then
that means we can write the governing equations for the system of particles like this:

⇀
a1 = 1

m1

⇀
F 1

⇀
a2 = 1

m2

⇀
F 2

⇀
a3 = 1

m3

⇀
F 3

etc. (5.99)

where
⇀
F 1,

⇀
F 2 etc.are the total of the forces on the corresponding particles. If the force

on each particle comes from well-understood air-friction, from springs are dashpots
connected here and there, or from gravity interactions with other particles, etc., then
all the forces on all the particles are known given the positions and velocities of
the particles. Thus eqn. (5.99) can be written as a system of first order differential
equations in standard form ready for computer simulation. Given accurate initial
conditions and a good computer and the motions of all the particles can be found
accurately.

Example: Coupled motion of the earth and moon in three dimensions.

Let’s neglect the sun and just look at the coupled motions of the earth
and moon. They attract each other by the same law of gravity that we
used for the sun and earth. The difference between this problem and
a central-force problem is that we now need to look at the ‘absolute’
positions of the sun and moon (⇀

r e and ⇀
r m), and the ‘relative’ position,

say ⇀
r m/e ≡ ⇀

r m − ⇀
r e (Fig. 5.85).

F F

Earth Moon

FBDs

F = Gmemm
rm/e

ı̂

̂

k̂
⇀
r e

⇀
r m

⇀
r m/e

Figure 5.85: The earth and moon. Po-
sition is measured relative to some inertial
point C .

(Filename:tfigure.earthmoon)

The linear momentum balance equations are now

me ¨⇀r e = −Gmemm
⇀
r m/e

|⇀
r m/e|3 and (5.100)

mm ¨⇀r m = +Gmemm
⇀
r m/e

|⇀
r m/e|3 , (5.101)

which, when broken into x , y, and z components give 6 second order
ordinary differential equations. These equations can be written as 12 first
order equations by defining a list of 12 z variables: z1 = xe, z2 = ẋe,
z3 = ẏe, z4 = ye, etc.
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After one finds solutions with appropriate initial conditions one can
see if the computer finds such truths (that is, features of the exact solution
of the differential equations) as:

(a) that the line between the earth and moon always lies on one fixed
plane,

(b) the center of mass moves at constant speed on a straight line,
(c) relative to the center of mass both the earth and moon travel on

paths that are conic sections
(d) the energy of the system is constant,
(e) and that the angular momentum of the system about the center of

mass is a constant.

✷

If we could think of all materials as made of atoms, and of all the atoms moving
in deterministic ways governed by Newton’s laws and known force laws, and we
knew the initial positions and velocities accurately enough, then we could accurately
predict the motions of all things for all time.

To put it in other words, given a simple atomic view of the world and a big
computer, we could end a course on dynamics here. You know how to use

⇀
F = m ⇀

a

for each atom, so you can simulate anything made of atoms. Now there are some
serious catches here, so before proceeding we name some of them:

• there are no computers big enough to accurately integrate Newton’s laws for
the 1023 or so atoms needed to describe macroscopic objects;

• the laws of interaction between atoms are not simple and are not that well
known;

• the state of the world (the positions and velocities of all the atoms is not that
well known);

• the solutions of the equations are often unstable in that a very small error in the
initial conditions propagates into a large error in the calculations;

• the world is not deterministic, quantum mechanics says that you cannot know
the state of the world perfectly; and

• massive simulations, even if accurate, are not always the best way to understand
how things work.

Despite these limitations on the ultimate utility of the approach, in this section we
look at the nature of systems of interacting particles. In particular we look at the
momentum, angular momentum, and energy of a system of particles.

Linear momentum ⇀
L and its rate of change ˙⇀L

One of our three basic dynamics equations is linear momentum balance:∑
⇀
F = ˙⇀L.

The first quantity of interest in this section is the linear momentum
⇀
L 1©, whose 1© In Isaac Newton’s language: ‘The quan-

tity of motion is the measure of the same,
arising from the velocity and quantity of
matter conjointly’. In other words, New-
ton’s dynamics equations for a particle were
based on the product of ⇀

v and m. This
quantity, m

⇀
v , is now called

⇀
L, the linear

momentum of a particle.

derivative, ˙⇀L, with respect to a Newtonian frame is so important. Linear momentum
is a measure of the translational motion of a system.

⇀
L︸︷︷︸

linear momentum

≡
∑

mi
⇀
v i︸ ︷︷ ︸

summed over
all the mass particles

= mtot
⇀
v cm (5.102)
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Example: Center of Mass position, velocity, and acceleration

A particle of mass m A = 3 kg and another point of mass m B = 2 kg
have positions, respectively,

⇀
r A(t) =

[
3ı̂ + 5

(
t

s

)
̂

]
m, and ⇀

r B(t) =
[

6

(
t2

s2

)
ı̂ − 4̂

]
m

due to forces that we do not discuss here. The position of the center of
mass of the system of particles, according to equation ?? on page ??, is

⇀
r cm(t) =

∑
mi

⇀
r i︷ ︸︸ ︷

m A
⇀
r A(t) + m B

⇀
r B(t)

(m A + m B)︸ ︷︷ ︸
mtot=5 kg

⇀
r cm(t) =

[(
9

5
+ 12

5

(
t2

s2

))
ı̂ +

(
3

(
t

s

)
− 8

5

)
̂

]
m.

To get the velocity and acceleration of the center of mass, we differentiate
the position of the center of mass once and twice, respectively, to get 1©1© That is, particle A travels on the line

x = 3 m with constant speed ṙAy = 5 m/s
and particle B travels on the line y = −4 m
at changing speed ṙBx = 12t ( m/s2).

⇀
v cm(t) = ˙⇀r cm(t) =

[
24

5

(
t

s2

)
ı̂ + 3

s
̂

]
m =

[
24

5

(
t

s

)
ı̂ + 3̂

]
m/s

and

⇀
acm(t) = ˙⇀v cm(t) = ¨⇀r cm(t) =

[
24

5

(
1

s2

)
ı̂

]
m =

(
24

5

)
m/s2 ı̂.

In this example, the center of mass turns out to have constant acceleration
in the x-direction. ✷

The second part of equation 5.102 follows from the definition of the center of mass
(see box 5.8 on page 316). 2© The total linear momentum of a system is the same as2© Some books use the symbol

⇀
P for linear

momentum. Because
⇀
P is often used to

mean force or impulse and P for power we
use

⇀
L for linear momentum.

that of a particle that is located at the center of mass and which has mass equal to that
of the whole system. The linear momentum is also given by

⇀
L = d

dt
(mtot

⇀
r cm) .

5.8 Velocity and acceleration of the center of mass of a system of particles

The average position of mass in a system is at a point called the
center of mass. The position of the center of mass is

⇀
r cm =

∑ ⇀
r i mi

mtot
.

Multiplying through by mtot, we get

⇀
r cmmtot =

∑
⇀
r i mi .

By taking the time derivatives of the equation above, we get

⇀
v cmmtot =

∑
⇀
v i mi and

⇀
acmmtot =

∑
⇀
a i mi .

for the velocity and acceleration of the center of mass. The re-
sults above are useful for simplifying various momenta and energy
expressions. Note, for example, that

⇀
L =

∑
⇀
v i mi = ⇀

r cmmtot

⇀̇
L =

∑
⇀
a i mi = ⇀

acmmtot.
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We only consider systems of fixed mass, d
dt (mtot) = 0. Thus, for a fixed mass system,

the linear momentum of the system is equal to the total mass of the system times the
derivative of the center of mass position.

Finally, since the sum defining linear momentum can be grouped any which way
(the associative rule of addition) the linear momentum can be found by dividing the
system into parts and using the mass of those parts and the center of mass motion of
those parts. That is, the sum

∑
mi

⇀
v i can be interpreted as the sum over the center of

mass velocities and masses of the various subsystems, say the parts of a machine.

Example: System Momentum

See figure 5.86 for a schematic example of the total momentum of system
being made of the sum of the momenta of its two parts. ✷

I II I II

system
system divided
into subsystems

=

=

+

+
⇀
L

⇀
LI

⇀
LII

Figure 5.86: System composed of two
parts. The momentum of the whole is the
sum of the momentums of the two parts.

(Filename:tfigure3.2.2)

The reasoning for this allowed subdivision is similar to that for the center of mass in
box ?? on page ??.

The quantity ˙⇀L figures a little more directly in our presentation of dynamics than
just plain

⇀
L 1©. The rate of change of linear momentum, ˙⇀L, is

1© No slight of Sir Isaac is intended.
˙⇀L = d

dt

⇀
L

= d

dt

∑
mi

⇀
v i

= mtot
d ⇀
vcm

dt
˙⇀L = mtot

⇀
acm

The last three equations could be thought of as the definition of ˙⇀L. That ˙⇀L turns out
to be d

dt (
⇀
L) is, then, a derived result. Again, using the definition of center of mass,

the total rate of change of linear momentum is the same as that of a particle
that is located at the center of mass which has mass equal to that of the whole
system.

The rate of change of linear momentum is also given by

˙⇀L = d

dt
(mtot

⇀
vcm) = d2

dt2 (mtot
⇀
rcm).

The momentum
⇀
L and its rate of change ˙⇀L can be expressed in terms of the total mass

of a system and the motion of the center of mass. This simplification holds for any
system, however complex, and any motion, however contorted and wild.

Angular momentum ⇀
H and its rate of change ⇀̇

H

After linear momentum balance, the second basic mechanics principle is angular
momentum balance: ∑

⇀
MC = ˙⇀HC,

where C is any point, preferably one that is fixed in a Newtonian frame.If you choose
your point C to be a moving point you may have the confusing problem that the
quantity we would like to call ˙⇀HC is not the time derivative of

⇀
HC. The first quantity
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of interest in this sub-section is the angular momentum with respect to some point C,
⇀
HC, whose rate of change ˙⇀HC = d

⇀
HC/dt is so important.

⇀
HC︸︷︷︸

angular momentum.

≡
∑

⇀
r i/C × mi

⇀
v i︸ ︷︷ ︸

summed over all
the mass particles

A useful theorem about angular momentum is the following (see box 5.9 on
page 319), applicable to all systems

⇀
HC =

angular momentum due to
center of mass motion

❇❇�︷ ︸︸ ︷
⇀
r cm/C × ⇀

v cmmtot +

angular momentum relative
to the center of mass

✂✂✌︷ ︸︸ ︷∑
⇀
r i/cm︸ ︷︷ ︸
✂✂✍

position of mi relative to the
center of mass ⇀

r i/cm ≡ ⇀
r i −

⇀
r cm

× ⇀
v i/cm︸ ︷︷ ︸

❇❇�

velocity of mi relative to the
center of mass ⇀

v i/cm ≡ ⇀
v i −

⇀
v cm

mi . (5.103)

A system of particles is shown in figure 5.87. The angular momentum of any system
is the same as that of a particle at its center of mass plus the angular momentum
associated with motion relative to the center of mass.

The angular momentum about point C is a measure of the average rotation rate of
the system about point C. Angular momentum is not so intuitive as linear momentum
for a number of reasons:

• First, recall that linear momentum is the derivative of the total mass times the
center of mass position. Unfortunately, in general,

angular momentum is not the derivative of anything.

• Second, the angular momentum of a given system at a given time depends on
the reference point C. So there is not one single quantity that is the angular
momentum. For different points C1, C2, etc., the same system has different
angular momentums.

• Finally, calculation of angular momentum involves a vector cross product and
many beginning dynamics students are intimidated by vector cross products.

C

cm

mi

⇀
r cm/C

⇀
r i/C

⇀
r i/cm

Figure 5.87: A system of particles show-
ing its center of mass and the ith particle
of mass mi . The ith particle has position
⇀
r i/cm with respect to the center of mass.
The center of mass has position ⇀

r cm/C with
respect to the point C

(Filename:tfigure3.ang.mom.bal) Despite these confusions, the concept of angular momentum allows the solution of
many practical problems and eventually becomes somewhat intuitive.

Actually, it is ˙⇀HC which is the more fundamental quantity. ˙⇀HC is what you use in

the equation of motion. You can find ˙⇀HC from
⇀
HC as shown in the box on page 320.

But, in general,

˙⇀HC ≡
∑

⇀
ri/C × ( mi

⇀
a i ).

A useful theorem about rate of change of angular momentum is the following (see
box 5.9 on page 319), applicable to all systems:
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˙⇀HC =

rate of change of an-
gular momentum due
to center of mass mo-
tion

❇❇�︷ ︸︸ ︷
⇀
r cm/C × ⇀

acmmtot +

rate of change of an-
gular momentum rel-
ative to the center of
mass
✂✂✌︷ ︸︸ ︷∑

⇀
r i/cm︸ ︷︷ ︸
✂✂✍

⇀
r i/cm ≡ ⇀

r i − ⇀
r cm

× ⇀
a i/cm︸ ︷︷ ︸

❇❇�
⇀
a i/cm ≡ ⇀

a i − ⇀
acm

mi .

This expression is completely analogous to equation 5.103 on page 318 and is derived
in a manner nearly identical to that shown in box 5.9 on page 319. The rate of change
of angular momentum of any system is the same as that of a particle at its center of
mass plus the rate of change of angular momentum associated with motion relative

5.9 THEORY
Simplifying

⇀
HC using the center of mass

The definition of angular momentum relative to a point C is

⇀
H C =

∑
⇀
r i/C × mi

⇀
v i .

If we rewrite ⇀
v i as

⇀
v i = (

⇀
v i − ⇀

v cm) + ⇀
v cm = ⇀

v i/cm + ⇀
v cm

and
⇀
r i = (

⇀
r i − ⇀

r cm) + ⇀
r cm = ⇀

r i/cm + ⇀
r cm

then

⇀
H C =

∑(
⇀
r cm + ⇀

r i/cm
)

×
[

⇀
v cm + ⇀

v i/cm
]

mi .

=
∑

⇀
r cm × ⇀

v cmmi +
∑

⇀
r i/cm × ⇀

v i/cmmi

+
∑

⇀
r cm × ⇀

v i/cmmi +
∑

⇀
r i/cm × ⇀

v cmmi

= ⇀
r cm × ⇀

v cmmtot +
∑

⇀
r i/cm × ⇀

v i/cm mi

+ ⇀
r cm ×

⇀
0[∑

⇀
v i/cm mi

]
︸ ︷︷ ︸+

[∑
⇀
r i/cm mi

]
︸ ︷︷ ︸

⇀
0

×⇀
v cm

So,

⇀
H C = ⇀

r cm × ⇀
v cmmtot︸ ︷︷ ︸

✂✂✍
contribution of center of
mass motion

+
∑

⇀
ri/cm × ⇀

v i/cm mi︸ ︷︷ ︸
❇❇�

contribution of motion
relative to center of mass

.

The reason
∑ ⇀

r i/cm mi = ⇀
0 is somewhat intuitive. It is what you

would calculate if you were looking for the center of mass relative
to the center of mass. More formally,∑

⇀
r i/cm mi =

∑
(

⇀
r i − ⇀

r cm) mi

=
∑

⇀
r i mi︸ ︷︷ ︸

mtot
⇀
r cm

−mtot
⇀
r cm

= ⇀
0 .

Similarly,
∑ ⇀

v i/cm mi = ⇀
0 because it is what you would calculate

if you were looking for the velocity of the center of mass relative to
the center of mass.

The central result of this box is that

angular momentum of any system is that due to motion
of the center of mass plus motion relative to the center of
mass.
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to the center of mass. A special point for any system is, as we have mentioned, the
center of mass. In the above equations for angular momentum we could take C to be
a fixed point in space that happens to coincide with the center of mass. In this case
we would most naturally define

⇀
H cm = ∫

⇀
r /cm × ⇀

v dm with ⇀
v being the absolute

velocity. But we have the following theorem:

⇀
H cm =

∫
⇀
r /cm × ⇀

v dm =
∫

⇀
r /cm × ⇀

v/cm dm

where ⇀
r /cm = ⇀

r − ⇀
r cm and ⇀

v/cm = ⇀
v − ⇀

v cm . Similarly,

˙⇀H cm =
∫

⇀
r /cm × ⇀

a dm =
∫

⇀
r /cm × ⇀

a/cm dm.

with ⇀
a/cm = ⇀

a − ⇀
acm . That is,

the angular momentum and rate of change of angular momentum relative
to the center of mass, defined in terms of the velocity and acceleration
relative to the center of mass, are the same as the angular momentum
and the rate of change of angular momentum defined in terms of a fixed
point in space that coincides with the center of mass.

The angular momentum relative to the center of mass
⇀
H cm can be calculated with

all positions and velocities calculated relative to the center of mass. Similarly, the rate
of change of angular momentum relative to the center of mass ˙⇀H cm can be calculated
with all positions and accelerations calculated relative to the center of mass.

Combining the results above we get the often used result:

∑
⇀
M i/cm = ˙⇀H cm (5.104)

This formula is the version of angular momentum balance that many people think of as
being basic. In this equation, ˙⇀H cm can be found using either the absolute acceleration

5.10 Relation between d
dt

⇀
HC and

⇀
HC

The expression for
⇀̇
H C follows from that for

⇀
H C but requires a few

steps of algebra to show. Like the rate of change of linear momentum,
⇀̇
L, the derivative of

⇀
L, the derivative of angular momentum must

be taken with respect to a Newtonian frame in order to be useful in
momentum balance equations. Note that since we assumed that C
is a point fixed in a Newtonian frame that d

dt
⇀
ri/C = ⇀

v i/C = ⇀
v i .

Starting with the definition of
⇀̇
H C, we can calculate as follows:

⇀̇
H C = d

dt

⇀
H C

= d

dt

∑
⇀
r i/C × (mi

⇀
v i )

=
∑ d

dt
⇀
r i/C × (mi

⇀
v i ) + ⇀

r i/C × (mi
d

dt
⇀
v i )

=
∑ ⇀

0︷ ︸︸ ︷
⇀
v i︸︷︷︸

d
dt

⇀
r i/C

×(mi
⇀
v i ) +⇀

r i/C × (mi
d

dt
⇀
v i )

⇀̇
H C =

∑
⇀
r i/C × (mi

⇀
a i ),

We have used the fact that the product rule of differentiation works
for cross products between vector-valued functions of time. This

final formula,
⇀̇
H C = ∑ ⇀

r i/C ×(mi
⇀
a i ), or its integral form,

⇀̇
H C =∫

⇀
r i/C × ⇀

a i dm are always applicable. They can be simplified in
many special cases which we will discuss in this chapter and those
that follow.



5.10. Coupled motions of particles in space 321

⇀
a or the acceleration relative to the center of mass, ⇀

a/cm . The same ˙⇀H cm is found
both ways. In this book, we do not give equation 5.104 quite such central status as
equations III where the reference point can be any point C not just the center of mass.

Kinetic energy EK

The equation of mechanical energy balance (III) is:

P = ĖK + ĖP + Ėint .

For discrete systems, the kinetic energy is calculated as

1

2

∑
mi v2

i

and its rate of change as
d

dt

[
1

2

∑
mi v2

i

]
.

There is also a general result about the kinetic energy that takes advantage of the
center of mass. The kinetic energy for any system in any motion can be decomposed
into the sum of two terms. One is associated with the motion of the center of mass
of the system and the other is associated with motion relative to the center of mass.
Namely,

EK = 1

2
mtotv

2
cm︸ ︷︷ ︸

✂✂✍

kinetic energy due to
center of mass motion

+ 1

2

∑
miv

2
i/cm︸ ︷︷ ︸

❇❇�

kinetic energy rela-
tive to the center of
mass

,

= 1

2
mtotv

2
cm + EK/cm

5.11 Using
⇀
HO and ˙⇀HO to find

⇀
HC and ˙⇀HC

You can find the angular momentum
⇀
H C relative to a fixed point

C if you know the angular momentum
⇀
H O relative to some other

fixed point O and also know the linear momentum of the system
⇀
L

(which does not depend on the reference point). The result is:
⇀
H C = ⇀

H O + ⇀
r O/C × ⇀

L.

The formula is similar to the formula for the effective moment of a
system of forces that you learned in statics:

⇀
MC = ⇀

MO + ⇀
r O/C ×

⇀
F tot . Similarly, for the rate of change of angular momentum we
have:

⇀̇
H C = ⇀̇

H O + ⇀
r O/C × ⇀̇

L

So once you have found
⇀̇
L and also

⇀̇
H O with respect to some point

O you can easily calculate the right hand sides of the momentum
balance equations using any point C that you like.
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where

EK/cm = 1

2

∑
miv

2
i/cm for discrete systems, and

= 1

2

∫
(v/cm)2 dm for continuous systems.

The results above can be verified by direct expansion of the basic definitions of EK
and the center of mass. To repeat,

the kinetic energy of a system is the same as the kinetic energy of a
particle with the system’s mass at the center of mass plus kinetic energy
due to motion relative to the center of mass.

In this chapter, all particles in the system are assumed to have the same velocity
so that they all have the same velocity as the center of mass. Thus, ⇀

v i/cm = ⇀

0 for all
particles, and for straight line motion,

EK = 1

2
mtotv

2
cm .

Summary on general results about ⇀
L, ˙⇀L, ⇀

HC, ˙⇀HC, EK, and
center of mass

mtot
⇀
r cm =

∑
⇀
r i mi for all systems

mtot
⇀
v cm =

∑
⇀
v i mi for all systems

mtot
⇀
acm =

∑
⇀
a i mi for all systems

⇀
L =

∑
mi

⇀
v i = mtot

⇀
v cm for all systems

˙⇀L =
∑

mi
⇀
a i = mtot

⇀
acm for all systems

⇀
HC =

∑
⇀
r i/C × (mi

⇀
v i ) for all systems

= ⇀
r cm/C × mtot

⇀
v cm +

∑
⇀
r i/cm × (

⇀
v i/cmmi ) for all systems

= ⇀
HO + ⇀

r O/C × ⇀
L for all systems

˙⇀HC =
∑

⇀
r i/C × (mi

⇀
a i ) for all systems

= ⇀
r cm/C × mtot

⇀
acm +

∑
⇀
r i/cm × (

⇀
a i/cmmi ) for all systems

= ˙⇀HO + ⇀
r O/C × ˙⇀L for all systems

EK = 1

2

∑
mi v2

i for all systems

= 1

2
mtot v2

cm + 1

2

∑
mi v2

i/cm for all systems

ĖK =
∑

mi vi v̇i for all systems

= mtot vcm v̇cm +
∑

mi vi/cm v̇i/cm for all systems
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5.12 THEORY
Deriving system momentum balance from the particle equations.

In the front cover you see that we have linear and angular momentum
balance equations that apply to arbitrary systems. Another approach
to mechanics is to use the equation

⇀
F = m

⇀
a

for every particle in the system and then derive the system linear and
angular momentum balance equations. This derivation depends on
the following assumptions

(a) All bodies and systems are composed of point masses.

(b) These point masses interact in a pair-wise manner. For every
pair of point masses A and B the interaction force is equal
and opposite and along the line connecting the point masses.

We then look at any system, which we now assume is a system
of point masses, and apply

⇀
F = m

⇀
a to every point mass and

add the equations for all point masses in the system. For each
point mass we can break the total force into two parts: 1) the
interaction forces between the point mass and other point masses

in the system, these forces are ‘internal’ forces (
⇀
F

int
), and 2)

the forces acting on the system from the outside, the ‘external’
forces. The situation is shown for a three particle system below.

F3
ext

F2
ext

F1
ext

internal
forces

ı̂

̂

⇀
F 12

⇀
F 21

System linear momentum balance
Now lets take the equation

∑ ⇀
F = m

⇀
a for each particle and

add over all the particles.

∑
all particles


 ∑

each particle

⇀
F




︸ ︷︷ ︸
❇❇�

The sum of all forces on the system,
internal and external

=
∑

all particles

mi
⇀
a i

Since all the internal forces come in cancelling pairs we can rewrite

this equation as: ∑
all external forces

⇀
F

ext

︸ ︷︷ ︸
❇❇�

Only the external forces, the ones
acting on the system from the out-
side.

=
∑

all particles

mi
⇀
a i

That is, we have derived equation I in the front cover from
⇀
F = m

⇀
a

for a point mass by assuming the system is composed of point masses
with pair-wise equal and opposite forces.

System angular momentum balance
For any particle we can take the equation∑

forces on particle i

⇀
F = mi

⇀
a i

and take the cross product of both sides with the position of the
particle relative to some point C:

⇀
r i/C ×


 ∑

forces on particle i

⇀
F


 = ⇀

r i/C ×
[
mi

⇀
a i

]
.

Now we can add this equation up over all the particles to get

∑
particles

{
⇀
r i/C ×

[ ∑
on particle i

⇀
F

]}
︸ ︷︷ ︸

❇❇�

r/C × ⇀
F added up for all forces on

the system, internal and external

=
∑

particles

{
⇀
r i/C ×

[
mi

⇀
a i

]}
.

But, by our pair-wise assumption, for every internal force there is
an equal and opposite force with the same line of action. So all the
internal forces drop out of this sum and we have:∑

all external forces

⇀
r i/C × ⇀

F
ext
i︸ ︷︷ ︸

❇❇�
Only the external forces, the ones
acting on the system from the out-
side.

=
∑

all particles

⇀
r i/C × mi

⇀
a i .

This equation is equation II, the system angular momentum balance
equation (assuming we do not allow the application of any pure
moments).

The derivations above are classic and are found in essentially
all mechanics books. However, some people feel it is fine to take
the system linear momentum balance and angular momentum bal-
ance equations as postulates and not make the subject of mechanics
depend on the unrealistic view of so-simply interacting point masses.
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5.13 A preview of rigid body simplifications and advanced kinematics

We have formulas for the motion quantities
⇀
L,

⇀̇
L,

⇀
H C, and

⇀̇
H C

and EK in terms of the positions, velocities, and accelerations of all
of the mass bits in a system. Most often in this book we deal with
the mechanics of rigid bodies, objects with negligible deformation.
This assumed simplification means that the relative motions of the
1023 or so atoms in a body are highly restricted. In fact, if one knows
these five vectors:

• ⇀
r cm, the position of the center of mass,

• ⇀
v cm, the velocity of the center of mass,

• ⇀
acm, the acceleration of the center of mass

• ⇀
ω, the angular velocity of the body, and

• ⇀
α, the angular acceleration of the body,

then one can find the position, velocity, and acceleration of every
point on the body in terms of its position relative to the center of
mass, ⇀

r /cm = ⇀
r − ⇀

r cm.

We will save the derivations for later since we have not yet dis-
cussed the concepts of angular velocity ⇀

ω and angular acceleration
⇀
α.

We will also use a new quantity [I cm], the moment of inertia
matrix. For 2-D problems, [I cm] is just a number. For 3-D problems,
[I cm] is a matrix; hence, the square brackets [ ], our notation for a
matrix.

As intimidating as these new concepts may appear now, they
lead to a vast simplification over the alternative — summing over
1023 particles or so.

Note that the formulas for linear momentum
⇀
L and rate of

change of linear momentum
⇀̇
L do not really look any simpler for a

rigid body than the general case.

⇀
L = mtot

⇀
v cm

⇀̇
L = mtot

⇀
acm

But, they are actually simpler in the following sense. For a general
system, when we write ⇀

v cm, we are talking about an abstract point
that moves in a different way than any point on the system. For
example, consider the linked arms below, tumbling in space.

center of mass
of system

tumbling 
and distorting

The center of mass is not even on any point in the system and,
although it represents the average position in the system, it does not
move with any point on the system.

On the other hand, for a rigid body, the center of mass is fixed
relative to the body as the body moves,

rigidbody rig
id bo
dytumbling

even if the center of mass is not on the body, such as for this ‘L-
shaped’ object.

tumbling

In this case, the center of mass is not literally on the body. It is
fixed with respect to the body, however. If you were rigidly attached
to the body and fixed your gaze on the location of the center of mass,
it would not waver in your view as the body, with you attached, tum-
bled wildly. In this sense the center of mass is fixed “on” a rigid
body even if not on the body at all.
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SAMPLE 5.42 Location of the center of mass. A structure is made up of three
m1

m2

m3

x

y

Figure 5.88: (Filename:sfig2.4.2)

point masses, m1 = 1 kg, m2 = 2 kg and m3 = 3 kg. At the moment of inter-
est, the coordinates of the three masses are (1.25 m, 3 m), (2 m, 2 m), and (0.75 m,
0.5 m), respectively. At the same instant, the velocities of the three masses are
2 m/sı̂, 2 m/s(ı̂ − 1.5̂) and 1 m/s̂ , respectively.

(a) Find the coordinates of the center of mass of the structure.
(b) Find the velocity of the center of mass.

Solution

(a) Let (x̄, ȳ) be the coordinates of the mass-center. Then from the definition of
mass-center

x̄ =
∑

mi xi∑
mi

= m1x1 + m2x2 + m3x3

m1 + m2 + m3

= 1 kg · 1.25 m + 2 kg · 2 m + 3 kg · 0.75 m

1 kg + 2 kg + 3 kg

= 7.25 	kg · m

6 	kg
= 1.25 m.

Similarly,

ȳ =
∑

mi yi∑
mi

= 1 kg · 3 m + 2 kg · 2 m + 3 kg · 0.5 m

1 kg + 2 kg + 3 kg

= 8.55 	kg · m

6 	kg
= 1.42 m.

Thus the center of mass is located at the coordinates (1.25 m, 1.42 m).

(1.25 m, 1.42 m)

(b) For a system of particles, the linear momentum

⇀
L =

∑
mi

⇀
v i = mtot

⇀
v cm

⇒ ⇀
v cm =

∑
mi

⇀
v i

mtot

= 1 kg · (2 m/sı̂) + 2 kg · (2ı̂ − 3̂) m/s + 3 kg · (1 m/s̂)

6 kg

= (6ı̂ − 3̂) 	kg · m/s

6 	kg
= 1 m/sı̂ + 0.5 m/s̂ .

⇀
v cm = 1 m/sı̂ + 0.5 m/s̂
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SAMPLE 5.43 A spring-mass system in space. A spring-mass system consists of two

1

m2

r 2r
1m

ı̂
̂

k̂

⇀

2v
⇀

⇀

Figure 5.89: (Filename:sfig5.10.hopper)

masses, m1 = 10 kg and m2 = 1 kg, and a weak spring with stiffness k = 1 N/m. The
spring has zero relaxed length. The system is in 3-D space where there is no gravity.
At the moment f observaion, i.e., at t = 0, ⇀

r1 = ⇀

0, ⇀
r2 = 1 m(ı̂ + ̂ + k̂), ˙⇀r 1 = ⇀

0,
and ˙⇀r 2 = √

6 m/s(−ı̂ + ̂). Track the motion of the system for the next 20 seconds.
In particular,

(a) Plot the trajectory of the two masses in space.
(b) Plot the trajectory of the center of mass of the system.
(c) Plot the trajectory of the two masses as seen by an observer sitting at the center

of mass.
(d) Compute and plot the total energy of the system and show that it remains

constant during the entire motion.

Solution The free body diagrams of the two masses are shown in Fig. 5.90. The
only force acting on each mass is the force due to the spring which is directed along
the line joining the two masses. Thus, the system represents a central force problem.
From the linear momentum balance of the two masses, we can write the equations of

1

m2

r
2r

1m

ı̂
̂

k̂

⇀ ⇀

-k (         )

Figure 5.90: Free body diagram of the
two masses.

(Filename:sfig5.10.hopper.a)

motion as follows.

m1 ¨⇀r 1 = k(
⇀
r2 − ⇀

r1)

m2 ¨⇀r 2 = −k(
⇀
r2 − ⇀

r1)

Let ⇀
r1 = x1 ı̂ + y1̂ + z1k̂ and ⇀

r2 = x2 ı̂ + y2̂ + z2k̂. Substituting above and dotting

the two equations with ı̂, ̂ , and k̂, we get

ẍ1 = k

m1
(x2 − x1); ẍ2 = − k

m2
(x2 − x1)

ÿ1 = k

m1
(y2 − y1); ÿ2 = − k

m2
(y2 − y1)

z̈1 = k

m1
(z2 − z1); z̈2 = − k

m2
(z2 − z1)

Thus we get six second order coupled linear ODEs as equations of motion.

(a) To plot the trajectory of the two masses, we need to solve for ⇀
r1(t) and ⇀

r2(t),
i.e., for x1(t), y1(t), z1(t), and x2(t), y2(t), z2(t). We can do this by first
writing the six second order equations as a set of 12 first order equations
and then solving them using a numerical ODE solver. Here is a pseudocode to
accomplish this task.

8
6

4
2

0
2

2

0

2

4

6

8
1

0.5

0

0.5

1

x
y

z

path of m2

path of m1

Figure 5.91: 3-D trajectory of m1 and
m2 plotted from numerical solution of the
equations of motion.

(Filename:sfig5.10.hopper.b)

ODEs = {x1dot = u1,
u1dot = k/m1*(x2-x1),
y1dot = v1,
v1dot = k/m1*(y2-y1),
z1dot = w1,
w1dot = k/m1*(z2-z1),
x2dot = u2,
u2dot = -k/m2*(x2-x1),
y2dot = v2,
v2dot = -k/m2*(y2-y1),
z2dot = w2,
w2dot = -k/m2*(z2-z1) }

IC = {x1(0)=0, y1(0)=0, z1(0)=0,
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u1(0)=0, v1(0)=0, w1(0)=0,
x2(0)=1, y2(0)=1, z2(0)=1,
u2(0)=-sqrt(6), v2(0)=sqrt(6), w2(0)=0}

Set k=1, m1=10, m2=1
Solve ODEs with IC for t=0 to t=20
Plot {x1,y1,z1} and {x2,y2,z2}

The 3-D plot showing the trajectory of the two masses obtained from the nu-
merical solution is shown in Fig. 5.91. From the plot, it seems like the smaller
mass goes around the bigger mass as the bigger mass moves on its trajectory.
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Figure 5.92: The center of mass coordi-
nates xcm(t), ycm(t), and zcm(t). The cen-
ter of mass moves on a straight line in a
plane parallel to the xy-plane.

(Filename:sfig5.10.hopper.c)

(b) We can find the trajectory of the center of mass using the following relationships.

xcm = m1x1 + m2x2

m1 + m2
, ycm = m1 y1 + m2 y2

m1 + m2
, zcm = m1z1 + m2z2

m1 + m2
.

Since there is no external force on the system if we consider the two masses
and the spring together, the center of mass of the system has zero acceleration.
Therefore, we expect the center of mass to move on a straight path with constant
velocity. The center of mass coordinates xcm, ycm, and zcm are plotted against
time in Fig. 5.92 which show that the center of mass moves on a straight line
in a plane parallel to the xy-plane (z is constant). This is expected since the
initial velocity of the center of has no z-component:
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Figure 5.93: The paths of m1 and m2
as seen from the center of mass. The two
masses are on closed orbits with respect to
the center of mass.

(Filename:sfig5.10.hopper.d)

⇀
vcm = m1

⇀
v1 + m2

⇀
v2

m1 + m2

= m1 · ⇀

0 + 1 kg · √
(6) m/s(−ı̂ + ̂)

10 kg + 1 kg
= 0.22 m/s(−ı̂ + ̂).

(c) The trajectory of the two masses with respect to the center of mass can be easily
obtained by the following relationships.

x1/cm = x1 − xcm, y1/cm = y1 − ycm, z1/cm = z1 − zcm

x2/cm = x2 − xcm, y2/cm = y2 − ycm, z2/cm = z2 − zcm

The trajectories thus obtained are shown in Fig. 5.92. It is clear that the two
masses have closed orbits with respect to the center of mass. These closed orbits
are actually conic sections as we would expect in a central force problem.
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Figure 5.94: The kinetic energy of the
two masses and the potential energy of the
spring sum up to the constant total energy
of the system.

(Filename:sfig5.10.hopper.e)

(d) We can calculate the kinetic energy of the two masses and the potential energy
of the spring at each instant during the motion and add them up to find the total
energy.

(Ek)m1 = 1

2
m1(u

2
1 + v2

1 + w2
1)

(Ek)m2 = 1

2
m2(u

2
2 + v2

2 + w2
2)

Ep = 1

2
k[(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2]

Etotal = (Ek)m1 + (Ek)m2 + Ep

The energies so calculated are plotted in Fig. 5.93. It is clear from the plot that
the total energy remains constant during the entire motion.
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6 Constrained straight
line motion

Figure 6.1: A train running on straight
level track is in straight-line motion, ne-
glecting, of course, the wheel rotation, the
bouncing, the moving engine parts, and the
wandering eyes of the passengers.

(Filename:tfigure3.0.train)

In the previous chapter you learned that it is straightforward to write the equations
of motion for a particle, or for a collection of a few particles, if you have a model
for the forces on the particles in terms of their positions, velocities, and time. After
writing

⇀
F = m ⇀

a for each particle, finding unknown forces and accelerations with
given velocities is then a matter of solving linear algebraic equations. And finding the
motions is a matter of solving the resulting differential equations which, if often too
complicated for analytic solution, are straightforward to set up for numerical solution.

If every object is made of particles which interact with known force laws, then
we can solve all dynamics problems using the methods of chapter 5. But the particle
view of the world has two major shortcomings:

• if the particles in question are, say, atoms, then solving a typical engineering
scale dynamics problem involves writing 6 · 1023 (Avagadro’s number) or so
coupled differential equations (even the smallest micro-electronic-machines
have thousands of atoms). Solving so many equations is more than we can
generally ask of our computers.

• Sometimes, often actually, the simplest model of mechanical interaction is not
a law for force as a function of position, velocity and time, but just a geometric
restriction on the relative positions or velocities of points. The reason’s for this
geometric, instead of force-based, approach are two-fold:

– Sometimes the minute details of the motion are not of interest and there-
fore not worth tracking (e.g., the vibrations of a solid, or relative motions
of atoms in a solid are not of interest), and

– Often one does not know an accurate force law (e.g., at the microscopic
level one does not know the details of atomic interactions; or, at the
machine level, one may not know exactly the relations between the small
play in an axle and the force on the axle, even though one knows that the

329
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axle restricts the relative motion of a train with its wheels and the ground).

So, much mechanical modeling involves assumptions about the geometry of the
motions, or kinematic constraint.

The utility of free body diagrams, the principle of action and reaction, the linear
and angular momentum balance equations, and the balance of energy apply to all
systems, no matter how they are or are not constrained. But, if objects are constrained
the methods in mechanics have a slightly different flavor. It is easiest if we start with
systems that have simple constraints and that move in simple ways. In this short
chapter, we will discuss the mechanics of things where every point in the body has
the same velocity and acceleration as every other point (so called parallel motion)
and furthermore where every point moves in a straight line.

Example: Train on Straight Level Tracks

Consider a train on straight level tracks. If we focus on the body of the
train, we can approximate the motion as parallel straight-line motion. All
parts move the same amount, with the same velocities and accelerations
in the same fixed direction. ✷

We start with 1-D mechanics and constraint with string and pulleys, and then
move on to rigid bodies.

6.1 1-D constrained motion and pulleys
The kinematic constraints we consider here are those imposed by connection with
bars or ropes. Consider a car towing another with a strong light chain. We may
not want to consider the elasticity of the chain but instead idealize the chain as an
inextensible connection. This idealization of zero deformation is a simplification.
But it is a simplification that requires special treatment. It is the simplest example of
a kinematic constraint.

x1 x2

m1

T T F

m2

inextensible massless
connection

FBDs

ı̂

Figure 6.2: A schematic of one car
pulling another, or of a boat pulling a barge.

(Filename:tfigure.boatpullsbarge)

Figure 6.2 shows a schematic of one car pulling another. One-dimensional free
body diagrams are also shown. The force F is the force transmitted from the road to
the front car through the tires. The tension T is the tension in the connecting chain.
From linear momentum balance for each of the objects (modeled as particles):

T = m1 ẍ1 and F − T = m2 ẍ2. (6.1)

But these equations are exactly the same as we would have if the cars were connected
by a spring, a dashpot, or any idealized-as-massless connector. And all these systems
have different motions. We need our equations to somehow indicate that the two
particles are not allowed to move independently. We need something to replace the
constitutive law that we would have used for a spring or dashpot.

Kinematic constraint: two approaches
In the simplest example below we two ways of dealing with kinematic constraints:

(a) Use separate free body diagrams and equations of motion for each particle and
then add extra kinematic constraint equations, or

(b) do something clever to avoid having to find the constraint forces.
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Finding the constraint force with the accelerations

The geometric (or kinematic) restriction that two masses must move in lock-step is

x1 = x2 + Constant.

We can differentiate the kinematic constraint twice to get

ẍ1 = ẍ2. (6.2)

If we take F and the two masses as given, equations 6.1 and 6.2 are three equations
for the unknowns ẍ1, ẍ2, and T . In matrix form,we have:

 m1 0 −1
0 m2 1

−1 1 0





 ẍ1

ẍ2
T


 =


 0

F
0


 .

We can solve these equations to find ẍ1, ẍ2, and T in terms of F .

Finessing the finding of the constraint force

On the other hand, if all we are interested in is the acceleration of the cars it would
be nice to avoid even having to think about the constraint force. One way to avoid
dealing with the constraint force is to draw a free body diagram of the entire system
as in figure 6.3. If we just call the acceleration of the system ẍ we have, from linear

F

Figure 6.3: A free body diagram of the
whole system. Note that the unknown ten-
sion (constraint) force does not show.

(Filename:tfigure.twocarstogether)

momentum balance, that

F = (m1 + m2)ẍ,

which is one equation in one unknown.

Two particles connected by an inextensible rod make up the simplest rigid body

A generalization of the 1D inextensible-cable constraint example above is the rigid-
body constraint where not just two, but many particles are assumed to keep constant
distance from one another, and in two or three dimensions. Another important con-
straint is an ideal hinge connection between two objects. Much of the theory of
mechanics after Newton has been motivated by a desire to deal easily with these and
other kinematic constraints. In fact, one way of characterizing the primary difficulty
of dynamics is as the difficulty of dealing with kinematic constraints.

Pulleys

Pulleys are used to redirect force to amplify or attenuate force and to amplify or atten-
uate motion. Like a lever, a pulley system is an example of a mechanical transmission.
Objects connected by inextensible ropes around ideal pulleys are also an example of
kinematic constraint.
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Constant length and constant tension

Problems with pulleys are solved by using two facts about idealized string. First, ideal
string is inextensible so the sum of the string lengths, over the different inter-pulley
sections, adds to a constant (not varying in time).

�1 + �2 + �3 + �4 + ... = constant (6.3)

Second, for round pulleys of negligible mass and no bearing friction, tension is
constant along the length of the string 1©.The tension on one side of a pulley is the1© See figure 4.4 on page 114 and the related

text which shows why T1 = T2 for one pul-
ley idealized as frictionless and massless.

same as the tension on the other side. And this can carry on if a rope is wrapped
around several pulleys.

T1 = T2 = T3 . . . (6.4)

We use the trivial pulley example in figure 6.4 to show how to analyze the relative
motion of various points in a pulley system.

Example: Length of string calculation

A

B

xA

xB

r
C

m

Figure 6.4: One mass, one pulley, and
one string

(Filename:tfigure3.pulleyex)

Starting from point A, we add up the lengths of string

�tot = xA + πr + xB ≡ constant. (6.5)

The portion of string wrapped around the pulley contacts half of the
pulley so that it’s length is half the pulley circumference, πr . Even if xA

and xB change in time and different portions of string wrap around the
pulley, the length of string touching the pulley is always πr .

We can now formally deduce the intuitively obvious relations be-
tween the velocities and accelerations of points A and B. Differentiating
equation 6.5 with respect to time once and then again, we get

�̇tot = 0 = ẋ A + 0 + ẋB

⇒ ẋ A = −ẋB

⇒ ẍ A = −ẍB (6.6)

When point A is displaced to the right by an amount �xA, the point
B is displaced exactly the same amount but to the left; that is, �xA =
−�xB . Note that in order to derive the kinematic relations 6.6 for the
pulley system, we never need to know the total length of the string, only
that it is constant in time. The constant-in-time quantities (the pulley
half-circumference and the string length) get ‘killed’ in the process of
differentiation. ✷

Commonly we think of pulleys as small and thus never account for the pulley-
contacting string length. Luckily this approximation generally leads to no error
because we most often are interested in displacements, velocities, and accelerations
in which cases the pulley contact length drops out of the equations anyway.
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The classic simple uses of pulleys
First imagine trying to move a load with no pulley as in Fig. 6.5a. The force you
apply goes right to the mass. This is like direct drive with no transmission.

A
B

A
B

C

C

C

m A B

A
B

(a) ⇀
F

m
(c)

m
(d)

m
(b)

⇀
F

⇀
F

⇀
F

Figure 6.5: The four classic cases: (a)
no pulley, (b) a pulley system with no me-
chanical advantage, (c) a pulley system that
multiplies force and attenuates motion, and
(d) a pulley system that attenuates force and
amplifies motion.

(Filename:tfigure.pulley1)

Now you would like to use pulleys to help you move the mass. In the cases we
consider here the mass is on a frictionless support and we are trying to accelerate it.
But the concepts are the same if there are also resisting forces on the mass. What can
we do with one pulley? Three possibilities are shown in Fig. 6.5b-d which might, at a
blinking glance, look roughly the same. But they are quite different. Here we discuss
each design qualitatively. The details of the calculations are a homework problem.

In Fig. 6.5b we pull one direction and the mass accelerates the other way. This
illustrates one use of a pulley, to redirect an applied force. The force on the mass has
magnitude | ⇀

F | and there is no mechanical advantage.
Fig. 6.5c shows the most classic use of a pulley. A free body diagram of the pulley

at C will show you that the tension in rope AC is 2| ⇀
F | and we have thus doubled the

force acting on the mass. However, counting string length and displacement you will
see that point A moves only half the distance that point B moves. Thus the force at
B is multiplied by two to give the force at A and the displacement at B is divided by
two to give the displacement at A. This is a general property of ideal transmissions,
from levers to pulleys to gear boxes:

If force is amplified then motion is equally attenuated.

This result is most solidly understood using energy balance. The power of the force
at B goes entirely into the mass. On the other hand if we cut the string AB, the same
amount of power must be applied to the mass (it gains the same energy). Thus the
product of the tension and velocity at A must equal the product of the tension and
velocity at B.

TAvA = TBvB

Fig. 6.5d shows the opposite use of a pulley. A free body diagram of the pulley shows
that the tension in AB is 1

2 | ⇀
F |. Thus the force is attenuated by a factor of 2. A

kinematic analysis reveals that the motion of A is twice that of B. Thus, as expected
from energy considerations, the motion is amplified when the force is attenuated.

Effective mass
Of concern for design of machines that people work with is the feel of the machine.
One aspect of feel is the effective mass. The effective mass is defined by the response
of a point when a force is applied.

meff = | ⇀
FB|
|⇀
aB| .

For the case of Fig. 6.5a and Fig. 6.5b the effective mass of point B is the mass of
the block, m. For the case of Fig. 6.5c the block has twice the twice | ⇀

F | acting on it
and point B has twice the acceleration of point A, so the effective mass of point B is
m/4. For the case of Fig. 6.5d, the mass only has half | ⇀

F | acting on it and point B
only has half the acceleration of point A, so the effective mass is 4m.

These special cases exemplify the general rule:
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The effective mass of one end of a transmission is the mass of the other end
multiplied by the square of the motion amplification ratio.

In terms of the effective mass, the systems Fig. 6.5c and Fig. 6.5d which might look
so similar, actually differ by a factor of 16 (= 22 · 22). With a given F and m point
B in Fig. 6.5c has 16 times the acceleration of point B in Fig. 6.5d.
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SAMPLE 6.1 Find the motion of two cars. One car is towing another of equal mass
on level ground. The thrust of the wheels of the first car is F . The second car rolls
frictionlessly. Find the acceleration of the system two ways:

(a) using separate free body diagrams,
(b) using a system free body diagram.

Solution

(a) From linear momentum balance of the two cars, we get

T T

F

m m

x

Figure 6.6: (Filename:sfig4.1.twocars.fbda)

mẍ1 = T (6.7)

F − T = mẍ2 (6.8)

The kinematic constraint of towing (the cars move together, i.e., no relative
displacement between the cars) gives

ẍ1 − ẍ2 = 0 (6.9)

Solving eqns. (6.7), (6.8), and (6.9) simultaneously, we get

ẍ1 = ẍ2 = F

2m
(T = F

2
)

(b) From linear momentum balance of the two cars as one system, we get

F
m m

x

Figure 6.7: (Filename:sfig4.1.twocars.fbdb)

mẍ + mẍ = F

ẍ = F/2m

ẍ = ẍ1 = ẍ2 = F/2m
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SAMPLE 6.2 Pulley kinematics. For the masses and ideal-massless pulleys shown

D

C

A
B

Figure 6.8: (Filename:sfig3.3.DH1)

in figure 6.8, find the acceleration of mass A in terms of the acceleration of mass B.
Pulley C is fixed to the ceiling and pulley D is free to move vertically. All strings are
inextensible.

D

C

yA

yD

yB

a'

a

d

cb

e

f

̂

A
B

Figure 6.9: (Filename:sfig3.3.DH2)

Solution Let us measure the position of the two masses from a fixed point, say the
center of pulley C. (Since C is fixed, its center is fixed too.) Let yA and yB be the
vertical distances of masses A and B, respectively, from the chosen reference (C).
Then the position vectors of A and B are:

⇀
r A = yA̂ and ⇀

r B = yB ̂ .

Therefore, the velocities and accelerations of the two masses are

⇀
v A = ẏA̂ ,

⇀
v B = ẏB ̂ ,

⇀
a A = ÿA̂ ,

⇀
a B = ÿB ̂ .

Since all quantities are in the same direction (̂ ), we can drop ̂ from our calculations
and just do scalar calculations. We are asked to relate ÿA to ÿB .

In all pulley problems, the trick in doing kinematic calculations is to relate the
variable positions to the fixed length of the string. Here, the length of the string �tot

is: 1©

1© We have done an elaborate calculation
of �tot here. Usually, the constant lengths
over the pulleys and some constant seg-
ments such as aa′ are ignored in calculat-
ing �tot . These constant length segments
can be ignored because they drop out of the
equation when we take time derivatives to
relate velocities and accelerations of differ-
ent points, such as B and D here.

�tot = ab + bc + cd + de + ef = constant

where ab = aa′︸︷︷︸
constant

+ a′b︸︷︷︸
(=cd=yD)

bc = string over the pulley D = constant

de = string over the pulley C = constant

ef = yB

thus �tot = 2yD + yB +
(aa′+bc+de)︷ ︸︸ ︷
constant .

Taking the time derivative on both sides, we get

0 because �tot does not
change with time

✂✂✌︷ ︸︸ ︷
d

dt
(�tot ) = 2ẏD + ẏB ⇒ ẏD = −1

2
ẏB (6.10)

⇒ ÿD = −1

2
ÿB . (6.11)

But yD = yA − AD and AD = constant

⇒ ẏD = ẏA and ÿD = ÿA.

Thus, substituting ẏA and ÿA for ẏD and ÿD in (6.10) and (6.11) we get

ẏA = −1

2
ẏB and ÿA = −1

2
ÿB

ÿA = − 1
2 ÿB
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SAMPLE 6.3 A two-mass pulley system. The two masses shown in Fig. 6.10 have

F
A B

a b
c

x

y

Figure 6.10: A two-mass pulley system.
(Filename:sfig3.3.1)

-xA xB
ı̂

A B
a b

c

Figure 6.11: Pulley kinematics. Note
that the distance from c to a is minus the x
coordinate of a.

(Filename:sfig3.3.1b)

frictionless bases and round frictionless pulleys. The inextensible cord connecting
them is always taut. Given that F = 130 N, m A = m B = m = 40 kg, find the
acceleration of the two blocks using:

(a) linear momentum balance (LMB) and
(b) energy balance.

Solution

(a) Using Linear Momentum Balance: The free body diagrams of the two

F B

mg

A

NA1 NA2

mg

NB1 NB2

T

T

T

T

T

ı̂

̂

Figure 6.12: (Filename:sfig3.3.1a)

masses A and B are shown in Fig. 6.12 above. Linear momentum balance for
mass A gives (assuming ⇀

a A = aA ı̂ and ⇀
a B = aB ı̂):

(2T − F)ı̂ + (NA1 + NA2 − mg)̂ = m ⇀
a A = −maA ı̂

(dotting with ̂ ) ⇒ 2NA = mg

and 2T − F = maA (6.12)

Similarly, linear momentum balance for mass B gives:

−3T ı̂ + (NB1 + NB2 − mg)̂ = m ⇀
a B = maB ı̂

⇒ 2NB = mg

and − 3T = maB . (6.13)

From (6.12) and (6.13) we have three unknowns: T, aA, aB , but only 2 equa-
tions!. We need an extra equation to solve for the three unknowns. 1©1© You may be tempted to use angular mo-

mentum balance (AMB) to get an extra
equation. In this case AMB could help de-
termine the vertical reactions, but offers no
help in finding the rope tension or the ac-
celerations.

We can get the extra equation from kinematics. Since A and B are connected
by a string of fixed length, their accelerations must be related. For simplicity,
and since these terms drop out anyway, we neglect the radius of the pulleys and
the lengths of the little connecting cords. Using the fixed point C as the origin
of our xy coordinate system we can write

�tot ≡ length of the string connecting A and B

= 3xB + 2(−xA)

⇒
0︷︸︸︷
˙�tot = 3ẋB + 2(−ẋ A)

⇒ ẋB = −2

3
(−ẋ A) ⇒ ẍB = −2

3
(−ẍ A)

(6.14)

Since

⇀
v A = vA ı̂ = −(−ẋ A)ı̂,
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⇀
a A = aA ı̂ = ẍ A ı̂,
⇀
v B = vB ı̂ = ẋB ı̂, and
⇀
a B = aB ı̂ = ẍB ı̂,

we get

aB = 2

3
aA. (6.15)

Substituting (6.15) into (6.13), we get

9T = −2m BaA. (6.16)

Now solving (6.12) and (6.16) for T , we get

T = 2F

13
= 2 · 130 N

13
= 20 N.

Therefore,

aA = −9T

2m
= − 9 · 20 N

2 · 40 kg
= −2.25 m/s2

aB = 2

3
aA = −1.5 m/s2

⇀
a A = −2.25 m/s2 ı̂,

⇀
a B = −1.5 m/s2 ı̂.

(b) Using Power Balance (III): We have,

P = ĖK.

The power balance equation becomes∑
⇀
F · ⇀

v = m aA vA + m B aB vB .

Because the force at A is the only force that does work on the system, when
we apply power balance to the whole system (using

⇀
F = −F ı̂), we get

−FvA = m AvAaA + mvBaB

or F = −maA − m
vB

vA
aB

= −aA(m + m
vB

vA

aB

aA
).

Substituting aB = 2/3aA and vB = 2/3vA from Eqn. (6.15),

aA = −F

m + 4
9 m

= −130 N

40 kg(1 + 4
9 )

= −2.25 m/s2,

and since aB = 2/3aA,
aB = −1.5 m/s2,

which are the same accelerations as found before.

aA = −2.25 m/s2 ı̂, aB = −1.5 m/s2 ı̂
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SAMPLE 6.4 In static equilibrium the spring in Fig. 6.13 is compressed by ys from

k

ys

y
�0

M

m

Figure 6.13: (Filename:sfig10.1.5)

kys

Mg

mg

Figure 6.14: Free body diagram of
the two masses as one system when in
static equilibrium (this special case could
be skipped as it follows from the free body
diagram below).

(Filename:sfig10.1.5a)

k(ys+y)

Mg

mg

N

N

Figure 6.15: Free body diagrams of the
individual masses.

(Filename:sfig10.1.5b)

its unstretched length �0. Now, the spring is compressed by an additional amount y0
and released with no initial velocity.

(a) Find the force on the top mass m exerted by the lower mass M .
(b) When does this force become minimum? Can this force become zero?
(c) Can the force on m due to M ever be negative?

Solution

(a) The free body diagram of the two masses is shown in Figure 6.14 when the
system is in static equilibrium. From linear momentum balance we have∑

⇀
F = ⇀

0 ⇒ kys = (m + M)g. (6.17)

The free body diagrams of the two masses at an arbitrary position y during
motion are given in Figure 6.15. Since the two masses oscillate together, they
have the same acceleration. From linear momentum balance for mass m we
get

mg − N = mÿ. (6.18)

We are interested in finding the normal force N . Clearly, we need to find ÿ to
calculate N . Now, from linear momentum balance for mass M we get

Mg + N − k(y + ys) = M ÿ. (6.19)

Adding Eqn (6.18) with Eqn (6.19) we get

(m + M)g − ky − kys = (m + M)ÿ.

But kys = (m + M)g from Eqn 6.17. Therefore, the equation of motion of the
system is

−ky = (m + M)ÿ

or ÿ + k

(m + M)
y = 0. (6.20)

As you recall from your study of the harmonic oscillator, the general solution
of this differential equation is

y(t) = A sin λt + B cos λt (6.21)

where λ =
√

k
m+M and the constants A and B are to be determined from the

initial conditions. From Eqn (6.21) we obtain

ẏ(t) = Aλ cos λt − Bλ sin λt. (6.22)

Substituting the given initial conditions y(0) = y0 and ẏ(0) = 0 in Eqns (6.21)
and (6.22), respectively, we get

y(0) = y0 = B

ẏ(0) = 0 = Aλ ⇒ A = 0.

Thus,
y(t) = y0 cos λt. (6.23)

Now we can find the acceleration by differentiating Eqn (6.23) twice :

ÿ = −y0λ
2 cos λt.
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Substituting this expression in Eqn (6.18) we get the force applied by mass M
on the smaller mass m:

mg − N = m

ÿ︷ ︸︸ ︷
(−y0λ

2 cos λt)

⇒ N = mg + my0λ
2 cos λt

= m(g + y0λ
2 cos λt) (6.24)

N = m(g + y0λ
2 cos λt)

(b) Since cos λt varies between ±1, the value of the force N varies between mg ±
y0λ

2. Clearly, N attains its minimum value when cos λt = −1, i.e., when
λt = π . This condition is met when the spring is fully stretched and the mass
is at its highest vertical position. At this point,

N ≡ Nmin = m(g − y0λ
2)

If y0, the initial displacement from the static equilibrium position, is chosen
such that y0 = g

λ2 , then N = 0 when cos λt = −1, i.e., at the topmost point
in the vertical motion. This condition means that the two masses momentarily
lose contact with each other when they are about to begin their downward
motion. <

(c) From Eqn (6.24) we can get a negative value of N when cos λt = −1 and
y0λ

2 > g. However, a negative value for N is nonsense unless the blocks are
glued. Without glue the bigger mass M cannot apply a negative compression
on m, i.e., it cannot “suck” m. When y0λ

2 > g then N becomes zero before
cos λt decreases to −1. That is, assuming no bonding, the two masses lose
contact on their way to the highest vertical position but before reaching the
highest point. Beyond that point, the equations of motion derived above are no
longer valid for unglued blocks because the equations assume contact between
m and M . Eqn (6.24) is inapplicable when N ≤ 0. <



342 CHAPTER 6. Constrained straight line motion

SAMPLE 6.5 Driving a pile into the ground. A cylindrical wooden pile of mass

M = 50 kg

m = 10 kg
pile

2 m

Figure 6.16: (Filename:sfig3.5.DH1)

Mg

mg

N

Fr

Figure 6.17: Free body diagram of the
hammer and pile system. Fr is the total
resistance of the ground.

(Filename:sfig3.5.DH2)

10 kg and cross-sectional diameter 20 cm is driven into the ground with the blows of
a hammer. The hammer is a block of steel with mass 50 kg which is dropped from a
height of 2 m to deliver the blow. At the nth blow the pile is driven into the ground
by an additional 5 cm. Assuming the impact between the hammer and the pile to be
totally inelastic (i.e., the two stick together), find the average resistance of the soil to
penetration of the pile.

Solution Let Fr be the average (constant over the period of driving the pile by 5 cm)
resistance of the soil. From the free body diagram of the pile and hammer system,
we have ∑

⇀
F = −mg̂ − Mg̂ + N ̂ + Fr ̂ .

But N is the normal reaction of the ground, which from static equilibrium, must be
equal to mg + Mg. Thus, ∑

⇀
F = Fr ̂ .

Therefore, from linear momentum balance (
∑ ⇀

F = m ⇀
a),

⇀
a = Fr

M + m
̂ .

Now we need to find the acceleration from given conditions. Let v be the speed of the
hammer just before impact and V be the combined speed of the hammer and the pile
immediately after impact. Then, treating the hammer and the pile as one system, we
can ignore all other forces during the impact (none of the external forces: gravity, soil
resistance, ground reaction, is comparable to the impulsive impact force, see page
89). The impact force is internal to the system. Therefore, during impact,

∑ ⇀
F = ⇀

0
which implies that linear momentum is conserved. Thus

−Mv̂ = −(m + M)V ̂

⇒ V =
(

M

m + M

)
v = 50 kg

60 kg
v = 5

6
v.

The hammer speed v can be easily calculated, since it is the free fall speed from a
height of 2 m:

v =
√

2gh =
√

2 · (9.81 m/s2) · (2 m) = 6.26 m/s ⇒ V = 5

6
v = 5.22 m/s.

The pile and the hammer travel a distance of s = 5 cm under the deceleration a.
The initial speed V = 5.22 m/s and the final speed = 0. Plugging these quantities
into the one-dimensional kinematic formula

v2 = v2
0 + 2as,

we get,

0 = V 2 − 2as (Note that a is negative)

⇒ a = V 2

2s
= (5.22 m/s)2

2 × 0.05 m
= 272.48 m/s2.

Thus ⇀
a = 272.48 m/s2̂ . Therefore,

Fr = (m + M)a = (60 kg)·(272.48 m/s2) = 1.635 × 104 N

Fr ≈ 16.35 kN
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6.2 2-D and 3-D forces even though the

motion is straight
Even if all the motion is in a single direction, an engineer may still have to consider
two- or three-dimensional forces.

µN

N

(a)

(b)

rubs here

piston

connecting rod

cylinder

FBD

ı̂

̂

⇀
v

T λ̂

Figure 6.18: (a) shows a piston in a cylin-
der. (b) shows a free body diagram of the
piston. To draw this FBD, we have as-
sumed: (1) a coefficient of friction µ be-
tween the piston and cylinder wall, and (2)
negligible mass for the connecting rod, and
(3) ignored the spatial extent of the cylin-
der.

(Filename:tfigure3.1)

Example: Piston in a cylinder.

Consider a piston sliding vertically in a cylinder. For now neglect the
spatial extent of the cylinder. Let’s assume a coefficient of friction µ

between the piston and the cylinder wall and that the connecting rod has
negligible mass so it can be treated as a two-force member as discussed
in section 4.1b. That is, the force transmitted to the piston from the
connecting rod is along the connecting rod. The free body diagram of
the piston (with a bit of the connecting rod) is shown in figure 6.18. We
have assumed that the piston is moving up so the friction force is directed
down, resisting the motion. Linear momentum balance for this system
is: ∑

⇀
F i = ˙⇀L

−N ı̂ − µN ̂ + T λ̂rod = mpiston a̂ .

If we assume that the acceleration a̂ of the piston is known, as is its
mass mpiston , the coefficient of friction µ, and the orientation of the
connecting rod λ̂rod , then we can solve for the rod tension T and the
normal reaction N . Note that even though the piston moves in one
direction, the momentum balance equation is a two-dimensional vector
equation. ✷

The kinematically simple 1-D motions we assume in this chapter simplify the
evaluation of the right hand sides of the vector momentum balance equations. But
they are still vector equations.

Highly constrained bodies
This chapter is about rigid bodies that do not rotate. Most objects will not agree to
be the topic of such discussion without being forced into doing so. In general, one
expects bodies to rotate or move along a curved path. To keep an object that is subject
to various forces from rotating or curving takes some constraint. The object needs to
be rigid and held by wires, rods, rails, hinges, welds, etc. that keep it from spinning,
keeping it in parallel motion. We do not mean to imply that the presence of constraint
always is associated with disallowance of rotation — constraints could even cause
rotation. But to keep a rigid object in straight-line motion usually does require some
kind of constraint.

Of common interest for constrained structures is making sure that static and
dynamic loads do not cause failure of the constraints. For example, suppose a truck
hauls a very heavy load that is held down by chains tightened by come-alongs. When
the truck accelerates, what is the tension in the chains, and will it exceed the strength
limit of the chains so that they might break?

In this chapter, we assume all points of a system or body are moving in a straight
line with the same velocity and acceleration. Let’s consider a set of points in the
system of interest. Let’s call them A to G, or generically, P . For convenience we
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distinguish a reference point O ′. O ′ may be the center of mass, the origin of a local
coordinate system, or a fleck of dirt that serves as a marker. By parallel motion, we
mean that the system happens to move in such a way that ⇀

a P = ⇀
a O ′ , and ⇀

v P = ⇀
v O ′

(Fig. 6.19). That is,

⇀
a A = ⇀

a B = ⇀
aC = ⇀

a D = ⇀
a E = ⇀

a F = ⇀
aG = ⇀

a P = ⇀
a O ′

at every instant in time. We also assume that ⇀
v A = . . . = ⇀

v P = ⇀
v O ′ .

A special case of parallel motion is straight-line motion.

a system moves with straight-line motion if it moves like a non-rotating
rigid body, in a straight line.

For straight-line motion, the velocity of the body is in a fixed unchanging direction.
If we call a unit vector in that direction λ̂, then we have

⇀
v(t) = v(t)λ̂,

⇀
a(t) = a(t)λ̂ and ⇀

r (t) = ⇀
r 0 + s(t)λ̂

for every point in the system. ⇀
r 0 is the position of a point at time 0 and s is the

distance the point moves in the λ̂ direction. Every point in the system has the same s,
v, a, and λ̂ as the other points. There are a variety of problems of practical interest that
can be idealized as fitting into this class, notably, the motions of things constrained
to move on belts, roads, and rails, like the train in figure 6.1.

A

B

C

O′

D

F G

E

P

λ̂

⇀
aA = ⇀

aB = ⇀
aC = ⇀

aD = ⇀
aE = ⇀

aF = ⇀
aG = ⇀

aO′

⇀
aA

⇀
aB

⇀
aC

⇀
aD

⇀
aE

⇀
aP

⇀
aF

⇀
aG

⇀
aO′

Figure 6.19: Parallel motion: all points
on the body have the same acceleration
⇀
a = aλ̂. For straight-line motion:

λ̂(t)=constant in time and ⇀
v = vλ̂.
(Filename:tfigure3.1a)

Example: Parallel swing is not straight-line motion

⇀
vG

Figure 6.20: A swing showing instanta-
neous parallel motion which is curvilinear.
At every instant, each point has the same
velocity as the others, but the motion is not
in a straight line.

(Filename:tfigure3.swing)

The swing shown does not rotate — all points on the swing have the
same velocity. The motion of all particles are parallel but, since paths
are curved, this motion is not straight-line motion. Such curvilinear
parallel motion will be discussed in Chapter 7. ✷

A special way of analyzing straight-line motion is with one-dimensional mechan-
ics as we did in the previous chapter. For one-dimensional mechanics, we assume
that, in addition to the restricted kinematics, everything of interest mechanically hap-
pens in the λ̂ direction, often taken to be the x direction. That is, we ignore all torques
and angular momenta, and only consider the λ̂ components of the forces (i.e.,

⇀
F · λ̂)

and linear momentum (
⇀
L · λ̂). For example, if λ̂ is in the ı̂ direction, the components

would be Fx and Lx .
Before we proceed with discussion of the details of the mechanics of straight-

line motion we present some ideas that are also more generally applicable. That is,
the concept of the center of mass allows some useful simplifications of the general
expressions for

⇀
L, ˙⇀L,

⇀
HC, ˙⇀HC and EK.

Velocity of a point

The velocity of any point P on a non-rotating rigid body (such as for straight-line
motion) is the same as that of any reference point on the body (see Fig. 6.21).

O

O′

P

x

y

=⇀
ωB

Rigid non-rotating body B
⇀
O

γ

Figure 6.21: A non-rotating bodyB with
points O ′ and P .

(Filename:tfigure3.2.1)

⇀
vP = ⇀

vO′

A more general case, which you will learn in later chapters, is shown as 5b in Table II
at the back of the book. This formula concerns rotational rate which we will measure
with the vector ⇀

ω. For now all you need to know is that ⇀
ω = ⇀

0 when something
is not rotating. In 5b in Table II, if you set ⇀

ωB = 0 and ⇀
vP/B = ⇀

0 it says that
⇀
vP = ˙⇀r O′/O or in shorthand, ⇀

vP = ⇀
vO′ , as we have written above.
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Acceleration of a point

Similarly, the acceleration of every point on a non-rotating rigid body is the same as
every other point. The more general case, not needed in this chapter, is shown as
entry 5c in Table II at the back of the book.

Angular momentum and its rate of change,
⇀
HC and ˙⇀HC for straight-line motion

For the motions in this chapter, where ⇀
a i = ⇀

acm and thus ⇀
a i/cm = ⇀

0, angular

momentum considerations are simplified, as explained in Box 6.2 on 345 1©. But for

1© Calculating rate of change of angular
momentum will get more difficult as the
book progresses. For a rigid body B in
more general motion, the calculation of
rate of change of angular momentum in-
volves the angular velocity ⇀

ωB , its rate of
change ⇀̇

ωB , and the moment of inertia ma-
trix [I cm]. If you look in the back of the
book at Table I, entries 6c and 6d, you will
see formulas that reduce to the formulas be-
low if you assume no rotation and thus use
⇀
ω = ⇀

0 and ⇀̇
ω = ⇀

0 .
But rate of change of linear momentum is
simple, at least in concept, in this chapter,
as well as in the rest of this book, where

⇀̇
L = mtot

⇀
acm

always applies.

straight-line motion (and for parallel motion), the calculations turn out to be the same
as we would get if we put a single point mass at the center of mass: 2©

2©Caution: Unfortunately, the special mo-
tions in this chapter are almost the only
cases where the angular momentum and its
rate of change are so easy to calculate.

⇀
HC ≡ ∑

(
⇀
ri/C × mi

⇀
v i ) = ⇀

r cm/C × (mtotal
⇀
vcm),

˙⇀HC ≡ ∑
(

⇀
ri/C × mi

⇀
a i ) = ⇀

r cm/C × (mtotal
⇀
acm).

Approach

To study systems in straight-line motion (as always) we:

• draw a free body diagram, showing the appropriate forces and couples at places
where connections are ‘cut’,

• state reasonable kinematic assumptions based on the motions that the con-
straints allow,

• write linear and/or angular momentum balance equations and/or energy bal-
ance, and

• solve for quantities of interest.

Angular momentum balance about a judiciously chosen axis is a particularly useful
tool for reducing the number of equations that need to be solved.

Example: Plate on a cart

G
D

B

FBD of the plate

2

1

F

mg

3� 4�

2�

D

E

A

B C

hinge
cart

rod

ı̂

̂

⇀
RB

TDE

λ̂DE

Figure 6.22: Uniform plate supported by
a hinge and a rod on an accelerating cart.

(Filename:tfigure3.2D.guyed)

A uniform rectangular plate ABC D of mass m is supported by a light
rigid rod DE and a hinge joint at point B. The dimensions are as shown.
The cart has acceleration ax ı̂ due to a force F ı̂ and the constraints of the

6.1 THEORY
Calculation of

⇀
HC and ˙⇀HC for straight-line motion

For straight-line motion, and parallel motion in general, we can
derive the simplification in the calculation of

⇀
H C as follows:

⇀
H C ≡

∑
⇀
ri/C × mi

⇀
v i ( definition)

=
∑

⇀
ri/C × mi

⇀
vcm (since, ⇀

v i = ⇀
vcm)

=
(∑

⇀
ri/C mi

)
× ⇀

vcm,

= ⇀
rcm/C × (mtot

⇀
vcm),

( since,
∑ ⇀

ri/C mi ≡ mtot
⇀
rcm/C).

The derivation that
⇀̇
H C = ⇀

rcm/C × (m
⇀
acm) follows from

⇀̇
H C ≡∑ ⇀

ri/C × mi
⇀
a i by the same reasoning.
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wheels. Referring to the free body diagram in figure 6.22 and writing
angular momentum balance for the plate about point B, we can get an
equation for the tension in the rod TDE in terms of m and ax :

∑
⇀
M/B = ˙⇀H /B{

⇀
r D/B × (TDE λ̂DE ) + ⇀

r G/B × (−mg̂) = ⇀
r G/B × (max ı̂)

}
{ } · k̂ ⇒ TDE =

√
5

7
m(ax − 3

2
g).

✷

Summarizing note:

angular momentum balance is important even when there is no rotation.

Sliding and pseudo-sliding objects
A car coming to a stop can be roughly modeled as a rigid body that translates and
does not rotate. That is, at least for a first approximation, the rotation of the car due
to the suspension and tire deformation, can be neglected. The free body diagram
will show various forces with lines of action that do not all act through a single point
so that angular momentum balance must be used to analyze the system Similarly, a
bicycle which is braking or a box that is skidding (if not tipping) may be analyzed by
assuming straight-line motion.

Example: Car skidding

Consider the accelerating four-wheel drive car in figure 6.23. The

cm

mg

C

Fy

FxRx
Ry 

FBD

ı̂

̂

⇀
acm = aı̂

Figure 6.23: A four-wheel drive car ac-
celerating but not tipping. See fig. 6.24 on
page 347 for more about FBDs involving
wheel contact.

(Filename:tfigure3.4wd.car)

motion quantities for the car are ˙⇀L = mcar
⇀
acar and ˙⇀HC = ⇀

r cm/C ×
⇀
acar mcar . We could calculate angular momentum balance relative to the
car’s center of mass in which case

∑ ⇀
Mcm = ˙⇀H cm = ⇀

0 (because the
position of the center of mass relative to the center of mass is

⇀

0). ✷

As mentioned, it is often useful to calculate angular momentum balance of sliding
objects about points of contact (such as where tires contact the road) or about points
that lie on lines of action of applied forces when writing angular momentum balance
to solve for forces or accelerations. To do so usually eliminates some unknown
reactions from the equations to be solved. For example, the angular momentum
balance equation about the rear-wheel contact of a car does not contain the rear-
wheel contact forces.

Wheels

The function of wheels is to allow easy sliding-like (pseudo-sliding) motion between
objects, at least in the direction they are pointed. On the other hand, wheels do
sometimes slip due to:

• being overpowered (as in a screeching accelerating car),
• being braked hard, or
• having very bad bearings (like a rusty toy car).
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How wheels are treated when analyzing cars, bikes, and the like depends on both the
application and on the level of detail one requires. In this chapter, we will always
assume that wheels have negligible mass. Thus, when we treat the special case of
un-driven and un-braked wheels our free body diagrams will be as in figure 3.20 on
page 94 and not like the one in figure ?? on page ??. With the ideal wheel approxi-
mation, all of the various cases for a car traveling to the right are shown with partial
free body diagrams of a wheel in figure 6.24. For the purposes of actually solving
problems, we have accepted Coulomb’s law of friction as a model for contacting
interaction (see pages 90-92).

3-D forces in straight-line motion
The ideas we have discussed apply as well in three dimensions as in two. As you
learned from doing statics problems, working out the details in 3D, where vector
methods must be used carefully, is more involved than in 2D. As for statics, three
dimensional problems often yield simple results and simple intuitions by considering
angular momentum balance about an axis.

Angular momentum balance about an axis

The simplest way to think of angular momentum balance about an axis is to look
at angular momentum balance about a point and then take a dot product with a unit
vector along an axis:

λ̂ ·
{∑

⇀
M/C = ˙⇀H /C

}
.

Note that the axis need not correspond to any mechanical device in any way resembling
and axle. The equation above applies for any point C and any vector λ̂. If you choose
C and λ̂ judiciously many terms in your equations may drop out.

µN µN

F ≤ µN F ≤ µN

N
F

N N
F

N N

braking with
skidding

braking with
no skidding

coasting
un-driven and

un-braked
driven but 

not skidding
driven and

over-powered
( )

Figure 6.24: Partial free body diagrams of wheel in a braking or accelerating car that is pointed
and moving to the right. The force of the ground on the tire is shown. But the forces of the axle,
gravity, and brakes on the wheel are not shown. An ideal point-contact wheel is assumed.

(Filename:tfigure3.2.car.breaking)
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SAMPLE 6.6 Force in braking. A front-wheel-drive car of mass m = 1200 kg is
cruising at v = 60 mph on a straight road when the driver slams on the brake. The car
slows down to 20 mph in 4 s while maintaining its straight path. What is the average
force (average in time) applied on the car during braking?

Solution Let us assume that we have an xy coordinate system in which the car

mg

Fy

Fx

Ry

ı̂

̂
⇀
vFBD

Figure 6.25: Free body diagram of a
front-wheel-drive car during braking. Note
that we have (arbitrarily) pointed Fx to the
right. The algebra in this problem will tell
us that Fx < 0.

(Filename:sfig2.6.3a)

is traveling along the x-axis during the entire time under consideration. Then, the
velocity of the car before braking, ⇀

v1, and after braking, ⇀
v2, are

⇀
v1 = v1 ı̂ = 60 mph ı̂
⇀
v2 = v2 ı̂ = 20 mph ı̂.

The linear impulse during braking is
⇀
F ave�t where

⇀
F ≡ Fx ı̂ (see free body diagram

of the car). Now, from the impulse-momentum relationship,

⇀
F�t = ⇀

L2 − ⇀
L1,

where
⇀
L1 and

⇀
L2 are linear momenta of the car before and after braking, respectively,

and
⇀
F is the average applied force. Therefore,

⇀
F = 1

�t
(

⇀
L2 − ⇀

L1)

= m

�t
(

⇀
v2 − ⇀

v1)

= 1200 kg

4 s
(20 − 60) mphı̂

= −12000
kg

s
· 	mi

	hr
· 1600 m

1 	mi
· 1 	hr

3600 s
ı̂

= −16, 000

3
kg · m/s2 ı̂

= −5.33 kNı̂.

Thus

Fx ı̂ = −5.33 kNı̂

⇒ Fx = −5.33 kN.

Fx = −5.33 kN
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SAMPLE 6.7 Sliding to a stop. A block of mass m = 2.5 kg slides down a

m

A B

1m

5m

1

2

Figure 6.26: (Filename:sfig2.9.1a)

frictionless incline from a 5 m height. The block encounters a frictional bed AB of
length 1 m on the ground. If the speed of the block is 9 m/s at point B, find the
coefficient of friction between the block and the frictional surface AB.

Solution We divide the problem in two parts: We first find the speed of the block as
it reaches point A using conservation of energy for its motion on the inclined surface,
and then use the work-energy principle to find the speed at B. Let the ground level
be the datum for potential energy and let v be the speed at A. For the motion on the
incline;

(EK)1 + (EP)1 = (EK)2 + (EP)2

0 + mgh = 1

2
mv2 + 0

⇒ v =
√

2gh

=
√

2 · 9.81 m/s2 · 5 m

= 9.90 m/s.

Now, as the block slides on the surface AB, a force of friction = µ N = µmg (since

m

mg

N

µkN

ı̂

̂

Figure 6.27: Free body diagram of the
block on the frictional surface.

(Filename:sfig2.9.1b)

N = mg, from linear momentum balance in the vertical direction) opposes the motion
(see Fig. 8.57). Work done by this force on the block is

W = ⇀
F · �

⇀
r

= −µmgı̂ · (1 m)ı̂

= −µmg(1 m).

From the work-energy relationship (e.g., see the inside cover) we have,

W = �EK = (EK)2 − (EK)1

⇒ (EK)2 = (EK)1 + W
1

2
mv2

B = 1

2
mv2 − µmg(1 m)

−µmg(1 m) = 1

2
m(v2

B − v2)

⇒ µ = 1

2g(1 m)
(v2

B − v2)

= (9.90 m/s)2 − (9 m/s)2

2 · 9.81 m/s2 · 1 m
= 0.87

µ = 0.87
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SAMPLE 6.8 A suitcase skidding on frictional ground. A suitcase of mass m is

L

h

m

µ

Figure 6.28: A suitcase in motion.
(Filename:sfig3.5.1)

pushed and sent sliding on a horizontal surface. The suitcase slides without any
rotation. A and B are the only contact points of the suitcase with the ground. If the
coefficient of friction between the suitcase and the ground is µ, find all the forces
applied by the ground on the suitcase. Discuss the results obtained for normal forces.

Solution As usual, the first thing we do is draw a free body diagram of the suitcase.
The FBD is shown in Fig. 6.29. Assuming Coulomb’s law of friction holds, we can

L

h

mg
N1 N2

f1 f2A B

C

D

ı̂

̂

Figure 6.29: FBD of the suitcase.
(Filename:sfig3.5.1a)

write
⇀
F 1 = −µN1 ı̂ and

⇀
F 2 = −µN2 ı̂. (6.25)

Now we write the balance of linear momentum for the suitcase:∑
⇀
F = m ⇀

a

⇒ − (F1 + F2)ı̂ + (N1 + N2 − mg)̂ = maı̂ (6.26)

where ⇀
a = aı̂ is the unknown acceleration. Dotting eqn. (6.26) with ı̂ and ̂ and

substituting for F1 and F2 from eqn. (6.25) we get

−µ(N1 + N2) = ma (6.27)

N1 + N2 = mg (6.28)

Equations (6.27) and (6.28) represent 2 scalar equations in three unknowns N1, N2
and a. Obviously, we need another equation to solve for these unknowns.

We can write the balance of angular momentum about any point. Points A or
B are good choices because they each eliminate some reaction components. Let us
write the balance of angular momentum about point A:∑

⇀
MA = ˙⇀HA

∑
⇀
MA = ⇀

r B/A × N2̂ + ⇀
r D/A × (−mg)̂

= L ı̂ × N2̂ + L

2
ı̂ × (−mg)̂

= (L N2 − mg
L

2
)k̂ (6.29)

and

˙⇀HA = ⇀
r cm/A × m ⇀

a (6.30)

= (
L

2
ı̂ + h̂) × maı̂

= −mahk̂ (6.31)

Equating (6.29) and (6.31) and dotting both sides with k̂ we get the following third
scalar equation:

L N2 − mg
L

2
= −mah. (6.32)

Solving eqns. (6.27) and (6.28) for a we get

a = −µg

and substituting this value of a in eqn. (6.32) we get

N2 = mµgh + mgL/2

L

= mg

(
1

2
+ h

L
µ

)
.
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Substituting the value of N2 in either of the equations (6.27) or (6.28) we get

N1 = mg

(
1

2
− h

L
µ

)
.

N1 = mg( 1
2 − h

L µ), N2 = mg( 1
2 + h

L µ), f1 = µN1, f2 = µN2.

Discussion: From the expressions for N1 and N2 we see that

(a) N1 = N2 = 1
2 mg if µ = 0 because without friction there is no deceleration.

The problem becomes equivalent to a statics problem.
(b) N1 = N2 ≈ 1

2 mg if L >> h. In this case, the moment produced by the
friction forces is too small to cause a significant difference in the magnitudes
of the normal forces. For example, take L = 20h and calculate moment about
the center of mass to convince yourself.
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SAMPLE 6.9 Uniform acceleration of a board in 3-D. A uniform sign-board of mass
a

hinge

ball and socket

R P 'sA R T W O R K S

I

b

c

d

c-e

G
O

H

ı̂̂
k̂

Figure 6.30: An accelerating board in 3-
D

(Filename:sfig3.5.2)

m = 20 kg sits in the back of an accelerating flatbed truck. The board is supported
with ball-and-socket joint at O and a hinge at G. A light rod from H to I keeps the
board from falling over. The truck is on level ground and has forward acceleration
⇀
a = 0.6 m/s2 ı̂. The relevant dimensions are b = 1.5 m, c = 1.5 m, d = 3 m, e =
0.5 m. There is gravity (g = 10 m/s2).

(a) Draw a free body diagram of the board.
(b) Set up equations to solve for all the unknown forces shown on the FBD.
(c) Use the balance of angular momentum about an axis to find the tension in the

rod.

Solution

(a) The free body diagram of the board is shown in Fig. 6.31.

R P 'sA R T W O R K S

H

G

O

C

T

Gz
Oy

Oz
Ox

Gy

Gx mg

ı̂̂
k̂

Figure 6.31: FBD of the board
(Filename:sfig3.5.2a)

(b) Linear momentum balance for the board:∑
⇀
F = m ⇀

a, or

(Gx + Ox )ı̂ + (G y + Oy)̂ + (Gz + Oz − mg)k̂ + T λ̂H I = maı̂ (6.33)

where

λ̂H I = d ı̂ + b̂ + ek̂√
d2 + b2 + e2

= d ı̂ + b̂ + ek̂

�
,

and where � is the length of the rod HI.
Dotting eqn. (6.33) with ı̂, ̂ and k̂ we get the following three scalar equations:

Gx + Ox + T
d

�
= ma (6.34)

G y + Oy + T
b

�
= 0 (6.35)

Gz + Oz + T
e

�
= mg (6.36)

Angular momentum balance about point G:∑
⇀
M/G = ˙⇀H /G

∑
⇀
M/G = ⇀

r C/G × (−mgk̂) + ⇀
r O/G × (Ox ı̂ + Oz k̂) + ⇀

r H/G × T λ̂H I

= (−b

2
̂ + c − e

2
k̂) × (−mgk̂) − b̂ × (Ox ı̂ + Oz k̂)

+[−b̂ + (c − e)k̂] × T

�
(d ı̂ + b̂ + ek̂)

=
(

b

2
mg − bOy − be

T

�
− (c − e)b

T

�

)
ı̂

+(c − e)d
T

�
̂ +

(
bOx + bd

T

�

)
k̂ (6.37)

and

˙⇀H /G = ⇀
r C/G × maı̂

= (−b

2
̂ + c − e

2
k̂) × maı̂

= b

2
mak̂ + c − e

2
ma̂ . (6.38)
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Equating (6.37) and (6.38) and dotting both sides with ı̂, ̂ and k̂ we get the
following three additional scalar equations:

G y + Oy + c

�
T = 1

2
mg (6.39)

d

�
T = 1

2
ma (6.40)

Ox + d

�
T = 1

2
ma (6.41)

Now we have seven scalar equations for six unknowns — Ox , G y +
Oy, Oz, Gx , Gz, and T . Note, however, that G y and Oy appear as the sum
G y + Oy . That is, they cannot be found independently. This mathematical
problem corresponds to the physical circumstance that the supports at points O
and G could be squeezing the plate along the line OG with, say, Oy = 1000 lbf
and G y = −1000 lbf. To make problems like this tractable, people often make
assumptions like, ‘Assume G y = 0’. Fortunately, no one asked us to find Oy

or G y and we can find the tension in the wire H I without adding assumptions
about the pre-stress in the structure.

(c) Balance of angular momentum about axis OG gives:

λ̂OG ·
∑

⇀
M/G = λ̂OG · ˙⇀H /G

= λ̂OG · (
⇀
r C/G × maı̂). (6.42)

Since all reaction forces and the weight go through axis OG, they do not produce
any moment about this axis (convince yourself that the forces from the reactions
have no torque about the axis by calculation or geometry). Therefore,

λ̂OG ·
∑

⇀
M/G = ̂ · (

⇀
r H/G × T λ̂H I )

= T
d(c − e)

�
. (6.43)

λ̂OG · (
⇀
r C/G × maı̂) = ̂ ·

[
(
b

2
̂ + c − e

2
k̂) × maı̂

]

= ma
(c − e)

2
. (6.44)

Equating (6.43) and (6.44), we get

T = ma�

2d

= 20 kg · 0.5 m/s2 · 3.39 m

2 · 3 m
= 6.78 N.

TH I = 6.78 N
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SAMPLE 6.10 Computer solution of algebraic equations. In the previous sample
problem (Sample 6.9), six equations were obtained to solve for the six unknown
forces (assuming G y = 0). (i) Set up the six equations in matrix form and (ii) solve
the matrix equation on a computer. Check the solution by substituting the values
obtained in one or two equations.

Solution

(a) The six scalar equations — (6.34), (6.35), (6.36), (6.39), (6.40), and (6.41) are
amenable to hand calculations. We, however, set up these equations in matrix
form and solve the matrix equation on the computer. The matrix form of the
equations is:



1 0 0 1 0 d
�

0 1 0 0 0 b
�

0 0 1 0 1 e
�

0 1 0 0 0 c
�

0 0 0 0 0 d
�

1 0 0 0 0 d
�







Ox

Oy

Oz

Gx

Gz

T




=




ma
0

mg
mg/2
ma/2
ma/2




. (6.45)

The above equation can be written, in matrix notation, as

A x = b

where A is the coefficient matrix, x is the vector of the unknown forces, and b
is the vector on the right hand side of the equation. Now we are ready to solve
the system of equations on the computer.

(b) We use the following pseudo-code to solve the above matrix equation. 1©1© Be careful with units. Most computer
programs will not take care of your units.
They only deal with numerical input and
output. You should, therefore, make sure
that your variables have proper units for the
required calculations. Either do dimension-
less calculations or use consistent units for
all quantities.

m = 20, a = 0.6,
b = 1.5, c = 1.5, d = 3, e = 0.5, g = 10,
l = sqrt(b^2 + d^2 + e^2),

A = [1 0 0 1 0 d/l
0 1 0 0 0 b/l
0 0 1 0 1 e/l
0 1 0 0 0 c/l
0 0 0 0 0 d/l
1 0 0 0 0 d/l]

b = [m*a, 0, m*g, m*g/2, m*a/2, m*a/2]’

{Solve A x = b for x}

x = % this is the computer output
0

-3.0000
97.0000
6.0000

102.0000
6.7823

The solution obtained from the computer means:

Ox = 0, Oy = −3 N, Oz = 97 N, Gx = 6 N, Gz = 102 N, T = 6.78 N.
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We now hand-check the solution by substituting the values obtained in, say,
Eqns. (6.35) and (6.40). Before we substitute the values of forces, we need to calculate
the length �.

� =
√

d2 + b2 + e2

= 3.3912 m.

Therefore,

Eqn. (6.35): Oy + T
b

�
= −3 N + 6.78 N · 1.5 m

3.3912 m√
= 0,

Eqn. (6.40):
d

�
T − 1

2
ma = 3 m

3.3912 m
6.78 N − 1

2
20 kg 0.6 m/s2

√
= 0.

Thus, the computer solution agrees with our equations.
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SAMPLE 6.11 Zero length springs do interesting things. A small ball of mass m

A

B

C

�

θ θ

Figure 6.32: A small ball of mass m is
supported by a string and a zero length (in
relaxed position) spring. The string is sud-
denly cut.

(Filename:sfig6.4.2)

is supported by a string AB of length � and a spring BC with spring stiffness k. The
spring is relaxed when the mass is at C (BC is a zero length spring). The spring and
the string make the same angle θ with the horizontal in the static equilibrium of the
mass. At this position, the string is suddenly cut near the mass point B. Find the
resulting motion of the mass.

Solution The Free Body Diagrams of the mass are shown in Fig. 6.33(a) and
(b) before and after the string is cut. Since the stretch in the spring, in the static
equilibrium position of the mass, is equal to the length of the string,

⇀
F b = k�λ̂BC .

linear momentum balance (
∑ ⇀

F = m ⇀
a) for the mass in the static position gives

B FaB

mg

T

(c) geometry(a) FBD before AB is cut

C

(b) FBD after AB is cut

Fb

Fa

mg mg

θ

ı̂

̂

� x

y

Figure 6.33: Free Body Diagram of the ball (a) before the string is cut, (b) sometime after the string
is cut, and (c) the geometry at the moment of interest.

(Filename:sfig6.4.2a)

(Fb cos θo − T cos θo)ı̂ + (Fb sin θo + T sin θo − mg)̂ = ⇀

0.

The x and y components of this equation give

Fb = T,

(Fb + T ) sin θo = mg.

Substituting Fb = T in the second equation and replacing Fb by k� we get

2kl sin θo = mg

or θo = sin−1 mg

2k�
. (6.46)

After the string is cut, let the mass be at some general angular position θ . Let the
stretch in the spring at this position be �. Then, the Linear Momentum Balance for
the mass may be written as ∑

⇀
F = m ⇀

a

where (refer to Fig. 6.33(c))∑
⇀
F = Fa cos θ ı̂ + (Fa sin θ − mg)̂

= k� cos θ ı̂ + (k� sin θ − mg)̂

But, � cos θ = −x and � sin θ = −y. Therefore,

∑
⇀
F = −kx ı̂ + (−ky − mg)̂ ,

⇀
a = ẍ ı̂ + ÿ̂ .
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Now, substituting the expressions for
∑ ⇀

F and ⇀
a in the Linear Momentum Balance

equation and dotting both sides with ı̂ and ̂ we get

(
∑

⇀
F = m ⇀

a) · ı̂ ⇒ ẍ + k

m
x = 0 (6.47)

(
∑

⇀
F = m ⇀

a) · ̂ ⇒ ÿ + k

m
y = −g. (6.48)

Unbelievable!! Two such nasty looking nonlinear, coupled equations (??) and (??)
in polar coordinates become so simple, friendly looking linear, uncoupled equa-
tions (6.47) and (6.48) in cartesian coordinates. We can now write the solutions of
these second order ODE’s:

x(t) = A sin(λt) + B cos(λt),

y(t) = C sin(λt) + D cos(λt) − mg

k
,

where A B C and D are constants and λ = √
k/m. We need initial conditions to

evaluate the constants A B C and D. Since the mass starts at t = 0 from the rest
position when θ = θo,

x(0) = −� cos θo and ẋ(0) = 0,

y(0) = −� sin θo and ẏ(0) = 0.

Substituting these initial conditions in the solutions above, we get

x(t) = −(� cos θo) cos(
√

(k/m)t),

y(t) = −(� sin θo − mg

k
) cos(

√
(k/m)t) − mg

k
.

From these equations, we can relate x and y by eliminating the cosine term, i.e.,

x(t)

� cos θo
= y(t) + (mg/k)

� sin θo − (mg/k)

or y(t) = � sin θo − (mg/k)

� cos θo
x(t) − mg

k

which is the equation of a straight line passing through the vertical equilibrium position
y = −mg/k. Thus the mass moves along a straight line! 1© 1© By choosing appropriate initial condi-

tions, you can show that there are other
straight line motions (for example, just hor-
izontal or vertical motions) and motions on
elliptic paths.
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7 Circular motion

Oω
⇀
vA

⇀
vB

⇀
vC

Figure 7.1: All the points on a gear move
in circles, assuming the axle is stationary.

(Filename:tfigure4.1a)

When a rigid object moves, it translates and rotates. In general, the points on the
body move on complicated paths. When considering the unconstrained motions of
particles in chapter 5, such as the motion of a thrown ball, we observed such curved
paths. Things which are constrained to translate in straight lines were covered in the
previous chapter. Now we would like to consider motion that may be constrained to a
curved path. More specifically, this chapter concerns mechanics when particles move
on the archetypal curved path, a circle. Circular motion deserves special attention
because

• the most common connection between moving parts on a machine is with a
bearing (or hinge or axle) (Fig. 7.1), if the axle on one part is fixed then all
points on the part move in circles;

• circular motion is the simplest case of curved-path motion;
• circular motion provides a simple way to introduce time-varying base vectors;
• in some sense, that you will appreciate with hind-sight, circular motion includes

all of the conceptual ingredients of more general curved motions;
• at least in 2 dimensions, the only way two particles on one rigid body can move

relative to each other is by circular motion (no matter how the body is moving);
and

• circular motion is the simplest case with which to introduce two important rigid
body concepts:

– angular velocity, and
– moment of inertia.

Because of some mixture of simplicity and natural applicability, useful calcula-
tions can be made for many things by approximating their motion as one for which

359
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all particles are going in circles. For example, a jet engine’s turbine blade, a car
engine’s crank shaft, a car’s wheel, a windmill’s propeller, the earth spinning about
its axis, points on a clock pendulum, a bicycle’s approximately circular path when
going around a corner, and a spinning satellite might all be reasonably approximated
by the assumption of circular motion.

This chapter concerns only motion in two dimensions. The next chapter discusses
circular motion in a three-dimensional context. The first two sections consider the
kinematics and mechanics of a single particle going in circles. The later sections
concern the kinematics and mechanics of rigid bodies.

For the systems in this chapter, we have, as always,

linear momentum balance,
∑

⇀
F i = ˙⇀L

angular momentum balance,
∑

⇀
M i/C = ˙⇀HC,

and power balance: P = ĖK + ĖP + Ėint.

The left hand sides of the momentum equations are found using the forces and couples
shown on the free body diagram of the system of interest; the right sides are evaluated
in terms of motion of the system. Because you already know how to work with forces
and moments, the primary new skill in this chapter is to learning to evaluate ˙⇀L, ˙⇀HC,
and ĖK for a rotating particle or rigid body. Towards this end, but also useful for
other purposes, you need to know the velocity and accelerations of points on a rigid
body in circular motion.

7.1 Kinematics of a particle in planar

circular motion

Trajectory of 
particle is a circle.

O
R

Figure 7.2: Trajectory of particle for cir-
cular motion.

(Filename:tfigure1.i)

x

t

R

0

y

t

R

0

x = R cos(ωt)

y = R sin(ωt)

2π/ω

Figure 7.3: Plots of x versus t and y ver-
sus t for a particle going in a circle of radius
R at constant rate. Both x and y vary as si-
nusoidal functions of time: x = R cos(ωt)
and y = R sin(ωt).

(Filename:tfigure1.h)

x

y

t

Circular path
of particle

x = R cos(ωt)

y = R sin(ωt)

0

0

0
R

Figure 7.4: Plot of x and y versus time
for a particle going in circles. x versus t is
the cosine curve, y versus t is the sine curve.
Together they make up the helical curve in
three-dimensional space.

(Filename:tfigure1.j)

Consider a particle on the xy plane going in circles around the origin at a constant
rate. One way of representing this situation is with the equation:

⇀
r = R cos(ωt)ı̂ + R sin(ωt)̂ ,

with R and ω constants. Another way is with the pair of equations:

x = R cos(ωt) and y = R sin(ωt).

How do we represent this motion graphically? One way is to plot the particle trajec-
tory, that is, the path of the particle. Figure 7.2 shows a circle of radius R drawn on
the xy plane. Note that this plot doesn’t show the speed the particle moves in circles.
That is, a particle moving in circles slowly and another moving quickly would both
would have the same plotted trajectory.

Another approach is to plot the functions x(t) and y(t) as in Fig. 7.3. This figure
shows how x and y vary in time but does not directly convey that the particle is going
in circles. How do you make these plots? Using a calculator or computer you can
evaluate x and y for a range of values of t . Then, using pencil and paper, a plotting
calculator, or a computer, plot x vs t , y vs t , and y vs x .

If one wishes to see both the trajectory and the time history of both variables one
can make a 3-D plot of xy position versus time (Fig. 7.3). The shadows of this curve
(a helix) on the three coordinate planes are the three graphs just discussed. How you
make such a graph with a computer depends on the software you use.

Finally, rather than representing time as a spatial coordinate, one can use time
directly by making an animated movie on a computer screen showing a particle on
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the xy plane as it moves. Move your finger around in circles on the table. That’s it.
These days, the solutions of complex dynamics problems are often presented with
computer animations.

θ

x

y

ı̂

̂

êr
êθ

⇀
R

Figure 7.5: A particle going in circles.
The position vector of the particle relative
to the center of the circle is

⇀
R. It makes an

angle θ measured counter-clockwise from
the positive x-axis. The unit vectors êR and
êθ are shown in the radial and tangential
directions, the directions of increasing R
and increasing θ .

(Filename:tfigure4.4)

θ

θ

1
x

y

ı̂

̂

�êθ

êθ

�θ
�θ �êR

êR

Figure 7.6: A close up view of the unit
vectors êR and êθ . They make an angle θ

with the positive x and y-axis, respectively.
As the particle advances an amount �θ both
êR and êθ change. In particular, for small
�θ , �êR is approximately in the êθ direc-
tion and �êθ is approximately in the −êR
direction.

(Filename:tfigure4.5)

θ

cos θ ̂

êθ

êR

cos θ ı̂

sin θ ̂

-sin θ ı̂

Figure 7.7: Projections of êR and êθ in
the x and y directions

(Filename:tfigure4.5a)

The velocity and acceleration of a point going in circles: polar
coordinates
Let’s redraw Fig. 7.3 but introduce unit base vectors êR and êθ in the direction of
the position vector

⇀
R and perpendicular to

⇀
R. At any instant in time, the radial unit

vector êR is directed from the center of the circle towards the point of interest and the
transverse vector êθ , perpendicular to êR , is tangent to the circle at that point. As the
particle goes around, its êR and êθ unit vectors change. Note also, that two different
particles both going in circles with the same center at the same rate each have their
own êR and êθ vectors. We will make frequent use the polar coordinate unit vectors
êR and êθ .

Here is one of many possible ways to derive the polar-coordinate expressions
for velocity and acceleration. First, observe that the position of the particle is (see
figure 7.5)

⇀
R = RêR . (7.1)

That is, the position vector is the distance from the origin times a unit vector in the
direction of the particle’s position. Given the position, it is just a matter of careful
differentiation to find velocity and acceleration. First, velocity is the time derivative
of position, so

⇀
v = d

dt

⇀
R = d

dt
(RêR) = Ṙ︸︷︷︸

0

êR + R ˙̂eR .

Because a circle has constant radius R, Ṙ is zero. But what is ˙̂eR , the rate of change
of êR with respect to time?

One way to find ˙̂eR uses the geometry of figure 7.6 and the informal calculus of
finite differences (represented by �). �êR is evidently (about) in the direction êθ

and has magnitude �θ so �êR ≈ (�θ)êθ . Dividing by �t , we have �êR/�t ≈
(�θ/�t)êθ . So, using this sloppy calculus, we get ˙̂eR = θ̇ êθ . Similarly, we could
get ˙̂eθ = −θ̇ êR .

Alternatively, we can be a little less geometric and a little more algebraic, and use
the decomposition of êR and êθ into cartesian coordinates. These decompositions
are found by looking at the projections of êR and êθ in the x and y-directions (see
figure 7.7).

êR = cos θ ı̂ + sin θ ̂ (7.2)

êθ = − sin θ ı̂ + cos θ ̂
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So to find ˙̂eR we just differentiate, taking into account that θ is changing with time
but that the unit vectors ı̂ and ̂ are fixed (so they don’t change with time).

˙̂eR = d

dt
(cos θ ı̂ + sin θ ̂) = −θ̇ sin θ ı̂ + θ̇ cos θ ̂ = θ̇ êθ

˙̂eθ = d

dt
(− sin θ ı̂ + cos θ ̂) = −θ̇ êR

We had to use the chain rule, that is

d sin θ(t)

dt
= d sin θ

dθ

dθ(t)

dt
= θ̇ cos θ.

Now, two different ways, we know

˙̂eR = θ̇ êθ and ˙̂eθ = −θ̇ êR (7.3)

so we can find ⇀
v ,

⇀
v = ˙⇀R = R ˙̂eR = Rθ̇ êθ . (7.4)

Similarly we can find ¨⇀R by differentiating once again,

⇀
a = ¨⇀R = ˙⇀v = d

dt
(Rθ̇ êθ ) = Ṙθ̇ êθ︸ ︷︷ ︸

⇀

0

+Rθ̈ êθ + Rθ̇ ˙̂eθ (7.5)

The first term on the right hand side is zero because Ṙ is 0 for circular motion. The
third term is evaluated using the formula we just found for the rate of change of êθ :
˙̂eθ = −θ̇ êR . So, using that

⇀
R = RêR ,

⇀
a == −θ̇2 ⇀

R + Rθ̈ êθ . (7.6)

The velocity ⇀
v and acceleration ⇀

a are shown for a particle going in circles at
constant rate in figure 7.8.

θ

x

y

ı̂

̂
R

⇀
v

⇀
a

O

Figure 7.8: The directions of velocity ⇀
v

and acceleration ⇀
a are shown for a parti-

cle going in circles at constant rate. The
velocity is tangent to the circle and the ac-
celeration is directed towards the center of
the circle.
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Example: A person standing on the earth’s equator
êθ

θ̇ = 1 rev/day
⇀
v = ˙ ê

⇀
a = -θ̇2R êR

êR

θθR

Figure 7.9: (Filename:tfigure4.1.example1)

A person standing on the equator has velocity

⇀
v = θ̇ Rêθ ≈

(
2π rad

24 hr

)
4000 miêθ

≈ 1050 mphêθ ≈ 1535 ft/sêθ

and acceleration

⇀
a = −θ̇2 RêR ≈ −

(
2π rad

24 hr

)2

4000 miêR

≈ −274 mi/ hr2êR ≈ −0.11 ft/s2êR .
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The velocity of a person standing on the equator, due to the earth’s
rotation, is about 1000 mph tangent to the earth. Her acceleration is
about 0.11 ft/s2 towards the center of the earth, about 1/300 of g, the
inwards acceleration of a person in frictionless free-fall. ✷

Another derivation of the velocity and acceleration formulas

We now repeat the derivation for velocity and acceleration, but more concisely. The
position of the particle is

⇀
R = RêR . Recall that the rates of change of the polar base

vectors are ˙̂eR = θ̇ êθ and ˙̂eθ = −θ̇ êR . We find the velocity by differentiating the
position with respect to time, keeping R constant.

⇀
v = d

dt

⇀
R = d

dt
(RêR) = Ṙ︸︷︷︸

0

êR + R ˙̂eR

= ˙⇀R = R ˙̂eR = Rθ̇ êθ

We find the acceleration ⇀
a by differentiating again,

ı̂

̂

x

y

R

O

⇀
aθ

⇀
a R

⇀
a

⇀
v

Figure 7.10: The directions of velocity
⇀
v and acceleration ⇀

a are shown for a par-
ticle going in circles at variable rate. The
velocity is tangent to the circle and the ac-
celeration is the sum of two components:
one directed towards the center of the circle
and one tangent to the circle.

(Filename:tfigure5.6)

⇀
a = ¨⇀R = ˙⇀v = d

dt
(Rθ̇ êθ )

= (Ṙθ̇ êθ ) + (Rθ̈ êθ ) + (Rθ̇

−θ̇ êR︷︸︸︷
˙̂eθ )

= −(θ̇)2 RêR + θ̈ Rêθ = −(v2/R)êR + v̇êθ .

Thus, the formulas for velocity and acceleration of a point undergoing variable rate
circular motion in 2-D are:

⇀
v = Rθ̇ êθ

⇀
a = −v2

R
êR + v̇êθ ,

where v̇ is the rate of change of tangential speed 1©. 1©Caution: Note that the rate of change
of speed is not the magnitude of the ac-
celeration: v̇ 	= |⇀a | or in other words:
d
dt |

⇀
v | 	= | d

dt
⇀
v |. Consider the case of a

car driving in circles at constant rate. Its
rate of change of speed is zero, yet it has an
acceleration.

The rotation θ can vary with t arbitrarily, depending on the problem at hand.
For uniform rotational acceleration, d

dt ω = α = constant, the following formulas
are useful for some elementary problems:

ω(t) = ω0 + αt, and (7.7)

θ(t) = θ0 + ω0t + 1

2
αt2. (7.8)

You can also write the above formulas in terms of θ̇ , θ̈ , etc., by simply substituting θ̇

for ω and θ̈ for α (see samples).
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The motion quantities
We can use our results for velocity and acceleration to better evaluate the momenta and
energy quantities. These results will allow us to do mechanics problems associated
with circular motion. For one particle in circular motion.

⇀
L = ⇀

vm = Rθ̇ êθ m,
˙⇀L = ⇀

am = (−θ̇2 ⇀
R + Rθ̈ êθ )m,

⇀
HO = ⇀

r /0 × ⇀
vm = R2θ̇mk̂,

˙⇀HO = ⇀
r /0 × ⇀

am = R2θ̈mk̂,

EK = 1
2v2m = 1

2 R2θ̇2m, and
ĖK = ⇀

v · ⇀
a m = m R2θ̇ θ̈

We have used the fact that êR × êθ = k̂ which can be verified with the right hand rule
definition of the cross product or using the Cartesian representation of the polar base
vectors.
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SAMPLE 7.1 The velocity vector. A particle executes circular motion in the xy
plane with constant speed v = 5 m/s. At t = 0 the particle is at θ = 0. Given that
the radius of the circular orbit is 2.5 m, find the velocity of the particle at t = 2 sec.

Solution It is given that

R = 2.5 m

v = constant = 5 m/s

θ(t=0) = 0.

The velocity of a particle in constant-rate circular motion is:

⇀
v = Rθ̇ êθ

where êθ = − sin θ ı̂ + cos θ ̂ .

Since R is constant and v = |⇀
v | = Rθ̇ is constant,

θ̇ = v

R
= 5 m/s

2.5 m
= 2

rad

s

is also constant.

Thus ⇀
v (t=2 s) = Rθ̇︸︷︷︸

v

êθ |t=2 s = 5 m/s êθ(t=2 s).

Clearly, we need to find êθ at t = 2 sec.

Now θ̇ ≡ dθ
dt = 2 rad/s

⇒ ∫ θ

0 dθ =
∫ 2 s

0
2 rad/s dt

⇒ θ = (2 rad/s) t |2 s
0

= 2 rad/s·2 s

= 4 rad.

Therefore,

x

y

θ = 4 rad
t = 0

t = 2 s

 = êθ
⇀
v v

Figure 7.11: (Filename:sfig4.1.DH)

êθ = − sin 4ı̂ + cos 4̂

= 0.76ı̂ − 0.65̂ ,

and

⇀
v (2 s) = 5 m/s(0.76ı̂ − 0.65̂)

= (3.78ı̂ − 3.27̂) m/s.

⇀
v = (3.78ı̂ − 3.27̂) m/s
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SAMPLE 7.2 Basic kinematics: A point mass executes circular motion with angular
acceleration θ̈ = 5 rad/s2. The radius of the circular path is 0.25 m. If the mass starts
from rest at θ = 0o, find and draw

(a) the velocity of the mass at θ = 0o, 30o, 90o, and 210o,
(b) the acceleration of the mass at θ = 0o, 30o, 90o, and 210o.

Solution We are given, θ̈ = 5 rad/s2, and R = 0.25 m.

(a) The velocity ⇀
v in circular (constant or non-constant rate) motion is given by:

⇀
v = Rθ̇ êθ .

So, to find the velocity at different positions we need θ̇ at those positions. Here
the angular acceleration is constant, i.e., θ̈ = 5 rad/s2. Therefore, we can use
the formula 1©1© We use this formula because we need

θ̇ at different values of θ . In elementary
physics books, the same formula is usually
written as

ω2 = ω2
0 + 2αθ

where α is the constant angular accelera-
tion.

θ̇2 = θ̇2
0 + 2θ̈ θ

to find the angular speed θ̇ at various θ ’s. But θ̇0 = 0 (mass starts from rest),
therefore θ̇ =

√
2θ̈ θ . Now we make a table for computing the velocities at

different positions:

x

y

30o

210o

0.81 m/s êθ

0.57 m/s êθ

1.51 m/s êθ

Figure 7.12: Velocity of the mass at
θ = 0o, 30o, 90o, and 210o.

(Filename:sfig5.1.1a)

Position (θ ) θ in radians θ̇ =
√

2θ̈ θ
⇀
v = Rθ̇ êθ

0o 0 0 rad/s
⇀

0

30o π/6
√

10π/6 = 2.29 rad/s 0.57 m/sêθ

90o π/2
√

10π/2 = 3.96 rad/s 0.99 m/sêθ

210o 7π/6
√

70π/6 = 2.29 rad/s 1.51 m/sêθ

The computed velocities are shown in Fig. 7.12.

(b) The acceleration of the mass is given by

⇀
a =

radial︷ ︸︸ ︷
aR êR +

tangential︷︸︸︷
aθ êθ

= −Rθ̇2êR + Rθ̈ êθ .

Since θ̈ is constant, the tangential component of the acceleration is constant at all
positions. We have already calculated θ̇ at various positions, so we can easily
calculate the radial (also called the normal) component of the acceleration.
Thus we can find the acceleration. For example, at θ = 30o,

⇀
a = −Rθ̇2êR + Rθ̈ êθ

= −0.25 m · 10π

6

1

s2 êR + 0.25 m · 5
1

s2 êθ

= −1.31 m/s2êR + 1.25 m/s2êθ .

Similarly, we find the acceleration of the mass at other positions by substituting
the values of R, θ̈ and θ̇ in the formula and tabulate the results in the table
below.
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Position (θ ) ar = −Rθ̇2 aθ = Rθ̈
⇀
a = ar êR + aθ êθ

0o 0 1.25 m/s2 1.25 m/s2êθ

30o −1.31 m/s2 1.25 m/s2 (−1.31êR + 1.25êθ ) m/s2

90o −3.93 m/s2 1.25 m/s2 (−3.93êR + 1.25êθ ) m/s2

210o −9.16 m/s2 1.25 m/s2 (−9.16êR + 1.25êθ ) m/s2

The accelerations computed are shown in Fig. 7.13. The acceleration vector
as well as its tangential and radial components are shown in the figure at each
position.

x

y

êR

êθ

êR êθ

êR

êθ

⇀
a

⇀
a

⇀
a

⇀
a

x

y

x

y

x

y

30o

210o

êθ

êR

Figure 7.13: Acceleration of the mass at θ = 0o, 30o, 90o, and 210o. The radial and tangential
components are shown with grey arrows. As the angular velocity increases, the radial component of
the acceleration increases; therefore, the total acceleration vector leans more and more towards the
radial direction.

(Filename:sfig5.1.1b)
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SAMPLE 7.3 In an experiment, the magnitude of angular deceleration of a spinning
ball is found to be proportional to its angular speed ω (ie., ω̇ ∝ −ω). Assume that
the proportionality constant is k and find an expression for ω as a function of t , given
that ω(t = 0) = ω0.

Solution The equation given is:

ω̇ = dω

dt
= −kω. (7.9)

Let us guess a solution of the exponential form with arbitrary constants and plug
into Eqn. (7.9) to check if our solution works. Let ω(t) = C1eC2t . Substituting in
Eqn. (7.9), we get

C1C2eC2t = −kC1eC2t

⇒ C2 = −k,

also, ω(0) = ω0 = C1eC2·0

⇒ C1 = ω0.

Therefore,

ω(t) = ω0e−kt . (7.10)

Alternatively,

dω

ω
= −k dt

or
∫ ω(t)

ω0

dω

ω
= −

∫ t

0
k dt

⇒ ln ω|ω(t)
ω0

= −kt

⇒ ln ω(t) − ln ω0 = −kt

⇒ ln

(
ω(t)

ω0

)
= −kt

⇒ ω(t)

ω0
= e−kt .

Therefore,
(7.11)

ω(t) = ω0 e−kt ,

which is the same solution as equation (7.10).

ω(t) = ω0 e−kt
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SAMPLE 7.4 Using kinematic formulae: The spinning wheel of a stationary exercise
bike is brought to rest from 100 rpm by applying brakes over a period of 5 seconds.

(a) Find the average angular deceleration of the wheel.
(b) Find the number of revolutions it makes during the braking.

Solution We are given,

θ̇0 = 100 rpm, θ̇final = 0, and t = 5 s.

(a) Let α be the average (constant) deceleration. Then

θ̇final = θ̇0 − αt.

Therefore,

α = θ̇0 − θ̇final

t

= 100 rpm − 0 rpm

5 s

= 100 rev

60 s
· 1

5 s

= 0.33
rev

s2 .

α = 0.33 rev
s2

(b) To find the number of revolutions made during the braking period, we use the
formula

θ(t) = θ0︸︷︷︸
0

+θ̇0t + 1

2
(−α)t2 = θ̇0t − 1

2
αt2.

Substituting the known values, we get

θ = 100 rev

60 s
· 5 s − 1

2
0.33

rev

s2 · 25 s2

= 8.33 rev − 4.12 rev

= 4.21 rev.

θ = 4.21 rev

Comments:

• Note the negative sign used in both the formulae above. Since α is decelera-
tion, that is, a negative acceleration, we have used negative sign with α in the
formulae.

• Note that it is not always necessary to convert rpm in rad/s. Here we changed
rpm to rev/ s because time was given in seconds.
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SAMPLE 7.5 Non-constant acceleration: A particle of mass 500 grams executes
circular motion with radius R = 100 cm and angular acceleration θ̈ (t) = c sin βt ,
where c = 2 rad/s2 and β = 2 rad/s.

(a) Find the position of the particle after 10 seconds if the particle starts from rest,
that is, θ(0) = 0.

(b) How much kinetic energy does the particle have at the position found above?

Solution

(a) We are given θ̈ (t) = c sin βt , θ̇ (0) = 0 and θ(0) = 0. We have to find θ(10 s).
Basically, we have to solve a second order differential equation with given
initial conditions.

θ̈ ≡ d

dt
(θ̇) = c sin βt

⇒
∫ θ̇ (t)

θ̇0=0
d θ̇ =

∫ t

0
c sin βτ dτ

θ̇(t) = − c

β
cos βτ

∣∣∣∣t

0
= c

β
(1 − cos βt).

Thus, we get the expression for the angular speed θ̇ (t). We can solve for the
position θ(t) by integrating once more:

θ̇ ≡ d

dt
(θ) = c

β
(1 − cos βt)

⇒
∫ θ(t)

θ0=0
dθ =

∫ t

0

c

β
(1 − cos βτ)

θ(t) = c

β

[
τ − sin βτ

β

]t

0

= c

β2 (βt − sin βt).

Now substituting t = 10 s in the last expression along with the values of other
constants, we get

θ(10 s) = 2 rad/s2

(2 rad/s)2 [2 rad/s · 10 s − sin(2 rad/s · 10 s)]

= 9.54 rad.

θ = 9.54 rad

(b) The kinetic energy of the particle is given by

EK = 1

2
mv2 = 1

2
m(Rθ̇ )2

= 1

2
m R2[

c

β
(1 − cos βt)︸ ︷︷ ︸

θ̇ (t)

]2

= 1

2
0.5 kg · 1 m2 ·

[
2 rad/s2

2 rad/s
· (1 − cos(20))

]2

= 0.086 kg · m2 · s2 = 0.086Joule.

EK = 0.086J
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7.2 Dynamics of a particle in circular

motion
m

T

FBD

�

θ

êRêθ

Figure 7.14: Point mass spinning in cir-
cles. Sketch of system and a free body dia-
gram.

(Filename:tfigure4.1.rockandstring)

The simplest examples of circular motion concern the motion of a particle constrained
by a massless connection to be a fixed distance from a support point.

Example: Rock spinning on a string

Neglecting gravity, we can now deal with the familiar problem of a point
mass being held in constant circular-rate motion by a massless string or
rod. Linear momentum balance for the mass gives:∑

⇀
F i = ˙⇀L

⇒ −T êR = m ⇀
a{−T êR = m(−θ̇2�êR)

}
{} · êR ⇒ T = θ̇2�m = (v2/�)m

The force required to keep a mass in constant rate circular motion is
mv2/� (sometimes remembered as mv2/R). ✷

The simple pendulum

θ �

Figure 7.15: The simple pendulum.
(Filename:tfigure5.spend)

θ

O

T

mg

ı̂

̂

êθ

êR

Figure 7.16: Free body diagram of the
simple pendulum.

(Filename:tfigure5.spend.fbd)

As a child’s swing, the inside of a grandfather clock, a hypnotist’s device, or a gallows,
the motion of a simple pendulum is a clear image to all of us. Galileo studied the
simple pendulum and it is a topic in freshman physics. Now a days the pendulum is
popular as an example of “chaos”; if you push a pendulum periodically its motions
can be wild. Pendula are useful as models of many phenomena from the swing of leg
joints in walking to the tipping of a chimney in an earthquake. Pendula also serve as
a simple example for many concepts in mechanics.

For starters, we consider a 2-D pendulum of fixed length with no forcing other
than gravity. All mass is concentrated at a point. The tension in the pendulum rod
acts along the length since it is a massless two-force body. Of primary interest is the
motion of the pendulum. First we find governing differential equations. Here are two
ways to get the equation of motion.

Method One: linear momentum balance in cartesian coordinates

The equation of linear momentum balance is

∑
⇀
F =

m
⇀
a︷︸︸︷
˙⇀L

Evaluating the left side (using the free body diagram) and right side (using the kine-
matics of circular motion), we get

− T êR + (−mg)̂ = m[�θ̈ êθ − �θ̇2êR] (7.12)

From the picture (or recalling) we see that êR = cos θ ı̂ + sin θ ̂ and êθ = cos θ ̂ −
sin θ ı̂. So, upon substitution into the equation above, we get

−T
(
cos θ ı̂ + sin θ ̂

) + mgı̂ = m
[
�θ̈

(
cos θ ̂ − sin θ ı̂

) − �θ̇2 (
cos θ ı̂ + sin θ ̂

)]
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Breaking this equation into its x and y components (by dotting both sides with ı̂ and
̂ , respectively) gives

−T cos θ + mg = −m�
(
θ̈ sin θ + θ̇2 cos θ

)
and (7.13)

−T sin θ = m�
(
θ̈ cos θ − θ̇2 sin θ

)
(7.14)

which are two simultaneous equations that we can solve for the two unknowns 1© T1© As always when seeking equations of
motion, we think of the rates and velocities
as knowns. Thus we take θ̇ as known. But
how do we know it? We don’t, but at any
instant in time we can find it as the integral
of θ̈ . More simply, regarding θ̇ as known
helps us write a set of differential equations
in a form suitable for seeking a solution (an-
alytically or by computer integration).

and θ̈ to get

θ̈ = −g

�
sin θ (7.15)

T = m[�θ̇2 + g cos θ ]. (7.16)

Method 2: linear momentum balance in polar coordinates

A more direct way to get the equation of motion is to take eqn. (7.12) and dot both
sides with êθ to get

−T êR · êθ︸ ︷︷ ︸
0

+ − mg ̂ · êθ︸ ︷︷ ︸
sin θ

= m�θ̈ êθ · êθ︸ ︷︷ ︸
1

−�θ̇2 êR · êθ︸ ︷︷ ︸
0

⇒ −mg sin θ = m�θ̈

so θ̈ = −g

�
sin θ.

Method Three: angular momentum balance

Using angular momentum balance, we can ‘kill’ the tension term at the start. Taking
angular momentum balance about the point O , we get∑

⇀
MO = ˙⇀HO

−mg� sin θ k̂ =
✂✂✍

�êR

⇀
r /O ×

❇❇�

�θ̈ êθ − �θ̇2êR

⇀
a m

−mg� sin θ k̂ = m�2θ̈ k̂

⇒ θ̈ = −g

�
sin θ

since êR × êR = 0 and êR × êθ = k̂. So, the governing equation for a simple
pendulum is

θ̈ = − g
�

sin θ

Small angle approximation (linearization)
For small angles, sin θ ≈ θ , so we have

θ̈ = −g

�
θ

for small oscillations. This equation describes a harmonic oscillator with g
�

replacing

the
√

k
m coefficient in a spring-mass system.
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The inverted pendulum

A pendulum with the mass-end up is called an inverted pendulum. By methods just
like we used for the regular pendulum, we find the equation of motion to be

θ̈ = g

�
sin θ

which, for small θ , is well approximated by

O

θ �

Figure 7.17: The inverted pendulum
(Filename:tfigure5.spend.inv)

θ̈ = g

�
θ.

As opposed to the simple pendulum, which has oscillatory solutions, this differential
equation has exponential solutions (θ = C1egt/� + C2e−gt/�), one term of which has
exponential growth, indicating the inherent instability of the inverted pendulum. That
is it has tendency to fall over when slightly disturbed from the vertical position 1©.

1© After the pendulum falls a ways, say past
30 degrees from vertical, the exponential
solution is not an accurate description, but
the actual motion (as viewed by and exper-
iment, a computer simulation, or the exact
elliptic integral solution of the equations)
shows that the pendulum keeps falling.
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SAMPLE 7.6 Circular motion in 2-D. Two bars, each of negligible mass and length

L

L

O
motor

m

x

y

ı̂

̂

θ

Figure 7.18: The motor rotates the struc-
ture at a constant angular speed in the coun-
terclockwise direction.

(Filename:sfig4.1.1)

L = 3 ft, are welded together at right angles to form an ‘L’ shaped structure. The
structure supports a 3.2 lbf (= mg) ball at one end and is connected to a motor on
the other end (see Fig. 7.18). The motor rotates the structure in the vertical plane at a
constant rate θ̇ = 10 rad/s in the counter-clockwise direction. Take g = 32 ft/s2. At
the instant shown in Fig. 7.18, find

(a) the velocity of the ball,
(b) the acceleration of the ball, and
(c) the net force and moment applied by the motor and the support at O on the

structure.

Solution The motor rotates the structure at a constant rate. Therefore, the ball is
going in circles with angular velocity ⇀

ω = θ̇ k̂ = 10 rad/sk̂. The radius of the circle
is R = √

L2 + L2 = L
√

2. Since the motion is in the xy plane, we use the following
formulae to find the velocity ⇀

v and acceleration ⇀
a .

O

R

x

y

θ

êrêθ

L

L

Figure 7.19: The ball follows a circular
path of radius R. The position, velocity, and
acceleration of the ball can be expressed in
terms of the polar basis vectors êR and êθ .

(Filename:sfig4.1.1a)

⇀
v = ṘêR + Rθ̇ êθ

⇀
a = (R̈ − Rθ̇2)êR + (2Ṙθ̇ + Rθ̈ )êθ ,

where êR and êθ are the polar basis vectors shown in Fig. 7.19. In Fig. 7.19, we note
that θ = 45o. Therefore,

êR = cos θ ı̂ + sin θ ̂

= 1√
2
(ı̂ + ̂),

êθ = − sin θ ı̂ + cos θ ̂

= 1√
2
(−ı̂ + ̂).

Since R = L
√

2 = 3
√

2 ft is constant, Ṙ = 0 and R̈ = 0. Thus,

(a) the velocity of the ball is

⇀
v = Rθ̇ êθ

= 3
√

2 ft · 10 rad/sêθ

= 30
√

2 ft/s · 1√
2
(−ı̂ + ̂)

= 30 ft/s(−ı̂ + ̂).

⇀
v = 30 ft/s(−ı̂ + ̂)

(b) The acceleration of the ball is

⇀
a = −Rθ̇2êR

= −3
√

2 ft · (10 rad/s)2êR

= −300
√

2 ft/s2 · 1√
2
(ı̂ + ̂)

= −300 ft/s2(ı̂ + ̂).

⇀
a = −300 ft/s2(ı̂ + ̂)
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(c) Let the net force and the moment applied by the motor-support system be
⇀
F

and
⇀
M as shown in Fig. 7.20. From the linear momentum balance for the

structure, ∑
⇀
F = m ⇀

a
⇀
F − mg̂ = m ⇀

a

⇒ ⇀
F = m ⇀

a + mg̂

=

m︷ ︸︸ ︷
3.2 lbf

32 ft/s2 (−300
√

2 ft/s2)êR +
mg︷ ︸︸ ︷

3.2 lbf ̂

= −30
√

2 lbfêR + 3.2 lbf̂ .

= −30
√

2 lbf
1√
2
(ı̂ + ̂) + 3.2 lbf̂

= −30 lbfı̂ − 26.8 lbf̂ .

Similarly, from the angular momentum balance for the structure,

O

mg

⇀
M⇀

F

x

y

Figure 7.20: Free body diagram of the
structure.

(Filename:sfig4.1.1b)

∑
⇀
MO = ˙⇀HO,

where
∑

⇀
MO = ⇀

M + ⇀
r/O × mg(−̂)

= ⇀
M + RêR︸︷︷︸

L(ı̂+̂)

×mg(−̂)

= ⇀
M − mgLk̂,

and ˙⇀HO = ⇀
r/O × m ⇀

a

= RêR × m(−Rθ̇2êR)

= −m R2θ̇2 (êR × êR)︸ ︷︷ ︸
⇀

0
= ⇀

0.

Therefore,

⇀
M = mgLk̂

= 3.2 lbf︸ ︷︷ ︸
mg

· 3 ft︸︷︷︸
L

k̂

= 9.6 lbf· ftk̂.

⇀
F = −30 lbfı̂ − 26.8 lbf̂ ,

⇀
M = 9.6 lbf· ftk̂

Note: If there was no gravity, the moment applied by the motor would be zero.
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SAMPLE 7.7 A 50 gm point mass executes circular motion with angular acceleration
θ̈ = 2 rad/s2. The radius of the circular path is 200 cm. If the mass starts from rest
at t = 0, find

(a) Its angular momentum
⇀
H about the center at t = 5 s.

(b) Its rate of change of angular momentum ˙⇀H about the center.

Solution

(a) From the definition of angular momentum,

⇀
HO = ⇀

r /0 × m ⇀
v

= RêR × mθ̇ Rêθ

= m R2θ̇ (êR × êθ )

= m R2θ̇ k̂

On the right hand side of this equation, the only unknown is θ̇ . Thus to find
⇀
HO at t = 5 s, we need to find θ̇ at t = 5 s. Now,

θ̈ = d θ̇

dt
d θ̇ = θ̈ dt∫ θ̇ (t)

θ̇0

d θ̇ =
∫ t

0
θ̈ dt

θ̇ (t) − θ̇0 = θ̈ (tt − t0)

θ̇ = θ̇0 + θ̈ (t − t0)

Writing α for θ̈ and substituting t0 = 0 in the above expression, we get θ̇ (t) =
θ̇0 + αt , which is the angular speed version of the linear speed formula v(t) =
v0 + at . 1©Substituting t = 5 s, θ̇0 = 0, and α = 2 rad/s2 we get θ̇ =1© Be warned that these formulae are valid

only for constant acceleration. 2 rad/s2 · 5 s = 10 rad/s. Therefore,

⇀
HO = 0.05 kg · (0.2 m)2 · 10 rad/sk̂

= 0.02 kg. m2/ s = 0.02 N·m · s.

⇀
HO = 0.02 N·m · s.

(b) Similarly, we can calculate the rate of change of angular momentum:

˙⇀HO = ⇀
r /0 × m ⇀

a

= RêR × m(Rθ̈ êθ − θ̇2 RêR)

= m R2θ̈ (êR × êθ )

= m R2θ̈ k̂

= 0.02 kg · (0.2m)2 · 2 rad/s2k̂

= 0.004 kg · m2/ s2 = 0.004 N·m

˙⇀HO = 0.004 N·m
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SAMPLE 7.8 The simple pendulum. A simple pendulum swings about its vertical

m = 0.2 kg

θ

� = 1 m

Figure 7.21: (Filename:sfig5.5.DH1)

equilibrium position (2-D motion) with maximum amplitude θmax = 10o. Find

(a) the magnitude of the maximum angular acceleration,
(b) the maximum tension in the string.

Solution

(a) The equation of motion of the pendulum is given by (see equation 7.15 of text):

θ̈ = −g

�
sin θ.

We are given that |θ | ≤ θmax . For θmax = 10o = 0.1745 rad, sin θmax =
0.1736. Thus we see that sin θ ≈ θ even when θ is maximum. Therefore,
we can safely use linear approximation (although we could solve this problem
without it); i.e.,

θ̈ = −g

�
θ.

Clearly, |θ̈ | is maximum when θ is maximum. Thus,

|θ̈ |max = g

�
θmax = 9.81 m/s2

1 m
·(0.1745 rad) = 1.71 rad/s2.

|θ̈ |max = 1.71 rad/s2

(b) The tension in the string is given by (see equation 7.16 of text):

T = m(�θ̇2 + g cos θ).

This time, we will not make the small angle assumption. We can find Tmax and
where it is maximum as follows using conservation of energy. Let the position
of maximum amplitude be position 1. and the position at any θ be position 2.
At the its maximum amplitude, the mass comes to rest and switches directions;
thus, its angular velocity and, hence, its kinetic energy is zero there. Using
conservation of energy, we have

EK1 + EP1 = EK2 + EP2

0 + mg�(1 − cos θmax ) = 1

2
m(�θ̇)2 + mg�(1 − cos θ). (7.17)

and solving for θ̇ ,

θ̇ =
√

2g

�
(cos θ − cos(θmax )).

Therefore, the tension at any θ is

T = m(�θ̇2 + g cos θ) = mg(3 cos θ − 2 cos(θmax )).

To find the maximum value of the tension T , we set its derivative with respect
to θ equal to zero and find that, for 0 ≤ θ ≤ θmax , T is maximum when θ = 0,
or

Tmax = mg
(
3 cos(0)−2 cos(θmax )

) = 0.2 kg ·9.81 m/s2(3−1.97
) = 2.02 N.

The maximum tension corresponds to maximum speed which occurs at the
bottom of the swing where all of the potential energy is converted to kinetic
energy.

Tmax = 2.02 N
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7.3 Kinematics of a rigid body in planar

circular motion

Figure 7.22: a) A body, b) rotated coun-
terclockwise an angle θ about 0.

(Filename:tfigure.circmot2D)

Fixed lines.

Rotating 2D
rigid body

Lines marked on 
the rigid body.

θ3

θ2

θ1

Figure 7.23: Rotation of lines on a ro-
tating rigid body. Some real or imagined
lines marked on the rigid body are shown.
They make the angles θ1, θ2, θ3, . . . with
respect to various fixed lines which do not
rotate. As the body rotates, each of these
angles increases by the same amount.

(Filename:tfigure4.2Domega)

The most common non-rigid attachment in machine design is a hinge or pin connection
(Fig. 7.22), or something well modeled as a pin. In this chapter on circular motion
we study machine parts hinged to structures which do not move. If we take the hinge
axis to be the z axis fixed at O, then the hinge’s job is to make the part’s only possible
motion to be rotation about O. As usual in this book, we think of the part itself as rigid.
Thus to study dynamics of a hinged part we need to understand the position, velocity
and acceleration of points on a rigid body which rotates. This section discusses the
geometry and algebra of rotation, of rotation rate which we will call the angular
velocity, and of rate of change of the angular velocity.

The rest of the book rests heavily on the material in this section.

Rotation of a rigid body counterclockwise by θ

We start by imagining the object in some configuration which we call the reference
configuration or reference state. Often the reference state is one where prominent
features of the object are aligned with the vertical or horizontal direction or with
prominent features of another nearby part. The reference state may or may not be the
start of the motion of interest. We measure an object’s rotation relative to the reference
state, as in Fig. 7.22 where a body is shown and shown again, rotated. For definiteness,
rotation is the change, relative to the reference state, in the counterclockwise angle θ

of a reference line marked in the body relative to a fixed line outside. Which reference
line? Fortunately,

All real or imagined lines marked on a rotating rigid body rotate by the same
angle.

7.1 THEORY
Rotation is uniquely defined for a rigid body (2D)

We show here the intuitively clear result that, starting at a reference
orientation, all lines marked on a rigid body rotate by the same angle
θ .

Because the body is rigid, the act of rotation preserves all dis-
tances between pairs of points. That’s a geometric definition of the
word rigid. Thus, by the “similar triangle theorem” (side-side-side)
of elementary geometry, all relative angles between marked line seg-
ments are preserved by the rotation. Consider a pair of line segments
with each segment defined by two points on the body. First, extend
the segments to their point of intersection. Such a pair of lines is
shown before and after rotation here with their intersection at B.

Initially BA makes and angle θ0 with a horizontal reference line.
BC then makes an angle of θABC + θ0. After rotation we measure
the angle to the line BD (displaced in a parallel manner). BA now
makes an angle of θ0 +θ where θ is the angle of rotation of the body.
By the addition of angles in the rotated configuration line BC now
makes an angle of θABC + θ0 + θ which is, because angle θABC is
unchanged, also an increase by θ in the angle made by BC with the
horizontal reference line. Both lines rotate by the same angle θ .

We could use one of these lines and compare with an arbitrary
third line and show that those have equal rotation also, and so on for
any lines of interest in the body. So all lines rotate by the same angle
θ . The demonstration for a pair of parallel lines is easy, they stay
parallel so always make a common angle with any reference line.

Thus, all lines marked on a rigid body rotate by the same angle
θ and the concept of a body’s rotation from a given reference state
is uniquely defined.
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(See box 7.1). Thus, once we have decided on a reference configuration, we can
measure the rotation of the body, and of all lines marked on the body, with a single
number, the rotation angle θ 1©.

1© In three dimensions the situation is more
complicated. Rotation of a rigid body is
also well defined, but its representation is
more complicated than a single number θ .

Rotated coordinates and base vectors ı̂
′ and ̂

′

C

y′

x ′O

P
⇀
r
P

Figure 7.24: A rotating rigid bodyC with
rotating coordinates x ′y′ rigidly attached.

(Filename:tfigure4.intro.rot.frames)

Often it is convenient two pick two orthogonal lines on a body and give them distin-
guished status as body fixed rotating coordinate axes x ′ and y′. The algebra we will
develop is most simple if these axes are chosen to be parallel with a fixed x and y
axes when θ = 0 in the reference configuration.

We will follow a point P at ⇀
rP. With this rotating coordinate axes x ′ and y′ are

associated rotating base vectors ı̂
′ and ̂

′ (Fig. 11.9). The position coordinates of
P, in the rotating coordinates, are [⇀

r ]x ′ y′ = [x ′, y′], which we sometimes write as

[⇀
r ]x ′ y′ =

[
x ′
y′

]
.

Example: A particle on the x ′ axis

If a particle of interest is fixed on the x ′-axis at position x ′ = 3 cm, then
we have.

⇀
rP = 3 cmı̂

′

for all time, even as the body rotates. ✷

For a general point P fixed to a body rotating about O it is always true that

⇀
rP = x ′ ı̂′ + y′̂ ′

, (7.18)

(7.19)

with the x ′ and y′ values not changing as θ increases. Obviously point P moves, and

θ

O
ı̂

̂

ı̂
′̂

′

y′
y

x

x ′

Figure 7.25: Fixed coordinate axes and
rotating coordinate axes.

(Filename:tfigure4.1.rot.coord)

the axes move, but the particle’s coordinates x ′ and y′ do not change. The change in
motion is expressed in eqn. (7.20) by the base vectors changing as the body rotates.
Thus we could write more explicitly that

⇀
rP = x ′ ı̂′(θ) + y′̂ ′

(θ). (7.20)

In particular, just like for polar base vectors (see eqn. (7.3) on page 361) we can

Figure 7.26: The x ′ and y′ coordinates
of a point fixed on a rotating body stay con-
stant while the base vectors ı̂ ′ and ̂ ′ change
while they rotate with the body.

(Filename:tfigure.rotatepbytheta)

express the rotating base vectors in terms of the fixed base vectors and θ .

ı̂
′ = cos θ ı̂ + sin θ ̂ , (7.21)

̂
′ = − sin θ ı̂ + cos θ ̂ .

One also sometimes wants to know the fixed basis vectors in terms of the rotating
vectors,

ı̂ = cos θ ı̂
′ − sin θ ̂

′ (7.22)

̂ = sin θ ı̂
′ cos θ ̂

′
.
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You should review the material in section 2.2 to see how these formulae can be derived
with dot products.

We will use the phrase reference frame or just frame to mean “a coordinate system
attached to a rigid body”. One could imagine that the coordinate grid is like a metal
framework that rotates with the body. We would refer to a calculation based on the
rotating coordinates in Fig. 11.9 as “in the frame C” or “using the x ′y′ frame” or “in
the ı̂

′
̂

′ frame 1©.1© Advanced aside. Sometimes a reference
frame is defined as the set of all coordinate
systems that could be attached to a rigid
body. Two coordinate systems, even if ro-
tated with respect to each other, then repre-
sent the same frame so long as they rotate
together at the time of interest. Some of the
results we will develop only depend on this
definition of frame, that the coordinates are
glued to the body, and not on their orienta-
tion on the body.

In computer calculations it is often best to manipulate lists and arrays of numbers
and not geometric vectors. Thus we like to keep track of coordinates of vectors. Lets
look at a point whose coordinates we know in the reference configuration:

[
⇀
rP

ref
]

xy .
Taking the body axes and fixed axes coincide in the reference configuration, the body
coordinates of a point

[
⇀
rP

]
x ′ y′ are equal to the space fixed coordinates of the point

in the reference configuration
[

⇀
rP

ref
]

xy . We can think of the point as equivalently
defined either way, [

⇀
rP

]
x ′ y′ =

[
⇀
rP

ref
]

xy

Coordinate representation of rotations using [R]
Here is a question we often need to answer, especially in computer animation: What

are the fixed basis coordinates of a point with coordinates [⇀
r ]x ′ y′ =

[
x ′
y′

]
? Here is

one way to find the answer:

⇀
rP = x ′ ı̂′ + y′̂ ′

= x ′(cos θ ı̂ + sin θ ̂) + y′(− sin θ ı̂ + cos θ ̂)

= (
(cos θ)x ′ − (sin θ)y′)︸ ︷︷ ︸

x

ı̂ + (
(sin θ)x ′ + (cos θ)y′)︸ ︷︷ ︸

y

̂ (7.23)

so we can pull out the x and y coordinates compactly as,

[⇀
rP]xy =

[
x
y

]
=

[
cos θ x ′ + sin θ(−y′)
sin θ x ′ + cos θ(y′)

]
. (7.24)

But this can, in turn be written in matrix notation as

[
x
y

]
=

[
cos θ − sin θ

sin θ cos θ

] [
x ′
y′

]
, or

[
⇀
rP

]
xy = [

R
] [

⇀
rP

]
x ′ y′ . or (7.25)[

⇀
rP

]
xy = [

R
] [

⇀
rP

ref
]

xy
,

The matrix [R] or [R(θ)] is the rotation matrix for counterclockwise rotations by θ .
If you know the coordinates of a point on a body before rotation, you can find its
coordinates after rotation by multiplying the coordinate column vector by the matrix
[R]. A feature of eqn. (7.25) is that the same matrix [R] prescribes the coordinate
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change for every different point on the body. Thus for points called 1, 2 and 3 we
have[

x1
y1

]
= [

R
] [

x ′
1

y′
1

]
,

[
x2
y2

]
= [

R
] [

x ′
2

y′
2

]
and

[
x3
y3

]
= [

R
] [

x ′
3

y′
3

]
.

A more compact way to write a matrix times a list of column vectors is to arrange
the column vectors one next to the other in a matrix. By multiplying this matrix by
[R] we get a new matrix whose columns are the new coordinates of various points.
For example, [

x1 x2 x3
y1 y2 y3

]
= [

R
] [

x ′
1 x ′

2 x ′
3

y′
1 y′

2 y′
3

]
. (7.26)

Eqn. 7.26 is useful for computer animation of rotating things in video games (and
in dynamics simulations too) where points 1,2, and 3 are vertices of the polygonal
drawing of some object.

Example: Rotate a picture

1 32 4

1

2

3

4

5

1

2

3

4

5

1 32 4

x, x

x

y, y

′

′

y

1

3
2

4

1

2

3

4

5

x

y

′

′a) b)

c)

0 0

0

Figure 7.27: a) A house is drawn by con-
necting lines between 6 points, b) the house
and coordinate system are rotated, thus its
coordinates in the rotating system do not
change c) But the coordinates in the origi-
nal system do change

(Filename:tfigure.rotatedhouse)

If a simple picture of a house is drawn by connecting the six points
(Fig. 7.27a) with the first point at (x, y) = (1, 2), the second at (x, y) =
(3, 2), etc., and the sixth point on top of the first, we have,

[
xy points BEFORE

] ≡
[

1 3 3 2 1 1
2 2 4 5 4 2

]
.

After a 30o counter-clockwise rotation about O, the coordinates of the
house, in a coordinate system that rotates with the house, are unchanged
(Fig. 7.27b). But in the fixed (non-rotating, Newtonian) coordinate sys-
tem the new coordinates of the rotated house points are,[
xy points AFTER

] = [
R
] [

xy points BEFORE
] = [

R
] [

x ′y′ points
]

=
[ √

3/2 −.5
.5

√
3/2

] [
1 3 3 2 1 1
2 2 4 5 4 2

]

≈
[ −0.1 1.6 0.6 −0.8 −1.1 −0.1

2.2 3.2 5.0 5.3 4.0 2.2

]

as shown in Fig. 7.27c. ✷

Angular velocity of a rigid body: ⇀
ω

Thus far we have talked about rotation, but not how it varies in time. Dynamics is
about motion, velocities and accelerations, so we need to think about rotation rates
and their rate of change.

In 2D, a rigid body’s net rotation is most simply measured by the change that
a line marked on the body (any line) makes with a fixed line (any fixed line). We
have called this net change of angle θ . Thus, the simplest measure of rotation rate
is θ̇ ≡ dθ

dt . Because all marked lines rotate the same amount they all have the same
rates of change, so θ̇1 = θ̇2 = θ̇3 = etc. So the concept of rotation rate of a rigid
body, just like the concept of rotation, transcends the concept of rotation rate of this
or that line. So we give it a special symbol ω (omega),
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For all lines marked on a rigid body,

ω ≡ θ̇1 = θ̇2 = θ̇3 = . . . = θ̇ . (7.27)

For calculation purposes in 2D, and necessarily in 3D, we think of angular velocity
as a vector. Its direction is the axis of the rotation which is k̂ for bodies in the xy
plane. Its scalar part is ω. So, the angular velocity vector is

⇀
ω ≡ ωk̂ (7.28)

with ω as defined in eqn. (7.27).

Rate of change of ı̂
′, ̂

′
Our first use of the angular velocity vector ⇀

ω is to calculate the rate of change of
rotating unit base vectors. We can find the rate of change of, say, ı̂

′, by taking the
time derivative of the first of eqn. (7.21), and using the chain rule while recognizing
that θ = θ(t). We can also make an analogy with polar coordinates (page 361),
where we think of êR as like ı̂

′ and êθ as like ̂
′. We found there that ˙̂eR = θ̇ êθ and

˙̂eθ = −θ̇ êR . Either way,

˙̂ı′ = θ̇ ̂
′ or ˙̂ı′ = ⇀

ω × ı̂
′ and

˙̂ ′ = −θ̇ ı̂
′ or ˙̂ ′ = ⇀

ω × ̂
′ (7.29)

because ̂
′ = k̂

′ × ı̂
′ and ı̂

′ = −k̂
′ × ̂

′. Depending on the tastes of your lecturer,
you may find eqn. (7.29) one of the most used equations from this point onward 1©.

1© Eqn. 7.29 is sometimes considered the
definition of ⇀

ω. In this view, ⇀
ω is the vector

that determines ˙̂ı ′ and ˙̂ ′ by the formulas
˙̂ı ′ = ⇀

ω × ı̂ ′ and ˙̂ ′ = ⇀
ω × ̂ ′. In that

approach one then shows that such a vec-

tor exists and that it is ⇀
ω = ı̂ ′ × ˙̂ı ′ which

happens to be the same as our ⇀
ω = θ̇ k̂.

The fixed Newtonian reference frame F

All of mechanics depends on the laws of mechanics. A frame in which Newton’s
laws are accurate is called a Newtonian frame. In engineering practice the frames we
use as approximations of a Newtonian frame often seem, loosely speaking, somehow
still. So we sometimes call such a frame the fixed frame and label it with a script
capital F . When we talk about velocity and acceleration of mass points, for use in
the equations of mechanics, we are always talking about the velocity and acceleration
relative to a Fixed, or equivalently, Newtonian frame.

Assume x and y are the coordinates of a vector ⇀
rP and F is a fixed frame with

fixed axis (with associated constant base vectors ı̂ and ̂ ). When we write ˙⇀rP we
mean ẋ ı̂ + ẏ̂ . But we could be more explicit (and notationally ornate) and write

F d ⇀
rP

dt
≡ F˙⇀r P by which we mean ẋ ı̂ + ẏ̂ .

The F in front of the time derivative (or in front of the dot) means that when we
calculate a derivative we hold the base vectors of F constant. This is no surprise,
because for F the base vectors are constant. In general, however, when taking a
derivative in a given frame you
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• write vectors in terms of base vectors stuck to the frame, and
• only differentiate the components.

We will avoid the ornate notation of labeling frames when we can. If you don’t
see any script capital letters floating around in front of derivatives, you can assume
that we are taking derivatives relative to a fixed Newtonian frame.

Velocity of a point fixed on a rigid body
Lets call some rotating body B (script capital B) to which is glued a coordinate system
x ′y′ with base vectors ı̂

′ and ̂
′. Consider a point P at ⇀

rP that is glued to the body.
That is, the x ′ and y′ coordinates of ⇀

rP do not change in time. Using the new frame
notation we can write

Bd ⇀
rP

dt
≡ B˙⇀r P = ẋ ′ ı̂′ + ẏ′̂ ′ = ⇀

0.

That is, relative to a moving frame, the velocity of a point glued to the frame is zero
(no surprise).

We would like to know the velocity of such a point in the fixed frame. We just
take the derivative, using the differentiation rules we have developed.

Figure 7.28: Velocity and acceleration of
two points on a rigid body rotating about 0.

(Filename:tfigure.velandaccelofp)

⇀
rP = x ′ ı̂′ + y′̂ ′

⇒ ⇀
vP = ˙⇀rP = d

dt

(
x ′ ı̂′ + y′̂ ′) = x ′ ˙̂ı′ + y′ ˙̂ ′ = x ′(⇀

ω × ı̂
′
) + y′(⇀

ω × ̂
′
)

= ⇀
ω × (x ′ ı̂′ + y′̂ ′

)

where ⇀
rP is the simple way to write

F d
⇀
rP

dt . Thus,

⇀
vP = ⇀

ω × ⇀
rP (7.30)

We can rewrite eqn. (7.30) in a minimalist or elaborate notation as

⇀
v = ⇀

ω × ⇀
r or

F d ⇀
rP

dt
= ⇀

ωB/F × ⇀
rP/O.

In the first case you have to use common sense to know what point you are talking
about, that you are interested in the velocity of the same point and that it is on a body
rotating with absolute angular velocity ⇀

ω. In the second case everything is laid out
clearly (which is why it looks so confusing). On the left side of the equation it says
that we are interested in how point P moves relative to, not just any frame, but the
fixed frame F . On the right side we make clear that the rotation rate we are looking at
is that of body B relative to F and not some other relative rotation. We further make
clear that the formula only makes sense if the position of the point P is measured
relative to a point which doesn’t move, namely 0.

What we have just found largely duplicates what we already learned in section
7.1 for points moving in circles. The slight generalization is that the same angular
velocity ⇀

ω can be used to calculate the velocities of multiple points on one rigid body.
The key idea remains: the velocity of a point going in circles is tangent to the circle
it is going around and with magnitude proportional both to distance from the center
and the angular rate of rotation (Fig. 7.28a).
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Acceleration of a point on a rotating rigid body

Let’s again consider a point with position

⇀
rP = x ′ ı̂′ + y′̂ ′

.

Relative to the frame B to which a point is attached, its acceleration is zero (again no
surprise). But what is its acceleration in the fixed frame? We find this by writing the
position vector and then differentiating twice, repeatedly using the product rule and
eqn. (7.29).

Leaving off the ornate pre-super-script F for simplicity, we have

⇀
aP = ˙⇀v P = d

dt

(
d

dt

(
x ′ ı̂′ + y′̂ ′))

= d

dt

(
x ′(⇀

ω × ı̂
′
) + y′(⇀

ω × ̂
′
)
)
. (7.31)

To continue we need to use the product rule of differentiation for the cross product of
two time dependent vectors like this:

d
dt

(
⇀
ω × ı̂

′) = ˙⇀ω × ı̂
′ + ⇀

ω × ˙̂ı′ = ˙⇀ω × ı̂
′ + ⇀

ω × (
⇀
ω × ı̂

′
),

d
dt

(
⇀
ω × ̂

′) = ˙⇀ω × ̂
′ + ⇀

ω × ˙̂ ′ = ˙⇀ω × ̂
′ + ⇀

ω × (
⇀
ω × ̂

′
).

(7.32)

Substituting back into eqn. (7.31) we get

⇀
aP = (

x ′( ˙⇀ω × ı̂
′ + ⇀

ω × (
⇀
ω × ı̂

′
)) + y′( ˙⇀ω × ̂

′ + ⇀
ω × (

⇀
ω × ̂

′
))

)
= ˙⇀ω × (x ′ ı̂′ + y′ ı̂′) + ⇀

ω × (
⇀
ω × (

x ′ ı̂′ + y′ ı̂′)
))

= ˙⇀ω × ⇀
rP + ⇀

ω × (
⇀
ω × ⇀

rP

)
(7.33)

which is hardly intuitive at a glance 1©. Recalling that in 2D ⇀
ω = ωk̂ we can use

1© Although the form eqn. (7.33) is not
of much immediate use, if you are going
to continue on to the mechanics of mecha-
nisms or three dimensional mechanics, you
should follow the derivation of eqn. (7.33)
carefully.

either the right hand rule or manipulation of unit vectors to rewrite eqn. (7.33) as

⇀
aP = ω̇k̂ × ⇀

rP − ω2 ⇀
rP (7.34)

where ω = θ̇ and ω̇ = θ̈ and θ is the counterclockwise rotation of any line marked
on the body relative to any fixed line.

Thus, as we found in section 7.1 for a particle going in circles, the acceleration
can be written as the sum of two terms, a tangential acceleration ω̇k̂ × ⇀

rP due to
increasing tangential speed, and a centrally directed (centripetal) acceleration −ω2 ⇀

rP
due to the direction of the velocity continuously changing towards the center (see
Fig. 7.28b). The generalization we have made in this section is that the same ⇀

ω can be
used to calculate the acceleration for all the different points on one rotating body. A
second brief derivation of the acceleration eqn. (7.34) goes like this (using minimalist
notation):

⇀
a = ˙⇀v = d

dt
(

⇀
ω × ⇀

r ) = ˙⇀ω × ⇀
r + ⇀

ω × ˙⇀r = ˙⇀ω × ⇀
r + ⇀

ω × (
⇀
ω × ⇀

r ) = ˙⇀ω × ⇀
r − ω2 ⇀

r .
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Relative motion of points on a rigid body

A

A

B

B

⇀
vB/A = ⇀

ωC × ⇀
r B/A

⇀
aB/A = ⇀

aB - ⇀
aA

˙⇀ωC × ⇀
r B/A

⇀
ωC×(⇀

ωC × ⇀
r B/A)

⇀
ωC

C

C

a)

b)

Figure 7.29: Relative velocity and accel-
eration of two points A and B on the same
body C.

(Filename:tfigure5.vel.accel.rel)

As you well know by now, the position of point B relative to point A is ⇀
rB/A ≡ ⇀

rB−⇀
rA.

Similarly the relative velocity and acceleration of two points A and B is defined to be

⇀
vB/A ≡ ⇀

vB − ⇀
vA and ⇀

aB/A ≡ ⇀
aB − ⇀

aA (7.35)

So, the relative velocity (as calculated relative to a fixed frame) of two points glued
to one spinning rigid body B is given by

⇀
vB/A ≡ ⇀

vB − ⇀
vA (7.36)

= ⇀
ω × ⇀

rB/O − ⇀
ω × ⇀

rA/O (7.37)

= ⇀
ω × (

⇀
rB/O − ⇀

rA/O) (7.38)

= ⇀
ω × ⇀

rB/A, (7.39)

(7.40)

where point O is the point in the Newtonian frame on the fixed axis of rotation and
⇀
ω = ⇀

ωB is the angular velocity of B. Clearly, since points A and B are fixed on B
their velocities and hence their relative velocity as observed in a reference frame fixed
to B is

⇀

0. But, point A has some absolute velocity that is different from the absolute
velocity of point B. So they have a relative velocity as seen in the fixed frame. And
it is what you would expect if B was just going in circles around A. Similarly, the

⇀
r B/O

B

⇀
r B/A

⇀
r A/O

⇀
ωB

⇀
vB/A = ⇀

ωB × rB/A

A

B

O

Figure 7.30: The acceleration of B rela-
tive to A if they are both on the same rotating
rigid body.

(Filename:tfigure4.vel.accel.rel)

relative acceleration of two points glued to one rigid body spinning at constant rate is

⇀
aB/A ≡ ⇀

aB − ⇀
aA = −ω2 ⇀

r B/A + ⇀
ω × (

⇀
ω × ⇀

r B/A). (7.41)

Again, the relative acceleration is due to the difference in the points’ positions relative
to the point O fixed on the axis. These kinematics results, 11.13 and 11.14, are useful
for calculating angular momentum relative to the center of mass. They are also
sometimes useful for the understanding of the motions of machines with moving
connected parts.

Another definition of ⇀
ω

For two points on one rigid body we have that

˙⇀r B/A = ⇀
ω × ⇀

rB/A. (7.42)

This last equation (11.15) is perhaps the most fundamental equation for those desiring
a deeper understanding of rotation. In three dimensions, unless one uses matrix
representations of rotation, equation (11.15) is the defining equation for the angular
velocity ⇀

ω of a rigid body.
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Calculating relative velocity directly, using rotating frames
A coordinate system x ′y′ to a rotating rigid body C, defines a reference frame C
(Fig. 11.9). Recall, the base vectors in this frame change in time by

d

dt
ı̂
′ = ⇀

ωC × ı̂
′ and

d

dt
̂

′ = ⇀
ωC × ̂

′
.

If we now write the relative position of B to A in terms of ı̂
′ and ̂

′, we have

⇀
rB/A = x ′ ı̂′ + y′̂ ′

.

Since the coordinates x ′ and y′ rotate with the body to which A and B are attached,
they are constant with respect to that body,

ẋ ′ = 0 and ẏ′ = 0.

So

d

dt
(

⇀
r B/A) = d

dt

(
x ′ ı̂′ + y′̂ ′)

= ẋ ′︸︷︷︸
0

ı̂
′ + x ′ d

dt
ı̂
′ + ẏ′︸︷︷︸

0

̂
′ + y′ d

dt
̂

′

= x ′(⇀
ωC × ı̂

′
) + y′(⇀

ωC × ̂
′
)

= ⇀
ωC × (x ′ ı̂′ + y′̂ ′

)︸ ︷︷ ︸
⇀
r B/A

= ⇀
ωC × ⇀

r B/A.

We could similarly calculate ⇀
aB/A by taking another derivative to get

⇀
aB/A = ⇀

ωC × (
⇀
ωC × ⇀

r B/A
) + ˙⇀ωC × ⇀

r B/A.

The concept of measuring velocities and accelerations relative to a rotating frame will
be of central interest chapters 10 and 11.

7.2 Plato’s discussion of spinning in circles

In discussion of an object maintaining contradictory attributes
simultaneously . . .

“ Socrates: Now let’s have a more precise agreement so that we
won’t have any grounds for dispute as we proceed. If someone were
to say of a human being standing still, but moving his hands and
head, that the same man at the same time stands still and moves, I
don’t suppose we’d claim that it should be said like that, but rather
that one part of him stands still and another moves. Isn’t that so?

Glaucon: Yes it is.

Socrates: Then if the man who says this should become still more
charming and make the subtle point that tops as wholes stand still
and move at the same time when the peg is fixed in the same place

and they spin, or that anything else going around in a circle on the
same spot does this too, we wouldn’t accept it because it’s not with
respect to the same part of themselves that such things are at the
same time both at rest and in motion. But we’d say that they have
in them both a straight and a circumference; and with respect to the
straight they stand still since they don’t lean in any direction –while
with respect to the circumference they move in a circle; and when
the straight inclines to the right the left, forward, or backward at the
same time that it’s spinning, then in no way does it stand still.
Glaucon: And we’d be right.”

This chapter is about things that are still with respect to their
own parts (they do not distort) but in which the points do move in
circles.
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SAMPLE 7.9 A uniform bar AB of length 
 = 50 cm rotates counterclockwise

x

y

A

B

C

θ = 30o

50 cm

ω

Figure 7.31: (Filename:sfig4.4.1)

about point A with constant angular speed ω. At the instant shown in Fig 7.31 the
linear speed vC of the center of mass C is 7.5 cm/ s.

(a) What is the angular speed of the bar?
(b) What is the angular velocity of the bar?
(c) What is the linear velocity of end B?
(d) By what angles do the angular positions of points C and B change in 2 seconds?

Solution Let the angular velocity of the bar be ⇀
ω = θ̇ k̂.

ω

ı̂

̂

k̂

Figure 7.32: (Filename:sfig4.4.1a)

(a) Angular speed of the bar = θ̇ . The linear speed of point C is vC = 7.5 cm/ s.
Now,

vC = θ̇ rC

⇒ θ̇ = vC

rC
= 7.5 cm/ s

25 cm
= 0.3 rad/s.

θ̇ = 0.3 rad/s

(b) The angular velocity of the bar is ⇀
ω = θ̇ k̂ = 0.3 rad/sk̂.

⇀
ω = 0.3 rad/sk̂

θ = 30o

A

B

x

y

êr

êθ

⇀
vB

Figure 7.33:
êr = cos θ ı̂ + sin θ ̂
êθ = − sin θ ı̂ + cos θ ̂
⇀
v B = |⇀v B |êθ

(Filename:sfig4.4.1b)

(c)

⇀
v B = ⇀

ω × ⇀
r B = θ̇ k̂ × 
(cos θ ı̂ + sin θ ̂)

= θ̇
(cos θ ̂ − sin θ ı̂)

= 0.3 rad/s·50 cm(

√
3

2
̂ − 1

2
ı̂)

= 15 cm/ s(

√
3

2
̂ − 1

2
ı̂).

⇀
v B = 15 cm/ s(

√
3

2 ̂ − 1
2 ı̂)

We can also write ⇀
v B = 15 cm/ sêθ where êθ =

√
3

2 ̂ − 1
2 ı̂.

(d) Let θ1 be the position of point C at some time t1 and θ2 be the position at time
t2. We want to find �θ = θ2 − θ1 for t2 − t1 = 2 s.

dθ

dt
= θ̇ = constant = 0.3 rad/s.

⇒ dθ = (0.3 rad/s)dt.

⇒
∫ θ2

θ1

dθ =
∫ t2

t1
(0.3 rad/s)dt.

⇒ θ2 − θ1 = 0.3 rad/s(t2 − t1)

or �θ = 0.3
rad

� s ·2� s = 0.6 rad.

The change in position of point B is the same as that of point C. In fact, all
points on AB undergo the same change in angular position because AB is a
rigid body.

�θC = �θB = 0.6 rad
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SAMPLE 7.10 A flywheel of diameter 2 ft is made of cast iron. To avoid extremely
high stresses and cracks it is recommended that the peripheral speed not exceed 6000
to 7000 ft/min. What is the corresponding rpm rating for the wheel?

Solution

Diameter of the wheel = 2 ft.

⇒ radius of wheel = 1 ft.

Now,

v = ωr

⇒ ω = v

r
= 6000� ft/min

1� ft
= 6000

rad

min
· 1rev

2π rad
= 955 rpm.

Similarly, corresponding to v = 7000 ft/min

ω = 7000� ft/min

1� ft
= 7000

rad

min
· 1rev

2π rad
= 1114 rpm.

Thus the rpm rating of the wheel should read 955 – 1114 rpm.

ω = 955 to 1114 rpm.

SAMPLE 7.11 Two gears A and B have the diameter ratio of 1:2. Gear A drives

A

B

Figure 7.34: (Filename:sfig4.4.3)

gear B. If the output at gear B is required to be 150 rpm, what should be the angular
speed of the driving gear? Assume no slip at the contact point.

Solution Let C and C′ be the points of contact on gear A and B respectively at some
instant t . Since there is no relative slip between C and C′, both points must have the
same linear velocity at instant t . If the velocities are the same, then the linear speeds
must also be the same. Thus

vC

r
2r

ωA=?
ωB=150 rpmvC'

C C'

A

B

Figure 7.35: (Filename:sfig4.4.3a)

vC = vC ′

⇒ ωArA = ωBrB

⇒ ωA = ωB ·rB

rA

= ωB ·2� r
� r = 2ωB

= (2)·(150 rpm)

= 300 rpm.

ωA = 300 rpm
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SAMPLE 7.12 A uniform rigid rod AB of length 
 = 0.6 m is connected to two

O

B

R

R

A




ı̂

̂

x

y

⇀
ω

Figure 7.36: (Filename:sfig4.4.4)

rigid links OA and OB. The assembly rotates at a constant rate about point O in the
xy plane. At the instant shown, when rod AB is vertical, the velocities of points A
and B are ⇀

v A = −4.64 m/s̂ − 1.87 m/sı̂, and ⇀
v B = 1.87 m/sı̂ − 4.64 m/s̂ . Find

the angular velocity of bar AB. What is the length R of the links?

Solution Let the angular velocity of the rod AB be ⇀
ω = ωk̂. 1© Since we are given

1© We know that the rod rotates about the
z-axis but we do not know the sense of the
rotation i.e., +k̂ or −k̂. Here we have as-
sumed that ⇀

ω is in the positive k̂ direction,
although just by sketching ⇀

v A we can easily

see that ⇀
ω must be in the −k̂ direction.

the velocities of two points on the rod we can use the relative velocity formula to find
⇀
ω:

⇀
v B/A = ⇀

ω × ⇀
r B/A = ⇀

v B − ⇀
v A

or ωk̂︸︷︷︸
⇀
ω

× 
̂︸︷︷︸
⇀
r B/A

= (1.87ı̂ − 4.64̂) m/s − (−4.64̂ − 1.87ı̂) m/s

or ω
(−ı̂) = (1.87ı̂ + 1.87ı̂) m/s − ( �4.64̂ − �4.64̂) m/s

= 3.74ı̂ m/s

⇒ ω = −3.74 m/s




= −3.74

0.6
rad/s

= −6.233 rad/s (7.43)

Thus, ⇀
ω = −6.233 rad/sk̂.

⇀
ω = −6.23 rad/sk̂

Let θ be the angle between link OA and the horizontal axis. Now,

x

y

O

R

A

θ

⇀
vA

⇀
vA = ⇀

ω × ⇀
r A

and ⇀
r A = R cos θ ı̂ − R sin θ ̂

Figure 7.37: (Filename:sfig4.4.4a)

⇀
v A = ⇀

ω × ⇀
r A = ωk̂ × R(cos θ ı̂ − sin θ ̂)︸ ︷︷ ︸

⇀
r A

or (−4.64̂ − 1.87ı̂) m/s = ωR(cos θ ̂ + sin θ ı̂)

Dotting both sides of the equation with ı̂ and ̂ we get

−1.87 m/s = ωR sin θ (7.44)

−4.64 m/s = ωR cos θ (7.45)

Squaring and adding Eqns (7.44) and (7.45) together we get

ω2 R2 = (−4.64 m/s)2 + (−1.187 m/s)2

= 25.026 m2/ s2

⇒ R2 = 25.026 m2/ s2

(−6.23 rad/s)2

= 0.645 m2

⇒ R = 0.8 m

R = 0.8 m
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SAMPLE 7.13 A dumbbell AB, made of two equal masses and a rigid rod AB

x

y

θ = 60o

O

A

B

C

m

m
l = 1 m


 = 0.8 m

⇀
ω

Figure 7.38: (Filename:sfig4.3.1)

of negligible mass, is welded to a rigid arm OC, also of negligible mass, such that
OC is perpendicular to AB. Arm OC rotates about O at a constant angular velocity
⇀
ω = 10 rad/sk̂. At the instant when θ = 60o, find the relative velocity of B with
respect to A.

Solution Since A and B are two points on the same rigid body (AB) and the body
is spinning about point O at a constant rate, we may use the relative velocity formula

⇀
v B/A ≡ ⇀

v B − ⇀
v A = ⇀

ω × ⇀
r B/A (7.46)

to find the relative velocity of B with respect to A. We are given ⇀
ω = ωk̂ = 10 rad/sk̂.

O

A

B
C

x

y

θ ı̂

̂

θ
n̂ = cos θ ı̂ + sin θ ̂

n̂

λ̂

Figure 7.39: (Filename:sfig4.3.1a)

Let λ̂ and n̂ be unit vectors parallel to AB and OC respectively. Since OC⊥AB, we
have n̂ ⊥ λ̂. Now we may write vector ⇀

r B/A as 1©

1© The vector ⇀
r B/A may also be expressed

directly in terms of unit vectors ı̂ and ̂ ,
but it involves a little bit more geometry.

Note how assuming λ̂ and n̂ in the direc-
tions shown makes calculations easier and
cleaner.

⇀
r B/A = 
λ̂

Substituting ⇀
ω and ⇀

r B/A in Eqn (7.46) we get

⇀
v B/A = ωk̂ × 
λ̂

= ω
 (k̂ × λ̂)︸ ︷︷ ︸
n̂

= ω
n̂

= ω
(cos θ ı̂ + sin θ ̂)

= 10 rad/s(0.8 m)·(1

2
ı̂ +

√
3

2
̂)

= 4 m/s(ı̂ +
√

3̂)

⇀
v B/A = 4 m/s(ı̂ + √

3̂)

O

A

B

⇀
vA

⇀
vB/A

⇀
vB

⇀
vB/A = ⇀

vB − ⇀
vA

Figure 7.40: (Filename:sfig4.3.1b)

Comments: ⇀
v B/A can also be obtained by adding vectors ⇀

v B and −⇀
v A geometrically.

Since A and B execute circular motion with the same radius R = O A = O B, the
magnitudes of ⇀

v B and ⇀
v A are the same (= ωR) and since the velocity in circular

motion is tangential to the circular path, ⇀
v A ⊥ O A and ⇀

v B ⊥ O B. Then moving
⇀
v A to point B, we can easily find ⇀

v B − ⇀
v A = ⇀

v B/A. Its direction is found to be
perpendicular to AB, i.e., along OC.
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SAMPLE 7.14 For the same problem and geometry as in Sample 7.13, find the
acceleration of point B relative to point A.

Solution Since points A and B are on the same rigid body AB which is rotating at
a constant rate ω = 10 rad/s, the relative acceleration of B is:

⇀
a B/A = ⇀

a B − ⇀
a A = ⇀

ω × (
⇀
ω × ⇀

r B/A)

= ωk̂ × (ωk̂ × 
λ̂)

= ωk̂ × ω
n̂ (since k̂ × λ̂ = n̂)

= ω2
(k̂ × n̂)

= ω2
(−λ̂)

1©Now we need to express λ̂ in terms of known basis vectors ı̂ and ̂ . If you are 1© If a body rotates in a plane, i.e.,
⇀
ω =

ωk̂, then ⇀
ω × (

⇀
ω × ⇀

r ) = −ω2 ⇀
r . Using

this fact we can immediately write ⇀
a B/A =

−ω2 ⇀
r B/A = −ω2
λ̂.

good with geometry, then by knowing that λ̂ ⊥ n̂ and n̂ = cos θ ı̂ + sin θ ̂ you can
immediately write

λ̂ = sin θ ı̂ − cos θ ̂ (so that λ̂·n̂ = 0).

Or you may draw a big and clear picture of λ̂, n̂, ı̂ and ̂ and label the angles as

θ

θ

θ

ı̂

̂

n̂

λ̂

Figure 7.41: The geometry of vectors ı̂
and n̂.
λ̂ = − cos θ ̂ + sin θ ı̂

(Filename:sfig4.3.2)

shown in Fig 7.41. Then, it is easy to see that

λ̂ = sin θ ı̂ − cos θ ̂ .

Substituting for λ̂ in the expression for ⇀
a B/A, we get

⇀
a B/A = −ω2
(sin θ ı̂ − cos θ ̂)

= −100
rad2

s2 ·
[

0.8 m(

√
3

2
ı̂ − 1

2
̂)

]

= −40 m/s2(
√

3ı̂ − ̂)

⇀
a B/A = −40 m/s2(

√
3ı̂ − ̂)

x

y

O

A

B

C⇀
aA

⇀
aB/A

⇀
aB

-⇀
aA

Figure 7.42: (Filename:sfig4.3.2a)

Comments: We could also find ⇀
a B/A using geometry and geometric addition

of vectors. Since A and B are going in circles about O at constant speed, their
accelerations are centripetal accelerations. Thus, ⇀

a A points along AO and ⇀
a B points

along BO. Also |⇀
a A| = |⇀

a B | = ω2(OA). Now adding −⇀
a A to ⇀

a B we get ⇀
a B/A

which is seen to be along BA.
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SAMPLE 7.15 Test the velocity formula on something you know. The motor at O in

A

B

motor

x

y

O

ω

L

L

Figure 7.43: An ‘L’ shaped bar rotates at
speed ω about point O.

(Filename:sfig5.3.1a)

Fig. 7.43 rotates the ‘L’ shaped bar OAB in counterclockwise direction at an angular
speed which increases at ω̇ = 2.5 rad/s2. At the instant shown, the angular speed
ω = 4.5 rad/s. Each arm of the bar is of length L = 2 ft.

(a) Find the velocity of point A.
(b) Find the relative velocity ⇀

v B/A (= ⇀
ω × ⇀

r B/A) and use the result to find the
absolute velocity of point B (

⇀
v B = ⇀

v A + ⇀
v B/A).

(c) Find the velocity of point B directly. Check the answer obtained in part (b)
against the new answer.

Solution

O
A

ω

⇀
r A

⇀
vA

Figure 7.44: ⇀
v A = ⇀

ω× ⇀
r A is tangential

to the circular path of point A.
(Filename:sfig5.3.1b)

(a) As the bar rotates, every point on the bar goes in circles centered at point O.
Therefore, we can easily find the velocity of any point on the bar using circular
motion formula ⇀

v = ⇀
ω × ⇀

r . Thus,

⇀
v A = ⇀

ω × ⇀
r A = ωk̂ × L ı̂ = ωL ̂

= 4.5 rad/s · 2 ft̂ = 9 ft/s̂ .

The velocity vector ⇀
v A is shown in Fig. 7.44.

⇀
v A = 9 ft/s̂

A

B

B

⇀
vB

⇀
vA

⇀
vB/A

⇀
r B/A

⇀
vB/A

Figure 7.45: ⇀
v B/A = ⇀

ω × ⇀
r B/A and

⇀
v B = ⇀

v A + ⇀
v B/A .

(Filename:sfig5.3.1c)

(b) Point B and A are on the same rigid body. Therefore, with respect to point A,
point B goes in circles about A. Hence the relative velocity of B with respect
to A is

⇀
v B/A = ⇀

ω × ⇀
r B/A

= ωk̂ × L ̂ = −ωL ı̂

= −4.5 rad/s · 2 ftı̂ = −9 ft/sı̂.

and ⇀
v B = ⇀

v A + ⇀
v B/A

= 9 ft/s(−ı̂ + ̂).

These velocities are shown in Fig. 7.45.

⇀
v B/A = −9 ft/sı̂, ⇀

v B = 9 ft/s(−ı̂ + ̂)

AO

B

⇀
vB

⇀
r B

Figure 7.46: ⇀
v B = ⇀

ω × ⇀
r B .
(Filename:sfig5.3.1d)

(c) Since point B goes in circles of radius OB about point O, we can find its velocity
directly using circular motion formula:

⇀
v B = ⇀

ω × ⇀
r B

= ωk̂ × (L ı̂ + L ̂) = ωL(̂ − ı̂)

= 9 ft/s(−ı̂ + ̂).

The velocity vector is shown in Fig. 7.46. Of course this velocity is the same
velocity as obtained in part (b) above.

⇀
v B = 9 ft/s(−ı̂ + ̂)

Note: Nothing in this sample uses ω̇!
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SAMPLE 7.16 Test the acceleration formula on something you know. Consider

A

B

motor

x

y

O

ω

L = 2 ft

L = 2 ft

Figure 7.47: The ‘L’ shaped bar is rotat-
ing counterclockwise and is slowing down.

(Filename:sfig5.3.2a)

the ‘L’ shaped bar of Sample 7.15 again. At the instant shown, the bar is rotating at
4 rad/s and is slowing down at the rate of 2 rad/s2.

(i) Find the acceleration of point A.
(ii) Find the relative acceleration ⇀

a B/A of point B with respect to point A and use
the result to find the absolute acceleration of point B (⇀

a B = ⇀
a A + ⇀

a B/A).
(iii) Find the acceleration of point B directly and verify the result obtained in (ii).

Solution We are given:

⇀
ω = ωk̂ = 4 rad/sk̂, and ˙⇀ω = −ω̇k̂ = −2 rad/s2k̂.

⇀
r A

⇀
aA-ω2 ⇀

r A
˙⇀ω × ⇀

r A

ω

O A

Figure 7.48: (Filename:sfig5.3.2b)

(i) Point A is going in circles of radius L. Hence,

⇀
a A = ˙⇀ω × ⇀

r A + ⇀
ω × (

⇀
ω × ⇀

r A) = ˙⇀ω × ⇀
r A − ω2 ⇀

r A

= −ω̇k̂ × L ı̂ − ω2L ı̂ = −ω̇L ̂ − ω2L ı̂

= −2 rad/s · 2 ft̂ − (4 rad/s)2 · 2 ftı̂

= −(4̂ + 32ı̂) ft/s2.

⇀
a A = −(4̂ + 32ı̂) ft/s2

A

B

B

⇀
r B/A

⇀
aB/A

⇀
aB/A

⇀
aA

⇀
aB

Figure 7.49: (Filename:sfig5.3.2c)

(ii) The relative acceleration of point B with respect to point A is found by consid-
ering the motion of B with respect to A. Since both the points are on the same
rigid body, point B executes circular motion with respect to point A. Therefore,

⇀
a B/A = ˙⇀ω × ⇀

r B/A + ⇀
ω × (

⇀
ω × ⇀

r B/A) = ˙⇀ω × ⇀
r B/A − ω2

= −ω̇k̂ × L ̂ − ω2L ̂

= ω̇L ı̂ − ω2L ̂ = 2 rad/s2 · 2 ftı̂ − (4 rad/s)2 · 2 ft̂

= (4ı̂ − 32̂) ft/s2,

and

⇀
a B = ⇀

a A + ⇀
a B/A = (−28ı̂ − 36̂) ft/s2.

⇀
a B = −(28ı̂ + 36̂) ft/s2

AO

B

⇀
r B

⇀
aB

-ω2 ⇀
r B

˙⇀ω × ⇀
r B

Figure 7.50: (Filename:sfig5.3.2d)

(iii) Since point B is going in circles of radius OB about point O, we can find the
acceleration of B as follows.

⇀
a B = ˙⇀ω × ⇀

r B + ⇀
ω × (

⇀
ω × ⇀

r B)

= ˙⇀ω × ⇀
r B − ω2 ⇀

r B

= −ω̇k̂ × (L ı̂ + L ̂) − ω2(L ı̂ + L ̂)

= (−ω̇L − ω2L)̂ + (ω̇L − ω2L)ı̂

= (−4 − 32) ft/s2̂ + (4 − 32) ft/s2 ı̂

= (−36̂ − 28ı̂) ft/s2.

This acceleration is, naturally again, the same acceleration as found in (ii)
above.

⇀
a B = −(28ı̂ + 36̂) ft/s2
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SAMPLE 7.17 The dumbbell AB shown in the figure rotates counterclockwise
A

B

O

C

x

y

θ

L = 0.5 m

Figure 7.51: Relative velocity and accel-
eration:

(Filename:sfig5.3.3)

about point O with angular acceleration 3 rad/s2. Bar AB is perpendicular to bar OC.
At the instant of interest, θ = 45o and the angular speed is 2 rad/s.

(a) Find the velocity of point B relative to point A. Will this relative velocity be
different if the dumbbell were rotating at a constant rate of 2 rad/s?

(b) Without calculations, draw a vector approximately representing the acceleration
of B relative to A.

(c) Find the acceleration of point B relative to A. What can you say about the
direction of this vector as the motion progresses in time?

Solution

(a) Velocity of B relative to A:

⇀
v B/A = ⇀

ω × ⇀
r B/A

= θ̇ k̂ × L(sin θ ı̂ − cos θ ̂)

= θ̇ L(sin θ ̂ + cos θ ı̂)

= 2 rad/s · 0.5 m(sin 45o̂ + cos 45o ı̂)

= 0.707 m/s(ı̂ + ̂).

Thus the relative velocity is perpendicular to AB, that is, parallel to OC.
No, the relative velocity will not be any different at the instant of interest if the
dumbbell were rotating at constant rate. As is evident from the formula, the
relative velocity only depends on ⇀

ω and ⇀
r B/A, and not on ˙⇀ω. Therefore, ⇀

v B/A

will be the same if at the instant of interest, ⇀
ω and ⇀

r B/A are the same.

A

B

O x

y

(⇀
aB/A)R

⇀
aB/A

(⇀
aB/A)

θ

⇀
r B/A

Figure 7.52: To draw the relative accel-
eration of B, ⇀

a B/A , consider point B going
in circles about point A.

(Filename:sfig5.3.3a)

(b) Relative acceleration vector: The velocity and acceleration of some point B
on a rigid body relative to some other point A on the same body is the same as
the velocity and acceleration of B if the body is considered to rotate about point
A with the same angular velocity and acceleration as given. Therefore, to find
the relative velocity and acceleration of B, we take A to be the center of rotation
and draw the circular path of B, and then draw the velocity and acceleration
vectors of B.
Since we know that the acceleration of a point under circular motion has tangen-
tial ( ˙⇀ω× ⇀

r or θ̈ Rêθ in 2-D) and radial or centripetal (⇀
ω × (

⇀
ω × ⇀

r ) or −θ̇2 RêR
in 2-D ) components, the total acceleration being the vector sum of these com-
ponents, we draw an approximate acceleration vector of point B as shown in
Fig. 7.52.

(c) Acceleration of B relative to A:

A

B

O x

y

θ

êθ

êR

⇀
r B/A

Figure 7.53: The geometry of êR and êθ

for the imagined motion of B about A. êR =
sin θ ı̂ − cos θ ̂ and êθ = cos θ ı̂ + sin θ ̂ .

(Filename:sfig5.3.3b)

⇀
a B/A = ˙⇀ω × ⇀

r B/A + ⇀
ω × (

⇀
ω × ⇀

r B/A)

= θ̈ k̂ × L êR + θ̇ k̂ × (θ̇ k̂ × L êR)

= L θ̈ êθ − L θ̇2êR

= 0.5 m · 3 rad/s2(cos 45o ı̂ + sin 45o̂)

−0.5 m · (2 rad/s)2(sin 45o ı̂ − cos 45o̂)

= 1.061 m/s2(ı̂ + ̂) − 1.414 m/s2(ı̂ − ̂)

= (−0.353ı̂ + 2.474̂) m/s2.

⇀
a B/A = (−0.353ı̂ + 2.474̂) m/s2
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7.4 Dynamics of a rigid body in planar

circular motion
Our goal here is to evaluate the terms in the momentum, angular momentum, and
energy balance equations for a planar body that is rotating about one point, like a part
held in place by a hinge or bearing. The evaluation of forces and moments for use in
the momentum and angular momentum equations is the same in statics as in the most
complex dynamics, there is nothing new or special about circular motion. What we
need to work out are the terms that quantify the motion of mass.

Mechanics and the motion quantities
If we can calculate the velocity and acceleration of every point in a system, we can
evaluate all the momentum and energy terms in the equations of motion (inside cover),
namely:

⇀
L, ˙⇀L,

⇀
HC, ˙⇀H C , EK and ĖK for any reference point C of our choosing. For

rotational motion these calculations are a little more complex than the special case of
straight-line motion in chapter 6, where all points in a system had the same acceleration
as each other.

For circular motion of a rigid body, we just well-learned in the previous section
that the velocities and accelerations are

⇀
v = ⇀

ω × ⇀
r ,

⇀
a = ˙⇀ω × ⇀

r + ⇀
ω × (

⇀
ω × ⇀

r ),

= ˙⇀ω × ⇀
r − ω2 ⇀

r

where ⇀
ω is the angular velocity of the body relative to a fixed frame and ⇀

r is the
position of a point relative to the axis of rotation. These relations apply to every point
on a rotating rigid body.

Example: Spinning disk

The round flat uniform disk in figure 11.18 is in the xy plane spinning
at the constant rate ⇀

ω = ωk̂ about its center. It has mass mtot and radius
R0. What force is required to cause this motion? What torque? What
power?

From linear momentum balance we have:∑
⇀
F i = ˙⇀L = mtot

⇀
acm = ⇀

0,

Which we could also have calculated by evaluating the integral ˙⇀L ≡∫
⇀
a dm instead of using the general result that ˙⇀L = mtot

⇀
acm . From

angular momentum balance we have:

y

RO

R
x

dm

O

FBD

ω

êR

⇀
F

⇀
M

ı̂

̂

Figure 7.54: A uniform disk turned by a
motor at a constant rate.

(Filename:tfigure4.3.motordisk)

∑
⇀
M i/O = ˙⇀H /O

⇒ ⇀
M =

∫
⇀
r /O × ⇀

a dm

=
∫ R0

0

∫ 2π

0
(RêR) × (−Rω2êR)

mtot

π R2
O

d A︷ ︸︸ ︷
R dθ d R︸ ︷︷ ︸
dm

=
∫ ∫

⇀

0 dθ d R

= ⇀

0.
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So the net force and moment needed are
⇀
F = ⇀

0 and
⇀
M = ⇀

0. Like a
particle that moves at constant velocity with no force, a uniform disk
rotates at constant rate with no torque (at least in 2D). ✷

We’d now like to consider the most general case that the subject of the section allows,
an arbitrarily shaped 2D rigid body with arbitrary ω and ω̇.

Linear momentum
For any system in any motion we know, as we have often used, that

⇀
L = mtot

⇀
vcm and ˙⇀L = mtot

⇀
acm.

For a rigid body, the center of mass is a particular point G that is fixed relative to the
body. So the velocity and acceleration of that point can be expressed the same way
as for any other point. So, for a body in planar rotational motion about 0

⇀
L = mtot

⇀
ω × ⇀

rG/0

and

˙⇀L = mtot

(
˙⇀ω × ⇀

rG/0 + −ω2 ⇀
rG/0)

)
.

If the center of mass is at 0 the momentum and its rate of change are zero. But if
the center of mass is off the axis of rotation, there must be a net force on the object
with a component parallel to ⇀

r0/G (if ω �= 0) and a component orthogonal to ⇀
r0/G (if

ω̇ �= 0). This net force need not be applied at 0 or G or any other special place on the
object.

Angular momentum: ⇀
HO and ˙⇀HO

The angular momentum itself is easy enough to calculate,

⇀
HO =

∫
all mass

⇀
r × ⇀

v dm (a)

=
∫

⇀
r × (

⇀
ω × ⇀

r ) dm (b)

= ωk̂

∫
r2 dm (c)

⇒ H0 = ω

∫
r2 dm. (d)

(7.47)

Here eqn. (7.47)c is the vector equation. But since both sides are in the k̂ direction
we can dot both sides with k̂ to get the scalar moment equation eqn. (7.47)d, taking
both Mnet and ω as positive when counterclockwise.

To get the all important angular momentum balance equation for this system we
could easily differentiate eqn. (7.47), taking note that the derivative is being taken
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relative to a fixed frame. More reliably, we use the general expression for ˙⇀HO to
write the angular momentum balance equation as follows.

Net moment/0 = rate of change of angular momentum/0 (a)
⇀
Mnet = ˙⇀HO (b)

=
∫

all mass

⇀
r × ⇀

a dm (c)

=
∫

⇀
r ×

(
−ω2 ⇀

r + ω̇k̂ × ⇀
r
)

dm (d)

=
∫

⇀
r ×

(
ω̇k̂ × ⇀

r
)

dm (e)

=
∫

⇀
r ×

(
ω̇k̂ × ⇀

r
)

dm (f)

⇀
Mnet = ω̇k̂

∫
r2 dm (g)

⇒ Mnet = ω̇

∫
r2 dm (h)

(7.48)

We get from eqn. (7.48)f to eqn. (7.48)g by noting that ⇀
r is perpendicular to k̂. Thus,

using the right hand rule twice we get ⇀
r × (k̂ × ⇀

r ) = r2k̂.
Eqn. 7.48g and eqn. (7.48)h are the vector and scalar versions of the angular

momentum balance equation for rotation of a planar body about 0.

Power and Energy
Although we could treat distributed forces similarly, lets assume that there are a set
of point forces applied. And, to be contrary, lets assume the mass is continuously
distributed (the derivation for rigidly connected point masses would be similar). The
power balance equation for one rotating rigid body is (discussed below):

Net power in = rate of change of kinetic energy (a)
P = ĖK (b)∑

all applied forces

⇀
F i · ⇀

v i = d

dt

∫
all mass

1

2
v2 dm (c)

∑
⇀
F i · (

⇀
ω × ⇀

r i ) = d

dt

∫
1

2
(

⇀
ω × ⇀

r ) · (
⇀
ω × ⇀

r ) dm (d)∑
⇀
ω · (

⇀
r i × ⇀

F i ) = d

dt

∫
1

2
ω2r2 dm (e)

⇀
ω ·

∑
(

⇀
r i × ⇀

F i ) = d

dt

(
1

2
ω2

) ∫
r2 dm (f)

⇀
ω ·

∑
⇀
M i = ω̇ω

∫
r2 dm (g)

⇀
ω · ⇀

M tot = ˙⇀ω ·
(

⇀
ω

∫
r2 dm

)
︸ ︷︷ ︸

⇀
H/0

(h)

(7.49)

When not notated clearly, positions and moments are relative to the hinge at 0. Deriva-
tion 7.49 is two derivations in one. The left side about power and the right side about
kinetic energy. Lets discuss one at a time.

On the left side of eqn. (7.49) we note in (c) that the power of each force is the dot
product of the force with the velocity of the point it touches. In (d) we use what we
know about the velocities of points on rotating rigid bodies. In (e) we use the vector
identity

⇀

A · ⇀
B × ⇀

C = ⇀
B · ⇀

C × ⇀

A from chapter 2. In (f) we note that ⇀
ω is common to all

points so factors out of the sum. In (g) we note that ⇀
r × ⇀

F i is the moment of the force
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about pt O. And in (g) we sum the moments of the forces. So we find that The power
of a set of forces acting on a rigid body is the product of their net moment(about 0)
and the body angular velocity,

P = ⇀
ω · ⇀

M tot. (7.50)

On the right side of eqn. (7.49) we note in (c) that the kinetic energy is the sum of
the kinetic energy of the mass increments. In (d) we use what we know about the
velocities of these bits of mass, given that they are on a common rotating body. In (e)
we use that the magnitude of the cross product of orthogonal vectors is the product
of the magnitudes (| ⇀

A × ⇀
B| = AB) and that the dot product of a vector with itself is

its magnitude squared (
⇀

A · ⇀

A = A2). In (f) we factor out ω2 because it is common to
all the mass increments and note that the remaining integral is constant in time for a
rigid body. In (g) we carry out the derivative. In (h) we de-simplify the result from
(g) in order to show a more general form that we will find later in 3D mechanics.
Eqn. (h) follows from (g) because ⇀

ω is parallel to ˙⇀ω for 2D rotations.
Note that we started here with the basic power balance equation from the front

inside cover. Instead, we could have derived power balance from our angular mo-
mentum balance expression (see box 7.4 on 398).

7.3 THEORY
The relation between angular momentum balance and power balance

For this system, angular momentum balance can be derived from
power balance and vice versa. Thus neither is essentially more
fundamental than the other and both are reliable. First we can derive
power balance from angular momentum balance as follows:

⇀
Mnet = ω̇k̂

∫
r2 dm

⇀
ω · ⇀

Mnet = ⇀
ω ·

(
ω̇k̂

∫
r2 dm

)
.

P = ĖK

(7.51)

That is, when we dot both sides of the angular momentum equation
with ⇀

ω we get on the left side a term which we recognize as the
power of the forces and on the right side a term which is the rate of
change of kinetic energy.

The opposite derivation starts with the power balance
Fig. 7.49(g)

⇀
ω ·

∑ ⇀
M i = ω̇ω

∫
r2 dm (g)

⇒ ω

(
k̂ ·

∑ ⇀
M i

)
= ω̇ω

∫
r2 dm

⇒
(
k̂ ·

∑ ⇀
M i

)
= ω̇

∫
r2 dm

(7.52)

and, assuming ω �= 0, divide by ω to get the angular momentum
equation for planar rotational motion.
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SAMPLE 7.18 A rod going in circles at constant rate. A uniform rod of mass m

m 

B

O

m 

motor 




θ

ı̂

̂ ω

Figure 7.55: A rod goes in circles at a
constant rate.

(Filename:sfig4.5.5)

and length 
 is connected to a motor at end O. A ball of mass m is attached to the rod
at end B. The motor turns the rod in counterclockwise direction at a constant angular
speed ω. There is gravity pointing in the −̂ direction. Find the torque applied by
the motor (i) at the instant shown and (ii) when θ = 0o, 90o, 180o. How does the
torque change if the angular speed is doubled?

Solution The FBD of the rod and ball system is shown in Fig. 7.56(a). Since the
system is undergoing circular motion at a constant speed, the acceleration of the ball
as well as every point on the rod is just radial (pointing towards the center of rotation
O) and is given by ⇀

a = −ω2r λ̂ where r is the radial distance from the center O to the
point of interest and λ̂ is a unit vector along OB pointing away from O (Fig. 7.56(b)).

B

O

mg

mg
G

Rx

Ry

M

(a) FBD of rod+ball system

dm 

O

l

dl

θ

(b) Calculation of        of the rod˙⇀HO

λ̂

Figure 7.56: A rod goes in circles at a
constant rate.

(Filename:sfig4.5.5a)

Angular Momentum Balance about point O gives∑
⇀
MO = ˙⇀HO

∑
⇀
MO = ⇀

r G/O × (−mg̂) + ⇀
r B/O × (−mg̂) + M k̂

= −


2
cos θmgk̂ − 
 cos θmgk̂ + M k̂

= (M − 3


2
mg cos θ)k̂ (7.53)

˙⇀HO =

⇀̇
H ball/O︷ ︸︸ ︷

⇀
r B/O × m ⇀

a B +

⇀̇
H rod/O︷ ︸︸ ︷∫

m

⇀
r dm/O × ⇀

adm dm

= 
λ̂ × (−mω2
λ̂) +
∫

m

⇀
r dm/O︷︸︸︷

lλ̂ ×

⇀
adm︷ ︸︸ ︷

(−ω2lλ̂) dm

= ⇀

0 (since λ̂ × λ̂ = ⇀

0) (7.54)

(i) Equating (7.53) and (7.54) we get

M = 3

2
mg
 cos θ.

M = 3
2 mg
 cos θ

(ii) Substituting the given values of θ in the above expression we get

M(θ = 0o) = 3

2
mg
, M(θ = 90o) = 0 M(θ = 180o) = −3

2
mg


M(0o) = 3
2 mg
, M(90o) = 0 M(180o) = − 3

2 mg


The values obtained above make sense (at least qualitatively). To make the rod
and the ball go up from the 0o position, the motor has to apply some torque in
the counterclockwise direction. In the 90o position no torque is required for the
dynamic balance. In 180o position the system is accelerating downwards under
gravity; therefore, the motor has to apply a clockwise torque to make the system
maintain a uniform speed.

It is clear from the expression of the torque that it does not depend on the value
of the angular speed ω! Therefore, the torque will not change if the speed is doubled.
In fact, as long as the speed remains constant at any value, the only torque required
to maintain the motion is the torque to counteract the moments at O due to gravity.
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SAMPLE 7.19 A compound gear train. When the gear of an input shaft, often

A
ωin

ωin

B C

D

Driver

Idler RD

RC

RB

RA

ωout

ωout

Figure 7.57: A compound gear train.
(Filename:sfig4.5.7)

called the driver or the pinion, is directly meshed in with the gear of an output shaft,
the motion of the output shaft is opposite to that of the input shaft. To get the output
motion in the same direction as that of the input motion, an idler gear is used. If the
idler shaft has more than one gear in mesh, then the gear train is called a compound
gear train.

In the gear train shown in Fig. 7.57, the input shaft is rotating at 2000 rpm
and the input torque is 200 N-m. The efficiency (defined as the ratio of output
power to input power) of the train is 0.96 and the various radii of the gears are:
RA = 5 cm, RB = 8 cm, RC = 4 cm, and RD = 10 cm. Find

(a) the input power Pin and the output power Pout ,
(b) the output speed ωout , and
(c) the output torque.

Solution

(a) The power:

Pin = Minωin = 200 N·m · 2000 rpm

= 400000 N·m · �rev

�min
· 2π

1 �rev
· 1 �min

60 s
= 41887.9 N m/s ≈ 42 kW.

⇒ pout = efficiency · Pin = 0.96 · 42 kW ≈ 40 kW

Pin = 42 kW, pout = 40 kW

ωin

ωout

P

R
vR

vP

Figure 7.58: (Filename:sfig4.5.7a)

(b) The angular speed of meshing gears can be easily calculated by realizing that
the linear speed of the point of contact has to be the same irrespective of which
gear’s speed and geometry is used to calculate it. Thus,

vP = ωin RA = ωB RB

⇒ ωB = ωin · RA

RB

and vR = ωC RC = ωout RD

⇒ ωout = ωC · RC

RD

But ωC = ωB

⇒ ωout = ωin · RA

RB
· RC

RD

= 2000 rpm · 5

8
· 4

10
= 500 rpm.

ωout = 500 rpm

(c) The output torque,

Mout = Pout

ωout
= 40 kW

500 rpm

= 40

500
· 1000

N·m
� s · �min

�rev
· 1 �rev

2π
· 60� s

1 �min
= 764 N·m.

Mout = 764 N·m
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SAMPLE 7.20 At the onset of motion: A 2′ × 4′ rectangular plate of mass 20 lbm

x

y

a = 4 ft

b = 2 ft G

O

Figure 7.59: A rectangular plate is re-
leased from rest from the position shown.

(Filename:sfig5.4.3)

is pivoted at one of its corners as shown in the figure. The plate is released from rest
in the position shown. Find the force on the support immediately after release.

Solution The free body diagram of the plate is shown in Fig. 7.60. The force
⇀
F

applied on the plate by the support is unknown.

G

O

G

O

(a) Free body diagram

(b) Geometry of motion

θ

⇀
F

êR

êθ

⇀
r G/O

ı̂

̂

mg

Figure 7.60: (a) The free body diagram
of the plate. (b) The geometry of mo-
tion. From the given dimensions, êR =

aı̂−b̂

(a2+b2)
1
2

and êθ = bı̂+a̂

(a2+b2)
1
2

.

(Filename:sfig5.4.3a)

The linear momentum balance for the plate gives∑
⇀
F = m ⇀

aG
⇀
F − mg̂ = m(θ̈ rG/O êθ − θ̇2 RêR)

= m θ̈ rG/O êθ (since θ̇ = 0 at t = 0) (7.55)

Thus to find
⇀
F we need to find θ̈ .

The angular momentum balance for the plate about the fixed support point O gives

⇀
MO = ˙⇀HO

⇀
r G/O × mg(−̂) = Izz/O θ̈ k̂

(
a

2
ı̂ − b

2
̂︸ ︷︷ ︸

⇀
r G/O

) × mg(−̂) =
[

m(a2 + b2)

12
+ m(

a2

4
+ b2

4
)

]
︸ ︷︷ ︸

parallel axis theorem

θ̈ k̂

−mg
a

2
k̂ = m(a2 + b2)

3
θ̈ k̂

⇒ θ̈ = − 3g a

2(a2 + b2)

= −3 · 32.2 ft/s2 · 4 ft

2(16 + 4) ft2

= −9.66 rad/s2.

Substituting this value of θ̈ in eqn. (7.55), we get

⇀
F = mg̂ + m θ̈ rG/O êθ

= 20 lbm · 32.2 ft/s2̂ + 20 lbm · (−9.66 rad/s2) · (
√

22 + 12︸ ︷︷ ︸
rG/O

ft)
(2ı̂ + 4̂)√

20︸ ︷︷ ︸
êθ

= 20 lbf̂ − 20 · 9.66

32.2
(1ı̂ + 2̂) lbf (since 1 lbm · ft/s2 = 1

32.2 lbf)

= (−3ı̂ + 14̂) lbf.

⇀
F = (−3ı̂ + 14̂) lbf
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SAMPLE 7.21 The swinging stick. A uniform bar of mass m and length 
 is pinned

O

A

m 

ı̂

̂

k̂

θ 


Figure 7.61: A uniform rod swings in the
plane about its pinned end O.

(Filename:sfig5.4.1a)

at one of its ends O. The bar is displaced from its vertical position by an angle θ and
released (Fig. 7.61).

(a) Find the equation of motion using momentum balance.
(b) Find the reaction at O as a function of (θ, θ̇ , g, m, 
).

Solution First we draw a simple sketch of the given problem showing relevant
geometry (Fig. 7.61(a)), and then a free body diagram of the bar (Fig. 7.61(b)).

G

(b)(a)

O

A

m mg 

G

O

A

̂

ı̂

θ 


Rx

Ry

Figure 7.62: (a) A line sketch of the swinging rod and (b) free body diagram of the rod.
(Filename:sfig5.4.1b)

We should note for future reference that

⇀
ω = ωk̂ ≡ θ̇ k̂

˙⇀ω = ω̇k̂ ≡ θ̈ k̂

(a) Equation of motion using momentum balance: We can write angular mo-
mentum balance about point O as∑

⇀
MO = ˙⇀HO.

Let us now calculate both sides of this equation:

A

O

G

θ
θ

ω2
/2

⇀
r G

ω̇
/2

Figure 7.63: Radial and tangential com-
ponents of ⇀

aG . Since the radial component

is parallel to ⇀
r G , ⇀

r G × ⇀
aG = 
2

4 ω̇k̂.
(Filename:sfig5.4.1c)

∑
⇀
MO = ⇀

r G/O × mg(−̂)

= 


2
(sin θ ı̂ − cos θ ̂) × mg(−̂)

= −


2
mg sin θ k̂. (7.56)

˙⇀HO = Izz/G ˙⇀ω + ⇀
r G × m ⇀

aG

= m
2

12
ω̇k̂ + ⇀

r G × m(

⇀
aG︷ ︸︸ ︷

ω̇k̂ × ⇀
r G − ω2 ⇀

r G)

= m
2

12
ω̇k̂ + m
2

4
ω̇k̂, = m
2

3
ω̇k̂ (7.57)
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where the last step, ⇀
r G × m ⇀

aG = m
2

4 ω̇k̂, should be clear from Fig. 7.63.
Equating (7.56) and (7.57) we get

−


2
�m g sin θ = �m 
2

3
ω̇

or ω̇ + 3g

2

sin θ = 0

or θ̈ + 3g

2

sin θ = 0. (7.58)

θ̈ + 3g
2


sin θ = 0

(b) Reaction at O: Using linear momentum balance∑
⇀
F = m ⇀

aG ,

where
∑

⇀
F = Rx ı̂ + (Ry − mg)̂ ,

and ⇀
aG = 


2
ω̇(cos θ ı̂ + sin θ ̂) + 


2
ω2(− sin θ ı̂ + cos θ ̂)

= 


2
[(ω̇ cos θ − ω2 sin θ)ı̂ + (ω̇ sin θ + ω2 cos θ)̂ ].

Dotting both sides of
∑ ⇀

F = m ⇀
aG with ı̂ and ̂ and rearranging, we get

Rx = m



2
(ω̇ cos θ − ω2 sin θ)

≡ m



2
(θ̈ cos θ − θ̇2 sin θ),

Ry = mg + m



2
(ω̇ sin θ + ω2 cos θ)

≡ mg + m



2
(θ̈ sin θ + θ̇2 cos θ).

Now substituting the expression for θ̈ from (7.58) in Rx and Ry , we get

Rx = −m sin θ

(
3

4
g cos θ + 


2
θ̇2

)
, (7.59)

Ry = mg

(
1 − 3

4
sin2 θ

)
+ m




2
θ̇2 cos θ. (7.60)

⇀
R = −m( 3

4 g cos θ + 

2 θ̇2) sin θ ı̂ + [mg(1 − 3

4 sin2 θ) + m 

2 θ̇2 cos θ ]̂

Check: We can check the reaction force in the special case when the rod does
not swing but just hangs from point O. The forces on the bar in this case have
to satisfy static equilibrium. Therefore, the reaction at O must be equal to mg
and directed vertically upwards. Plugging θ = 0 and θ̇ = 0 (no motion) in
Eqn. (7.59) and (7.60) we get Rx = 0 and Ry = mg, the values we expect.
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SAMPLE 7.22 The swinging stick: energy balance. Consider the same swinging
stick as in Sample 7.21. The stick is, again, displaced from its vertical position by an
angle θ and released (See Fig. 7.61).

(a) Find the equation of motion using energy balance.
(b) What is θ̇ at θ = 0 if θ(t = 0) = π/2?
(c) Find the period of small oscillations about θ = 0.

Solution

(a) Equation of motion using energy balance: We use the power equation,
ĖK = P , to derive the equation of motion of the bar.

EK = 1

2
Izz/G ω2 + 1

2
mv2

G

where
1

2
Izz/G ω2 = kinetic energy of the bar due to rotation

about the z-axis passing through the mass center G,

and
1

2
mv2

G = kinetic energy of the bar due to translation

of the mass center.

But vG = ωrG = ω 

2 . Therefore,

A

O

G

G'

G''

h


/2

θ

Figure 7.64: Work done by the force of
gravity in moving from G′ to G

∫ ⇀
F ·d ⇀

r =
−mg̂ · h̂ = −mgh.

(Filename:sfig5.4.2a)

EK = 1

2

m
2

12
ω2 + 1

2
mω2 
2

4
= 1

6
m
2ω2,

and

ĖK = d

dt
(
1

6
m
2ω2) = 1

3
m
2ω ω̇ = 1

3
m
2θ̇ θ̈ .

Calculation of power (P): There are only two forces acting on the bar, the
reaction force,

⇀
R(= Rx ı̂ + Ry ̂) and the force due to gravity, −mg̂ . Since

the support point O does not move, no work is done by
⇀
R. Therefore,

W = Work done by gravity force in moving from G′ to G.

= −mgh

Note that the negative sign stands for the work done against gravity. Now,

h = OG ′ − OG ′′ = 


2
− 


2
cos θ = 


2
(1 − cos θ).

Therefore,

W = −mg



2
(1 − cos θ)

and P = Ẇ = dW

dt
= −mg




2
sin θ θ̇ .

Equating ĖK and P we get

−�m g



2
sin θ� θ̇ = 1

3
�m 
2� θ̇ θ̈

or θ̈ + 3g

2

sin θ = 0.

θ̈ + 3g
2


sin θ = 0
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This equation is, of course, the same as we obtained using balance of angular
momentum in Sample 7.21.

(b) Find ω at θ = 0: We are given that at t = 0, θ = π/2 and θ̇ ≡ ω = 0
(released from rest). This position is (1) shown in Fig. 7.65. In position (2)
θ = 0, i.e., the rod is vertical. Since there are no dissipative forces, the total
energy of the system remains constant. Therefore, taking datum for potential
energy as shown in Fig. 7.65, we may write

O

G

G'

h=
/2

V=0

θ = 0

θ = π/2

2

1

Figure 7.65: The total energy between
positions (1) and (2) is constant.

(Filename:sfig5.4.2b)

EK1︸︷︷︸
0

+V1 = EK2 + V2︸︷︷︸
0

or mg



2
= 1

2
Izz/G ω2 + 1

2
mv2

G

= 1

2

m
2

12
ω2 + 1

2
m

vG︷︸︸︷



2
ω

= 1

6
m
2ω2

⇒ ω = ±
√

3g




ω = ±
√

3g



(c) Period of small oscillations: The equation of motion is

θ̈ + 3g

2

sin θ = 0.

For small θ , sin θ ≈ θ

⇒ θ̈ + 3g
2


θ = 0 (7.61)

or θ̈ + λ2θ = 0

where λ2 = 3g
2


.

Therefore,

the circular frequency = λ =
√

3g

2

,

and the time period T = 2π

λ
= 2π

√
2


3g
.

T = 2π
√

2

3g

[Say for g = 9.81 m/s2, 
 = 1 m we get T
4 = π

2

√
2
3

1
9.81 s = 0.4097 s]



406 CHAPTER 7. Circular motion

SAMPLE 7.23 The swinging stick: numerical solution of the equation of motion.
For the swinging stick considered in Samples 7.21 or 7.22, find the time that the rod
takes to fall from θ = π/2 to θ = 0 if it is released from rest at θ = π/2?

Solution π/2 is a big value of θ – big in that we cannot assume sin θ ≈ θ (obviously
1 �= 1.5708). Therefore we may not use the linearized equation (7.61) to solve
for t explicitly. We have to solve the full nonlinear equation (7.58) to find the
required time. Unfortunately, we cannot get a closed form solution of this equation
using mathematical skills you have at this level. Therefore, we resort to numerical
integration of this equation.

Here, we show how to do this integration and find the required time using the
numerical solution. We assume that we have some numerical ODE solver, say
odesolver, available to us that will give us the numerical solution given appropriate
input.

The first step in numerical integration is to set up the given differential equation
of second or higher order as a set of first order ordinary differential equations. To do
so for Eqn. (7.58), we introduce ω as a new variable and write

θ̇ = ω (7.62)

ω̇ = −3g

2

sin θ (7.63)

Thus, the second order ODE (7.58) has been rewritten as a set of two first order
ODE’s (7.62) and (7.63). We may write these first order equations in vector form by
assuming z = [θ ω]T . That is,

z =
{

z1
z2

}
=

{
θ

ω

}

⇒ ż =
{

θ̇

ω̇

}
=

{
z2

− 3g
2


sin z1

}

To use any numerical integrator, we usually need to write a small program which will
compute and return the value of z as output if t and z are supplied as input. Here is
such a program written in pseudo-code, for our equations.

g = 9.81 % define constants
L = 1

ODES = { z1dot = z2
z2dot = -3*g/(2*L) * sin(z1) }

ICS = { z1zero = pi/2
z2zero = 0 }

solve ODES with ICS untill t = 4.

plot(t,z) % plots t vs. theta
% and t vs. omega together

xlabel(’t’),ylabel(’theta and omega’) % label axes

The results obtained from the numerical solution are shown in Fig. 7.66.
The problem of finding the time taken by the bar to fall from θ = π/2 to θ = 0

numerically is nontrivial. It is called a boundary value problem. We have only
illustrated how to solve initial value problems. However, we can get fairly good
estimate of the time just from the solution obtained. We first plot θ against time t
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to get the graph shown in Fig. 7.67. We find the values of t and the corresponding
values of θ that bracket θ = 0. Now, we can use linear interpolation to find the value
of t at θ = 0. Proceeding this way, we get t = 0.4833 (seconds), a little more than
we get from the linear ODE in sample 7.22 of 0.40975. Additionally, we can get by
interpolation that at θ = 0

ω = −5.4246 rad/s.

How does this result compare with the analytical value of ω from sample 7.22 (which
did not depend on the small angle approximates)? Well, we found that

ω = −
√

3g



= −

√
3 · 9.81 m/s2

1 m
= −5.4249 s−1.

Thus, we get a fairly accurate value from numerical integration!
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Figure 7.66: Numerical solution is shown by plotting θ and ω against time. (Filename:sfig5.4.4a)
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Figure 7.67: Graphic output of the plot command (Filename:sfig5.4.4b)
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SAMPLE 7.24 The swinging stick with a destabilizing torque. Consider the swinging
stick of Sample 7.21 once again.

(a) Find the equation of motion of the stick, if a torque
⇀
M = M k̂ is applied at end

O and a force
⇀
F = F ı̂ is applied at the other end A.

(b) Take F = 0 and M = Cθ . For C = 0 you get the equation of free oscillations
obtained in Sample 7.21 or 7.22 For small C , does the period of the pendulum
increase or decrease?

(c) What happens if C is big?

Solution

(a) A free body diagram of the bar is shown in Fig. 7.68. Once again, we can
use

∑ ⇀
MO = ˙⇀HO to derive the equation of motion as in Sample 7.21. We

calculated
∑ ⇀

MO and ˙⇀HO in Sample 7.21. Calculation of ˙⇀HO remains the
same in the present problem. We only need to recalculate

∑ ⇀
MO.∑

⇀
MO = M k̂ + ⇀

r G/O × mg(−̂) + ⇀
r A/O × ⇀

F

= M k̂ − 


2
mg sin θ k̂ + F
 cos θ k̂

= (M + F
 cos θ − 


2
mg sin θ)k̂

and

˙⇀HO = mθ̈

2

3
k̂ (see Sample 7.21)

Therefore, from
∑ ⇀

MO = ˙⇀HO

mg

Rx

Ry

A

O

G

F

M

Figure 7.68: Free body diagram of the
bar with applied torque

⇀
M and force

⇀
F

(Filename:sfig5.4.5a)

M + F
 cos θ − 


2
mg sin θ = mθ̈


2

3

⇒ θ̈ + 3g

2

sin θ − 3F

m

cos θ − 3M

m
2 = 0.

θ̈ + 3g
2


sin θ − 3F
m


cos θ − 3M
m
2 = 0

(b) Now, setting F = 0 and M = C θ we get

θ̈ + 3g

2

sin θ − 3Cθ

m
2 = 0 (7.64)

Numerical Solution: We can numerically integrate (7.64) just as in the pre-
vious Sample to find θ(t). Here is the pseudo-code that can be used for this
purpose.

g = 9.81, L = 1 % specify parameters
m = 1, C = 4

ODES = { thetadot = omega
omegadot = -(3*g/(2*L)) * sin(theta)

+ 3*C/(m*L^2) * theta }
ICS = { thetazero = pi/20

omegazero = 0 }
solve ODES with ICS untill t = 10



7.4. Dynamics of a rigid body in planar circular motion 409

Using this pseudo-code, we find the response of the pendulum. Figure 7.69
shows different responses for various values of C . Note that for C = 0, it is
the same case as unforced bar pendulum considered above. From Fig. 7.69 it
is clear that the bar has periodic motion for small C , with the period of motion
increasing with increasing values of C . It makes sense if you look at Eqn. (7.64)
carefully. Gravity acts as a restoring force while the applied torque acts as a
destabilizing force. Thus, with the resistance of the applied torque, the stick
swings more sluggishly making its period of oscillation bigger.

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10
t

C = 0 C =  1 C = 2
C = 4

C = 4.905

C = 5

 θ

Figure 7.69: θ(t) with applied torque M = C θ for C = 0, 1, 2, 4, 4.905, 5. Note that for small
C the motion is periodic but for large C (C ≥ 4.4) the motion becomes aperiodic.

(Filename:sfig5.4.5b)

(c) From Fig. 7.69, we see that at about C ≈ 4.9 the stability of the system
changes completely. θ(t) is not periodic anymore. It keeps on increasing at
faster and faster rate, that is, the bar makes complete loops about point O with
ever increasing speed. Does it make physical sense? Yes, it does. As the value
of C is increased beyond a certain value (can you guess the value?), the applied
torque overcomes any restoring torque due to gravity. Consequently, the bar is
forced to rotate continuously in the direction of the applied force.
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7.5 Polar moment of inertia: I cm
zz and

I O
zz

We know how to find the velocity and acceleration of every bit of mass on a 2-D rigid
body as it spins about a fixed axis. So, as explained in the previous section, it is just a
matter of doing integrals or sums to calculate the various motion quantities (momenta,
energy) of interest. As the body moves and rotates the region of integration and the
values of the integrands change. So, in principle, in order to analyze a rigid body one
has to evaluate a different integral or sum at every different configuration. But there
is a shortcut. A big sum (over all atoms, say), or a difficult integral is reduced to a
simple multiplication.

The moment of inertia matrix [I ] 1©is defined to simplify the expressions for the1© In fact the moment of inertia for a given
object depends on what reference point is
used. Most commonly when people say
‘the’ moment of inertia they mean to use
the center of mass as the reference point.
For clarity this moment of inertia matrix is
often notated as [I cm] in this book. If a dif-
ferent reference point, say point O is used,
the matrix is notated as [IO].

angular momentum, the rate of change of angular momentum, and the energy of a rigid
body. For study of the analysis of flat objects in planar motion only one component
of the matrix [I] is relevant, it is Izz , called just I or J in elementary physics courses.
Here are the results. A flat object spinning with ⇀

ω = ωk̂ in the xy plane has a mass
distribution which gives, by means of a calculation which we will discuss shortly, a
moment of inertia I cm

zz or just ‘I ’ so that:

⇀
H cm = Iωk̂ (7.65)
˙⇀H cm = I ω̇k̂ (7.66)

EK/cm = 1

2
ω2 I. (7.67)

The moments of inertia in 2-D : [Icm] and [IO].
We start by looking at the scalar I which is just the zz or 33 component of the matrix
[I ] that we will study later. The definition of I cm is

I cm ≡ =
∫

x2 + y2︸ ︷︷ ︸
r2

dm

=
∫ ∫

r2

dm︷ ︸︸ ︷(mtot

A

)
︸ ︷︷ ︸

❇❇�

The mass per unit
area.

d A for a uniform planar object

where x and y are the distances of the mass in the x and y direction measured from
an origin, and r is the direct distance from that origin. If that origin is at the center
of mass then we are calculating I cm , if the origin is at a point labeled C or O then we
are calculating I C or I O .

The term Izz is sometimes called the polar moment of inertia, or polar mass
moment of inertia to distinguish it from the Ixx and Iyy terms which have little utility
in planar dynamics (but are all important when calculating the stiffness of beams!).
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What, physically, is the moment of inertia? It is a measure of the extent to which
mass is far from the given reference point. Every bit of mass contributes to I in
proportion to the square of its distance from the reference point. Note from, say,
eqn. (7.48) on page 397 that I is just the quantity we need to do mechanics problems.

Radius of gyration

Another measure of the extent to which mass is spread from the reference point,
besides the moment of inertia, is the radius of gyration, rgyr . The radius of gyration
is sometimes called k but we save k for stiffness. The radius of gyration is defined as:

rgyr ≡
√

I/m ⇒ r2
gyr m = I.

That is, the radius of gyration of an object is the radius of an equivalent ring of mass
that has the same I and the same mass as the given object.

Other reference points

For the most part it is I cm which is of primary interest. Other reference points are
useful

(a) if the rigid body is hinged at a fixed point O then a slight short cut in calculation
of angular momentum and energy terms can be had; and

(b) if one wants to calculate the moment of inertia of a composite body about its
center of mass it is useful to first find the moment of inertia of each of its parts
about that point. But the center of mass of the composite is usually not the
center of mass of any of the separate parts.

x

y

x

y

dm

O, C, or

⇀
r

Figure 7.70: A general planar body.
(Filename:tfigure4.4.DefofI)

The box 11.2 on page 666 shows the calculation of I for a number of simple 2
dimensional objects.

The parallel axis theorem for planar objects
The planar parallel axis theorem is the equation

I C
zz = I cm

zz + mtot r2
cm/C︸ ︷︷ ︸

d2

.

In this equation d = rcm/C is the distance from the center of mass to a line parallel to
the z-axis which passes through point C . See box 7.4 on page 413 for a derivation
of the parallel axis theorem for planar objects.

Note that I C
zz ≥ I cm

zz , always.
One can calculate the moment of inertia of a composite body about its center

of mass, in terms of the masses and moments of inertia of the separate parts. Say
the position of the center of mass of mi is (xi , yi ) relative to a fixed origin, and the
moment of inertia of that part about its center of mass is Ii . We can then find the
moment of inertia of the composite Itot about its center of mass (xcm, ycm) by the
following sequence of calculations:

(1) mtot = ∑
mi

(2) xcm = [∑
xi mi

]
/mtot

ycm = [∑
yi mi

]
/mtot

(3) d2
i = (xi − xcm)2 + (yi − ycm)2

(4) Itot = ∑ [
Ii + mi d2

i

]
.
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Of course if you are mathematically inclined you can reduce this recipe to one grand
formula with lots of summation signs. But you would end up doing the calculation
in about this order in any case. As presented here this sequence of steps lends itself
naturally to computer calculation with a spread sheet or any program that deals easily
with arrays of numbers.

The tidy recipe just presented is actually more commonly used, with slight modi-
fication, in strength of materials than in dynamics. The need for finding area moments
of inertia of strange beam cross sections arises more frequently than the need to find
polar mass moment of inertia of a strange cutout shape.

The perpendicular axis theorem for planar rigid bodies
The perpendicular axis theorem for planar objects is the equation

Izz = Ixx + Iyy

which is derived in box 7.4 on page 413. It gives the ‘polar’ inertia Izz in terms
of the inertias Ixx and Iyy . Unlike the parallel axis theorem, the perpendicular axis
theorem does not have a three-dimensional counterpart. The theorem is of greatest
utility when one wants to study the three-dimensional mechanics of a flat object and
thus are in need of its full moment of inertia matrix.
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7.4 THEORY
The 2-D parallel axis theorem and the perpendicular axis theorem

Sometimes, one wants to know the moment of inertia relative to
the center of mass and, sometimes, relative to some other point O ,
if the object is held at a hinge joint at O . There is a simple relation
between these two moments of inertia known as the parallel axis
theorem.

2-D parallel axis theorem
For the two-dimensional mechanics of two-dimensional objects,

our only concern is I o
zz and I cm

zz and not the full moment of inertia
matrix. In this case, I o

zz =
∫

r2
/o dm and I cm

zz =
∫

r2
/cm dm. Now,

let’s prove the theorem in two dimensions referring to the figure.

O x

y

⇀
r /O

⇀
r cm/O

⇀
r /cm

dm

I O
zz =

∫
r2
/O dm

=
∫

(x2
/O + y2

/O )dm

=
∫

[(xcm/O + x/cm)︸ ︷︷ ︸
x/O

2 + (ycm/O + y/cm)︸ ︷︷ ︸
y/O

2]dm

=
∫

[(x2
cm/O + 2xcm/O x/cm + x2

/cm) +

(y2
cm/O + 2ycm/O y/cm + y2

/cm)]dm

= (x2
cm/O + y2

cm/O )

∫
dm︸ ︷︷ ︸

m

+2xcm/O

∫
x/cmdm︸ ︷︷ ︸

0

+

2ycm/O

∫
y/cmdm︸ ︷︷ ︸

0

+
∫

(x2
/cm + y2

/cm)dm

= r2
cm/O m +

∫
(x2

/cm + y2
/cm)dm︸ ︷︷ ︸

I cm
zz

= I cm
zz + r2

cm/O︸ ︷︷ ︸
d2

m

The cancellation
∫

y/cm dm =
∫

x/cm dm = 0 comes from the
definition of center of mass.

Sometimes, people write the parallel axis theorem more simply
as

I 0 = I cm + md2 or JO = Jcm + md2

using the symbol J to mean Izz . One thing to note about the parallel
axis theorem is that the moment of inertia about any point O is
always greater than the moment of inertia about the center of mass.
For a given object, the minimum moment of inertia is about the
center of mass.

Why the name parallel axis theorem? We use the name because
the two I ’s calculated are the moments of inertia about two parallel
axes (both in the z direction) through the two points cm and O .

One way to think about the theorem is the following. The
moment of inertia of an object about a point O not at the center of
mass is the same as that of the object about the cm plus that of a
point mass located at the center of mass. If the distance from O to
the cm is larger than the outer radius of the object, then the d2m
term is larger than I cm

zz . The distance of equality of the two terms is
the radius of gyration, rgyr .

Perpendicular axis theorem (applies to
planar objects only)

For planar objects,

I O
zz =

∫
|⇀
r |2 dm

=
∫

(x2
/O + y2

/O )dm

=
∫

x2
/O dm +

∫
y2
/O dm

= I O
yy + I O

xx

Similarly,
I cm
zz = I cm

xx + I cm
yy .

That is, the moment of inertia about the z-axis is the sum of the
inertias about the two perpendicular axes x and y. Note that the
objects must be planar (z = 0 everywhere) or the theorem would
not be true. For example, I o

xx =
∫

(y2
/O + z2

/O )dm �=
∫

y2
/O dm for

a three-dimensional object.

O x

y

⇀
r /O

dm

x/O

y/O
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7.5 Some examples of 2-D Moment of Inertia

Here, we illustrate some simple moment of inertia calculations for
two-dimensional objects. The needed formulas are summarized, in
part, by the lower right corner components (that is, the elements in
the third column and third row (3,3)) of the matrices in the table on
the inside back cover.

One point mass

r

x

y

O

x2 + y2 = r2

If we assume that all mass is concentrated at one or more points,
then the integral

I o
zz =

∫
r2
/o dm

reduces to the sum
I o
zz =

∑
r2
i/omi

which reduces to one term if there is only one mass,

I o
zz = r2m = (x2 + y2)m.

So, if x = 3 in, y = 4 in, and m = 0.1 lbm, then I o
zz = 2.5 lbm in2.

Note that, in this case, I cm
zz = 0 since the radius from the center of

mass to the center of mass is zero.

Two point masses

m1

m2

r2

r1

O x

y

In this case, the sum that defines I o
zz reduces to two terms, so

I o
zz =

∑
r2
i/omi = m1r2

1 + m2r2
2 .

Note that, if r1 = r2 = r , then I o
zz = mtot r2.

A thin uniform rod

x

y

d

s

ds

O
1


1 + 
2 = 



2


 m = ρ

dm = ρds
ρ = mass per

unit length

Consider a thin rod with uniform mass density, ρ, per unit length,
and length 
. We calculate I o

zz as

I o
zz =

∫
r2

ρds︷︸︸︷
dm

=
∫ 
2

−
1

s2ρds (s = r)

= 1

3
ρs3

∣∣∣ 
2

−
1

(since ρ ≡ const.)

= 1

3
ρ(
3

1 + 
3
2).

If either 
1 = 0 or 
2 = 0, then this expression reduces to I o
zz =

1
3 m
2. If 
1 = 
2, then O is at the center of mass and

I o
zz = I cm

zz = 1

3
ρ

((



2

)3
+

(



2

)3
)

= ml2

12
.

We can illustrate one last point. With a little bit of algebraic histri-
onics of the type that only hindsight can inspire, you can verify that
the expression for I 0

zz can be arranged as follows:

I 0
zz = 1

3
ρ(
3

1 + 
3
2)

= ρ(
1 + 
2)︸ ︷︷ ︸
m


 
2 − 
1

2︸ ︷︷ ︸
d




2

+ ρ
(
1 + 
2)

3

12︸ ︷︷ ︸
m
2/12

= md2 + m

2

12

= md2 + I cm
zz

That is, the moment of inertia about point O is greater than that
about the center of mass by an amount equal to the mass times the
distance from the center of mass to point O squared. This derivation
of the parallel axis theorem is for one special case, that of a uniform
thin rod.
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A uniform hoop

R

O x

y dm = ρRdθ

dθ

m = 2ρπ R

For a hoop of uniform mass density, ρ, per unit length, we might
consider all of the points to have the same radius R. So,

I o
zz =

∫
r2dm =

∫
R2dm = R2

∫
dm = R2m.

Or, a little more tediously,

I o
zz =

∫
r2dm

=
∫ 2π

0
R2ρRdθ

= ρR3

∫ 2π

0
dθ

= 2πρR3 = (2πρR)︸ ︷︷ ︸
m

R2 = m R2.

This I o
zz is the same as for a single point mass m at a distance R from

the origin O . It is also the same as for two point masses if they both
are a distance R from the origin. For the hoop, however, O is at the
center of mass so I o

zz = I cm
zz which is not the case for a single point

mass.

A uniform disk

R

rO x

y dm = ρ dA = ρr dr dθ

rdθ
dθ

dA dr

m = ρπ R2

Assume the disk has uniform mass density, ρ, per unit area. For a
uniform disk centered at the origin, the center of mass is at the origin
so

I o
zz = I cm

zz =
∫

r2dm

=
∫ R

0

∫ 2π

0
r2ρrdθdr

=
∫ R

0
2πρr3dr

= 2πρ
r4

4

∣∣∣∣R

0

= πρ
R4

2
= (πρR2)

R2

2

= m
R2

2
.

For example, a 1 kg plate of 1 m radius has the same moment of
inertia as a 1 kg hoop with a 70.7 cm radius.

Uniform rectangular plate

a

b
O x

y

dm = ρdx dy

m = ρab

For the special case that the center of the plate is at point O , the
center of mass of mass is also at O and I o

zz = I cm
zz .

I o
zz = I cm

zz =
∫

r2dm

=
∫ b

2

− b
2

∫ a
2

− a
2

(x2 + y2)

dm︷ ︸︸ ︷
ρdxdy

=
∫ b

2

− b
2

ρ

(
x3

3
+ xy2

)∣∣∣∣∣
x= a

2

x=− a
2

dy

= ρ

(
x3 y

3
+ xy3

3

)∣∣∣∣x= a
2

x=− a
2

∣∣∣∣∣
y= b

2

y=− b
2

= ρ

(
a3b

12
+ ab3

12

)
= m

12
(a2 + b2).

Note that
∫

r2dm =
∫

x2dm +
∫

y2dm for all planar objects (the

perpendicular axis theorem). For a uniform rectangle,
∫

y2dm =
ρ
∫

y2d A. But the integral y2d A is just the term often used for I ,
the area moment of inertia, in strength of materials calculations for
the stresses and stiffnesses of beams in bending. You may recall that∫

y2d A = ab3

12 = Ab2

12 for a rectangle. Similarly,
∫

x2d A = Aa2

12 .

So, the polar moment of inertia J = I o
zz = m 1

12 (a2 + b2) can be
recalled by remembering the area moment of inertia of a rectangle
combined with the perpendicular axis theorem.
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SAMPLE 7.25 A pendulum is made up of two unequal point masses m and 2m

2m

m

O

3r

r

x

y

θ

Figure 7.71: (Filename:sfig4.5.1)

connected by a massless rigid rod of length 4r . The pendulum is pivoted at distance
r along the rod from the small mass.

(a) Find the moment of inertia I O
zz of the pendulum.

(b) If you had to put the total mass 3m at one end of the bar and still have the same
I O
zz as in (a), at what distance from point O should you put the mass? (This

distance is known as the radius of gyration).

Solution Here we have two point masses. Therefore, the integral formula for
I O
zz (I O

zz = ∫
m r2

/Odm) gets replaced by a summation over the two masses:

I O
zz =

2∑
i=1

mir
2
i/O

= = m1r2
1/O + m2r2

2/O

(a) For the pendulum, m1 = m, m2 = 2m, r1/O = r, r2/O = 3r .

I O
zz = mr2 + 2m(3r)2

= 19mr2

I O
zz = 19mr2

(b) For the equivalent simple pendulum of mass 3m, let the length of the massless
rod (i.e., the distance of the mass from O) be rgyr .

3m

O

k

θ

x

y

Figure 7.72: (Filename:sfig4.5.1a)

(I O
zz )simple = (3m)·r2

gyr

Now we need (I O
zz )simple = I O

zz (from part (a))

⇒ 3�mr2
gyr = 19�mr2

⇒ rgyr =
√

19

3
r

= 2.52r

Thus the radius of gyration rgyr of the given pendulum is rgyr = 2.52 r .

rgyr = 2.52 r
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SAMPLE 7.26 A uniform rigid rod AB of mass M = 2 kg and length 3
 = 1.5 m




2


M

A

O

B

x

y

Figure 7.73: (Filename:sfig4.5.2)

swings about the z-axis passing through the pivot point O.

(a) Find the moment of inertia I O
zz of the bar using the fundamental definition

I O
zz = ∫

m r2
/Odm.

(b) Find I O
zz using the parallel axis theorem given that I cm

zz = 1
12 m
2 where m =

total mass, and 
 = total length of the rod. (You can find I cm
zz for many

commonly encountered objects in the table on the inside backcover of the text).

Solution


'

d
'

A

O

B

dm

Figure 7.74: (Filename:sfig4.5.2a)

(a) Since we need to carry out the integral, I O
zz = ∫

m r2
/Odm, to find I O

zz , let us
consider an infinitesimal length segment d
′ of the bar at distance 
′ from the
pivot point O. (see Figure 7.74). Let the mass of the infinitesimal segment be
dm.
Now the mass of the segment may be written as

dm = (mass per unit length of the bar) · (length of the segment)

= M

3

d
′

(
Note:

mass

unit length
= total mass

total length

)
.

We also note that the distance of the segment from point O, r/O = 
. Substi-
tuting the values found above for r/O and dm in the formula we get

I O
zz =

∫ 2


−


(
′)2︸︷︷︸
r2
/O

M

3

d
′︸ ︷︷ ︸

dm

= M

3


∫ 2


−


(
′)2d
′ = M

3


[

′3

3

]2


−


= M

3


[
8
3

3
−

(
−
3

3

)]
= M
2

= 2 kg·(0.5 m)2

= 0.5 kg· m2

I O
zz = 0.5 kg· m2

(b) The parallel axis theorem states that

rO/cm

A

O

cm

B


 3

2

Figure 7.75: (Filename:sfig4.5.2b)

I O
zz = I cm

zz + Mr2
O/cm.

Since the rod is uniform, its center of mass is at its geometric center, i.e., at
distance 3


2 from either end. From the Fig 7.75 we can see that

rO/cm = AG − AO = 3


2
− 
 = 


2

Therefore, I O
zz = 1

12
M(3
)2︸ ︷︷ ︸
I cm
zz

+M(



2
)2

= 9

12
M
2 + M


2

4
= M
2

= 0.5 kg· m2 (same as in (a), of course)

I O
zz = 0.5 kg· m2



418 CHAPTER 7. Circular motion

SAMPLE 7.27 A uniform rigid wheel of radius r = 1 ft is made eccentric by

r

A
C O

B

e

x

y

Figure 7.76: (Filename:sfig4.5.3)

cutting out a portion of the wheel. The center of mass of the eccentric wheel is at C, a
distance e = r

3 from the geometric center O. The mass of the wheel (after deducting
the cut-out) is 3.2 lbm. The moment of inertia of the wheel about point O, I O

zz , is 1.8
lbm· ft2. We are interested in the moment of inertia Izz of the wheel about points A
and B on the perimeter.

(a) Without any calculations, guess which point, A or B, gives a higher moment
of inertia. Why?

(b) Calculate I C
zz , I A

zz and I B
zz and compare with the guess in (a).

Solution

(a) The moment of inertia I B
zz should be higher. Moment of inertia Izz measures

the geometric distribution of mass about the z-axis. But the distance of the
mass from the axis counts more than the mass itself (I O

zz = ∫
m r2

/Odm). The

distance r/O of the mass appears as a quadratic term in I O
zz . The total mass is

the same whether we take the moment of inertia about point A or about point
B. However, the distribution of mass is not the same about the two points. Due
to the cut-out being closer to point B there are more “dm’s” at greater distances
from point B than from point A. So, we guess that

I B
zz > I A

zz

(b) If we know the moment of inertia I C
zz (about the center of mass) of the wheel,

we can use the parallel axis theorem to find I A
zz and I B

zz . In the problem, we are
given I O

zz . But,

A
C O

B

r/3

rA/C rB/C

2r/3 r/3 + r

Figure 7.77: (Filename:sfig4.5.3a)

I O
zz = I C

zz + Mr2
O/C (parallel axis theorem)

⇒ I C
zz = I O

zz − Mr2
O/C

= 1.8 lbm ft2 − 3.2 lbm

(
1 ft

3

)2

︸ ︷︷ ︸
rO/C =e= r

3

= 1.44 lbm· ft2

Now, I A
zz = I C

zz + Mr2
A/C = I C

zz + M

(
2r

3

)2

= 1.44 lbm· ft2 + 3.2 lbm

(
2 ft

3

)2

= 2.86 lbm· ft2

and I B
zz = I C

zz + Mr2
B/C = I C

zz + M
(

r + r

3

)2

= 1.44 lbm· ft2 + 3.2 lbm

(
1 ft + 1 ft

3

)2

= 7.13 lbm· ft2

I C
zz = 1.44 lbm· ft2, I A

zz = 2.86 lbm· ft2, I B
zz = 7.13 lbm· ft2

Clearly, I B
zz > I A

zz , as guessed in (a).
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SAMPLE 7.28 A sphere or a point? A uniform solid sphere of mass m and radius
radius r
mass m




x

y

Figure 7.78: (Filename:sfig4.5.4)

r is attached to a massless rigid rod of length 
. The sphere swings in the xy plane.
Find the error in calculating I O

zz as a function of r/ l if the sphere is treated as a point
mass concentrated at the center of mass of the sphere.

Solution The exact moment of inertia of the sphere about point O can be calculated
using parallel axis theorem:

I O
zz = I cm

zz + ml2

= 2

5
mr2︸ ︷︷ ︸

See table 4.10
of the text.

+ml2.

If we treat the sphere as a point mass, he moment of inertia I O
zz is

Ĩ O
zz = ml2.

Therefore, the relative error in I O
zz is

error = I O
zz − Ĩ O

zz

I O
zz

=
2
5 mr2 + ml2 − ml2

2
5 mr2 + ml2

=
2
5

r2

l2

2
5

r2

l2 + 1

From the above expression we see that for r � l the error is very small. From the
graph of error in Fig. 7.79 we see that even for r = l/5, the error in I O

zz due to
approximating the sphere as a point mass is less than 2%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20
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30

0 0.05 0.1 0.15 0.2
0

2

4

r/l

%
 E

rr
or

r / l

%
 E

rr
or

 in
 I

zzO

Figure 7.79: Relative error in I O
zz of the sphere as a function of r/ l. (Filename:sfig4.5.4a)
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7.6 Using I cm
zz and I O

zz in 2-D circular

motion dynamics

Once one knows the velocity and acceleration of all points in a system one can find
all of the motion quantities in the equations of motion by adding or integrating using
the defining sums from chapter 1.1. This addition or integration is an impractical
task for many motions of many objects where the required sums may involve billions
and billions of atoms or a difficult integral. As you recall from chapter 3.6, the
linear momentum and the rate of change of linear momentum can be calculated by
just keeping track of the center of mass of the system of interest. One wishes for
something so simple for the calculation of angular momentum.

It turns out that we are in luck if we are only interested in the two-dimensional
motion of two-dimensional rigid bodies. The luck is not so great for 3-D rigid bodies
but still there is some simplification. For general motion of non-rigid bodies there
is no simplification to be had. The simplification is to use the moment of inertia for
the bodies rather than evaluating the momenta and energy quantities as integrals and
sums. Of course one may have to do a sum or integral to evaluate I ≡ I cm

zz or [I cm]
but once this calculation is done, one need not work with the integrals while worrying
about the dynamics. At this point we will assume that you are comfortable calculating
and looking-up moments of inertia. We proceed to use it for the purposes of studying
mechanics. For constant rate rotation, we can calculate the velocity and acceleration
of various points on a rigid body using ⇀

v = ⇀
ω × ⇀

r and ⇀
a = ⇀

ω × (
⇀
ω × ⇀

r ). So
we can calculate the various motion quantities of interest: linear momentum

⇀
L, rate

of change of linear momentum ˙⇀L, angular momentum
⇀
H , rate of change of angular

momentum ˙⇀H , and kinetic energy EK.

Consider a two-dimensional rigid body like that shown in figure 7.80. Now let

dm

O

center of mass

x

y

ω

⇀
r

Figure 7.80: A two-dimensional body is
rotating around the point O at constant rate
ω. A differential bit of mass dm is shown.
The center of mass is also shown.

(Filename:tfigure4.2Dinertia)

us consider the various motion quantities in turn. First the linear momentum
⇀
L. The

linear momentum of any system in any motion is
⇀
L = ⇀

v cmmtot . So, for a rigid body
spinning at constant rate ω about point O (using ⇀

ω = ωk̂):

⇀
L = ⇀

v cmmtot = ⇀
ω × ⇀

r cm/omtot .

Similarly, for any system, we can calculate the rate of change of linear momentum ˙⇀L
as ˙⇀L = ⇀

acmmtot . So, for a rigid body spinning at constant rate,

˙⇀L = ⇀
acmmtot = ⇀

ω × (
⇀
ω × ⇀

r cm/o)mtot .

That is, the linear momentum is correctly calculated for this special motion, as it is
for all motions, by thinking of the body as a point mass at the center of mass.

Unlike the calculation of linear momentum, the angular momentum turns out to
be something different than would be calculated by using a point mass at the center of
mass. You can remember this important fact by looking at the case when the rotation
is about the center of mass (point O coincides with the center of mass). In this case
one can intuitively see that the angular momentum of a rigid body is not zero even
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though the center of mass is not moving. Here’s the calculation just to be sure:
⇀
HO = ∫

⇀
r /O × ⇀

v dm (by definition of
⇀
HO)

= ∫
⇀
r /O × (

⇀
ω × ⇀

r /O) dm (using ⇀
v = ⇀

ω × ⇀
r )

= ∫
(x/O ı̂ + y/O ̂) ×

[
(ωk̂) × (x/O ı̂ + y/O ̂)

]
dm (substituting ⇀

r /O and ⇀
ω)

= {∫ (x2
/O + y2

/O) dm}ωk̂ (doing cross products)

= {∫ r2
/O dm}ωk̂

= I O
zz︸︷︷︸
❇❇�

I O
zz is the ‘polar’ moment of

inertia.

ωk̂

We have defined the ‘polar’ moment of inertia as I o
zz = ∫

r2
/o dm. In order to calculate

I o
zz for a specific body, assuming uniform mass distribution for example, one must

convert the differential quantity of mass dm into a differential of geometric quantities.
For a line or curve, dm = ρd
; for a plate or surface, dm = ρd A, and for a 3-D
region, dm = ρdV . d
, d A, and dV are differential line, area, and volume elements,
respectively. In each case, ρ is the mass density per unit length, per unit area, or per
unit volume, respectively. To avoid clutter, we do not define a different symbol for
the density in each geometric case. The differential elements must be further defined
depending on the coordinate systems chosen for the calculation; e.g., for rectangular
coordinates, d A = dxdy or, for polar coordinates, d A = rdrdθ .

Since
⇀
H and ⇀

ω always point in the k̂ direction for two dimensional problems
people often just think of angular momentum as a scalar and write the equation above
simply as ‘H = Iω,’ the form usually seen in elementary physics courses.

The derivation above has a feature that one might not notice at first sight. The
quantity called I O

zz does not depend on the rotation of the body. That is, the value of the
integral does not change with time, so I O

zz is a constant. So, perhaps unsurprisingly,
a two-dimensional body spinning about the z-axis through O has constant angular
momentum about O if it spins at a constant rate. 1© 1© Note that the angular momentum about

some other point than O will not be constant
unless the center of mass does not accelerate
(i.e., is at point O).

˙⇀HO = ⇀

0.

Now, of course we could find this result about constant rate motion of 2-D bodies
somewhat more cumbersomely by plugging in the general formula for rate of change
of angular momentum as follows:

˙⇀HO = ∫
⇀
r /O × ⇀

a dm
= ∫

⇀
r /O × (

⇀
ω × (

⇀
ω × ⇀

r /O)) dm

= ∫
(x/O ı̂ + y/O ̂) ×

[
ωk̂ × (ωk̂ × (x/O ı̂ + y/O ̂))

]
dm

= ⇀

0.

(7.68)

Finally, we can calculate the kinetic energy by adding up 1
2 miv

2
i for all the bits

of mass on a 2-D body spinning about the z-axis:

EK =
∫

1

2
v2 dm =

∫
1

2
(ωr)2 dm = 1

2
ω2

∫
r2 dm = 1

2
I o
zzω

2 . (7.69)

If we accept the formulae presented for rigid bodies in the box at the end of chapter
7, we can find all of the motion quantities by setting ⇀

ω = ωk̂ and ⇀
α = ⇀

0.

Example: Pendulum disk

θ

R

m

G

O

ı̂

̂

Figure 7.81: (Filename:tfigure5.3.pend.disk)
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For the disk shown in figure 7.81, we can calculate the rate of change of
angular momentum about point O as

˙⇀HO = ⇀
r G/O × m ⇀

acm + I cm
zz αk̂

= R2mθ̈ k̂ + I cm
zz θ̈ k̂

= (I cm
zz + R2m)θ̈ k̂.

Alternatively, we could calculate directly

˙⇀HO = I O
zz αk̂

= (I cm
zz + R2m)︸ ︷︷ ︸

❇❇�

by the parallel axis theorem

θ̈ k̂.

✷

But you are cautioned against falling into the common misconception that the formula
M = Iα applies in three dimensions by just thinking of the scalars as vectors and
matrices. That is, the formula

˙⇀HO = [IO] · ˙⇀ω︸︷︷︸
⇀
α

(7.70)

is only correct when ⇀
ω is zero or when ⇀

ω is an eigen vector of [I/O ]. To repeat, the
equation ∑

Moments about O = [IO] · ⇀
α (7.71)

is generally wrong, it only applies if there is some known reason to neglect ⇀
ω × ⇀

H 0.
For example, ⇀

ω × ⇀
H 0 can be neglected when rotation is about a principal axis as for

planar bodies rotating in the plane. The term ⇀
ω × ⇀

H 0 can also be neglected at the
start or stop of motion, that is when ⇀

ω = ⇀

0.
The equation for linear momentum balance is the same as always, we just need

to calculate the acceleration of the center of mass of the spinning body.

˙⇀L = mtot
⇀
acm = mtot

[
⇀
ω × (

⇀
ω × ⇀

r cm/O) + ˙⇀ω × ⇀
r cm/O

]
(7.72)

Finally, the kinetic energy for a planar rigid body rotating in the plane is:

EK = 1

2
⇀
ω · ([I cm] · ⇀

ω) + 1

2
m v2

cm︸︷︷︸
✂✂✍

⇀
v cm = ⇀

ω × ⇀
r cm/O

.



7.6. Using I cm
zz and I O

zz in 2-D circular motion dynamics 423



424 CHAPTER 7. Circular motion

SAMPLE 7.29 An accelerating gear train. In the gear train shown in Fig. 7.82,

A
ωin

αin

αin
ωin

B C

D

Driver

Idler RD

RC

RB

RA

ωout

αout

αout
ωout

Figure 7.82: An accelerating compound
gear train.

(Filename:sfig5.6.1)

the torque at the input shaft is Min = 200 N·m and the angular acceleration is αin =
50 rad/s2. The radii of the various gears are: RA = 5 cm, RB = 8 cm, RC = 4 cm,

and RD = 10 cm and the moments of inertia about the shaft axis passing through
their respective centers are: IA = 0.1 kg m2, IBC = 5IA, ID = 4IA. Find the
output torque Mout of the gear train.

Solution Since the difference between the input power and the output power is used
in accelerating the gears, we may write

Pin − Pout = ĖK

Let Mout be the output torque of the gear train. Then,

Pin − Pout = Min ωin − Mout ωout . (7.73)

Now,

ĖK = d

dt
(EK) (7.74)

= d

dt
(
1

2
IA ω2

in + 1

2
IBC ω2

BC + 1

2
ID ω2

out )

= IA ωin ω̇in + IBC ωBC ω̇BC + ID ωout ω̇out

= IA ωin αin + 5IA ωBC αBC + 4IA ωout αout . (7.75)

The different ω’s and the α’s can be related by realizing that the linear speed or the

ωin
αin

ωout
αout

ωB
αB

P

R
vR

vP

(aR)θ

(aP)θ

Figure 7.83: The velocity or acceleration
of the point of contact between two mesh-
ing gears has to be the same irrespective of
which meshing gear’s geometry and motion
is used to compute them.

(Filename:sfig5.6.1a)

tangential acceleration of the point of contact between any two meshing gears has to
be the same irrespective of which gear’s speed and geometry is used to calculate it.
Thus, using the linear speed and tangential acceleration calculations for points P and
R in Fig. 7.83, we find

vP = ωin RA = ωB RB

⇒ ωB = ωin · RA

RB

(aP )θ = αin RA = αB RB

⇒ αB = αin · RA

RB
.

Similarly,

vR = ωC RC = ωout RD

⇒ ωout = ωC · RC

RD

(aR)θ = αC RC = αout RD

⇒ αout = αC · RC

RD
.

But

ωC = ωB = ωBC

⇒ ωout = ωin · RA

RB
· RC

RD
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and

αC = αB = αBC

⇒ αout = αin · RA

RB
· RC

RD
.

Substituting these expressions for ωout , αout , ωBC and αBC in equations (7.73) and
(7.75), we get

Pin − Pout = Min ωin − Moutωin · RA

RB
· RC

RD

= ωin

(
Min − Mout · RA

RB
· RC

RD

)
.

ĖK = IA

[
ωinαin + 5ωinαin(

RA

RB
)2 + 4ωinαin(

RA

RB
· RC

RD
)2

]

= IAωin

[
αin + 5αin(

RA

RB
)2 + 4αin(

RA

RB
· RC

RD
)2

]
.

Now equating the two quantities, Pin − Pout and ĖK, and canceling ωin from both
sides, we obtain

Mout
RA

RB
· RC

RD
= Min − IAαin

[
1 + 5(

RA

RB
)2 + 4(

RA

RB
· RC

RD
)2

]

Mout
5

8
· 4

10
= 200 N·m − 5 kg m2 · rad/s2

[
1 + 5(

5

8
)2 + 4(

5

8
· 4

10
)2

]
Mout = 735.94 N·m

≈ 736 N·m.

Mout = 736 N·m
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SAMPLE 7.30 Drums used as pulleys. Two drums, A and B of radii Ro = 200 mm

m

F

Ro

Ri

A

O
B

Figure 7.84: Two drums with strings
wrapped around are used to pull up a mass
m.

(Filename:sfig5.6.2)

and Ri = 100 mm are welded together. The combined mass of the drums is M =
20 kg and the combined moment of inertia about the z-axis passing through their
common center O is Izz/O = 1.6 kg m2. A string attached to and wrapped around
drum B supports a mass m = 2 kg. The string wrapped around drum A is pulled with
a force F = 20 N as shown in Fig. 7.84. Assume there is no slip between the strings
and the drums. Find

(a) the angular acceleration of the drums,
(b) the tension in the string supporting mass m, and
(c) the acceleration of mass m.

Solution The free body diagram of the drums and the mass are shown in Fig. 7.85
separately where T is the tension in the string supporting mass m and Ox and Oy are
the support reactions at O. Since the drums can only rotate about the z-axis, let

⇀
ω = ωk̂ and ˙⇀ω = ω̇k̂.

Now, let us do angular momentum balance about the center of rotation O:
F

O

T

Ox

Oy

T

mg

A

D

Mg

x

y

Figure 7.85: Free body diagram of the
drums and the mass m. T is the tension in
the string supporting mass m and Ox and
Oy are the reactions of the support at O.

(Filename:sfig5.6.2a)

∑
⇀
MO = ˙⇀HO

∑
⇀
MO = T Ri k̂ − F Rok̂

= (T Ri − F Ro)k̂.

Since the motion is restricted to the xy-plane (i.e., 2-D motion), the rate of change
of angular momentum ˙⇀HO may be computed as

˙⇀HO = Izz/cm ω̇k̂ + ⇀
r cm/O × ⇀

acm Mtotal

= Izz/O ω̇k̂ + ⇀
r O/O︸ ︷︷ ︸

0

× ⇀
acm︸︷︷︸

0

Mtotal

= Izz/O ω̇k̂.

Setting
∑ ⇀

MO = ˙⇀HO we get

T Ri − F Ro = Izz/O ω̇. (7.76)

Now, let us write linear momentum balance,
∑ ⇀

F = m ⇀
a , for mass m:

(T − mg)̂︸ ︷︷ ︸∑ ⇀
F

= m ⇀
a .

Do we know anything about acceleration ⇀
a of the mass? Yes, we know its direction

(±̂ ) and we also know that it has to be the same as the tangential acceleration (
⇀
a D)θ

of point D on drum B (why?). Thus,

⇀
a = (

⇀
a D)θ

= ω̇k̂ × (−Ri ı̂)

= −ω̇Ri ̂ . (7.77)
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Therefore,
T − mg = −mω̇Ri . (7.78)

(a) Calculation of ω̇: We now have two equations, (7.76) and (7.78), and two
unknowns, ω̇ and T . Subtracting Ri times Eqn.(7.78) from Eqn. (7.76) we get

−F Ro + mgRi = (Izz/O + m R2
i )ω̇

⇒ ω̇ = −F Ro + mgRi

(Izz/O + m R2
i )

= −20 N · 0.2 m + 2 kg · 9.81 m/s2 · 0.1m

1.6 kg m2 + 2 kg · (0.1 m)2

= −2.038 kg m2/ s2

1.62 kg m2

= −1.258
1

s2

˙⇀ω = −1.26 rad/s2k̂

(b) Calculation of tension T: From equation (7.78):

T = mg − mω̇Ri

= 2 kg · 9.81 m/s2 − 2 kg · (−1.26 s−2) · 0.1 m

= 19.87 N

T = 19.87 N

(c) Calculation of acceleration of the mass: Since the acceleration of the mass
is the same as the tangential acceleration of point D on the drum, we get (from
eqn. (7.77))

⇀
a = (

⇀
a D)θ = −ω̇Ri ̂

= −(−1.26 s−2) · 0.1 m

= 0.126 m/s2̂

⇀
a = 0.13 m/s2̂

Comments: It is important to understand why the acceleration of the mass is the
same as the tangential acceleration of point D on the drum. We have assumed (as is
common practice) that the string is massless and inextensible. Therefore each point of
the string supporting the mass must have the same linear displacement, velocity, and
acceleration as the mass. Now think about the point on the string which is momentarily
in contact with point D of the drum. Since there is no relative slip between the drum
and the string, the two points must have the same vertical acceleration. This vertical
acceleration for point D on the drum is the tangential acceleration (

⇀
a D)θ .
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SAMPLE 7.31 Energy Accounting: Consider the pulley problem of Sample 7.30
again.

(a) What percentage of the input energy (work done by the applied force F) is used
in raising the mass by 1 m?

(b) Where does the rest of the energy go? Provide an energy-balance sheet.

Solution

(a) Let Wi and Wh be the input energy and the energy used in raising the mass by
1 m, respectively. Then the percentage of energy used in raising the mass is

% of input energy used = Wh

Wi
× 100.

Thus we need to calculate Wi and Wh to find the answer. Wi is the work done
by the force F on the system during the interval in which the mass moves up
by 1 m. Let s be the displacement of the force F during this interval. Since
the displacement is in the same direction as the force (we know it is from
Sample 7.30), the input-energy is

Wi = F s.

So to find Wi we need to find s.
For the mass to move up by 1 m the inner drum B must rotate by an angle θ

where

1 m = θ Ri ⇒ θ = 1 m

0.1 m
= 10 rad.

Since the two drums, A and B, are welded together, drum A must rotate by θ

as well. Therefore the displacement of force F is

s = θ Ro = 10 rad · 0.2 m = 2 m,

and the energy input is

Wi = F s = 20 N · 2 m = 40J.

Now, the work done in raising the mass by 1 m is

Wh = mgh = 2 kg · 9.81 m/s2 · 1 m = 19.62J.

Therefore, the percentage of input-energy used in raising the mass

= 19.62 N·m
40

× 100 = 49.05% ≈ 49%.

(b) The rest of the energy (= 51%) goes in accelerating the mass and the pulley.
Let us find out how much energy goes into each of these activities. Since
the initial state of the system from which we begin energy accounting is not
prescribed (that is, we are not given the height of the mass from which it is to
be raised 1 m, nor do we know the velocities of the mass or the pulley at that
initial height), let us assume that at the initial state, the angular speed of the
pulley is ωo and the linear speed of the mass is vo. At the end of raising the
mass by 1 m from this state, let the angular speed of the pulley be ω f and the
linear speed of the mass be v f . Then, the energy used in accelerating the pulley
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is

(�EK)pulley = final kinetic energy − initial kinetic energy

= 1

2
Iω2

f − 1

2
Iω2

o

= 1

2
I (ω2

f − ω2
o)︸ ︷︷ ︸

❇❇�

assuming constant accelera-
tion, ω2

f = ω2
o + 2αθ , or

ω2
f − ω2

o = 2αθ .

= Iα θ (from Sample 7.34, α = 1.258 rad/s2. )

= 1.6 kg m2 · 1.258 rad/s2 · 10 rad

= 20.13 N·m = 20.13 J.

Similarly, the energy used in accelerating the mass is

(�EK)mass = final kinetic energy − initial kinetic energy

= 1

2
mv2

f − 1

2
mv2

o

= 1

2
m(v2

f − v2
o︸ ︷︷ ︸

2ah

)

= mah

= 2 kg · 0.126 m/s2 · 1 m

= 0.25 J.

We can calculate the percentage of input energy used in these activities to get
a better idea of energy allocation. Here is the summary table:

Activities Energy Spent

in Joule as % of input energy

In raising the mass by 1 m 19.62 49.05%

In accelerating the mass 0.25 0.62 %

In accelerating the pulley 20.13 50.33 %

Total 40.00 100 %

So, what would you change in the set-up so that more of the input energy is used in
raising the mass? Think about what aspects of the motion would change due to your
proposed design.
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SAMPLE 7.32 A uniform rigid bar of mass m = 2 kg and length L = 1 m is pinned
k k

ml

Figure 7.86: (Filename:sfig10.1.2)

at one end and connected to two springs, each with spring constant k, at the other
end. The bar is tweaked slightly from its vertical position. It then oscillates about its
original position. The bar is timed for 20 full oscillations which take 12.5 seconds.
Ignore gravity.

(a) Find the equation of motion of the rod.
(b) Find the spring constant k.
(c) What should be the spring constant of a torsional spring if the bar is attached

to one at the bottom and has the same oscillating motion characteristics?

Solution

k k

m
lcosθ ≈ l

x = lsinθ ≈ lθ

θ is small

(b) Free body diagram

kx kx

O

O

(a) Geometry

θ

ı̂

̂

θ

⇀
RO

Figure 7.87: (Filename:sfig10.1.2a)

(a) Refer to the free body diagram in figure 7.87. Angular momentum balance for
the rod about point O gives ∑

⇀
MO = ˙⇀HO

where
⇀
MO = −2k

l sin θ︷︸︸︷
x ·l cos θ k̂

= −2kl2 sin θ cos θ k̂,

and ˙⇀HO = I O
zz θ̈ k̂ = 1

3
ml2︸ ︷︷ ︸
I O
zz

.

Thus
1

3
ml2 θ̈ = −2kl2 sin θ cos θ.

However, for small θ, cos θ ≈ 1 and sin θ ≈ θ ,

⇒ θ̈ + 6k �l2

m �l2 θ = 0. (7.79)

θ̈ + 6k
m θ = 0

(b) Comparing Eqn. (7.79) with the standard harmonic oscillator equation ẍ +
λ2x = 0, we get

angular frequency λ =
√

6k

m
,

and the time period T = 2π

λ

= 2π

√
m

6k
.

From the measured time for 20 oscillations, the time period (time for one
oscillation) is

T = 12.5

20
s = 0.625 s
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Now equating the measured T with the derived expression for T we get

2π

√
m

6k
= 0.625 s

⇒ k = 4π2· m

6(0.625 s)2

= 4π2·2 kg

6(0.625 s)2

= 33.7 N/ m.

k = 33.7 N/ m

(c) If the two linear springs are to be replaced by a torsional spring at the bottom,
we can find the spring constant of the torsional spring by comparison. Let
ktor be the spring constant of the torsional spring. Then, as shown in the free
body diagram (see figure 7.88), the restoring torque applied by the spring at an
angular displacement θ is ktorθ . Now, writing the angular momentum balance
about point O, we get

ktor

m

FBD

OO

θθ

ı̂

̂

⇀
RO

⇀
MO

Figure 7.88: (Filename:sfig10.1.2b)

∑
⇀
MO = ˙⇀HO

−ktorθ k̂ = I O
zz (θ̈ k̂)

⇒ θ̈ + ktor

I O
zz

θ = 0.

Comparing with the standard harmonic equation, we find the angular frequency

λ =
√

ktor

I O
zz

=
√

ktor
1
3 ml2

If this system has to have the same period of oscillation as the first system, the
two angular frequencies must be equal, i.e.,√

ktor
1
3 ml2

=
√

6k

m

⇒ ktor = 6k·1

3
l2 = 2kl2

= 2·(33.7 N/ m)·(1 m)2

= 67.4 N·m

ktor = 67.4 N·m
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SAMPLE 7.33 Hey Mom, look, I can seesaw by myself. A kid, modelled as a point
d1 = 
 d2 = 2


m = 10 kgk

A

C

BO

Figure 7.89: (Filename:sfig3.4.3)

mass with m = 10 kg, is sitting at end B of a rigid rod AB of negligible mass. The
rod is supported by a spring at end A and a pin at point O. The system is in static
equilibrium when the rod is horizontal. Someone pushes the kid vertically downwards
by a small distance y and lets go. Given that AB = 3 m, AC = 0.5 m, k = 1 kN/m;
find

(a) the unstretched (relaxed) length of the spring,
(b) the equation of motion (a differential equation relating the position of the mass

to its acceleration) of the system, and
(c) the natural frequency of the system.

If the rod is pinned at the midpoint instead of at O, what is the natural frequency of
the system? How does the new natural frequency compare with that of a mass m
simply suspended by a spring with the same spring constant?

Solution

kyst

A BO

O

R mg

mgk�y

(a) Static equilibrium

A'

(b) Mass m is displaced downwards

y
ya

B'

ı̂

̂

θ

R

Figure 7.90: Free body diagrams
(Filename:sfig3.4.3a)

(a) Static Equilibrium: The FBD of the (rod + mass) system is shown in Fig. 7.90.
Let the stretch in the spring in this position be yst and the relaxed length of the
spring be 
0. The balance of angular momentum about point O gives:∑

⇀
M/o = ˙⇀H /o = ⇀

0 (no motion)

⇒ (kyst )d1 − (mg)d2 = 0

⇒ yst = mg

k
· d2

d1

= 10 kg · 9.8 m/s2 · 2


1000 N/ m · 

= 0.196 m

Therefore, 
0 = AC − yst

= 0.5 m − 0.196 m = 0.304 m.


0 = 30.4 cm

(b) Equation of motion: As point B gets displaced downwards by a distance y,
point A moves up by a proportionate distance ya . From geometry, 1©

1© Here, we are considering a very small y
so that we can ignore the arc the point mass
B moves on and take its motion to be just
vertical (i.e., sin θ ≈ θ for small θ ).

y ≈ d2θ ⇒ θ = y

d2

ya ≈ d1θ = d1

d2
y

Therefore, the total stretch in the spring, in this position,

�y = ya + yst = d1

d2
y + d2

d1

mg

k

Now, Angular Momentum Balance about point O gives:∑
⇀
M/o = ˙⇀H /o∑
⇀
M/o = ⇀

r B × mg̂ + ⇀
r A × k�y̂

= (d2mg − d1k�y)k̂ (7.80)
˙⇀H /o = ⇀

r B × m ⇀
a = ⇀

r B × mÿ̂ (7.81)

= d2mÿk̂ (7.82)
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Equating (7.80) and (7.82) we get

d2mg − d1k�y = d2mÿ

or d2mg − d1k

(
d1

d2
y + d2mg

d1k

)
= d2mÿ

or �d2mg − k
d2

1

d2
y − �d2mg = d2mÿ

or ÿ + k

m

d2
1

d2
2

y = 0

ÿ + k
m

d2
1

d2
2

y = 0

(c) The natural frequency of the system: We may also write the previous equation
as

ÿ + λy = 0 where λ = k

m

d2
1

d2
2

. (7.83)

Substituting d1 = 
 and d2 = 2
 in the expression for λ we get the natural
frequency of the system

√
λ = 1

2

√
k

m
= 1

2

√
1000 N/ m

10 kg
= 5 s−1

√
λ = 5 s−1

(d) Comparison with a simple spring mass system: When d1 = d2, the equation

L

m 

L

m 

k≡

k

A

C

BO

Figure 7.91: (Filename:sfig3.4.3b)

of motion (7.83) becomes

ÿ + k

m
y = 0

and the natural frequency of the system is simply

√
λ =

√
k

m

which corresponds to the natural frequency of a simple spring mass system
shown in Fig. 7.91.
In our system (with d1 = d2 ) any vertical displacement of the mass at B induces
an equal amount of stretch or compression in the spring which is exactly the case
in the simple spring-mass system. Therefore, the two systems are mechanically
equivalent. Such equivalences are widely used in modeling complex physical
systems with simpler mechanical models.
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SAMPLE 7.34 Energy method: Consider the pulley problem of Sample 7.30 again.
Use energy method to

(a) find the angular acceleration of the pulley, and
(b) the acceleration of the mass.

Solution In energy method we use speeds, not velocities. Therefore, we have to
be careful in our thinking about the direction of motion. In the present problem, let
us assume that the pulley rotates and accelerates clockwise. Consequently, the mass
moves up against gravity.

(a) The energy equation we want to use is

P = ĖK .

The power P is given by P = ∑ ⇀
F i · ⇀

v i where the sum is carried out over
all external forces. For the mass and pulley system the external forces that do
work are 1©F and mg. Therefore,1© There are other external forces on the

system: the reaction force of the support
point O and the weight of the pulley—both
forces acting at point O. But, since point O
is stationary, these forces do no work.

P = ⇀
F · ⇀

v A + m ⇀
g · ⇀

vm

= F ı̂ · vA ı̂ + (−mg̂) · vD ̂︸︷︷︸
⇀
vm

= FvA − mgvD.

The rate of change of kinetic energy is

ĖK = d

dt
(

1

2
m v2

D︸ ︷︷ ︸
K.E. of the mass

+ 1

2
Izz/O ω2︸ ︷︷ ︸

K.E. of the pulley

)

= m vD v̇D + Izz/O ω ω̇.

Now equating the power and the rate of change of kinetic energy, we get

F vA − mg vD = m vD v̇D + Izz/O ω ω̇

From kinematics, vA = ωRo, vD = ωRi and v̇D ≡ (aD)θ = ω̇Ri .
Substituting these values in the above equation, we get

ω(F Ro − mgRi ) = ω ω̇(m R2
i + Izz/O)

⇒ ω̇ = F Ro − mgRi

(Izz/O + m R2
i )

= 20 N · 0.2 m − 2 kg · 9.81 m/s2 · 0.1m

1.6 kg m2 + 2 kg · (0.1 m)2

= 1.258
1

s2 (same as the answer before.)

Since the sign of ω̇ is positive, our initial assumption of clockwise acceleration
of the pulley is correct.

ω̇ = 1.26 rad/s2

(b) From kinematics,

am = (aD)θ = ω̇Ri = 0.126 m/s2.

am = 0.13 m/s2
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SAMPLE 7.35 A flywheel of diameter 2 ft spins about the axis passing through its

r = 1 ft

z

Figure 7.92: (Filename:sfig7.4.1)

center and perpendicular to the plane of the wheel at 1000 rpm. The wheel weighs
20 lbf. Assuming the wheel to be a thin, uniform disk, find its kinetic energy.

Solution The kinetic energy of a 2-D rigid body spinning at speed ω about the z-axis
passing through its mass center is

EK = 1

2
I cm
zz ω2

where I cm
zz is the mass moment of inertia about the z-axis. For the flywheel,

I cm
zz = 1

2
m R2 (from table IV at the back of the book)

= 1

2

W

g
R2 (where W is the weight of the wheel)

= 1

2
· (20 lbf

g
)︸ ︷︷ ︸

20 lbm

· (1 ft)2 = 10 lbm· ft2

The angular speed of the wheel is

ω = 1000 rpm

= 1000·2π

60
rad/s

= 104.72 rad/s.

Therefore the kinetic energy of the wheel is

EK = 1

2
·(10 lbm· ft2)·(104.72 rad/s)2

= 5.483 × 104 lbm· ft2/ s2

= 5.483 × 104

32.2
lbf· ft

= 1.702 × 103 ft· lbf.

1.702 × 103 ft· lbf.
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8 General planar motion
of a single rigid body

Many parts of practical machines and structures move in ways that can be idealized
as straight-line or parallel motion (Chapter 6) or circular motion (Chapters 7 and 11).
But often an engineer must analyze parts with more general motions, like a plane in
unsteady flight or a connecting rod in a car engine. Of course, the same basic laws of
mechanics still apply but keeping track of the motion is a bit more difficult. To keep
things reasonably simple we only consider 2-D motions at this point.

The chapter starts with the kinematic description of motion and then progresses
to the mechanics of these motions. Almost throughout this chapter, we will use two
modeling approximations:

• The objects are planar, or symmetric with respect to a plane; and
• They have planar motions in that plane.

Figure 8.1: Planar motion of a 3D car.
(Filename:tfigure.2D3Dcar)

A planar object is one where the whole body is flat and all its matter is confined to one
plane, say the xy plane. This is a palatable approximation for a flat piece cut out of
sheet metal. For more substantial real objects, like a full car, the approximation seems
at a glance to be terrible. But it turns out that so long as the motion is planar and the
car is reasonably idealized as symmetrical (left to right) that the further idealization
that the car is squished into a plane does not introduce any more approximation. Thus,
even in this 3-D world, it is fruitful to do 2-D analysis of the type you will learn in
this chapter.

A planar motion is one where the velocities of all points are in the same constant
plane, say a fixed xy plane, at all times and where points with, say, the same z
coordinate have the same velocity. Note that the positions of the points do not have
to be in same plane for a planar motion. Each point stays in a plane, but different
points can be in different planes, with each plane parallel to the others.

437
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Example: A car going over a hill

Assume the road is straight in map view, say in the x direction. Assume
the whole width of the road has the same hump. Although the car is
clearly not planar, the car motion is probably close to planar, with the
velocities of all points in the car in the xy plane (see Fig. 8.1) ✷

x

y

z

Figure 8.2: Planar motion of a skewered
sphere.

(Filename:tfigure.ball)

Example: Skewered sphere

A sphere skewered and rotating about a fixed axes in the k̂ direction has
a planar motion (see Fig. 8.2). The points on the object do not all lie
in a common plane. But all of the velocities are orthogonal to k̂ and
thus in the xy plane. This problem does fit in with the methods of this
chapter. The symmetry of the sphere with respect to the xy plane makes
it so that the three-dimensional mass distribution does not invalidate the
two-dimensional analysis. ✷

Figure 8.3: Planar motion of a planar ob-
ject. But the plane of the motion is not the
plane of the object.

(Filename:tfigure.crookedplate)

Example: Skewered plate

A flat rectangular plate with normal n̂ has a fixed axis of rotation in the
direction λ̂ that makes a 45o to n̂ (see Fig. 8.3). This is a planar object (a
plane normal to n̂) in planar motion (all velocities are in the plane normal
to λ̂). But the plane of motion is not the plane of the mass distribution,
the object is not symmetric with respect to a motion plane, o this example
does not fit into the discussion of this chapter 1©. ✷

1© Actually, a two-dimensional analysis of
the plate in this example we would be legit-
imate in this sense. Project all the plates

mass into the plane normal to the λ̂ di-
rection. The projections of the forces on
this plane would be correctly predicted, but
three dimensional effects, like those asso-
ciated with dynamic imbalance, would be
lost in this projection.

No real object is exactly planar and no real motion is exactly a planar motion. But
many objects are relatively flat and thin or symmetrical and many motions are approx-
imately planar motions. Thus many, if not most, simple engineering analysis assume
planar motion. For bodies that are approximately symmetric about the xy plane of
motion (such as a car, if the asymmetrically placed driver’s mass etc. is neglected),
there is no loss in doing a two-dimensional planar rather than full three dimensional
analysis.

8.1 Kinematics of planar rigid-body

motion
We start our study of planar motion with the kinematic question: How do points on a
rigid body move? Lets review the two reasons to ask this question. First, velocities and
accelerations of mass points are needed to apply the momentum-balance equations.
Second, formulas for positions, velocities and accelerations of points are useful to
understand mechanisms, machines where various parts (each one usually idealized
as a rigid body) are connected to each other with hinges and bearings of one type of
another.

The central observation in all rigid body kinematics, not just planar motion, is
that

all pairs of points on a moving rigid body maintain constant distance from
each other.



8.1. Kinematics of planar rigid-body motion 439

In this section you will learn how to use this restriction to calculate positions, velocities
and accelerations of all points on a rigid body given only limited information. This
goal is achieved by putting together the ideas from Chapter 5 (arbitrary motion of one
particle), Chapter 6 (parallel motion), and chapter 7 (circular motion of a rigid body
in a plane).

Displacement and rotation
When a planar body (read, say, machine part) B moves from one configuration in the
plane it has a displacement and a rotation. For definiteness, we start in some reference
position *. We mark a reference point on the body that, in the reference configuration,
coincides with a fixed reference point, say 0. We also mark a (directed) line on the
body that, in the reference configuration, coincides with a fixed reference line, say the
positive x axis. The body never has to pass through this reference position, however.
For example, the position of a plane flying from New York to Mumbai is measured
relative to a point in the Gulf of Guinea 1000 miles west of Gabon, 1©even though the 1© That’s the location of Oo longitude and

Oo latitude.plane never goes there (nor does anyone want it to).

Figure 8.4: Rotation of body B is mea-
sured by the rotation of real or imagined
lines marked on the body. The lines make
different angles: θ1 �= θ2, θ2 �= θ3 etc, but
θ̇1 = θ̇2 = θ̇3 = . . .. Angular velocity is

defined as ⇀
ω = ωk̂ with ω ≡ θ̇1 = θ̇2 =

θ̇3 = . . ..
(Filename:tfigure.2Drotation)

0

0’

Motion

θ

⇀
r0′/0

⇀
rP ′/0

rP /0

P

P

⇀
rP/0

*

Figure 8.5: The displacement and rota-
tion of a planar body relative to a reference
configuration.

(Filename:tfigure.dispandrot)

We could measure rotation by measuring the rotations of any lines that connected
any pair of points fixed to the body. For each line we keep track of the angle that line
makes with a line fixed in space, say the positive x or y axis. Its simplest to stick to
the convention that counter-clockwise rotations are positive (Fig. 8.4). The angles θ1,
θ2 . . ., all change with time and are all different from each other. But all the angles
change the same amount, just like in section 7.3. We can pick any one line we like
for definiteness and measure the body rotation by the rotation of that line. So

The net motion of a rigid planar body is described by translation, the vector
displacement of a reference point from a reference position ⇀

ro′/o = ⇀
roo′ , and

a rotation θ of the body from the reference orientation.

That is, the general planar motion of a rigid body is the general motion of a point plus
circular motion about that point.

The position of a point on a moving rigid body.
Let’s denote the reference configuration with a star (∗). Given that P on the body is
at ⇀

rP/0
∗ in the reference configuration, where is it (What is ⇀

rP/0?) after the body has
been displaced by ⇀

r0′/0 and rotated an angle θ? An easy way to treat this is to write
the new position of P as (see Fig. 8.5)

⇀
rP/0 = ⇀

r0′/0 + ⇀
rP/0′ .

This is the base-independent or direct vector representation of the position of P. The
formula is correct no matter what base vectors are used to represent the vectors in the
formula. The vector ⇀

r0′/0 describes translation, that’s half the story. The other term
⇀
rP/0′ we find by rotating ⇀

rP/0
∗ as we did in Section 7.3. Thus, we can describe the

coordinates of a point as,[
⇀
rP/0

]
xy

=
[

⇀
r0′/0

]
xy︸ ︷︷ ︸

displacement

+ [
R(θ)

] [
⇀
rP/0′

]
x ′ y′︸ ︷︷ ︸

rotation

(8.1)
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or, writing out all the components of the vectors and matrices,[
xP

yP

]
=

[
x0′/0
y0′/0

]
+

[
cos θ sin θ

− sin θ cos θ

] [
x∗

P/0
y∗

P/0

]
. (8.2)

As the motion progresses the displacement

[
x0′/0
y0′/0

]
changes with time as does the

rotation angle θ . We call eqn. (8.2) the fixed basis or component representation of
the motion. It gives the components of the position in terms of base vectors that are
fixed in space.

Example:

If in the reference position a particle on a rigid body is at ⇀
rP/0 = (1ı̂ +

2̂) m and the object displaces by ⇀
r0′/0 = (3ı̂ + 4̂) m and rotates by

θπ/3 rad = 60 deg relative to that configuration, then its new position
is: [

⇀
rP/0

]
xy

=
[

⇀
r0′/0

]
xy

+ [
R(θ)

] [
⇀
rP/0′

]
x ′ y′

=
[

x0′/0
y0′/0

]
+

[
cos θ sin θ

− sin θ cos θ

] [
x∗

P/0
y∗

P/0

]

=
{[

3
4

]
+

[
cos π/3 sin π/3

− sin π/3 cos π/3

] [
1
2

]}
m

=
[

3.5 + √
3

5 − √
3/2

]
m

⇒ ⇀
rP/0 =

(
(3.5 +

√
3)ı̂ + (5 −

√
3/2)̂

)
m

✷

Finally, the changing base representation uses base vectors ı̂
′
, ̂

′ that are aligned with
ı̂, ̂ in the reference configuration but which are glued to the rotating body. If we
define x ′ and y′ as the x and y components of P in the reference (*) configuration we
have that[

⇀
rP/0

∗
]

xy
=

[
⇀
rP/0′ ∗

]
x ′ y′ =

[
x ′
y′

]
so ⇀

rP/0 = (
x0′/0 ı̂ + y0′/0̂

)+(
x ′ ı̂′ + y′̂ ′)

.

Often the changing-base notation the clearest, the component or fixed base represen-
tation the best for computer calculations, and the base-independent or direct-vector
notation the quickest and easiest.

Angular velocity

Figure 8.6: It is generally best to take pos-
itive ω to be counterclockwise when viewed
from the positive z axis.

(Filename:tfigure.posomega)

Because all lines body B rotate at the same rate (at a given instant) B’s rotation rate
is the single number we call ωB (‘omega b’). In order to make various formulas work
out we define a vector angular velocity with magnitude ωB which is perpendicular to
the xy plane:

⇀
ωB = ωB︸︷︷︸

θ̇

k̂

where θ̇ is the rate of change of the angle of any line marked on body B.
So long as you are careful to define angular velocity by the rotation of line segments

and not by the motion of individual particles, the concept of angular velocity in general
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motion is defined exactly as for a body rotating about a fixed axis. A legitimate way
to think about planar motion of a rigid body is that any given point is moving in circles
about any other given point (relative to that point). When a rigid body moves it always
has an angular velocity (possibly zero). If we call the body B (script B), we then call
the body’s angular velocity ⇀

ωB . In general it is best to use the sign convention that
when ωB > 0 the body is rotating counterclockwise when viewed looking in from
the positive z axis (see Fig. 8.6).

The angular velocity vector ⇀
ωB of a body B describes it’s rate and direction

of rotation. For planar motions ⇀
ωB = ωB k̂.

Relative velocity of two points on a rigid body
For any two points A and B glued to a rigid body B the relative velocity of the points
(‘the velocity of B relative to A’) is given by the cross product of the angular velocity
of the body with the relative position of the two points:

⇀
v B/A ≡ ⇀

v B − ⇀
v A = ⇀

ωB × ⇀
r B/A. (8.3)

This formula says that the relative velocity of two points on a rigid body is the same

Figure 8.7: The relative velocity of points
A and B is in the xy plane and perpendicular
to the line segment AB.

(Filename:tifigure.vperptoomega)

as would be predicted for one of the points if the other were stationary. The derivation
of this formula is the same as for planar circular motion.

Note that even though we are doing planar kinematics, it is convenient to use
three dimensional cross products. Generally we will call the plane of motion the xy
plane and ⇀

ω will be in the z direction. Because ⇀
ω × ⇀

r must be perpendicular to ⇀
ω it

is perpendicular to the z axis. So this three dimensional cross product always gives a
vector in the xy plane that is perpendicular to ⇀

r .
We can also represent the relative velocity in the changing base notation as

⇀
v B/A = d

dt

(
x

′
B/A ı̂

′ + x
′
B/A̂

′)
= x

′
B/A

d

dt
ı̂
′ + x

′
B/A

d

dt
̂

′

= x
′
B/A

⇀
ωB × ı̂

′ + x
′
B/A

⇀
ωB × ̂

′
.

Finally, we can use the fixed-base or component notation:[
⇀
vB/A

]
xy

= d

dt

[
xB/A

yB/A

]

= d

dt

{[
cos θ sin θ

− sin θ cos θ

] [
x∗

B/A
y∗

B/A

]}

=
[ −θ̇ sin θ θ̇ cos θ

−θ̇ cos θ −θ̇ sin θ

] [
x∗

B/A
y∗

B/A

]

=
[

0 ω

−ω 0

] [
cos θ sin θ

− sin θ cos θ

] [
x∗

B/A
y∗

B/A

]

where x∗
B/A and y∗

B/A are the components of the position of B with respect to A in
the reference configuration and hence do not change with time.
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Absolute velocity of a point on a rigid body
If one knows the velocity of one point on a rigid body and one also knows the angular
velocity of the body, then one can find the velocity of any other point. How? By
addition. Say we know the velocity of point A, the angular velocity of the body, and
the relative position of A and B, then

⇀
v B = ⇀

v A + (
⇀
v B − ⇀

v A)

= ⇀
v A + ⇀

v B/A

= ⇀
v A + ⇀

ωB × ⇀
r B/A︸ ︷︷ ︸

⇀
r B−⇀

r A

. (8.4)

That is, the absolute velocity of the point B is the absolute velocity of the point A
plus the velocity of the point B relative to the point A. Because B and A are on the
same rigid body, their relative velocity is given by formula 8.4 above. For ease of
understanding one pretends one knows the quantities on the right and are trying to
find the quantity on the left. But the equation is valid and useful no matter which
quantities are known and which are not.

An alternative approach is to differentiate the coordinate expression eqn. (8.3)
(see Box 8.1 on 442).

Angular acceleration
We define the angular acceleration ⇀

α (‘alpha’) of a rigid body as the rate of change
of angular velocity, ⇀

α = ˙⇀ω. The angular acceleration of a body B is ⇀
αB . For two-

dimensional bodies moving in the plane both the angular velocity and the angular
acceleration are always perpendicular to the plane. That is ⇀

ω = ωk̂ and ⇀
α = αk̂ =

ω̇k̂. In 2-D the angular acceleration is only due to the speeding up or slowing down
of the rotation rate; i.e., α = ω̇ = θ̈ .

8.1 THEORY
Using matrices to find velocity from position

An alternative derivation for the velocity eqn. (8.3) of a point on
a rigid body comes from differentiating the matrix formula for the
position (eqn. (8.3)). Denoting ⇀

rP/O as the reference position of the
particle and ⇀

rP′/O′ as the position relative to the reference point on
the moved body at the time of interest, we have:[

⇀
vP/0

]
xy

= d

dt

[
⇀
rP/0

]
xy

= d

dt

[
x0′/0
y0′/0

]

+ d

dt

{[
cos θ sin θ

− sin θ cos θ

][
x∗

P/0
y∗

P/0

]}

=
[

ẋ∗
0′/0

ẏ∗
0′/0

]
+

[
−θ̇ sin θ θ̇ cos θ

−θ̇ cos θ −θ̇ sin θ

][
x∗

P/0
y∗

P/0

]

=
[

ẋ0′/0
ẏ0′/0

]

+
[

0 ω

−ω 0

][
cos θ sin θ

− sin θ cos θ

][
x∗

P/0
y∗

P/0

]

=
[

ẋ0′/0
ẏ0′/0

]
+

[
0 ω

−ω 0

][
⇀
rP′/0′

]
xy

.

Thus, matrix product
[

0 ω

−ω 0

][
⇀
rP′/0′

]
xy

is equivalent to the

vector product ⇀
ω× ⇀

rP′/0′ and the matrix
[

0 ω

−ω 0

]
is sometimes

called the angular velocity matrix. It is an example of a so-called
skew symmetric matrix because it is the negative of its own transpose.
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Relative acceleration of two points on a rigid body

For any two points A and B glued to a rigid body B, the acceleration of B relative to
A is

⇀
a B/A = d

dt
⇀
vB/A

= d

dt

{
⇀
ωB × ⇀

rB/A

}
= ˙⇀ωB × ⇀

r B/A + ⇀
ωB × (

⇀
vB/A),

= ˙⇀ωB × ⇀
r B/A + ⇀

ωB × (
⇀
ωB × ⇀

rB/A),

= αB k̂ × ⇀
r B/A + (−ω2

B
⇀
rB/A), (8.5)

This is the base-independent or direct-vector expression for relative acceleration. If
point A has no acceleration, this formula is the same as that for the acceleration of a
point going in circles from chapter 7. On a rigid body in 2D all two points on rigid
body can do relative to each other is to go in circles.

Equation (8.5) could also be derived, with some algebra, by taking two time
derivatives of the relative position coordinate expression[

⇀
rB/A

]
xy

= [
R(θ)

] [
⇀
rB/A

∗
]

x ′ y′

or by taking two time derivatives of the changing base vector expression

⇀
rB/A = x ′

B/A ı̂
′ + y′

B/A̂
′
.

Absolute acceleration of a point on a rigid body

If one knows the acceleration of one point on a rigid body and the angular velocity
and acceleration of the body, then one can find the acceleration of any other point.
How?

⇀
a B = ⇀

a A + (
⇀
a B − ⇀

a A) = ⇀
a A + ⇀

a B/A

= ⇀
a A + ⇀

ωB × (
⇀
ωB × ⇀

r B/A) + ˙⇀ωB × ⇀
r B/A

= ⇀
a A − ω2

B
⇀
r B/A + αB k̂ × ⇀

r B/A (8.6)

This is the base-independent or direct-vector expression for acceleration. The fixed-
base (component) and changing-base notations are somewhat more complex.

Equation 8.7 is often called the three term acceleration formula. The acceleration
of a point B on a rigid body is the sum of three terms. The first, ⇀

a A, is the acceleration
of some point A on the body. The second term, ⇀

ωB × (
⇀
ωB × ⇀

r B/A), is the centripetal
acceleration of B going in circles relative to A. It is directed from B towards A. The
third term, ˙⇀ωB × ⇀

r B/A, is due to the change in the magnitude of the angular velocity
and is in the direction normal to the line from A to B.



444 CHAPTER 8. General planar motion of a single rigid body

Example: Robot arm

Given the configuration shown in Fig. 8.8 the acceleration of point B can
be found by thinking of link AB as the body B in eqn. (8.7) and using
what you know about circular motion to find the acceleration of A:

⇀
a B = ⇀

a A − ω2
B

⇀
r B/A + αB k̂ × ⇀

r B/A

=
(
−ω2

OA�̂ − ω̇OA�ı̂
)

−
(
ω2

AB�ı̂
)

+
(
ω̇ABk̂ × (�ı̂)

)

= −
(
ω̇OA� + ω2

AB�
)

ı̂ +
(
−ω2

OA� + ω̇AB�
)

̂

[Note that ωAB �= θ̇ where θ is the angle between the links. Rather
ωAB = ω0A + θ̇ .] ✷

Figure 8.8: A two link robot arm.
(Filename:tfigure.robotarm)

Computer graphics

Given one point given by the xy pair

[
x0
y0

]
we can find out what happens to it by

rotation [R] as [
x
y

]
= [R]

[
x0
y0

]
.

For example the point

[
0
2

]
gets changed by a 45 deg rotation to

[
x
y

]
= [R]

[
x0
y0

]
=

[
cos π

4 sin π
4− sin π

4 cos π
4

] [
0
2

]

≈
[

.7 .7
−.7 .7

] [
0
2

]
≈

[
1.4
1.4

]
.

A translation is just a vector addition. For example the point

[
1.4
1.4

]
gets translated

a distance 2 in the y direction by the addition of

[
xt

yt

]
=

[
0
1

]
like this

[
x
y

]
translated

=
[

x
y

]
+

[
xt

yt

]
=

[
1.4
1.4

]
+

[
0
1

]
=

[
1.4
2.4

]
.

Putting these together the point

[
x0
y0

]
gets rotated and translated by first multiplying

by the rotation matrix and then adding the translation:
[

x
y

]
= [R]

[
x0
y0

]
+

[
xt

yt

]
≈

[
.7 .7

−.7 .7

] [
0
2

]
+

[
0
1

]
≈

[
1.4
2.4

]
.

A collection of points all rotated the same amount and then all translated the same
amount keep their relative distances.

A picture is a set of points on a plane. If all the points are rotated and translated
the same amount the picture is rotated and translated. Thus a picture of a rigid body
described by points is rigidly rotated and translated. On a computer line drawings
are often represented as a connect-the-dots picture. The picture is represented by the
x and y coordinates of the reference dots at the corners. These can be stored in an
array with the first row being the x coordinates and the second row the y coordinates
as explained on page 381. Each column of this matrix represents one point of the



8.1. Kinematics of planar rigid-body motion 445

connect-the-dots picture. Thus a primitive picture of a house at the origin is given by
the array

[P0] ≡ [
xy points originally

] =
[

0 2 2 1 0 0
0 0 2 3 2 1

]

with the lower left corner of the house at the origin.
To rotate this picture we rotate each of the columns of the matrix P0]. But this is

exactly what is accomplished by the matrix multiplication [R][P0]. To translate the
points you add the translation vector to each of the columns of the resulting matrix.
Thus the whole picture rotated by 45o and translated up by 1 is given by

1 32 4

1

2

3

4

5

x

ya) b)

0
1 32 4

1

2

3

4

5

x

y

0

Figure 8.9: (a) A house drawn as 6 dots
connected by line segments. The first and
last point are the same. (b) The same house
but rigidly rotated and translated.

(Filename:tfigure.rotatedhouse2)

[Pnew] = [R][P0] +
[

xt

yt

]
≈

[
.7 .7

−.7 .7

]
[P0] +

[
0
1

]

which gives a new array of points that, when connected give the picture shown. We
have allowed the informal notation of adding a column matrix to a rectangular matrix,
by which we mean adding to each column of the rectangular matrix.

To animate the motion of, say, a house flying in the Wizard of Oz you would first
define the house as the set of points [P0]. Then define, maybe by means of numerical
solution of differential equations, a set of rotations and translations. Then for each
rotation and translation the picture of the house should be drawn, one after the other.
The sequence of such pictures is an animation of a flying and spinning house.

Summary of the kinematics of one rigid body in general 2D
motion
You can use the position of one reference point and the rotation of the body as simple
kinematic measures of the entire motion of the body. If you know the position,
velocity, and acceleration of one point on a rigid body (represented by 6 scalars, say)
, and you know the rotation angle, angular rate and angular acceleration (3 scalars)
then you can find the position, velocity and acceleration of any point on the body.
In 2D, just 9 numbers tell you the position, velocity, and acceleration of any of the
billions of points whose initial positions you know 1©. 1© In 1D it takes just 3 numbers and in 3D

just 18. The unusual patter (3,9,18) comes
from rotation being characterized by 0, 1,
and 3 numbers in 1, 2, and 3 dimensions,
respectively.
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SAMPLE 8.1 Velocity of a point on a rigid body in planar motion. An equilateral

A

C

B

⇀
vB

0.2 m

ı̂

̂

Figure 8.10: (Filename:sfig9.1.triang.1)

triangular plate ABC is in motion in the x-y plane. At the instant shown in the figure,
point B has velocity ⇀

vB = 0.3 m/sı̂ + 0.6 m/s̂ and the plate has angular velocity
⇀
ω = 2 rad/sk̂. Find the velocity of point A.

Solution We are given ⇀
vB and ω, and we need to find ⇀

vA, the velocity of point A on
the same rigid body. We know that,

⇀
vA = ⇀

vB + ⇀
ω × ⇀

rA/B

Thus, to find ⇀
vA, we need to find ⇀

rA/B. Let us take an x-y coordinate system whose
origin coincides with point A of the plate at the instant of interest and the x-axis is
along AB. Then,

⇀
rA/B = ⇀

rA − ⇀
rB = ⇀

0 − (0.2 mı̂) = −0.2 mı̂

Thus,

⇀
vA = ⇀

vB + ⇀
ω × ⇀

rA/B

= (0.3ı̂ + 0.6̂) m/s + 2 rad/sk̂ × (−0.2ı̂) m

= (0.3ı̂ + 0.6̂) m/s − 0.4̂ m/s

= (0.3ı̂ + 0.2̂) m/s.

⇀
vA = (0.3ı̂ + 0.2̂) m/s

SAMPLE 8.2 The instantaneous center of rotation. A rigid body is in planar motion.

At some instant t , the angular velocity of the body is ⇀
ω = 5 rad/sk̂ and the linear

velocity of a point C on the body is ⇀
vC = 2 m/sı̂ − 5 m/s̂ . Find a point on the body,

assuming it exists, that has zero velocity. 1©1© The point with zero velocity is called
the instantaneous center of rotation. Some-
times this point may lie outside the body.

Solution Let the point of zero velocity be O, with position vector ⇀
rO/C with respect

to point C. Since ⇀
vO = ⇀

vC + ⇀
ω× ⇀

rO/C, for ⇀
vO to be zero, ⇀

ω× ⇀
rO/C must be parallel to

and in the opposite direction of ⇀
vC. Since ⇀

ω is out of plane, ⇀
rO/C must be normal to

⇀
vC for the cross product to be parallel to ⇀

vC. Now, let ⇀
vC = vC λ̂. Then, ⇀

rO/C = r n̂

where n̂ ⊥ λ̂ and r = |⇀
rO/C|. Thus,

x

y

⇀
vC

O

C

r

n̂

λ̂

ω

Figure 8.11: (Filename:sfig9.1.2.body)

vC λ̂ + ωk̂ × r n̂ = ⇀
vO = ⇀

0 (8.7)

Dotting eqn. (8.7) with λ̂, we get

vC = ωr ⇒ r = vC

ω
=

√
29 m/s

5 rad/s
= 1.08 m.

Since λ̂ = ⇀
vC/|⇀

vC| = 0.37ı̂ − 0.93̂ , n̂ = 0.93ı̂ + 0.37̂ . Thus

⇀
rO/C = r n̂ = 1.08 m(0.93ı̂ + 0.37̂) = 1 mı̂ + 0.4 m̂ .

⇀
rO/C = 1 mı̂ + 0.4 m̂

Note: It is also possible to find ⇀
rO/C purely by vector algebra. Assuming ⇀

rO/C =
(x ı̂ + y̂) m and plugging into ⇀

vO = ⇀
vC + ⇀

ω × ⇀
rO/C along with the given values,

we get
⇀

0 = (2 − 5y) m/sı̂ + (−5 + 5x) m/s̂ . Dotting this equation with ı̂ and ̂ ,
we get 2 − 5y = 0 and −5 + 5x = 0, which give x = 1 and y = 0.4. Thus,
⇀
rO/C = 1 mı̂ + 0.4 m̂ as obtained above.
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SAMPLE 8.3 A cheerleader throws her baton up in the air in the vertical xy-plane.

A

G

B

θ = 60o

x

y

⇀
vA

⇀
vB

Figure 8.12: (Filename:sfig7.1.1)

At an instant when the baton axis is at θ = 60o from the horizontal, the velocity of
end A of the baton is ⇀

v A = 2 m/sı̂ + √
3 m/s̂ . At the same instant, end B of the

baton has velocity in the negative x-direction (but |⇀
v B | is not known). If the length

of the baton is 
 = 1
2 m and the center of mass is in the middle of the baton, find the

velocity of the center of mass.

Solution

We are given: ⇀
v A = (2ı̂ +

√
3̂) m/s

and ⇀
v B = −vB ı̂

where vB = |⇀
v B | is unknown. We need to find ⇀

vG . Using the relative velocity
formula for two points on a rigid body, we can write:

⇀
vG = ⇀

v A + ⇀
ω × ⇀

r G/A (8.8)

Here, ⇀
v A and ⇀

r G/A are known. Thus, to find ⇀
vG , we need to find ⇀

ω, the angular

A

B

⇀
r A/B = (-cos θ ı̂ + sin θ ̂ )

ı̂

̂

θ







Figure 8.13: (Filename:sfig7.1.1a)

velocity of the baton. Since the motion is in the vertical xy-plane, let ⇀
ω = ωk̂. Then,

A

B

θ

 /2

⇀
r G/A = 
 /2(cos θ ı̂ - sin θ ̂ )

ı̂

̂




Figure 8.14: (Filename:sfig7.1.1b)

⇀
v B = ⇀

v A + ⇀
ω × ⇀

r A/B = ⇀
v A + ωk̂ × 
(− cos θ ı̂ + sin θ ̂)︸ ︷︷ ︸

⇀
r A/B

or − vB ı̂ = (2ı̂ +
√

3̂) m/s − ω
(cos θ ̂ + sin θ ı̂)

= (2ı̂ +
√

3̂) m/s − ω·1

2
m·(1

2
̂ +

√
3

2
ı̂)

Dotting both sides of this equation with ̂ we get:

0 =
√

3 m/s − ω

2
m·1

2

⇒ ω =
√

3
�m
s

· 4

1 �m = 4
√

3 rad/s.

Now substituting the appropriate values in Eqn 8.8 we get:

⇀
vG = ⇀

v A + ωk̂ × 


2
(cos θ ı̂ − sin θ ̂)︸ ︷︷ ︸

⇀
r G/A

= ⇀
v A + ω


2
(cos θ ̂ + sin θ ı̂)

= (2ı̂ +
√

3̂) m/s +
√

3 m/s·(1

2
̂ +

√
3

2
ı̂)

= (2 + 3

2
) m/sı̂ + (

√
3 +

√
3

2
) m/s̂

= 3.5 m/sı̂ + 2.6 m/s̂

⇀
vG = (3.5ı̂ + 2.6̂) m/s
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SAMPLE 8.4 A board in the back of an accelerating truck. A 10 ft long board

CG

A

B

L

θ
ı̂

̂

Figure 8.15: (Filename:sfig7.2.2a)

AB rests in the back of a flat-bed truck as shown in Fig. 8.15. End A of the board
is hinged to the bed of the truck. The truck is going on a level road at 55 mph. In
preparation for overtaking a vehicle in the front the trucker accelerates at a constant
rate 3 mph/s. At the instant when the speed of the truck is 60 mph, the magnitude
of the relative velocity and relative acceleration of end B with respect to the bed of
the truck are 10 ft/s and 12 ft/s2, respectively. There is wind and at this instant, the
board has lost contact with point C. If the angle θ between the board and the bed is
45o at the instant mentioned, find

(a) the angular velocity and angular acceleration of the board,
(b) the absolute velocity and absolute acceleration of point B, and
(c) the acceleration of the center of mass of the board.

Solution At the instant of interest

⇀
v A = velocity of the truck = 60 mph ı̂

= 88 ft/s ı̂
⇀
a A = acceleration of the truck = 3 mph/s

= 4.4 ft/s2 ı̂

|⇀
v B/A| = vB/A = magnitude of relative velocity of B

= 10 ft/s

|⇀
a B/A| = aB/A = magnitude of relative acceleration of B

= 12 ft/s2.

Let ⇀
ω = ωk̂ be the angular velocity and ˙⇀ω = ω̇k̂ be the angular acceleration of the

board.

(a) The relative velocity of end B of the board with respect to end A is

⇀
v B/A = ⇀

ω × ⇀
r B/A

= ωk̂ × L(cos θ ı̂ + sin θ ̂)

= ωL(cos θ ̂ − sin θ ı̂)

⇒ |⇀
v B/A| = ωL

⇒ ω = |⇀
v B/A|

L
= vB/A

L

= 10 ft/s

10 ft
= 1 rad/s.

Note that we have taken the positive value for ω because the board is rotating
counterclockwise at the instant of interest (it is given that the board has lost
contact with point C).
Similarly, we can compute the angular acceleration:

⇀
a B/A = ˙⇀ω × ⇀

r B/A − ω2 ⇀
r B/A

= ω̇k̂ × L(cos θ ı̂ + sin θ ̂) − ω2L(cos θ ı̂ + sin θ ̂)

= ω̇L(cos θ ̂ − sin θ ı̂) − ω2L(cos θ ı̂ + sin θ ̂)

⇒ |⇀
a B/A| =

√
(ω̇L)2 + (ω2L)2 = aB/A (given)

⇒ a2
B/A = (ω̇L)2 + (ω2L)2

⇒ ω̇ =
√

a2
B/A

L2 − ω4
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=
√(

12 ft/s2

10 ft

)2

− (1 rad/s)4

= ±0.663 rad/s2.

Once again, we select the positive value for ω̇ since we assume that the board
accelerates counterclockwise.

⇀
ω = 1 rad/sk̂, ˙⇀ω = 0.663 rad/s2k̂

(b) The absolute velocity and the absolute acceleration of the end point B can be
found as follows.

⇀
v B = ⇀

v A + ⇀
v B/A

= vA ı̂ + vB/A(cos θ ̂ − sin θ ı̂)

= 88 ft/sı̂ + 10 ft/s(
1√
2
̂ − 1√

2
ı̂)

= 80.93 ft/sı̂ + 7.07 ft/s̂ .

⇀
a B = ⇀

a A + ⇀
a B/A

= ⇀
a A + ˙⇀ω × ⇀

r B/A − ω2 ⇀
r B/A

= aA ı̂ + ω̇k̂ × L(cos θ ı̂ + sin θ ̂) − ω2L(cos θ ı̂ + sin θ ̂)

= (aA − ω̇L sin θ − ω2L cos θ)ı̂ + (ω̇L cos θ − ω2L sin θ)̂

=
(

4.4 ft/s2 − 0.66

s2 · 10 ft · 1√
2

− 1

s2 · 10 ft · 1√
2

)
ı̂

+
(

0.66

s2 · 10 ft · 1√
2

− 1

s2 · 10 ft · 1√
2

)
̂

= −7.34 ft/s2 ı̂ − 2.40 ft/s2̂ .

⇀
v B = (80.93ı̂ + 7.07̂) ft/s, ⇀

a B = −(7.34ı̂ + 2.40̂) ft/s2.

(c) Now, we can easily calculate the acceleration of the center of mass as follows.

⇀
aG = ⇀

a A + ⇀
aG/A

= aA ı̂ + ˙⇀ω × ⇀
r G/A − ω2 ⇀

r G/A

= aA ı̂ + ω̇k̂ × L

2
(cos θ ı̂ + sin θ ̂) − ω2 L

2
(cos θ ı̂ + sin θ ̂)

= aA ı̂ + ω̇
L

2
(cos θ ̂ − sin θ ı̂) − ω2 L

2
(cos θ ı̂ + sin θ ̂)

= 4.4 ft/s2 ı̂ + 0.663 rad/s2 · 10 ft

2
· (

1√
2
̂ − 1√

2
ı̂)

−(1 rad/s)2 · 10 ft

2
· (

1√
2
ı̂ + 1√

2
̂)

= −1.48 ft/s2 ı̂ − 1.19 ft/s2̂ .

⇀
aG = −(1.48ı̂ + 1.19̂) ft/s2

Comments: This problem is admittedly artificial. We, however, solve this problem
to show kinematic calculations.
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SAMPLE 8.5 Tracking motion. A cart moves along a suspended curved path. A

A

B

θ

ı̂

̂




Figure 8.16: (Filename:sfig9.2.rodontrack)

rod AB of length 
 = 1 m hangs from the cart. End A of the rod is attached to a
motor on the cart. The other end B hangs freely. The motor rotates the rod such that

θ(t) = θ0 sin(λt) while the cart moves along the path such that ⇀
r A = t ı̂+ t3

18 ̂ , where
all variables (r , t , etc.) are nondimensional.

(a) Find the velocity and acceleration of point B as a function of nondimensional
time t .

(b) Take θ0 = π/3 and λ = 6. Find and plot the position of the bar at t =
0, 0.1, 0.3, 0.9, 1, 1.1, 1.2, and 1.5. Find and draw ⇀

vB and ⇀
aB at the specified

t .

Solution

(a) The velocity and acceleration of point B are given by

⇀
v B = ⇀

v A + ⇀
v B/A = ⇀

v A + ⇀
ω × ⇀

r B/A
⇀
a B = ⇀

a A + ˙⇀ω × ⇀
r B/A − ω2 ⇀

r B/A.

Thus, in order to find the velocity and acceleration of point B, we need to find
the velocity and acceleration of point A and the angular velocity and angular
acceleration of the bar. We are given the position of point A and the angular
position of the bar as functions of t . We can, therefore, find ⇀

v A, ⇀
a A, ⇀

ω, and ˙⇀ω
by differentiating the given functions with respect to t .

⇀
r A = t ı̂ + t3

18
̂

⇒ ⇀
v A ≡ ˙⇀r A = ı̂ + (t2/6)̂ (8.9)

⇒ ⇀
a A ≡ ˙⇀v A = (t/3)̂ (8.10)

and
θ k̂ = θ0 sin(λt)k̂

⇒ ⇀
ω ≡ θ̇ k̂ = θ0λ cos(λt)k̂ (8.11)

⇒ ˙⇀ω ≡ θ̈ k̂ = −θ0λ
2 sin(λt)k̂. (8.12)

So,

⇀
v B = ⇀

v A + ⇀
ω × 
(sin θ ı̂ − cos θ ̂)

= ı̂ + (t2/6)̂ + 
θ̇(sin θ ̂ + cos θ ı̂)

= (1 + 
θ̇ cos θ)ı̂ + (t2/6 + 
θ̇ sin θ)̂ (8.13)
⇀
a B = ⇀

a A + θ̈ k̂ × 
(sin θ ı̂ − cos θ ̂) − θ̇2
(sin θ ı̂ − cos θ ̂)

= (t/3)̂ + 
θ̈ sin θ ̂ + 
θ̈ cos θ ı̂ + 
θ̇2 sin θ ı̂ + 
θ̇2 cos θ ̂

= 
(θ̈ cos θ − θ̇2 sin θ)ı̂ + [t/3 + 
(θ̈ sin θ + θ̈2 cos θ)]̂

(8.14)

where θ = θ0 sin(λt), θ̇ = θ0λ cos(λt), and θ̈ = −θ0λ
2 sin(λt) = −λ2θ.

Thus ⇀
v B and ⇀

a B are functions of t .
(b) The position of the rod at any time t is specified by the position of the two end

points A and B (or alternatively, the position of A and the angle of the rod θ ).
The position of point A is easily determined by substituting the value of t in
the given expression for ⇀

r A. The position of end B is given by

⇀
r B = ⇀

r A + ⇀
r B/A = t ı̂ + (t3/18)̂ + 
(sin θ ı̂ − cos θ ̂)

= (t + 
 sin θ)ı̂ + (t3/18 − 
 cos θ)̂ .
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To compute the positions, velocities, and accelerations of end points A and B
at the given instants, we first compute θ , θ̇ , and θ̈ , and then substitute them in
the expressions for ⇀

r A,
⇀
r B,

⇀
v A,

⇀
v B,

⇀
a A, and ⇀

a B . A pseudocode for computer
calculation is given below.

t = [0 0.1 0.3 0.9 1.0 1.1 1.2 1.5]
theta0=pi/3, L=.5, lam=6
for each t, compute

theta = theta0*sin(lam*t)
w = lam*theta0*cos(lam*t)
wdot = -lam^2*theta

% Position of A and B
xA=t, yA=t^3/18
xB = xA + L*sin(theta)
yB = yA - L*cos(theta)

% Velocity of A and B
uA = 1, vA = t^2/6
uB = uA + L*w.*cos(theta)
vB = vA + L*w.*sin(theta)

% Acceleration of A and B
axA = 0, ayA = t/3
axB = L*wdot*cos(theta) - L*w^2*sin(theta)
ayB = ayA + L*wdot*sin(theta) + L*w^2*cos(theta)

From the above calculation, we get the desired quantities at each t . For example,
at t = 0 we get,

xA = 0, yA = 0, xB = 0, yB = -0.5
uA = 1, vA = 0, uB = 4.14, vB = 0, axB = 0, ayB = 19.74

which means,

⇀
r A = ⇀

0,
⇀
r B = −0.5̂ ,

⇀
v A = ı̂,

⇀
v B = 4.14ı̂,

⇀
a B = 19.74̂ .

The position of the bar, the velocity vectors at points A and B, and the accel-
eration vector at B, thus obtained, are shown in Fig. 8.17 graphically. 1© 1© We can take several values of t , say 400

equally spaced values between t = 0 and
t = 4, and draw the bar at each t to see its
motion and the trajectory of its end points.
Fig. 8.18 shows such a graph.
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Figure 8.17: Position, velocity of the end points A and B, and acceleration of point B at various
time instants.

(Filename:rodvelacc)
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Figure 8.18: Graph of closely spaced
configuration of the bar between t = 0 to
t = 4.

(Filename:sfig9.1.rodconfig)
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8.2 General planar mechanics of a

rigid-body
We now apply the kinematics ideas of the last section to the general mechanics
principles in Table I in the inside cover. The goal is to understand the relation between
forces and motion for a planar body in general 2-D motion. The simple measures 1©of1© Advanced aside: What we call “sim-

ple measures” are examples of “general-
ized coordinates” in more advanced books.
The idea sounds intimidating, but is sim-
ply this: If something can only move in a
few ways, you should only keep track of
the motion with that many variables. The
kinematics of a rigid body (Sect. 8.1) al-
low us to “evaluate” the motion quanti-
ties, namely linear momentum, angular mo-
mentum, kinetic energy, and their rates of
change in terms of these “simple measures”.
By “evaluate” we mean express the motion
quantities in terms of these measures. The
alternative is as sums over Avogadro’s num-
ber of particles (There are on the order of
1023 atoms in a typical engineering part.).
Even neglecting atoms and viewing mat-
ter as continuous we would still be stuck
with integrals over complicated regions if
we did not describe the motion with as few
variables as possible. In the case of 2-D
rigid body motion, the position of a refer-
ence point (x and y) with the rotation θ is
called a set of minimal coordinates. These,
and their time derivatives are the minimal
information needed to describe all impor-
tant mechanics motion quantities.

motion will be the displacement, velocity and acceleration of one reference point 0′ on
the body (⇀

r0′ ,
⇀
v0′ and ⇀

a0′ ) and the rotation, angular velocity, and angular acceleration
of the body (θ,

⇀
ω and ⇀

α).
We will treat all bodies as if they are squished into the plane and moving in the

plane. But the analysis is sensible for a body that is symmetric with respect to the
plane containing the velocities (see Box 8.2 on page 458).

The balance laws for a rigid body

As always, once you have defined the system and the forces acting on it by drawing a
free body diagram, the basic momentum balance equations are applicable (and exact
for engineering purposes). Namely,

Linear momentum balance:
∑

⇀
F i = ˙⇀L and

Angular momentum balance:
∑

⇀
M i/0 = ˙⇀HO.

The same point 0, any point, is used on both sides of the angular momentum balance
equation.

We also have power balance which, for a system with no internal energy or
dissipation, is

Power balance: P = ĖK.

The left hand sides of the momentum balance equations are evaluated the same
way, whether the system is composed of one body or many, whether the bodies are
deformable or not, and whether the points move in straight lines, circles, hither and
thither, or not at all. It is the right hand sides of the momentum equations that involve
the motion. Similarly, in the energy balance equations the applied power P only
depends on the position of the forces and the motions of the material points at those
positions. But the kinetic energy EK and its rate of change depend on the motion of
the whole system. You already know how to evaluate the momenta and energy, and
their rates of change, for a variety of special cases, namely

• Systems composed of particles where all the positions and accelerations are
known (Chapter 5);

• Systems where all points have the same acceleration. That is, the system moves
like a rigid body that does not rotate (Chapter 6); and

• Systems where all points move in circles about the same fixed axis. That is, the
system moves like a rigid body that is rotating about a fixed skewer (Chapters 7
and 8).

Now we go on to consider the general 2-D motions of a planar rigid body. Its
now a little harder to evaluate

⇀
L, ˙⇀L,

⇀
HO, ˙⇀HO, EK and ĖK. But not much.



8.2. General planar mechanics of a rigid-body 453

Summary of the motion quantities
Table I in the back of the book describes the motion quantities for various special
cases, including the planar motions we consider in this chapter. Most relevant is row
(7).

The basic idea is that the momenta for general motion, which involves translation
and rotation, is the sum of the momenta (both linear and angular, and their rates of
change too) from those two effects. Namely, the linear momentum is described, as
for any system with any motion, by the motion of the center of mass

⇀
L = mtot

⇀
vcm and ˙⇀L = mtot

⇀
acm, (8.15)

and the angular momentum has two contributions, one from the motion of the center
of mass and one from rotation of the body about the center of mass,

⇀
HO =

Angular momentum
due to motion of the
center of mass

❇❇�︷ ︸︸ ︷
⇀
rcm/O × (mtot

⇀
vcm) +

Angular momentum
due to motion relative
to the center of mass

✂✂✌︷ ︸︸ ︷
I cm
zz

⇀
ω (8.16)

and ˙⇀HO = ⇀
rcm/O × (mtot

⇀
acm) + I cm

zz
˙⇀ω. (8.17)

An important special case for the angular momentum evaluation is when the reference
point is coincident with the center of mass. Then the angular momentum and its rate
of change simplify to

⇀
H cm = I cm

zz
⇀
ω and ˙⇀H cm = I cm

zz
˙⇀ω. (8.18)

The kinetic energy and its rate of change are given by

EK =

kinetic energy from
center of mass motion

❇❇�︷ ︸︸ ︷
1

2
mtot v2

cm︸︷︷︸
⇀
vcm·⇀vcm

+

kinetic energy rela-
tive to the center of
mass

✂✂✌︷ ︸︸ ︷
1

2
I cm
zz ω2 (8.19)

and ĖK = mtot vcm v̇cm︸ ︷︷ ︸
⇀
vcm·⇀a cm

+ I cm
zz ωω̇ (8.20)

The relations above are easily derived from the general center of mass theorems at
the end of chapter 5 (see box 8.2 on page 459 for some of these derivations).
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Equations of motion
Putting together the general balance equations and the expressions for the motion
quantities we can now write linear momentum balance, angular momentum balance
and power balance as:

LMB :
∑

⇀
F i = mtot

⇀
acm, (a)

AMB :
∑

⇀
MO = ⇀

rcm/O × (mtot
⇀
acm) + I cm

zz
˙⇀ω (b)

or
∑

⇀
Mcm = I cm

zz
˙⇀ω,

and Power :
⇀
Ftot · ⇀

vcm + ⇀
ω · ⇀

Mcm = mtotvv̇ + I cm
zz ωω̇. (c)

(8.21)

Independent equations?
Equations are only independent if no one of them can be derived from the others. When
counting equations and unknowns one needs to make sure one is writing independent
equations. How many independent equations are in the set eqns. (8.21)abc applied to
one free body diagram? The short answer is 3.

The linear momentum balance equation eqn. (8.21)a yields two independent equa-
tions by dotting with any two non-parallel vectors (say, ı̂ and ̂ ). Dotting with a third
vector yields a dependent equation.

For any one reference point the angular momentum equation eqn. (8.21)a yields
one scalar equation. It is a vector equation but always has zero components in the ı̂

and ̂ directions. But angular momentum equation can yield up to three independent
equations by being applied to any set of three non-colinear points.

The power balance equation is one scalar equation.
In total, however, the full set of equations above only makes up a set of three

independent equations.
To avoid thinking about what is or is not an independent set of equations some

people prefer to stick with one of the canonical sets of independent equations:

• The coordinate based set (“old standard”)

– {LMB}·ı̂ or, equivalently,
∑

Fx = mtotacmx ,
– {LMB}·̂ or, equivalently,

∑
Fy = mtotacmy , and

– {AMB}·k̂ or, equivalently,
∑

Mcm = I cm
zz ω̇.

• Moment only (good for eliminating unknown reaction forces)

– {AMB about pt A}·k̂ (A is any point, on or off the body)

– {AMB about pt B}·k̂ (B is any other point)

– {AMB about pt C}·k̂ (C is a third point not on the line AB)

• Two moments and a force component

– {AMB about pt A}·k̂ (A is any point, on or off the body)

– {AMB about pt B}·k̂ (B is any other point)
– {LMB}·λ̂ (where λ̂ is not perpendicular to the line AB)
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• Two force components and a moment (also good for eliminating unknown
forces)

– {LMB}·λ̂1 qquad (where λ̂1 is any unit vector)
– {LMB}·λ̂2 qquad (where λ̂2 is any other unit vector)

– {AMB about pt A}·k̂ qquad (A is any point, on or off the body)

Any of these will always do the job. The power balance equation is often used as a
consistency check rather than an independent equation.

From a theoretical point of view one might ask the related question of which of
the equations of motion can be derived from the others. There are many answers.
Here are some of them:

• Power balance follows from LMB and AMB,
• AMB about three non-colinear points implies LMB, and
• LMB and power balance yield AMB

Interestingly, there is no way to derive angular momentum balance from linear mo-
mentum balance without the questionable microscopic assumptions discussed in
box 5.12 on page 323.

Some simple examples

Here we consider some simple examples of unconstrained motion of a rigid body.

Example: The simplest case: no force and no moment.

If the net force and moment applied to a body are zero we have:

LMB ⇒ ⇀

0 = mtot
⇀
acm and

AMB ⇒ ⇀

0 = I cm
zz ω̇k̂

so ⇀
acm = ⇀

0 and ω̇ = 0 and the object moves at constant speed in a
constant direction with a constant rate of rotation, all determined by the
initial conditions. Throw an object in space and its center of mass goes in
a straight line and it spins at constant rate (subject to the 2-D restrictions
of this chapter). ✷

Figure 8.19: The X marked at the center
of mass of a thrown spinning clipboard fol-
lows a parabolic trajectory.

(Filename:tfigure.clipboard)

Example: Constant force applied to the center of mass.

In this case angular momentum balance about the center of mass again
yields that the rotation rate is constant. Linear momentum balance is
now the same as for a particle at the center of mass, i.e., the center of
mass has a parabolic trajectory.

Near-earth (constant) gravity provides a simple example. An ‘X’
marked at the center of mass of a clipboard tossed across a room follows
a parabolic trajectory (see Fig. 8.19). ✷
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Example: Constant force not at the center of mass.

Assume the only force applied to an object is a constant force
⇀
F = F ı̂

at A (see Fig. 8.20). Then linear momentum balance gives us that∑
⇀
F i = ˙⇀L ⇒ F ı̂ = m ⇀

aG ⇒ ⇀
aG = F/m ı̂ = constant.

So if the object starts at rest, the point G will move in a straight line in
the ı̂ direction (The common intuition that point G will be pulled up is
incorrect). Angular momentum about the center of mass gives∑

⇀
Mcm i = ˙⇀H cm ⇒

{
⇀
rA/G × F ı̂ = I cm

zz θ̈ k̂
}

{} · k̂ ⇒ θ̈ + F


I cm
zz

sin θ = 0,

with 
 = |⇀
rA/G|, which is the pendulum equation. That is, the object can

swing back and forth about θ = 0 just like a pendulum, approximately
sinusoidally if the angle θ starts small and with θ̇ initially also small.
[One might wonder how to do this experiment. One way would be with
a jet on a space craft that keeps re-orienting itself to keep in a constant
spatial direction as the object changes orientation. Another would be
with a string tied to A and pulled from a great distance.] ✷

⇀
F

ı̂

̂G

A

θ

Figure 8.20: The only force applied to
the object is the constant force

⇀
F = F ı̂

applied at point A. The resulting motion is
a constant acceleration of the center of mass
⇀
aG = (F/m)ı̂ and an oscillatory motion of
θ identical to that of a pendulum hinged at
G.

(Filename:tfigure.constforce)

G

C
⇀
F




Figure 8.21: A rocket is pointed in the
direction λ which makes and angle θ with
the positive x axis. The position and veloc-
ity of the center of mass at G are called ⇀

r
and ⇀

v . The velocity of the tail is ⇀
vC

(Filename:tfigure.rocket)

Example: The flight of an arrow or rocket.

As a primitive model of an arrow or rocket assume that the only force is
from drag on the fins at C and that this force opposes motion according
to

⇀
F = −c⇀

vC

where c is a drag coefficient (see Fig. 8.21). From linear momentum
balance we have:∑

⇀
F i = ˙⇀L ⇒ ⇀

F = m ⇀
a

−c⇀
vC = m ˙⇀v

m ˙⇀v = −c
(

⇀
v + ⇀

ω × ⇀
rC/G

)
= −c

(
⇀
v + θ̇ k̂ × (−
λ̂)

)
(k̂ × λ̂ = n̂) ⇒ ˙⇀v = c

m

(
θ̇
n̂ − ⇀

v
)
.

So if ⇀
v , θ and θ̇ are known the acceleration ˙⇀v is calculated by the formula

above.
Similarly angular momentum balance about G gives∑

⇀
MG = ˙⇀HG ⇒ {⇀

rC/G × ⇀
F = I cm

zz ω̇k̂}
{} · k̂ ⇒ I cm

zz ω̇ = ⇀
rC/G × ⇀

F · k̂.

Then, making the same substitutions as before for ⇀
rC/G and

⇀
F we get

ω̇ = c


I cm
zz

(
λ̂ × ⇀

v · k̂ − θ̇

)

which determines the rate of change of ω if the present values of ⇀
v , θ

and θ̇ are known. ✷
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Setting up differential equations for solution
If one knows the forces and torques on a body in terms of the bodies position, velocity,
orientation and angular velocity one then has a ‘closed’ set of differential equations.
That is, one has enough information to define the equations for a mathematician or a
computer to solve them.

The full set of differential equations is gathered from linear and angular momen-
tum balance and also from simple kinematics. Namely, one has the following set of
6 first order differential equations:

ẋ = vx ,

v̇x = Fx/m,

ẏ = vy,

v̇y = Fy/m,

θ̇ = ω, and
ω̇ = Mcm/I cm

zz ,

where the positions and velocities are the positions and velocities of the center of
mass. The expressions for Fx , Fy, and Mcm may well be complicated, as in the
rocket example above.
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8.2 THEORY
The utility of 2-D mechanics for understanding the 3-D world

The math for two-dimensional mechanics analysis is simpler than
the math for three-dimensional analysis. And thus easier to learn
first. Because we do actually live in a three-dimensional world you
might wonder at the utility of learning something that is not right.
There are three answers.

(a) Two dimensional analysis can give partial information about
the three-dimensional system that is exactly the same as the
three-dimensional analysis would give by projection, no mat-
ter what the motion;

(b) if the motion is planar the 2-D kinematics can be used; and

(c) if the object is planar or symmetric about the motion plane,
and any constraints that hold the object are also symmetric
about the motion plane, the 2-D analysis is not only correct,
but complete.

Of course no machine is exactly planar or exactly symmetric, but
if the approximation seems reasonable most engineers will accept a
small loss in accuracy for great gain in simplicity.

Projection
First lets relax our assumption of 2-D motion. Consider arbitrary
3-D motions of an arbitrarily complex system. If we take the dot
product of the linear momentum equations with ı̂ and ̂ and the

angular momentum balance equation with k̂ we get{∑ ⇀
F i = ∑

mi
⇀
a i

}
· ı̂ ⇒ ∑

Fi x = ∑
mi ai x , (a){∑ ⇀

F i = ∑
mi

⇀
a i

}
· ̂ ⇒ ∑

Fi y = ∑
mi ai y , and (b){∑ ⇀

r i × ⇀
F i = ∑ ⇀

r i × mi
⇀
a i

}
· k̂

⇒ ∑
ri x Fi y − ri y Fi x = ∑

mi (ri x ai y − ri yai x ). (c)
(8.22)

These are exactly the equations of 2-D mechanics. That is, if we only
consider the planar components of the forces, the planar components
of the positions, and the planar components of the motions, we get a
correct but partial set of the 3-D equations. In this sense 2-D analysis
is correct but incomplete.

Planar motion
If all the velocities of the parts of a 3-D system have no z component
the motion is planar (in the xy plane). Thus the right-hand sides of
eqns. (8.22) are not just projections, but the whole story. Further, in
the case of rigid-body motion, the 2-D kinematics equation

⇀
vP = ⇀

vG+ωk̂× ⇀
rP/G = ⇀

vG+ωk̂×
(

rP/Gx ı̂ + rP/G y ̂
)

(8.23)

also applies (the z component of the position drops out of the cross
product) and the expression for, say, the z component of the angular
momentum of a body about its center of mass is

Hcmz = I cm
zz ω.

Differentiating, or adding up the mi
⇀
a i terms we get,

Hcmz = I cm
zz ω.

Similarly, the z component of the full angular momentum balance
equation for a 3-D rigid body in planar motion is the same as the z
component of eqn. (8.21)b.∑ ⇀

MO · k̂ =
(

⇀
rcm/O × (mtot

⇀
acm)

)
· k̂ + I cm

zz ω̇

So for planar motion of 3-D rigid bodies one can do a correct
2-D analysis with the full ease of analyzing a planar body.

But this result is deceptively simple. The free body diagram in
3-D most likely shows forces in the z direction, pairs of forces in
the x or y directions that are applied at points with the same x and y
coordinates but different z values, or moments with components in
the x or y directions. Full information about these force and moment
components can’t be found from 2-D analysis. That is,

the nature of the forces that it takes to keep a system in
planar motion can’t be found from a planar analysis.

For example, a system rotating about the z axis which is statically
balanced but is dynamically imbalanced (see section 11.5) has no
net x or y reaction force, as a planar analysis would reveal, yet the
bearing reaction forces are not zero.

Another example would be a plan view of a car in a turn (as-
suming a stiff suspension). A 2-D analysis could be accurate, but
would no be complete enough to describe the tire reaction forces
needed to keep the car flat.

Symmetric bodies and planar bodies
If the rigid body has all its mass in the xy plane, or its mass is
symmetrically distributed about the xy plane, and it is in planar
motion in the xy plane then∑

mi ai z = 0 and{∑ ⇀
r i × mi

⇀
a i

}
· ı̂ = 0 and

{∑ ⇀
r i × mi

⇀
a i

}
· ̂ = 0

where ⇀
r is measured relative to any point in the plane. Thus, by

linear and angular momentum balance,∑
Fz = 0 and{∑ ⇀

r i × ⇀
F i

}
· ı̂ = 0 and

{∑ ⇀
r i × ⇀

F i
}

· ̂ = 0

so

A planar object or a symmetric object in planar motion
needs no force in the z direction and no moment in the x
or y direction to keep it in the plane.

Systems that are symmetric or flat and moving in an approximately
planar manner, are thus both accurately and completely modeled
with a 2-D analysis. A slight generalization of the result is to any
object or collection of objects whose center’s of mass are on the
plane and each of which is dynamically balanced for rotation about

a k̂ axis through its center of mass.
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8.3 THEORY
The center of mass theorems for 2-D rigid bodies

That all the particles in a system are part of one planar body in
planar motion (in that plane) allows highly useful simplification of
the expressions for the motion quantities, namely Eqns. 8.15 to 8.19.
We can derive these expressions from the center of mass theorems
of chapter 5. For completeness, we repeat some of those derivations
as the start of the derivations here. To save space, we only use
the integral (

∫
) forms for the general expressions; the derivations

with sums (
∑

) are similar. In all cases position, velocity, and
acceleration are relative to a fixed point in space (that is ⇀

r ,
⇀
v , and

⇀
a mean ⇀

r/0,
⇀
v/0, and ⇀

a/0 respectively).

Linear momentum.
Here we show that to evaluate linear momentum and its rate of
change you only need to know the motion of the center of mass.

⇀
L ≡

∫
⇀
v dm =

∫
d

dt
⇀
r dm = d

dt

∫
⇀
r dm = d

dt
(mtot

⇀
rcm)

= mtot
d

dt
⇀
rcm = mtot

⇀
vcm

By identical reasoning, or by differentiating the expression above
with respect to time,

⇀̇
L = mtot

⇀
acm

Thus for linear momentum balance one need not pay heed to rotation,
only the center of mass motion matters.

Angular momentum.
Here we attempt a derivation like the one above but get slightly more
complicated results. For simplicity we evaluate angular momentum
and its rate of change relative to the origin, but a very similar deriva-
tion would hold relative to any fixed point C.

⇀
H O ≡

∫
⇀
r × ⇀

v dm

=
∫ (

⇀
r − ⇀

rcm + ⇀
rcm

)
×

(
⇀
v − ⇀

vcm + ⇀
vcm

)
dm

=
∫ (

⇀
r/cm + ⇀

rcm
)

×
(

⇀
v/cm + ⇀

vcm
)

dm

=
∫

⇀
r/cm × ⇀

v/cm dm +
∫

⇀
rcm × ⇀

vcm dm

+
∫

⇀
r/cm × ⇀

vcm dm +
∫

⇀
rcm × ⇀

v/cm dm

=
∫

⇀
r/cm × ⇀

v/cm dm + ⇀
rcm × ⇀

vcm

∫
dm

+
(∫

⇀
r/cm dm

)
︸ ︷︷ ︸

⇀
0

×⇀
vcm + ⇀

rcm ×
(∫

⇀
v/cm dm

)
︸ ︷︷ ︸

⇀
0

=
∫

⇀
r/cm × ⇀

v/cm dm + ⇀
rcm × ⇀

vcmmtot.

This much is true for any system in any motion. For a rigid body
we know about the motions of the parts. Using the center of mass
as a reference point we know that for all points on the body ⇀

v/cm =
⇀
ω × ⇀

r/cm. Thus we can continue the derivation above, following
the same reasoning as was used in chapter 7 for circular motion of
rigid bodies:

⇀
H O =

∫
⇀
r/cm ×

(
⇀
ω × ⇀

r/cm

)
dm + ⇀

rcm × ⇀
vcmmtot.

Using the identity for the triple cross product (see box 11.1 on page
643) or using the geometry of the cross product directly with ⇀

ω =
ωk̂ as in chapters 7 and 8 we get

⇀
H O = ωk̂

∫
r2
/cm dm + ⇀

rcm × ⇀
vcmmtot.

Then defining I cm
zz ≡

∫
r2
/cm dm we get the desired result:

⇀
H O = ⇀

rcm × ⇀
vcmmtot + I cm

zz ωk̂.

A similar derivation, or differentiation of the result above (and using
that ( d

dt
⇀
r ) × ⇀

v = ⇀
v × ⇀

v = ⇀
0 ) gives

⇀̇
H O = ⇀

rcm × ⇀
acmmtot + I cm

zz ω̇k̂.

The results above hold for any reference point, not just the origin of
the fixed coordinate system. Thus, relative to a point instantaneously
coinciding with the center of mass

⇀
H cm = ⇀

rcm/cm︸ ︷︷ ︸
⇀
0

×⇀
vcmmtot + I cm

zz ωk̂ = I cm
zz ωk̂.

and similarly

⇀̇
H cm = I cm

zz ω̇k̂.

Kinetic energy.
Unsurprisingly the expression for kinetic energy and it’s rate of
change are also simplified by derivations very similar to those above.
Skipping the details (or leaving them as an exercise for the peppy
reader):

EK ≡
∫

1

2
⇀
v · ⇀

v dm

= 1

2
mtotv

2
cm + 1

2
I cm
zz ω2

and

ĖK ≡ d

dt
EK

= mtotvv̇ + I cm
zz ωω̇.
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8.4 THEORY
The work of a moving force and of a couple

The work of a force acting on a body from state one to state two is

W12 =
∫ t2

t1

Pdt.

But sometimes we like to think not of the time integral of the power,
but of the path integral of the moving force. So we rearrange this
integral as follows.

W12 =
∫ t2

t1

Pdt

=
∫ t2

t1

⇀
F · ⇀

vdt︸︷︷︸
d

⇀
r

=
∫ ⇀

r 2

⇀
r 1

⇀
F · d

⇀
r (8.24)

The validity of equation 8.24 depends on the force acting on the same
material point of the moving body as it moves from position 1 to
position 2; i.e., the force moves with the body. If the material point
of force application changes with time, equation 8.24 is senseless
and should be replaced with the following more generally applicable
equation:

W12 ≡
∫ t2

t1

P dt =
∫ t2

t1

⇀
F · ⇀

vdt =
∫

Pdt (8.25)

where ⇀
v is the velocity of the material point at the instantaneous

location of the applied force.

A subtlety in the concept of the work of
a force
There is a subtle distinction between 8.24 and 8.25. As an example
think of standing still and dragging your hand on a passing train.
Your hand slows down the train with the force

⇀
Fhand on train.

It might seem that the work of the hand on the train is zero be-
cause your hand doesn’t move; work is force times distance and the
distance is zero and eqn. (8.24) superficially evaluates to∫ ⇀

r 2

⇀
r 1

⇀
F · d

⇀
r = 0.

But we have violated the condition for the validity of eqn. (8.24):
the force be applied to a fixed material point as time progresses.
Whereas on the train your hand smears a whole line of material
points.

Clearly your hand does slow the train so it must do (negative)
work. on it as Eqn. ?? correctly shows this because

Pforce on train = ⇀
Fhand on train · ⇀

vtrain �= 0.

The power of the hand force on the train is the force on the train
dotted with the velocity of the train (not with the velocity of your
hand. Thus, your hand does negative work on the train. Eqn. 8.25
applies to the train and 8.24 does not.

On the other hand (so to speak) if one looks at the power of the
force on the hand we have:

⇀
Ftrain on hand = − ⇀

Fhand on train

while the velocity of the hand is zero so

Pforce on hand = ⇀
Ftrain on hand · ⇀

vhand = 0.

So the train does no work on your hand since while your hand does
(negative) work on the train. The difference, of course, is mechanical
energy lost to heat.

Work of an applied torque
By thinking of an applied torque as really a distribution of forces,
the work of an applied torque is the sum of the contributions of the
applied forces. If a collection of forces equivalent to a torque is
applied to one rigid body the power of these forces turns out to be
⇀
M · ⇀

ω. At a given angular velocity a bigger torque applies more
power. And a given torque applies more power to a faster spinning
object.

Here’s a quick derivation for a collection of forces
⇀
Fi that add

to zero acting at points with positions ⇀
ri relative to a reference point

on the body o′.

P =
∑ ⇀

Fi · ⇀
vi

=
∑ ⇀

Fi ·
(

⇀
vo′ + ⇀

ω × ⇀
ri/o′

)
= ⇀

vo′ ·
∑ ⇀

Fi︸ ︷︷ ︸
⇀
0

+
∑ ⇀

Fi ·
(

⇀
ω × ⇀

ri/o′
)

=
∑

⇀
ω ·

(
⇀
ri/o′ × ⇀

Fi

)
= ⇀

ω ·
∑

⇀
ri/o′ × ⇀

Fi

= ⇀
ω · ⇀

Mo′ (8.26)

Work of a general force distribution
A general force distribution has, by reasoning close to that above, a
power of:

P = ⇀
Ftot · ⇀

vo′ + ⇀
ω · ⇀

Mo′ . (8.27)

For a given force system applied to a given body in a given motion
any point o′ can be used. The terms in the formula above will
depend on o′, but the sum does not. Besides the center of mass,
another convenient locations for o′ is a fixed hinge, in which case
the applied force has no power.
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SAMPLE 8.6 Free planar motion. A rigid rod of length 
 = 1 m and mass mr = 1 kg,

G

x

y

⇀
v cm0

⇀
v cm0

ω0

ω0

Baseline

Figure 8.22: (Filename:sfig9.2.rodandplate)

and a rigid square plate of side 1 m and mass mp = 10 kg are launched in motion on
a frictionless plane (e.g., an ice hockey rink) with exactly the same initial velocities
⇀
vcm(0) = 10 m/sı̂ + 1 m/s̂ and ⇀

ω(0) = 1 rad/sk̂. Both the rod and the plate have
their center of mass at the baseline at t = 0.

(a) Which of the two is farther from the base line in 3 seconds and which one has
undergone more number of revolutions?

(b) Find and draw the position of the bar at t = 1 sec and at t = 3 sec.

Solution
(a) The free body diagram of the rod is shown in Fig. 8.23. There are no forces

acting on the rod in the xy-plane. Although there is force of gravity and the
normal reaction of the surface acting on the rod, these forces are inconsequential
since they act normal to the xy-plane. Therefore, we do not include these forces
in our free body diagram . The linear momentum balance for the rod gives

ı̂

̂

Figure 8.23: (Filename:sfig9.2.rodfbd)

∑
⇀
F = mr

⇀
acm

⇀

0 = mr ˙⇀v cm

⇒ ⇀
vcm =

∫
⇀

0 dt = constant = ⇀
vcm0

⇒ ⇀
rcm =

∫
⇀
vcm0 dt = ⇀

rcm0 + ⇀
vcm0t (8.28)

It is clear from the analysis above that in the absence of any applied forces,
the position of the body depends only on the initial position and the initial
velocity. Since both the plate and the rod start from the same base line with the
same initial velocity, they travel the same distance from the base line during
any given time period; mass or its geometric distribution play no role in the
motion. Thus the center of mass of the rod and the plate will be exactly the
same distance (|⇀

rcm(t) − ⇀
rcm0| = |⇀

vcm0t |) at time t . Similarly, the angular
momentum balance about the center of mass of the rod gives∑

⇀
Mcm = ˙⇀H cm

⇀

0 = I cm
zz

˙⇀ω
⇒ ⇀

ω =
∫

⇀

0 dt = constant = ⇀
ω0 = θ̇0k̂

⇒ θ =
∫

θ̇0 dt = θ0 + θ̇0t (8.29)

Thus the angular position of the body is also, as expected, independent of the
mass and mass distribution of the body, and depends entirely on the initial
position and the initial angular velocity. Therefore, both the rod and the plate
undergo exactly the same amount of rotation

(
θ(t) − θ0 = θ̇0t

)
during any

given time.
(b) We can find the position of the rod at t = 1 s and t = 3 s by substituting

these values of t in eqns. (8.28) and 8.29. For convenience, let us assume that
⇀
rcm0 = ⇀

0. From the initial configuration of the rod, we also know that θ0 = 0.
⇀
rcm(t = 1 s) = ⇀

vcm0 · (1 s) = (10 m/sı̂ + 1 m/s̂) · (1 s)10 mı̂ + 1 m̂
⇀
rcm(t = 3 s) = ⇀

vcm0 · (3 s) = 30 mı̂ + 3 m̂ .

θ(t = 1 s) = θ̇0 · (1 s) = (1 rad/s) · (1 s) = 1 rad

θ(t = 3 s) = θ̇0 · (3 s) = 3 rad.

Accordingly, we show the position of the rod in Fig. 8.24.

x

y
1 rad 3 rad

(10m,1m)

(30m,3m)

t = 0
t = 1 s

t = 3 s

Figure 8.24: (Filename:sfig9.2.rodposition)
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SAMPLE 8.7 A passive rigid diver. An experimental model of a rigid diver is to be

4 m

1 m

Figure 8.25: (Filename:sfig9.2.diver)

launched from a diving board that is 3 m above the water level. Say that the initial
velocity of the center of mass and the initial angular velocity of the diver can be
controlled at launch. The diver is launched into the dive in almost vertical position,
and it is required to be as vertical as possible at the very end of the dive (which is
marked by the position of the diver’s center of mass at 1 m above the water level).
If the initial vertical velocity of the diver’s center of mass is 3 m/s, find the required
initial angular velocity for the vertical entry of the diver into the water.

Solution Once the diver leaves the diving board, it is in free flight under gravity,

mg

Figure 8.26: (Filename:sfig9.2.diver.a)

i.e., the only force acting on it is the force due to gravity. The free body diagram of
the diver is shown in Fig. 8.26. The linear momentum balance for the diver gives∑

⇀
F = m ⇀

acm

−mg̂ = mÿ̂

⇒ ÿ = −g∑
⇀
Mcm = ˙⇀H cm

⇀

0 = I cm
zz θ̈ k̂

⇒ θ̈ = 0.

From these equations of motion, it is clear that the linear and the angular motions of
the diver are uncoupled. We can easily solve the equations of motion to get

y(t) = y0 + ẏ0 − 1

2
gt2

θ(t) = θ0 + θ̇0t.

We need to find the initial angular speed θ̇0 such that θ = π when y = 1 m (the center
of mass position at the water entry). From the expression for θ(t), we get, θ̇0 = π/t .
Thus we need to find the value of t at the instant of water entry. We can find t from
the expression for y(t) since we know that y = 1 m at that instant, and that y0 = 3 m
and ẏ0 = 3 m/s. We have,

y = y0 + ẏ0 − 1

2
gt2

⇒ t =
ẏ0 ±

√
ẏ2

0 + 2g(y0 − y)

g

= 3 m/s ±
√

(3 m/s)2 + 2 · 9.8 m/s2 · (3 m − 1 m)

9.8 m/s2

= 1.15 or − 0.53 s.

We reject the negative value of time as meaningless in this context. Thus it takes the
diver 1.15 s to complete the dive. Since, the diver must rotate by π during this time,
we have

θ̇0 = π/t = π/(1.15 s) = 2.73 rad/s.

θ̇0 = 2.73 rad/s
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SAMPLE 8.8 A plate tumbling in space. A rectangular plate of mass m =

⇀
F

a

b

d
P

ı̂

̂

Figure 8.27: (Filename:sfig9.tumblingplate1)

0.5 kg, I cm
zz = 2.08 × 10−3 kg · m2, and dimensions a = 200 mm and b = 100 mm

is pushed by a force
⇀
F = 0.5 Nı̂, acting at d = 30 mm away from the mass-center,

as shown in the figure. Assume that the force remains constant in magnitude and
direction but remains attached to the material point P of the plate. There is no gravity.

(a) Find the initial acceleration of the mass-center.
(b) Find the initial angular acceleration of the plate.
(c) Write the equations of motion of the plate (for both linear and angular motion).

Solution The only force acting on the plate is the applied force
⇀
F . Thus, Fig. 8.27

is also the free body diagram of the plate at the start of motion.

(a) From the linear momentum balance we get,∑
⇀
F = m ⇀

acm

⇒ ⇀
acm =

∑ ⇀
F

m
= 0.5 Nı̂

0.5 kg
= 1 m/s2 ı̂

which is the initial acceleration of the mass-center.
⇀
acm = 1 m/s2 ı̂

(b) From the angular momentum balance about the mass-center, we get

⇀
Mcm = ˙⇀H cm

Fdk̂ = I cm
zz

˙⇀ω
⇒ ˙⇀ω = Fd

I cm
zz

k̂ = 0.5 N · 0.03 m

2.08 kg · m2 = 7.2 rad/s2k̂

which is the initial angular acceleration of the plate.

˙⇀ω = 7.2 rad/s2k̂

(c) To find the equations of motion, we can use the linear momentum balance
and the angular momentum balance as we have done above. So, why aren’t
the equations obtained above for the linear acceleration, ⇀

acm = F/m ı̂, and
the angular acceleration, ˙⇀ω = Fd/I cm

zz k̂, qualified to be called equations of
motion? Because, they are not valid for a general configuration of the plate
during its motion. The expressions for the accelerations are valid only in the
initial configuration (and hence those are initial accelerations).
Let us first draw a free body diagram of the plate in a general configuration
during its motion (see Fig. 8.28). Assume the center of mass to be displaced
by x ı̂ and y̂ , and the longitudinal axis of the plate to be rotated by θ k̂ with
respect to the vertical (inertial y-axis). The applied force remains horizontal and
attached to the material point P, as stated in the problem. The linear momentum

⇀

⇀

F

a

b

d

P

ˆ©ıγ

ˆ©γ

x

y

rP/cm

α

θ

Figure 8.28: (Filename:sfig9.tumblingplate1.a)

balance gives ∑
⇀
F = m ⇀

acm

⇒ ⇀
acm =

∑ ⇀
F

m

or ẍ ı̂ + ÿ̂ = F

m
ı̂

⇒ ẍ = F

m
ÿ = 0
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Since F/m is constant, the equations of motion of the center of mass indi-
cate that the acceleration is constant and that the mass-center moves in the
x-direction.
Similarly, we now use angular momentum balance to determine the rotation
(angular motion) of the plate. The angular momentum balance about the mass-
center give

⇀
Mcm = ˙⇀H cm

⇀
rP/cm × ⇀

F = I cm
zz θ̈ k̂

Now,
⇀
rP/cm = −r [cos(θ + α)ı̂ + sin(θ + α)̂ ]

⇀
F = F ı̂

⇒ ⇀
rP/cm × ⇀

F = Fr sin(θ + α)k̂

Thus,

θ̈ = Fr

I cm
zz

sin(θ + α)

where r =
√

d2 + (b/2)2 and α = tan−1(2d/b).

Thus, we have got the equations of motion for both the linear and the angular
motion.

ẍ = F
m , ÿ = 0, θ̈ = Fr

I cm
zz

sin(θ + α)

(d) The equations of linear motion of the plate are very simple and we can solve
them at once to get

x(t) = x0 + ẋ0t + 1

2

F

m
t2

y(t) = y0 + ẏ0t

If the plate starts from rest (ẋ0 = 0, ẏ0 = 0) with the center of mass at the
origin (x0 = 0, y0 = 0), then we have

x(t) = F

2m
t2, and y(t) = 0.

Thus the center of mass moves along the x-axis with acceleration F/m.
The equation of angular motion of the plate is, however, not so simple. In
fact, it is a nonlinear ODE. It is very difficult to get an analytical solution of
this equation. However, we can solve it numerically using, say, a Runge-Kutta
ODE solver:

ODEs = {thetadot = w, wdot = (F*r/Icm)*sin(theta+a)}
IC = {theta(0) = 0, w(0) = 0}
Set F=.5, d=0.03; b=0.1; Icm=2.08e-03
compute r = sqrt(d^2+.25*b^2), a = atan(2*d/b)
Solve ODEs with IC for t=0 to t=10
Plot theta(t)

The plot obtained from this calculation is shown in Fig. 8.29.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

t (s)

θ

Figure 8.29: (Filename:sfig9.2.odesoln)
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SAMPLE 8.9 Impulse-momentum. Consider the plate problem of Sample 8.8
(page 464) again. Assume that the plate is at rest at t = 0 in the vertical upright
position and that the force acts on the plate for 2 seconds.

(a) Find the velocity of the center of mass of the plate at the end of 2 seconds.
(b) Can you also find the angular velocity of the plate at the end of 2 seconds?

Solution

(a) Since we are interested in finding the velocity at a particular instant t , given the
velocity at another instant t = 0, we can use the impulse-momentum equations
to find the desired velocity.

⇀
L2 − ⇀

L1 =
∫ t2

t1

∑
⇀
F dt

m ⇀
vcm(t) − m ⇀

vcm(0) =
∫ t

0

⇀
F dt

⇒ ⇀
vcm(t) = ⇀

vcm(0) + 1

m

∫ 2

0

⇀
F dt

= ⇀

0 + 1

0.5 kg

∫ 2

0
(0.5 Nı̂) dt

= 2 m/sı̂.

⇀
vcm(2 s) = 2 m/sı̂

(b) Now, let us try to find the angular velocity the same way, using angular impulse-
momentum relation. We have,

(
⇀
H cm)2 − (

⇀
H cm)1 =

∫ t2

t1

∑
⇀
Mcm dt

I cm
zz

⇀
ω(t) − I cm

zz
⇀
ω(0) =

∫ t

0

∑
⇀
Mcm dt

⇒ ⇀
ω(t) = ⇀

ω(0) + 1

I cm
zz

∫ t

0

∑
⇀
Mcm dt

= ⇀
ω(0) + 1

I cm
zz

∫ t

0
(

⇀
rP/cm × ⇀

F ) dt

= ⇀

0 + 1

I cm
zz

∫ t

0
(Fr sin(θ + α)k̂) dt

= Fr

I cm
zz

(∫ t

0
sin(θ + α) dt

)
k̂

Now, we are in trouble; how do we evaluate the integral? In the integrand, we
have θ which is an implicit function of t . Unless we know how θ depends on
t we cannot evaluate the integral. To find θ(t) we have to solve the equation
of angular motion we derived in the previous sample. However, we were
not able to solve for θ(t) analytically, we had to resort to numerical solution.
Thus, it is not possible to evaluate the integral above and, therefore, we cannot
find the angular velocity of the plate at the end of 2 seconds using impulse-
momentum equations. We could, however, find the desired velocity easily from
the numerical solution.
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8.3 Kinematics of rolling and sliding

Pure rolling in 2-D

In this section, we would like to add to the vocabulary of special motions by consid-
ering pure rolling. Most commonly, one discusses pure rolling of round objects on
flat ground, like wheels and balls, and rolling of round things on other round things
like gears and cams.

2-D rolling of a round wheel on level ground

The simplest case, the no-slip rolling of a round wheel, is an instructive starting point.
First, we define the geometric and kinematic variables as shown in Fig. 8.30. For

xC
B

C

O
x

sD = xC

y
D

R

rolling
contactA

φ
sD

ı̂

̂

Figure 8.30: Pure rolling of a round
wheel on a level support.

(Filename:tfigure7.2D.pure.rolling)

convenience, we pick a point D which was at xD = 0 at the start of rolling, when
xC = 0. The key to the kinematics is that:

The arc length traversed on the wheel is the distance traveled by the
wheel center.

That is,

xC = sD

= Rφ

⇒ vC = ẋC = Rφ̇

⇒ aC = v̇C = ẍC = Rφ̈

So the rolling condition amounts to the following set of restrictions on the position
of C , ⇀

r C , and the rotations of the wheel φ:

⇀
r C = Rφ ı̂ + R̂ ,

⇀
vC = Rφ̇ ı̂,

⇀
aC = Rφ̈ ı̂,

⇀
ω = −φ̇k̂, and ⇀

α = ˙⇀ω = −φ̈k̂.

If we want to track the motion of a particular point, say D, we could do so by using
the following parametric formula:

⇀
r D = ⇀

r C + ⇀
r D/C

= R(φ ı̂ + ̂) + R(− sin φ ı̂ − cos φ̂)

= R
[
(φ − sin φ)ı̂ + (1 − cos φ)̂)

]
⇒ ⇀

v D = R
[
(φ̇(1 − cos φ)ı̂ + φ̇ sin φ̂)

]
(8.30)

⇒ ⇀
a D =

❇❇�

assuming φ̇= constant

Rφ̇2(sin φ ı̂ + cos φ̂).

Note that if φ = 0 or 2π or 4π , etc., then the point D is on the ground and eqn. (8.30)
correctly gives that

⇀
v D = R


φ̇(1 −

1︷ ︸︸ ︷
cos(2nπ)︸ ︷︷ ︸

0


 ı̂ + φ̇ sin(2nπ)︸ ︷︷ ︸

0

̂ = ⇀

0.
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Instantaneous Kinematics
Instead of tracking the wheel from its start, we could analyze the kinematics at the
instant of interest. Here, we make the observation that the wheel rolls without slip.
Therefore, the point on the wheel touching the ground has no velocity relative to the
ground.

Velocity of point on the wheel
touching the ground

❇❇�︷︸︸︷
⇀
v A =

Velocity of ground =
⇀

0

✂✂✌︷︸︸︷
⇀
v B (8.31)

Now, we know how to calculate the velocity of points on a rigid body. So,

⇀
v A = ⇀

vC + ⇀
v A/C ,

where, since A and C are on the same rigid body (Fig. 8.30), we have from eqn. (11.13)
that

⇀
v A/C = ⇀

ω × ⇀
r A/C .

Putting this equation together with eqn. (8.31), we get

⇀
v A = ⇀

v B

⇒ ⇀
vC︸︷︷︸
vC ı̂

+ ⇀
ω︸︷︷︸
ωk̂

× ⇀
r A/C︸ ︷︷ ︸
−R̂

= ⇀

0

⇒ vC ı̂ + ωRı̂ = ⇀

0

⇒ vC = −ωR .

We use ⇀
vC = vı̂ since the center of the wheel goes neither up nor down. Note that if

you measure the angle by φ, like we did before, then ⇀
ω = −φ̇k̂ so that positive rotation

rate is in the counter-clockwise direction. Thus, vC = −ωR = −(−φ̇)R = φ̇R.
Since there is always some point of the wheel touching the ground, we know that

vC = −ωR for all time. Therefore,

⇀
aC = v̇C ı̂ = −ω̇Rı̂.

Rolling of round objects on round surfaces
For round objects rolling on or in another round object, the analysis is similar to that
for rolling on a flat surface. A common application is the so-called epicyclic, hypo-
cyclic, or planetary gears (See Box 8.5 on planetary gears on page 470). Referring

A
B

C

O

reference line

êθ

θ̇
R1 R2

B

Figure 8.31: (Filename:tfigure7.rolling.on.another)

to Fig. 8.31, we can calculate the velocity of C with respect to a fixed frame two ways
and compare:

⇀
vC = ⇀

v B + ⇀
vC/B

⇀
vC =

⇀
v B︷ ︸︸ ︷

⇀
v A︸︷︷︸
⇀

0

+ ⇀
v B/A︸ ︷︷ ︸

⇀

0

+⇀
vC/B .

θ̇ (R1 + R2)êθ = ωB R2êθ

⇒ ωB = θ̇ (R1 + R2)

R2
= θ̇ (1 + R1

R2
).
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Example: Two quarters.

The formula above can be tested in the case of R1 = R2 by using two
quarters or two dimes on a table. Roll one quarter, call it B, around
another quarter pressed fast to the table. You will see that as the rolling
quarter B travels around the stationary quarter one time, it makes two
full revolutions. That is, the orientation of B changes twice as fast as
the angle of the line from the center of the stationary quarter to its center.
Or, in the language of the calculation above, ωB = 2θ̇ . ✷

Sliding
Although wheels and balls are known for rolling, they do sometimes slide such as
when a car screeches at fast acceleration or sudden braking or when a bowling ball is
released on the lane.

The sliding velocity is the velocity of the material point on the wheel (or ball)
relative to its contacting substrate. In the case of pure rolling, the sliding velocity
is zero. In the case of a ball or wheel moving against a stationary support surface,
whether round or curved, the sliding velocity is

⇀
vsliding = ⇀

vcircle center + ⇀
ω × ⇀

rcontact/center (8.33)

Example: Bowling ball

Figure 8.32: The bowling ball is sliding
so long as vG �= −ωR

(Filename:tfigure.bowlball)

The velocity of the point on the bowling ball instantaneously in contact
with the alley (ground) is ⇀

vC = vG ı̂ + ωk̂ × ⇀
rC/G = (vG + ωR)ı̂. So

unless ω = −vG/R the ball is sliding.
Note that, if sliding, the friction force on the ball opposes the slip

of the ball and tends to accelerate the balls rotation towards rolling.
That is, for example, if the ball is not rotating the sliding velocity is
vG ı̂, the friction force is in the −ı̂ direction and angular momentum
balance about the center of mass implies ω̇ < 0 and a counter-clockwise
rotational acceleration. No matter what the initial velocity or rotational
rate the ball will eventually roll. ✷
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8.5 The Sturmey-Archer hub

In 1903, the year the Wright Brothers first flew powered airplanes,
the Sturmey-Archer company patented the internal-hub three-speed
bicycle transmission. This marvel of engineering was sold on the
best bikes until finicky but fast racing bicycles using derailleurs
started to push them out of the market in the 1960’s. Now, a hun-
dred years later, internal bicycle hubs (now made by Shimano and
Sachs) are having something of a revival, particularly in Europe.
These internal-hub transmissions utilize a system called planetary
gears, gears which roll around other gears. See the figure below.

In order to understand

this gear system, we need to understand its kinematics—the motion
of its parts. Referring to figure above, the central ‘sun’ gear F is
stationary, at least we treat it as stationary in this discussion since it
is fixed to the bike frame, so it is fixed in body F . The ‘planet’ gears
roll around the sun gear. Let’s call one of these planetsP . The spider
S connects the centers of the rolling planets. Finally, the ring gearR
rotates around the sun.

Sun F 
(fixed frame)

Planet P
(rolls on sun)

Spider S
(connects
planets)

Ring R
(rolls around

planets)

The gear transmission steps up the angular velocity when the spider
S is driven and ring R, which moves faster, is connected to the
wheel. The transmission steps down the angular velocity when the
ring gear is driven and the slower spider is connected to the wheel.
The third ‘speed’ in the three-speed gear transmission is direct drive
(the wheel is driven directly).

What are the ‘gear ratios’ in the planetary gear system? The ‘trick’
is to recognize that for rolling contact that the contacting points have
the same velocity, ⇀

v A = ⇀
v B and ⇀

v D = ⇀
v E . Let’s define some

terms.

⇀
ωS = ωS k̂ angular velocity of the spider
⇀
ωP = ωP k̂ angular velocity of the planet
⇀
ωR = ωRk̂ angular velocity of the ring

Now, we can find the relation of these angular velocities as follows.

Look at the velocity of point C in two ways. First,

A point on the spider

❇❇�︷︸︸︷
⇀
vC =

A point on the planetary gear

✂✂✌︷︸︸︷
⇀
vC

⇒ ⇀
ωS × ⇀

r C = ⇀
v B︸︷︷︸
⇀
0

+⇀
ωP × ⇀

r C/B

⇒ ωSrC = ωP RP

⇒ ωP = rC

RP
ωS (8.32)

Next, let’s look at point D and E :
⇀
v D = ⇀

v E
⇀
v A + ⇀

v D/A = ⇀
ωR × ⇀

r R
⇀
0 + ⇀

ωP × ⇀
r D/A = ωRk̂ × ⇀

r R

ωP (2RP )êθ = ωRrR êθ

⇒ ωR = 2RP

rR
ωP︸︷︷︸

❇❇�

ωP = rC
RP

ωS

ωR = 2RP

rR

rC = rS + RP

✂✂✌︷︸︸︷
rC

RP
ωS

= 2(rS + RP )

rR︸︷︷︸
❇❇�

rR = rS + 2RP

ωS

⇒ ωR

ωS
= 2

1 + RP
rS

1 + 2RP
rS

= angular velocity step-up.

A B C
D

E

RP

rC

rS

rR

Rolling
contact:

O
F

R

S P

ı̂

̂

êθ ⇀
vA = ⇀

vB
⇀
vD = ⇀

vE
⇀
vC = ⇀

vC

Typically, the gears

have radius ratio of RP
rS

= 3
2 which gives a gear ratio of 5

4 . Thus,
the ratio of the highest gear to the lowest gear on a Sturmey-Archer
hub is 5

4 / 4
5 = 25

16 = 1.5625. You might compare this ratio to that of
a modern mountain bike, with eighteen or twenty-one gears, where
the ratio of the highest gear to the lowest is about 4:1.
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SAMPLE 8.10 Falling ladder: The ends of a ladder of length L = 3 m slip along the

frictionless

A

B

L

θ = 60o ı̂
̂x

y

Figure 8.33: (Filename:sfig7.2.2)

frictionless wall and floor shown in Figure 8.33. At the instant shown, when θ = 60o,
the angular speed θ̇ = 1.15 rad/s and the angular acceleration θ̈ = 2.5 rad/s2. Find
the absolute velocity and acceleration of end B of the ladder.

Solution Since the ladder is falling, it is rotating clockwise. From the given infor-
mation:

⇀
ω = θ̇ k̂ = −1.15 rad/sk̂
˙⇀ω = θ̈ k̂ = −2.5 rad/s2k̂.

We need to find ⇀
v B , the absolute velocity of end B, and ⇀

a B , the absolute acceleration
of end B.

Since the end A slides along the wall and end the B slides along the floor, we know
the directions of ⇀

v A,
⇀
v B,

⇀
a A and ⇀

a B .

Let ⇀
v A = vA̂ ,

⇀
a A = aA̂ ,

⇀
v B = vB ı̂ and ⇀

a B = aB ı̂ where the scalar quan-
tities vA, aA, vB and aB are unknown.

Now, ⇀
v A = ⇀

v B + ⇀
v A/B = ⇀

v B + ⇀
ω × ⇀

r A/B

or vA̂ = vB ı̂ + θ̇ k̂ × L(− cos θ ı̂ − sin θ ̂)︸ ︷︷ ︸
⇀
r A/B

= (vB + θ̇ L sin θ)ı̂ − θ̇ L cos θ ̂ .

Dotting both sides of the equation with ı̂, we get:

B

A

θ

⇀
r A/B = -L cos θ ı̂ - L sin θ ̂

⇀
r A/B

-L sin θ ̂

-L cos θ ı̂

ı̂

̂

Figure 8.34: (Filename:sfig7.2.2b)

vA ̂ ·ı̂︸︷︷︸
0

= (vB + θ̇ L sin θ) ı̂·ı̂︸︷︷︸
1

+θ̇ L cos θ ̂ ·ı̂︸︷︷︸
0

⇒ 0 = vB + θ̇ L sin θ

⇒ vB = −θ̇ L sin θ = −(−1.15 rad/s)·3 m·
√

3

2
= 2.99 m/s.

⇀
v B = 2.9 m/sı̂

Similarly,

⇀
a A = ⇀

a B + ˙⇀ω × ⇀
r A/B +

−ω2 ⇀
r A/B︷ ︸︸ ︷

⇀
ω × (

⇀
ω × ⇀

r A/B)

aA̂ = aB ı̂ + θ̈ k̂ × L(− cos θ ı̂ − sin θ ̂) − θ̇2L(− cos θ ı̂ − sin θ ̂)

= (aB + θ̈ L sin θ + θ̇2L cos θ)ı̂ + (−θ̈ L cos θ + θ̇2L sin θ)̂ .

Dotting both sides of this equation with ı̂ (as we did for velocity) we get:

0 = aB + θ̈ L sin θ + θ̇2L cos θ

⇒ aB = −θ̈ L sin θ − θ̇2L cos θ

= −(−2.5 rad/s2·3 m·
√

3

2
) − (−1.15 rad/s)2·3 m·1

2
= 4.51 m/s2.

⇀
a B = 4.51 m/s2
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SAMPLE 8.11 A cylinder of diameter 500 mm rolls down an inclined plane with

C

ı̂

̂

Figure 8.35: (Filename:sfig9.rolling.may00)

uniform acceleration (of the center of mass) a = 0.1 m/s2. At an instant t0, the
mass-center has speed v0 = 0.5 m/s.

(a) Find the angular speed ω and the angular acceleration ω̇ at t0.
(b) How many revolutions does the cylinder make in the next 2 seconds?
(c) What is the distance travelled by the center of mass in those 2 seconds?

Solution This problem is about simple kinematic calculations. We are given the
velocity, ẋ , and the acceleration, ẍ , of the center of mass. We are supposed to find
angular velocity ω, angular acceleration ω̇, angular displacement θ in 2 seconds, and
the corresponding linear distance x along the incline. The radius of the cylinder
R = diameter/2 = 0.25 m.

(a) From the kinematics of pure rolling,

ω = ẋ

R
= 0.5 m/s

0.25 m
= 2 rad/s,

ω̇ = ẍ

R
= 0.1 m/s2

0.25 m
= 0.4 rad/s2.

ω = 2 rad/s, ω̇ = 0.4 rad/s2

(b) We can find the number of revolutions the cylinder makes in 2 seconds by
solving for the angular displacement θ in this time period. Since,

θ̈ ≡ ω̇ = constant,

we integrate this equation twice and substitute the initial conditions, θ̇ (t =
0) = ω = 2 rad/s and θ(t = 0) = 0, to get

θ(t) = ωt + 1

2
ω̇t2

⇒ θ(t = 2 s) = (2 rad/s) · (2 s) + 1

2
(0.4 rad/s) · (4 s2)

= 4.8 rad = 4.8

2π
rev = 0.76 rev.

θ = 0.76 rev

(c) Now that we know the angular displacement θ , the distance travelled by the
mass-center is the arc-length corresponding to θ , i.e.,

x = Rθ = (0.25 m) · (4.8) = 1.2 m.

x = 1.2 m

Note that we could have found the distance travelled by the mass-center by
integrating the equation ẍ = 0.1 m/s2 twice
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SAMPLE 8.12 Condition of pure rolling. A cylinder of radius R = 20 cm rolls on
a flat surface with absolute angular speed ω = 12 rad/s under the conditions shown
in the figure (In cases (ii) and (iii), you may think of the ‘flat surface’ as a conveyor
belt). In each case,

(a) Write the condition for pure rolling.
(b) Find the velocity of the center C of the cylinder.

C

P

C

P

C

Pv0 = 1m/s

v0 = 1m/s

( i )  Fixed base ( i i )  Base moves to  the r ight ( i i i )  Base moves to  the lef t

ı̂

̂

Figure 8.36: (Filename:sfig7.rolling1)

Solution At any instant during rolling, the cylinder makes a point-contact with the

C

P

Q

ı̂

̂

Figure 8.37: The cylinder rolls on the
flat surface. Instantaneously, point P on the
cylinder is in contact with point Q on the
flat surface. For pure rolling, points P and
Q must have the same velocity.

(Filename:sfig7.rolling1a)

flat surface. Let the point of instantaneous contact on the cylinder be P, and let the
corresponding point on the flat surface be Q. The condition of pure rolling, in each
case, is ⇀

v P = ⇀
v Q , that is, there is no relative motion between the two contacting

points (a relative motion will imply slip). Now, we analyze each case.

Case(i) In this case, the bottom surface is fixed. Therefore,

(a) The condition of pure rolling is: ⇀
v P = ⇀

v Q = ⇀

0.

(b) Velocity of the center:

⇀
vC = ⇀

v P + ⇀
ω × ⇀

r C/P = ⇀

0 + (−ωk̂) × R̂

= ωRı̂ = (12 rad/s) · (0.2 m)ı̂ = 2.4 m/sı̂.

Case(ii) In this case, the bottom surface moves with velocity ⇀
v = 1 m/sı̂. Therefore,

⇀
v Q = 1 m/sı̂. Thus,

(a) The condition of pure rolling is: ⇀
v P = ⇀

v Q = 1 m/sı̂.
(b) Velocity of the center:

⇀
vC = ⇀

v P + ⇀
ω × ⇀

r C/P = v0 ı̂ + ωRı̂

= 1 m/sı̂ + 2.4 m/sı̂ = 3.4 m/sı̂.

Case(iii) In this case, the bottom surface moves with velocity ⇀
v = −1 m/sı̂. There-

fore, ⇀
v Q = −1 m/sı̂. Thus,

(a) The condition of pure rolling is: ⇀
v P = ⇀

v Q = −1 m/sı̂.
(b) Velocity of the center:

⇀
vC = ⇀

v P + ⇀
ω × ⇀

r C/P = −v0 ı̂ + ωRı̂

= −1 m/sı̂ + 2.4 m/sı̂ = 1.4 m/sı̂.

(a) : (i)⇀
v P = ⇀

0, (ii)⇀
v P = 1 m/sı̂, (iii)⇀

v P = −1 m/sı̂,
(b) : (i)⇀

vC = 2.4 m/sı̂, (ii)⇀
vC = 3.4 m/sı̂, (iii)⇀

vC = 1.4 m/sı̂
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SAMPLE 8.13 Motion of a point on a disk rolling inside a cylinder. A uniform

R

r

P

Figure 8.38: A uniform disk of radius r
rolls without slipping inside a fixed cylin-
der.

(Filename:sfig6.5.3)

disk of radius r rolls without slipping with constant angular speed ω inside a fixed
cylinder of radius R. A point P is marked on the disk at a distance 
 (
 < r ) from the
center of the disk. at a general time t during rolling, find

(a) the position of point P,
(b) the velocity of point P, and
(c) the acceleration of point P

Solution Let the disk be vertically below the center of the cylinder at t = 0 s such
that point P is vertically above the center of the disk (Fig. 8.39). At this instant, Q
is the point of contact between the disk and the cylinder. Let the disk roll for time
t such that at instant t the line joining the two centers (line OC) makes an angle φ

with its vertical position at t = 0 s. Since the disk has rolled for time t at a constant
angular speed ω, point P has rotated counter-clockwise by an angle θ = ωt from its
original vertical position P’.

C

P

P'

C

P

Q

O

C

P

(a) (b)

D

x

y

O
x

y

θ
φ φ

ω

⇀
rC

⇀
rP/C

θ

φ

l

Figure 8.39: Geometry of motion: keeping track of point P while the disk rolls for time t , rotating
by angle θ = ωt inside the cylinder.

(Filename:sfig6.5.3a)

(a) Position of point P: From Fig. 8.39(b) we can write

⇀
r P = ⇀

r C + ⇀
r P/C = (R − r)λ̂OC + 
λ̂C P

where

λ̂OC = a unit vector along OC = − sin φ ı̂ − cos φ̂ ,

λ̂C P = a unit vector along CP = − sin θ ı̂ + cos θ ̂ .

Thus,

⇀
r P = [−(R − r) sin φ − 
 sin θ ]ı̂ + [−(R − r) cos φ + 
 cos θ ]̂ .

We have thus obtained an expression for the position vector of point P as a
function of φ and θ . Since we also want to find velocity and acceleration of
point P, it will be nice to express ⇀

r P as a function of t . As noted above, θ = ωt ;
but how do we find φ as a function of t? Note that the center of the disk C is
going around point O in circles with angular velocity −φ̇k̂. The disk, however,
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is rotating with angular velocity ⇀
ω = ωk̂ about the instantaneous center of

rotation, point D. Therefore, we can calculate the velocity of point C in two
ways:

⇀
vC = ⇀

vC

or ⇀
ω × ⇀

r C/D = −φ̇k̂ × ⇀
r C/O

or ωk̂ × r(−λ̂OC ) = −φ̇k̂ × (R − r)λ̂OC

or − ωr(k̂ × λ̂OC ) = −φ̇(R − r)(k̂ × λ̂OC )

⇒ r

R − r
ω = φ̇.

Integrating the last expression with respect to time, we obtain

φ = r

R − r
ωt.

Let
q = r

R − r
,

then, the position vector of point P may now be written as

⇀
r P = [−(R − r) sin(qωt)− 
 sin(ωt)]ı̂ + [−(R − r) cos(qωt)+ 
 cos(ωt)]̂ .

(8.34)

(b) Velocity of point P: Differentiating Eqn. (8.34) once with respect to time we
get

⇀
v P = −ω[(R−r)q cos(qωt)+
 cos(ωt)]ı̂+ω[(R−r)q sin(qωt)−
 sin(ωt)]̂ .

Substituting (R − r)q = r in ⇀
v P we get

⇀
v P = −ωr [{cos(qωt) + 


r
cos(ωt)}ı̂ − {sin(qωt) − 


r
sin(ωt)}̂ ]. (8.35)

(c) Acceleration of point P: Differentiating Eqn. (8.35) once with respect to time
we get

⇀
a P = −ω2r [−{q sin(qωt) + 


r
sin(ωt)}ı̂ − {q cos(qωt) − 


r
cos(ωt)}̂ ].

(8.36)

⇀
r P = [−(R − r) sin(qωt) − 
 sin(ωt)]ı̂ + [−(R − r) cos(qωt) + 
 cos(ωt)]̂
⇀
v P = −ωr [{cos(qωt) + 


r cos(ωt)}ı̂ − {sin(qωt) − 

r sin(ωt)}̂ ]

⇀
a P = −ω2r [−{q sin(qωt) + 


r sin(ωt)}ı̂ − {q cos(qωt) − 

r cos(ωt)}̂ ]
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SAMPLE 8.14 The rolling disk: instantaneous kinematics. For the rolling disk in
Sample 8.13, let R = 4 ft, r = 1 ft and point P be on the rim of the disk. Assume
that at t = 0, the center of the disk is vertically below the center of the cylinder and
point P is on the vertical line joining the two centers. If the disk is rolling at a constant
speed ω = π rad/s, find

(a) the position of point P and center C at t = 1 s, 3 s, and 5.25 s,
(b) the velocity of point P and center C at those instants, and
(c) the acceleration of point P and center C at the same instants as above.

Draw the position of the disk at the three instants and show the velocities and accel-
erations found above.

Solution The general expressions for position, velocity, and acceleration of point P
obtained in Sample 8.13 can be used to find the position, velocity, and acceleration
of any point on the disk by substituting an appropriate value of 
 in equations (8.34),
(8.35), and (8.36). Since R = 4r ,

q = r

R − r
= 1

3
.

Now, point P is on the rim of the disk and point C is the center of the disk. Therefore,

for point P: 
 = r,

for point C: 
 = 0.

Substituting these values for 
, and q = 1/3 in equations (8.34), (8.35), and (8.36)
we get the following.

(a) Position:

⇀
r C = −3r

[
sin

(
ωt

3

)
ı̂ + cos

(
ωt

3

)
̂

]
,

⇀
r P = ⇀

r C + r
[−sin (ωt) ı̂ + cos (ωt) ̂

]
.

(b) Velocity:

⇀
vC = −ωr

[
cos

(
ωt

3

)
ı̂ − sin

(
ωt

3

)
̂

]
,

⇀
v P = −ωr

[{
cos

(
ωt

3

)
+ cos (ωt)

}
ı̂ −

{
sin

(
ωt

3

)
− sin (ωt)

}
̂

]
.

(c) Acceleration:

⇀
aC = ω2r

3

[
sin

(
ωt

3

)
ı̂ + cos

(
ωt

3

)
̂

]
,

⇀
a P = ω2r

[{
1

3
sin

(
ωt

3

)
+ sin (ωt)

}
ı̂ +

{
1

3
cos

(
ωt

3

)
− cos (ωt)

}
̂

]
.

We can now use these expressions to find the position, velocity, and acceleration
of the two points at the instants of interest by substituting r = 1 ft, ω = π rad/s,
and appropriate values of t . These values are shown in Table 8.1.

The velocity and acceleration of the two points are shown in Figures 8.40(a) and (b)
respectively.

It is worthwhile to check the directions of velocities and the accelerations by
thinking about the velocity and acceleration of point P as a vector sum of the velocity
(same for acceleration) of the center of the disk and the velocity (same for acceleration)
of point P with respect to the center of the disk. Since the motions involved are circular
motions at constant rate, a visual inspection of the velocities and the accelerations is
not very difficult. Try it.



8.3. Kinematics of rolling and sliding 477

t 1 s 3 s 5.25 s

⇀
r C ( ft) 3(−

√
3

2 ı̂ − 1
2 ̂) 3̂ 3( 1√

2
ı̂ − 1√

2
̂)

⇀
r P ( ft) ⇀

r C − ̂
⇀
r C − ̂ 4( 1√

2
ı̂ − 1√

2
̂)

⇀
vC ( ft/s) π(− 1

2 ı̂ +
√

3
2 ̂) π ı̂ π(− 1√

2
ı̂ − 1√

2
̂)

⇀
v P ( ft/s) π( 1

2 ı̂ +
√

3
2 ̂) 2π ı̂

⇀

0

⇀
aC ( ft/s2) π2

3 (
√

3
2 ı̂ + 1

2 ̂) −π2

3 ̂ π2

3 (− 1√
2
ı̂ + 1√

2
̂)

⇀
v P ( ft/s2) 11.86(.24ı̂ + .97̂) 2π2

3 ̂ 13.16(− 1√
2
ı̂ + 1√

2
̂)

Table 8.1: Position, velocity, and acceleration of point P and point C

C

C

C

C
P

P

P

P

t = 0 s

t = 1 s

t = 3 s

t = 5.25 s

vC

vP
C

C

C

C
P

P

P

P

t = 0 s

t = 1 s

t = 3 s

t = 5.25 s

aC

aP

(a) (b)

Figure 8.40: (a) Velocity and (b) Acceleration of points P and C at t = 1 s, 3 s, and 5.25 s. (Filename:sfig6.5.4a)
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SAMPLE 8.15 The rolling disk: path of a point on the disk. For the rolling disk in
Sample 8.13, take ω = π rad/s. Draw the path of a point on the rim of the disk for
one complete revolution of the center of the disk around the cylinder for the following
conditions:

(a) R = 8r ,
(b) R = 4r , and
(c) R = 2r .

Solution In Sample 8.13, we obtained a general expression for the position of a point
on the disk as a function of time. By computing the position of the point for various
values of time t up to the time required to go around the cylinder for one complete
cycle, we can draw the path of the point. For the various given conditions, the variable
that changes in Eqn. (8.34) is q. We can write a computer program to generate the
path of any point on the disk for a given set of R and r . Here is a pseudocode to
generate the required path on a computer according to Eqn. (8.34).
A pseudocode to plot the path of a point on the disk:

(pseudo-code) program rollingdisk
%-------------------------------------------------------------
% This code plots the path of any point on a disk of radius
% ’r’ rolling with speed ’w’ inside a cylinder of radius ’R’.
% The point of interest is distance ’l’ away from the center of
% the disk. The coordinates x and y of the specified point P are
% calculated according to the relation mentioned above.
%--------------------------------------------------------------

phi = pi/50*[1,2,3,...,100] % make a vector phi from 0 to 2*pi
x = R*cos(phi) % create points on the outer cylinder
y = R*sin(phi)
plot y vs x % plot the outer cylinder
hold this plot % hold to overlay plots of paths

q = r/(R-r) % calculate q.
T = 2*pi/(q*w) % calculate time T for going around-

% the cylinder once at speed ’w’.
t = T/100*[1,2,3, ..., 100] % make a time vector t from 0 to T-

% taking 101 points.

rcx = -(R-r)*(sin(q*w*t)) % find the x coordinates of pt. C.
rcy = -(R-r)*(cos(q*w*t)) % find the y coordinates of pt. C.
rpx = rcx-l*sin(w*t) % find the x coordinates of pt. P.
rpy = rcy + l*cos(q*t) % find the y coordinates of pt. P.

plot rpy vs rpx % plot the path of P and the path
plot rcy vs rcx % of C. For path of C

Once coded, we can use this program to plot the paths of both the center and the point
P on the rim of the disk for the three given situations. Note that for any point on the
rim of the disk l = r (see Fig 8.39).
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(a) Let R = 4 units. Then r = 0.5 for R = 8r . To plot the required path, we run
our program rollingdisk with desired input,

R = 4
r = 0.5
w = pi
l = 0.5
execute rollingdisk

The plot generated is shown in Fig.8.41 with a few graphic elements added for
illustrative purposes.
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Figure 8.41: Path of point P and the cen-
ter C of the disk for R = 8r .

(Filename:sfig6.5.5a)
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Figure 8.42: Path of point P and the cen-
ter C of the disk for R = 4r .

(Filename:sfig6.5.5b)

(b) Similarly, for R = 4r we type:

R = 4
r = 1
w = pi
l = 1
execute rollingdisk

to plot the desired paths. The plot generated in this case is shown in Fig.8.42
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Figure 8.43: Path of point P and the cen-
ter C of the disk for R = 2r .

(Filename:sfig6.5.5c)

(c) The last one is the most interesting case. The plot obtained in this case by
typing:

R = 4
r = 2
w = pi
l = 2
execute rollingdisk

is shown in Fig.8.43. Point P just travels on a straight line! In fact, every point
on the rim of the disk goes back and forth on a straight line. Most people find
this motion odd at first sight. You can roughly verify the result by cutting a
whole twice the diameter of a coin (say a US quarter or dime) in a piece of
cardboard and rolling the coin around inside while watching a marked point on
the perimeter.

A curiosity. We just discovered something simple about the path of a point on the
edge of a circle rolling in another circle that is twice as big. The edge point moves
in a straight line. In contrast one might think about the motion of the center G of
a straight line segment that slides against two straight walls as in sample 8.24. A
problem couldn’t be more different. Naturally the path of point G is a circle (as you
can check physically by looking at the middle of a ruler as you hold it as you sliding
against a wall-floor corner).
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8.4 Mechanics of contacting bodies:

rolling and sliding
A typical machine part has forces that come from contact with other parts. In fact, with
the major exception of gravity, most of the forces that act on bodies of engineering
interest come from contact. Many of the forces you have drawn in free body diagrams
have been contact forces: The force of the ground on an ideal wheel, of an axle on a
bearing, etc.

We’d now like to consider some mechanics problems that involve sliding or rolling
contact. Once you understand the kinematics from the previous section, there is
nothing new in the mechanics. As always, the mechanics is linear momentum balance,
angular momentum balance and energy balance. Because we are considering single
rigid bodies in 2D the expressions for the motion quantities are especially simple
(as you can look up in Table I at the back of the book): ˙⇀L = mtot

⇀
acm, ˙⇀HC =

⇀
rcm/C × (mtot

⇀
acm) + I ω̇k̂ (where I = I cm

zz ), and EK = mtotv
2
cm/2 + Iω2/2.

The key to success, as usual, is the drawing of appropriate free body diagrams
(see Chapter 3 pages 88-91 and Chapter 6 pages 328-9). The two cases one needs
to consider as possible are rolling, where the contact point has no relative velocity
and the tangential reaction force is unknown but less than µN , and sliding where
the relative velocity could be anything and the tangential reaction force is usually
assumed to have a magnitude of µN but oppose the relative motion.

For friction forces in rolling refer to chapter 2 on free body diagrams. Note that
in pure rolling contact, the contact force does no work because the material point
of contact has no velocity. However, when there is sliding mechanical energy is
dissipated. The rate of loss of kinetic and potential energy is

Rate of frictional dissipation = Pdiss = Ffriction · vslip (8.37)

where vslip is the relative velocity of the contacting slipping points. If either the
friction force (ideal lubrication) or sliding velocity (no slip) is zero there is no dissi-
pation. Work-energy relations and impulse-momentum relations are useful to solve
some problems both with and without slip.

As for various problems throughout the text, it is often a savings of calculation
to use angular momentum balance (or moment balance in statics) relative to a point
where there are unknown reaction forces. For rolling and slipping problems this often
means making use of contact points.

Figure 8.44: A ball rolls or slides on level
ground.

(Filename:tfigure.levelrolling)

Example: Pure rolling on level ground

A ball or wheel rolling on level ground, with no air friction etc, rolls
at constant speed (see Fig. 8.44). This is most directly deduced from
angular momentum balance about the contact point C:

⇀
MC = ˙⇀HC ⇒ ⇀

rG/C × −mg̂ = ⇀
rG/C × m ⇀

aG + ω̇I cm
zz k̂

⇒ ⇀

0 = R̂ × (−mω̇Rı̂) + ω̇I cm
zz k̂

dotting with k̂ ⇒ ω̇ = 0 ⇒ ω = constant.

Because for rolling vG = −ωR we thus have that vG is a constant. [The
result can also be obtained by combining angular momentum balance
about the center of mass with linear momentum balance.]
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Finally, linear momentum balance gives the reaction force at C to be
⇀
F = mg̂ . So,

assuming point contact, there is no rolling resistance.

✷

Example: Bowling ball with initial sliding

A bowling ball is released with an initial speed of v0 and no rotation rate.
What is it’s subsequent motion? To start with, the motion is incompatible
with rolling, the bottom of the ball is sliding to the right. So there is a
frictional force which opposes motion and F = −µN (see Fig. 8.44).
Linear and angular momentum balance give:

LMB: ⇒ {−F ı̂ + N ̂ − mg̂ = maı̂
}

{} · ̂ ⇒ N = mg
{} · ı̂ ⇒ a = −µg

AMB/G: ⇒ −Rµmg = I cm
zz ω̇

⇒ v = v0 − µgt and ω = −µRmgt/I cm
zz

Thus the forward speed of the ball decreases linearly with time while the
counter-clockwise angular velocity decreases linearly with time.

This solution is only appropriate so long as there is rightward slip,
vG > −ωR. Just like for a sliding block, there is no impetus for reversal,
and the block switches to pure rolling when

v = −ωR ⇒ v0−µgt = − (−µRmgt/I cm
zz

)
R ⇒ t = v0

µg
(

1 + m R2

I cm
zz

) .

Note that the energy lost during sliding is less than µmg times the distance
the center of the ball moves during slip. ✷

Figure 8.45: A ball rolls or slides down
a slope.

(Filename:tfigure.sloperolling)

Example: Ball rolling down hill.

Assuming rolling we can find the acceleration of a ball as it rolls downhill
(see Fig. 8.45). We start out with the kinematic observations that ⇀

aG =
aGλ̂, that Rω = −vG and that Rω̇ = −aG. Angular momentum balance
about the stationary point on the ground instantaneously coinciding with
the contact point gives

AMB/C ⇒ ⇀
rG/C × (−mg̂) = ⇀

rG/C × m ⇀
aG + I cm

zz ω̇k̂{
−R sin φmgk̂ = (Rn̂) × (maGλ̂) + I cm

zz ω̇k̂
}

{} · k̂ ⇒ −Rmg sin φ = −RmaG − I cm
zz aG/R

⇒ aG = g sin φ

1+I cm
zz /(m R2)

.

Which is less than the acceleration of a block sliding on a ramp without
friction: a = g sin φ (unless the mass of the rolling ball is concentrated
at the center with I cm

zz = 0). Note that a very small ball rolls just as
slowly. In the limit as the ball radius goes to zero the behavior does not
approach that of a point mass that slides; the rolling remains significant.
✷
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Example: Ball rolling down hill: energy approach

We can find the acceleration of the rolling ball using power balance or
conservation of energy. For example

0 = d
dt ET ⇒ 0 = ĖK + ĖP

= d
dt

(
mv2/2 + I cm

zz ω2/2
) + d

dt (mgy)

= mvv̇ + I cm
zz ωω̇ + mgẏ

= mvv̇ + I cm
zz (v/R)v̇/R − mg(sin φ)v

assuming v �= 0 ⇒ 0 = (m + I cm
zz /R2)v̇ − mg sin φ

⇒ v̇ = g sin φ

1+I cm
zz /(m R2)

as before. ✷

Example: Does the ball slide?

How big is the coefficient of friction µ needed to prevent slip for a ball
rolling down a hill? Use linear momentum balance to find the normal
and frictional components of the contact force, using the rolling example
above.

AMB (
⇀
Ftot = m ⇀

aG) ⇒
{

N n̂ + F λ̂ − mg̂ = maGλ̂
}

{} · n̂ ⇒ N = mg cos φ

{} · λ̂ ⇒ F + mg sin φ = m g sin φ

1+I cm
zz /(m R2)

F = −mg sin φ

1+m R2/I cm
zz

Critical condition: ⇒ µ = |F |
N = tan φ

1+m R2/I cm
zz

If I cm
zz is very small (the mass concentrated near the center of the ball)

then small friction is needed to prevent rolling. For a uniform rubber
ball on pavement (with µ ≈ 1 and I cm

zz ≈ 2m R2/5) the steepest slope
for rolling without slip is a steep φ = tan−1(7/2) ≈ 74o. A metal hoop
on the other hand (with µ ≈ .3 and I cm

zz ≈ m R2) will only roll without
slip for slopes less than about φ = tan−1(.6) ≈ 31o. ✷

Figure 8.46: A ball rolls in a round cross-
section bowl.

(Filename:tfigure.ballinbowl)

Example: Oscillations of a ball in a bowl.

A round ball can oscillate back and forth in the bottom of a circular cross
section bowl or pipe (see Fig. 8.46). Similarly, a cylindrical object can
roll inside a pipe. What is the period of oscillation? Start with angular
momentum balance about the contact point

⇀
rG/C × (−mg̂) = ⇀

rG/C × m ⇀
aG + I cm

zz ω̇k̂

rmg sin θ k̂ = −r êr × (
m

(
(R − r)θ̈ êθ − (R − r)θ̇2êr

))
+I cm

zz ω̇k̂.

Evaluating the cross products (using that êr × êt = k̂) and using the
kinematics from the previous section (that (R −r)θ̇ = −rω) and dotting
the left and right sides with k̂ gives

(R − r)θ̈ = g sin θ

1 + I cm
zz /mr2 ,
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the tangential acceleration is the same as would have been predicted
by putting the ball on a constant slope of −θ . Using the small angle
approximation that sin θ = θ the equation can be rearranged as a standard
harmonic oscillator equation

θ̈ +
(

g

(R − r)(1 + I cm
zz /mr2)

)
θ,

If all the ball’s mass were concentrated in its middle (so I cm
zz = 0) this is

naturally the same as for a simple pendulum with length R − r . For any
parameter values the period of small oscillation is

T = 2π

√
(R − r)(1 + I cm

zz /mr2)

g
.

For a marble, ball bearing, or AAA battery in a sideways glass (with
R − r ≈ 2 cm = .04 m, I cm

zz /mr2 ≈ 2/5 and g ≈ 10 m/s2) this gives
about one oscillation every half second. See page 608 for the energy
approach to this problem. ✷
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SAMPLE 8.16 A rolling wheel with mass. Consider the wheel with mass m shown

mg

cm
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Ffriction

FR
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λ̂
φ

ı̂

̂

Figure 8.47: FBD of a wheel with mass
m. Force F is applied by the axle.

(Filename:tfigure2.wheel.mass.lhs)

in figure 8.47. The free body diagram of the wheel is shown here again. Write the
equation of motion of the wheel.

Solution We can write the equation of motion of the wheel in terms of either the
center of mass position x or the angular displacement of the wheel θ . Since in pure
rolling, these two variables share a simple relationship (x = Rθ ), we can easily get
the equation of motion in terms of x if we have the equation in terms of θ and vice
versa. Since all the forces are shown in the free body diagram , we can easily write
the angular momentum balance for the wheel. We choose the point of contact C as
our reference point for the angular momentum balance (because the gravity force,
−mg̂ , the friction force −Ff riction ı̂, and the normal reaction of the ground N ̂ , all
pass through the contact point C and therefore, produce no moment about this point).
We have ∑

⇀
MC = ˙⇀HC

where ∑
⇀
MC =

R̂︷ ︸︸ ︷
⇀
r cm/C ×(F λ̂)

= R̂ × F(− cos φ ı̂ − sin φ̂)

= F R cos φk̂

and ˙⇀HC = ⇀
rcm/C × m ⇀

acm + I cm
zz

˙⇀ω
= R̂ × m ẍ︸︷︷︸

ω̇R

ı̂ − I cm
zz ω̇k̂

= −mω̇R2k̂ − I cm
zz ω̇k̂

= −(I cm
zz + m R2)ω̇k̂.

Thus,

F R cos φk̂ = −(I cm
zz + m R2)ω̇k̂

⇒ ω̇ ≡ θ̈ = F R cos φ

I cm
zz + m R2

which is the equation of motion we are looking for. Note that we can easily substitute
θ̈ = ẍ/R in the equation of motion above to get the equation of motion in terms of
the center of mass displacement x as

ẍ = F R2 cos φ

I cm
zz + m R2 .

θ̈ = F R cos φ

I cm
zz +m R2

Comments: We could have, of course, used linear momentum balance with angular
momentum balance about the center of mass to derive the equation of motion. Note,
however, that the linear momentum balance will essentially give two scalar equations
in the x and y directions involving all forces shown in the free body diagram . The
angular momentum balance , on the other hand, gets rid of some of them. Depending
on which forces are known, we may or may not need to use all the three scalar
equations. In the final equation of motion, we must have only one unknown.
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SAMPLE 8.17 Energy and power of a rolling wheel. A wheel of diameter 2 ft and

cm

r

Figure 8.48: (Filename:sfig7.4.1a)

mass 20 lbm rolls without slipping on a horizontal surface. The kinetic energy of the
wheel is 1700 ft· lbf. Assume the wheel to be a thin, uniform disk.

(a) Find the rate of rotation of the wheel.
(b) Find the average power required to bring the wheel to a complete stop in 5 s.

Solution

(a) Let ω be the rate of rotation of the wheel. Since the wheel rotates without
slip, its center of mass moves with speed vcm = ωr . The wheel has both
translational and rotational kinetic energy. The total kinetic energy is

EK = 1

2
mv2

cm + 1

2
I cmω2

= 1

2
mω2r2 + 1

2
I cmω2

= 1

2
(mr2 + I cm︸︷︷︸

1
2 mr2

)ω2

= 3

4
mr2ω2

⇒ ω2 = 4EK

3mr2

= 4 × 1700 ft· lbf

3 × 20 lbm·1 ft2

= 4 × 1700 × 32.2 �lbm·� ft/ s2

3 × 20 �lbm·� ft
= 3649.33

1

s2

⇒ ω = 60.4 rad/s.

ω = 60.4 rad/s

Note: This rotational speed, by the way, is extremely high. At this speed the
center of mass moves at 60.4 ft/s!

(b) Power is the rate of work done on a body or the rate of change of kinetic energy.
Here we are given the initial kinetic energy, the final kinetic energy (zero) and
the time to achieve the final state. Therefore, the average power is,

P = EK1 − EK2

�t

= 1700 ft· lbf − 0

5 s
= 340 ft· lbf/ s

= 340 ft· lbf/ s · 1 hp

550 ft· lbf/ s
= 0.62 hp

P = 0.62 hp
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SAMPLE 8.18 Equation of motion of a rolling wheel from energy balance. Consider

mg

cm
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Ffriction

FR
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λ̂
φ

ı̂

̂

Figure 8.49: FBD of a rolling wheel.
(Filename:tfigure2.wheel.mass.lhs.en)

the wheel with mass m from figure 8.49. The free body diagram of the wheel is shown
here again. Derive the equation of motion of the wheel using energy balance.

Solution From energy balance, we have

P = ĖK

where
P =

∑
⇀
F i · ⇀

v i

= Ff riction ı̂ ·

⇀

0︷︸︸︷
⇀
vC +N ̂ ·

⇀

0︷︸︸︷
⇀
vC −mg̂ ·

vı̂︷︸︸︷
⇀
v cm +F λ̂ ·

vı̂︷︸︸︷
⇀
v cm

= −mgv( ı̂ · ̂︸︷︷︸
0

) + Fv( λ̂ · ı̂︸︷︷︸
− cos φ

)

= −Fv cos φ

and

ĖK = d

dt
(
1

2
mẋ2 + 1

2
I cm
zz

(ẋ/R)2︷︸︸︷
ω̇2 )

= 1

2

d

dt
[(m + I cm

zz /R2)ẋ2]

= (m + I cm
zz /R2)ẋ ẍ .

Thus,
−Fv cos φ = (m + I cm

zz /R2)ẋ ẍ

or − F� ẋ cos φ = (m + I cm
zz /R2)� ẋ ẍ

⇒ ẍ = − F cos φ

m + I cm
zz /R2 .

We can also write the equation of motion in terms of θ by replacing ẍ with θ̈ R giving,

θ̈ = F R cos φ

m + I cm
zz /R2 .

ẍ = − F cos φ

m+I cm
zz /R2

Comments: In the equations above (for calculating P), we have set ⇀
vC = ⇀

0 because
in pure rolling, the instantaneous velocity of the contact point is zero. Note that the
force due to gravity is normal to the direction of the velocity of the center of mass.
So, the only power supplied to the wheel is due to the force F λ̂ acting at the center
of mass.
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SAMPLE 8.19 Equation of motion of a rolling disk on an incline. A uniform circular

C

ı̂

̂

Figure 8.50: (Filename:sfig9.rolling.incline1)

disk of mass m = 1 kg and radius R = 0.4 m rolls down an inclined shown in the
figure. Write the equation of motion of the disk assuming pure rolling, and find the
distance travelled by the center of mass in 2 s.

Solution The free body diagram of the disk is shown in Fig. 8.51. In addition to
the base unit vectors ı̂ and ̂ , let us use unit vectors λ̂ and n̂ along the plane and
perpendicular to the plane, respectively, to express various vectors. We can write the

mg

(cm)

N F

R

C

O

λ
ı̂

ˆ

ˆ



n̂

α

Figure 8.51: (Filename:sfig9.rolling.incline1a)

equation of motion using linear momentum balance or angular momentum balance.
However, note that if we use linear momentum balance we have two unknown forces
in the equation. On the other hand, if we use angular momentum balance about the
contact point C, these forces do not show up in the equation. So, let us use angular
momentum balance about point C:∑

⇀
MC = ˙⇀HC

where ∑
⇀
MC = ⇀

rO/C × m ⇀
g = Rn̂ × (−mg̂)

= −Rmg sin αk̂

and

˙⇀HC = −I cm
zz ω̇k̂ +

Rn̂︷︸︸︷
⇀
rO/C ×m

Rω̇λ̂︷︸︸︷
⇀
acm

= −I cm
zz ω̇k̂ + m R2ω̇(n̂ × λ̂)

= −(I cm
zz + m R2)ω̇k̂.

Thus,
−Rmg sin αk̂ = −(I cm

zz + m R2)ω̇k̂

⇒ ω̇ = g sin α

R[1 + I cm
zz /(m R2)]

ω̇ = g sin α

R[1+I cm
zz /(m R2)]

Note that in the above equation of motion, the right hand side is constant. So, we can
solve the equation for ω and θ by simply integrating this equation and substituting
the initial conditions ω(t = 0) = 0 and θ(t = 0) = 0. Let us write the equation of
motion as ω̇ = β where β = g sin α/R(1 + I cm

zz /m R2). Then,

ω ≡ θ̇ = βt + C1

θ = 1

2
βt2 + C1t + C2.

Substituting the given initial conditions θ̇ (0) = 0 and θ(0) = 0, we get C1 = 0 and
C2 = 0, which implies that θ = 1

2βt2. Now, in pure rolling, x = Rθ . Therefore,

x(t) = Rθ(t) = 1

2
βt2 = �R · 1

2

g sin α

�R(1 + I cm
zz /m R2)

t2

= 1

2

g sin α

1 +
1
2 m R2

m R2

t2 = 1

3
(g sin α)t2

x(2 s) = 1

3
· 9.8 m/s2 · sin(30o) · (2 s)2 = 6.53 m

x(2 s) = 6.53 m
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SAMPLE 8.20 Using Work and energy in pure rolling. Consider the disk of Sam-

C

ı̂

̂

Figure 8.52: (Filename:sfig9.rolling.incline2)

ple 8.19 rolling down the incline again. Suppose the disk starts rolling from rest.
Find the speed of the center of mass when the disk is 2 m down the inclined plane.

Solution We are given that the disk rolls down, starting with zero initial velocity. We
are to find the speed of the center of mass after it has travelled 2 malong the incline.
We can, of course, solve this problem using equation of motion, by first solving for the
time t the disk takes to travel the given distance and then evaluating the expression
for speed ω(t) or x(t) at that t . However, it is usually easier to use work energy
principle whenever positions are specified at two instants, speed is specified at one of
those instants, and speed is to be found at the other instant. This is because we can,
presumably, compute the work done on the system in travelling the specified distance
and relate it to the change in kinetic energy of the system between the two instants.
In the problem given here, let ω1 and ω2 be the initial and final (after rolling down
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Figure 8.53: (Filename:sfig9.rolling.incline2a)

by d = 2 m) angular speeds of the disk, respectively. We know that in rolling, the
kinetic energy is given by

EK = 1

2
m

(ωR)2︷︸︸︷
v2

cm +1

2
I cm
zz ω2 = 1

2
(m R2 + I cm

zz )ω2.

Therefore,

�EK = EK2 − EK1 = 1

2
(m R2 + I cm

zz )(ω2
2 − ω2

1) (8.38)

Now, let us calculate the work done by all the forces acting on the disk during the
displacement of he mass-center by d along the plane. Note that in ideal rolling, the
contact forces do no work. Therefore, the work done on the disk is only due to the
gravitational force:

W = (−mg̂) · (dλ̂) = −mgd(

− sin α︷︸︸︷
̂ · λ̂ ) = mgd sin α (8.39)

From work-energy principle (integral form of power balance, P = ĖK ), we know
that W = �EK. Therefore, from eqn. (8.38) and eqn. (8.39), we get

mgd sin α = 1

2
(m R2 + I cm

zz )(ω2
2 − ω2

1)

⇒ ω2
2 = ω2

1 + 2mgd sin α

m R2 + I cm
zz

= ω2
1 + 2gd sin α

R2
(

1 + I cm
zz

m R2

)
= ω2

1 + 4gd sin α

3R2

Substituting the values of g, d, α, R, etc., and setting ω1 = 0, we get

ω2
2 = 4 · (9.8 m/s2) · (2 m) · (sin(30o)

3 · (0.4 m)2 = 81.67/s2

⇒ ω2 = 9.04 rad/s.

The corresponding speed of the center of mass is

vcm = ω2 R = 9.04 rad/s · 0.4 m = 3.61 m/s.

vcm = 3.61 m/s
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SAMPLE 8.21 Impulse and momentum calculations in pure rolling. Consider the

C

ı̂

̂

Figure 8.54: (Filename:sfig9.rolling.incline3)

disk of Sample 8.19 rolling down the incline again. Find an expression for the rolling
speed (ω) of the disk after a finite time �t , given the initial rolling speed ω1.

Solution Once again, this problem can be solved by integrating the equation of
motion (as done in Sample 8.19). However, we will solve this problem here using
impulse-momentum relationship. Note that we need the speed of the disk ω2, after a
finite time �t , given the initial speed ω1. Since the forces acting on the disk do not
change during this time (assuming pure rolling), it is easy to calculate impulse and
then relate it to the change in the momenta of the disk between the two instants. Now,
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Figure 8.55: (Filename:sfig9.rolling.incline3a)

from the linear impulse momentum relationship,
∑ ⇀

F · �t = ⇀
L2 − ⇀

L1, we have

(−F λ̂ + N ı̂ − mg̂)�t = m(v2 − v1)λ̂ (8.40)

Dotting eqn. (8.40) with λ̂ gives

(−F − mg( ̂ · λ̂︸︷︷︸
− sin α

))�t = m(v2 − v1)

(−F + mg sin α)�t = m R(ω2 − ω1) (8.41)

Similarly, the angular impulse-momentum relationship about the mass-center,
⇀
MO�t = (

⇀
HO)2 − (

⇀
HO)1, gives

(−F Rk̂)�t = −I cm
zz (ω2 − ω1)k̂

⇒ F R�t = I cm
zz (ω2 − ω1) (8.42)

Note that the other forces (N and mg) do not produce any moment about the mass-
center as they pass through this point. We can now eliminate the unknown force F
from eqn. (8.41) and eqn. (8.42) by multiplying eqn. (8.41) with R and adding to
eqn. (8.42):

mgR sin α�t = (I cm
zz + m R2)(ω2 − ω1)

or g sin α�t = R

(
1 + I cm

zz

m R2

)
(ω2 − ω1)

⇒ ω2 = ω1 + g sin α

R
(

1 + I cm
zz

m R2

)�t

ω2 = ω1 + g sin α

R
(

1+ I cm
zz

m R2

)�t
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SAMPLE 8.22 Work and energy calculations in sliding. A block of mass m = 2.5 kg

m

A B

1m

5m

1

2

Figure 8.56: (Filename:sfig2.9.1a)

slides down a frictionless incline from a 5 m height. The block encounters a frictional
bed AB of length 1 m on the ground. If the speed of the block is 9 m/s at point B,
find the coefficient of friction between the block and the frictional surface AB.

Solution We can divide the problem in two parts: We first find the speed of the
block as it reaches point A using conservation of energy for its motion on the inclined
surface, and then use work-energy principle to find the speed at B. Let the ground
level be the datum for P.E. and let v be the speed at A. For the motion on the incline;

EK1 + EP1 = EK2 + EP2

0 + mgh = 1

2
mv2 + 0

⇒ v =
√

2gh

=
√

2 · 9.81 m/s2 · 5 m

= 9.90 m/s.

Now, as the block slides on the surface AB, a force of friction = µ N = µmg (since

m

mg

N

µkN

ı̂

̂

Figure 8.57: Free body diagram of the
block when the block is on the rough sur-
face.

(Filename:sfig2.9.1b)

N = mg, from linear momentum balance in the vertical direction) acts in the opposite
direction of motion (see Fig. 8.57. Work done by this force on the block is,

W = ⇀
F · ⇀

r

= −µmgı̂ · L ı̂

= −µmgL

From work energy relationship we have,

W = �EK = EK2 − EK1

⇒ EK2 = EK1 + W
1

2
mv2

B = 1

2
mv2 − µmgL

−µmgL = 1

2
m(v2

B − v2)

⇒ µ = 1

2gL
(v2

B − v2)

= (9.90 m/s)2 − (9 m/s)2

2 · 9.81 m/s2 · 1 m
= 0.87

µ = 0.87
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SAMPLE 8.23 Falling ladder. A ladder AB, modeled as a uniform rigid rod of
A

B

m

θ




Figure 8.58: A ladder, modeled as a uni-
form rod of mass m and length 
, falls from
a rest position at θ = θo (< π/2) such that
its ends slide along frictionless vertical and
horizontal surfaces.

(Filename:sfig7.3.1)

mass m and length 
, rests against frictionless horizontal and vertical surfaces. The
ladder is released from rest at θ = θo (θo < π/2). Assume the motion to be planar
(in the vertical plane).

(a) As the ladder falls, what is the path of the center of mass of the ladder?
(b) Find the equation of motion (e.g., a differential equation in terms of θ and its

time derivatives) for the ladder.
(c) How does the angular speed ω (= θ̇ ) depend on θ?

Solution Since the ladder is modeled by a uniform rod AB, its center of mass is at
G, half way between the two ends. As the ladder slides down, the end A moves down
along the vertical wall and the end B moves out along the floor. Note that it is a single
degree of freedom system as angle θ (a single variable) is sufficient to determine the
position of every point on the ladder at any instant of time.

(a) Path of the center of mass: Let the origin of our x-y coordinate system be

G

A

Bθ




x

y

m ı̂

̂

Figure 8.59: (Filename:sfig7.3.1a)

the intersection of the two surfaces on which the ends of the ladder slide (see
Fig. 8.59). The position vector of the center of mass G may be written as

⇀
r G = ⇀

r B + ⇀
r G/B

= 
 cos θ ı̂ + 


2
(− cos θ ı̂ + sin θ ̂)

= 


2
(cos θ ı̂ + sin θ ̂). (8.43)

Thus the coordinates of the center of mass are

xG = 


2
cos θ and yG = 


2
sin θ,

from which we get

x2
G + y2

G = 
2

4

which is the equation of a circle of radius 

2 . Therefore, the center of mass of

the ladder follows a circular path of radius 

2 centered at the origin. Of course,

the center of mass traverses only that part of the circle which lies between its
initial position at θ = θo and the final position at θ = 0.

(b) Equation of motion: The free body diagram of the ladder is shown in Fig. 8.60.

G

A

N1

N2

Bθ

mg

ı̂

̂

Figure 8.60: The free body diagram of
the ladder.

(Filename:sfig7.3.1b)

Since there is no friction, the only forces acting at the end points A and B are
the normal reactions from the contacting surfaces. Now, writing the the linear
momentum balance (

∑ ⇀
F = m ⇀

a) for the ladder we get

N1 ı̂ + (N2 − mg)̂ = m ⇀
aG = m ¨⇀r G .

Differentiating eqn. (8.43) twice we get ¨⇀r G as

¨⇀r G = 


2
[(−θ̈ sin θ − θ̇2 cos θ)ı̂ + (θ̈ cos θ − θ̇2 sin θ)̂ ].

Substituting this expression in the linear momentum balance equation above
and dotting both sides of the equation by ı̂ and then by ̂ we get

N1 = −1

2
m
(θ̈ sin θ + θ̇2 cos θ)

N2 = 1

2
m
(θ̈ cos θ − θ̇2 sin θ) + mg.
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Next, we write the angular momentum balance for the ladder about its center
of mass,

∑ ⇀
M/G = ˙⇀H /G , where

∑
⇀
M/G =

(
−N1




2
sin θ + N2




2
cos θ

)
k̂

= 1

2
m
(θ̈ sin θ + θ̇2 cos θ)




2
sin θ k̂

+
[

1

2
m
(θ̈ cos θ − θ̇2 sin θ) + mg

]



2
cos θ k̂

=
(

1

4
m
2θ̈ + 1

2
mg
 cos θ

)
k̂

and

˙⇀H /G = Izz/G ˙⇀ω = 1

12
m
2θ̈ (−k̂),

where ˙⇀ω = θ̈ (−k̂) because θ is measured positive in the clockwise direction
(−k̂). Now, equating the two quantities

∑ ⇀
M/G = ˙⇀H /G and dotting both

sides with k̂ we get

1

4
�m
2θ̈ + 1

2
�mg
 cos θ = − 1

12
�m
2θ̈

or (
1

12
+ 1

4
)
2θ̈ = −1

2
g
 cos θ

or θ̈ = −3g

2

cos θ (8.44)

which is the required equation of motion. Unfortunately, it is a nonlinear
equation which does not have a nice closed form solution for θ(t).

(c) Angular Speed of the ladder: To solve for the angular speed ω (= θ̇ ) as a
function of θ we need to express eqn. (8.44) in terms of ω, θ , and derivatives
of ω with respect to θ . Now,

θ̈ = ω̇ = dω

dt
= dω

dθ
· dθ

dt
= ω

dω

dθ
.

Substituting in eqn. (8.44) and integrating both sides from the initial rest position
to an arbitrary position θ we get∫ ω

0
ω dω = −

∫ θ

θ0

3g

2

cos θ dθ

⇒ 1

2
ω2 = −3g

2

(sin θ − sin θ0)

⇒ ω = ±
√

3g



(sin θ0 − sin θ).

Since end B is sliding to the right, θ is decreasing; hence it is the negative sign
in front of the square root which gives the correct answer, i.e.,

⇀
ω = θ̇ (−k̂) = −

√
3g



(sin θ0 − sin θ) k̂.
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SAMPLE 8.24 The falling ladder again. Consider the falling ladder of Sample 8.10

frictionless

A

Bθ

G
ı̂

̂

Figure 8.61: (Filename:sfig7.4.3)

again. The mass of the ladder is m and the length is 
. The ladder is released from
rest at θ = 80o.

(a) At the instant when θ = 45o, find the speed of the center of mass of the ladder
using energy.

(b) Derive the equation of motion of the ladder using work-energy balance.

Solution

A

B

G

N1

N2

mg

Figure 8.62: (Filename:sfig7.4.3a)

(a) Since there is no friction, there is no loss of energy between the two states:
θ0 = 80o and θ f = 45o. The only external forces on the ladder are
N1, N2, and mg as shown in the free body diagram. Since the displace-
ments of points A and B are perpendicular to the normal reactions of the walls,
N1 and N2, respectively, no work is done by these forces on the ladder. The
only force that does work is the force due to gravity. But this force is conser-
vative. Therefore, the conservation of energy holds between any two states of
the ladder during its fall.

Let E1 and E2 be the total energy of the ladder at θ0 and θ f , respectively.

datum for
Potential
energy

θ0

θf

G

G

B

B

h1

h2

h2 = 
/2 sin θf


/2 sin θ0

Figure 8.63: (Filename:sfig7.4.3b)

Then
E1 = E2 (conservation of energy)

Now E1 = EK1︸︷︷︸
K.E.

+ EP1︸︷︷︸
P.E.

= 0 + mgh1

= mg



2
sin θ0

and E2 = EK2 + EP2 = 1

2
mv2

G + 1

2
I G
zzω

2︸ ︷︷ ︸
EK2

+mgh2

Equating E1 and E2 we get

�mg



� 2 (sin θ0 − sin θ f ) = 1

� 2 (�mv2
G + 1

12
�m
2︸ ︷︷ ︸
I G
zz

ω2)

or g
(sin θ0 − sin θ f ) = v2
G + 1

12

2ω2 (8.45)

Clearly, we cannot find vG from this equation alone because the equation
contains another unknown, ω. So we need to find another equation which
relates vG and ω. To find this equation we turn to kinematics. Note that

⇀
r G = 


2
(cos θ ı̂ + sin θ ̂)

⇒ ⇀
vG = ˙⇀r G = 


2
(− sin θ ·θ̇ ı̂ + cos θ ·θ̇ ̂)

⇒ vG = |⇀
vG | =

√

2

4
(cos2 θ + sin2 θ) θ̇2

= 


2
θ̇ = 


2
ω

⇒ ω = 2vG
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Substituting the expression for ω in Eqn 8.45 we get

g
(sin θ0 − sin θ f ) = v2
G + 1

12
�
2·4v2

G

�
2

= 4

3
v2

G

⇒ vG =
√

3g


4
(sin θ0 − sin θ f )

= 0.46
√

g


vG = 0.46
√

g


(b) Equation of motion: Since the ladder is a single degree of freedom system, we
can use the power equation to derive the equation of motion:

P = ĖK

For the ladder, the only force that does work is mg. This force acts on the
center of mass G. Therefore,

P = ⇀
F ·⇀

v = −mg̂ · ⇀
vG

= −mg̂ ·
[




2
(− sin θ ı̂ + cos θ ̂) θ̇

]

= −mg



2
θ̇ cos θ

The rate of change of kinetic energy

ĖK = d

dt
(
1

2
mv2

G + 1

2
I G
zzω

2)

= d

dt
(
1

2
m


2ω2

4
+ 1

2

m
2

12
ω2)

= m
2

4
ωω̇ + m
2

12
ωω̇

= m
2

3
ωω̇ ≡ m
2

3
θ̇ θ̈ (since ω = θ̇ and ω̇ = θ̈ )

Now equating P and ĖK we get

�m
2

3
� θ̇ θ̈ = −�mg




2
� θ̇ cos θ

⇒ θ̈ = −3g

2

cos θ

which is the same expression as obtained in Sample 8.23 (b).

θ̈ = − 3g
2


cos θ

Note: To do this problem we have assumed that the upper end of the ladder stays
in contact with the wall as it slides down. One might wonder if this is a consistent
assumption. Does this assumption correspond to the non-physical assumption that
the wall is capable of pulling on the ladder? Or in other words, if a real ladder was
sliding against a slippery wall and floor would it lose contact? The answer is yes.
One way of finding when contact would be lost is to calculate the normal reaction N1
and finding out at what value of θ it passes through zero. It turns out that N1 is zero
at about θ = 41o.
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SAMPLE 8.25 Rolling on an inclined plane. A wheel is made up of three uniform

2R 2r

Front ViewSide View

m
M

θ

Figure 8.64: A composite wheel made of
three uniform disks rolls down an inclined
wedge without slipping.

(Filename:sfig7.3.3)

disks— the center disk of mass m = 1 kg, radius r = 10 cm and two identical outer
disks of mass M = 2 kg each and radius R. The wheel rolls down an inclined wedge
without slipping. The angle of inclination of the wedge with horizontal is θ = 30o.
The radius of the bigger disks is to be selected such that the linear acceleration of the
wheel center does not exceed 0.2g. Find the radius R of the bigger disks.

Solution Since a bound is prescribed on the linear acceleration of the wheel and the
radius of the bigger disks is to be selected to satisfy this bound, we need to find an
expression for the acceleration of the wheel (hopefully) in terms of the radius R.

The free body diagram of the wheel is shown in Fig. 8.65. In addition to the
weight (m + 2M)g of the wheel and the normal reaction N of the wedge surface
there is an unknown force of friction Ff acting on the wheel at point C. This friction
force is necessary for the condition of rolling motion. You must realize, however, that
Ff �= µN because there is neither slipping nor a condition of impending slipping.
Thus the magnitude of Ff is not known yet.

G

N

C

(m+2M)g

Ff

ı̂

̂
λ̂

n̂

Figure 8.65: Free body diagram of the
wheel.

(Filename:sfig7.3.3a)

Let the acceleration of the center of mass of the wheel be

⇀
aG = aG λ̂

and the angular acceleration of the wheel be

˙⇀ω = −ω̇k̂.

We assumed ˙⇀ω to be in the negative k̂ direction. But, if this assumption is wrong, we
will get a negative value for ω̇.

Now we write the equation of linear momentum balance for the wheel:∑
⇀
F = mtotal

⇀
acm

−(m + 2M)g̂ + N n̂ − Ff λ̂ = (m + 2M)aG λ̂

This 2-D vector equation gives (at the most) two independent scalar equations. But
we have three unknowns: N , Ff , and aG . Thus we do not have enough equations to
solve for the unknowns including the quantity of interest aG . So, we now write the
equation of angular momentum balance for the wheel about the point of contact C
(using ⇀

r G/C = r n̂):

ı̂

̂

λ̂

n̂

θ

θ

Figure 8.66: Geometry of unit vectors.
This diagram can be used to find various
dot and cross products between any two unit

vectors. For example, n̂ × ̂ = sin θ k̂.

(Filename:sfig7.3.3b)

∑
⇀
MC = ˙⇀HC

where
⇀
MC = ⇀

r G/C × (m + 2M)g(−̂)

= r n̂ × (m + 2M)g(−̂)

= −(m + 2M)gr sin θ k̂ (see Fig. 8.66)

and
˙⇀HC = I G

zz
˙⇀ω + ⇀

r G/C × mtotal
⇀
aG

= I G
zz (−ω̇k̂) − mtotal ω̇r2k̂

= (I G
zz + mtotalr

2)(−ω̇k̂)

= [(
1

2
mr2 + 2 · 1

2
M R2) +

mtotal︷ ︸︸ ︷
(m + 2M) r2](−ω̇k̂)

= −[
3

2
mr2 + M(R2 + 2r2)]ω̇k̂.
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Thus,

−(m + 2M)gr sin θ k̂ = −[
3

2
mr2 + M(R2 + 2r2)]ω̇k̂

⇒ ω̇ = (m + 2M)gr sin θ

3
2 mr2 + M(R2 + 2r2)

. (8.46)

Now we need to relate ω̇ to aG . From the kinematics of rolling,

aG = ω̇r.

Therefore, from Eqn. (8.46) we get

aG = (m + 2M)gr2 sin θ

3
2 mr2 + M(R2 + 2r2)

.

Now we can solve for R in terms of aG :

3

2
mr2 + M(R2 + 2r2) = (m + 2M)gr2 sin θ

aG

⇒ M(R2 + 2r2) = (m + 2M)g

aG
r2 sin θ − 3

2
mr2

⇒ R2 = (m + 2M)g

MaG
r2 sin θ − 3m

2M
r2 − 2r2.

Since we require aG ≤ 0.2g we get

R2 ≥
(

(m + 2M)g

M · 0.2g
sin θ − 3m

2M
− 2

)
r2

≥
(

5 kg

0.4 kg
· 1

2
− 3 kg

4 kg
− 2

)
(0.1 m)2

≥ 0.035 m2

⇒ R ≥ 0.187 m.

Thus the outer disks of radius 20 cm will do the job.

R ≥ 18.7 cm
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SAMPLE 8.26 Which one starts rolling first — a marble or a bowling ball? A

cm

r

v

ω

Figure 8.67: (Filename:sfig9.rollandslide.ball1)

marble and a bowling ball, made of the same material, are launched on a horizontal
platform with the same initial velocity, say v0. The initial velocity is large enough so
that both start out sliding. Towards the end of their motion, both have pure rolling
motion. If the radius of the bowling ball is 16 times that of the marble, find the instant,
for each ball, when the sliding motion changes to rolling motion.

Solution Let us consider one ball, say the bowling ball, first. Let the radius of
the ball be r and mass m. The ball starts with center of mass velocity ⇀

vo = v0 ı̂.
The ball starts out sliding. During the sliding motion, the force of friction acting on
the ball must equal µN (see the FBD). The friction force creates a torque about the
mass-center which, in turn, starts the rolling motion of the ball. However, rolling
and sliding coexist for a while, till the speed of the mass-center slows down enough
to satisfy the pure rolling condition, v = ωr . Let the instant of transition from the
mixed motion to pure rolling be t∗. From linear momentum balance , we have

mg

C

F
N ı̂

̂

v

ω

=µΝ

Figure 8.68: Free body diagram of the
ball during sliding.

(Filename:sfig9.rollandslide.ball1a)

mv̇ı̂ = −µN ı̂ + (N − mg)̂ (8.47)

eqn. (8.47) · ̂ ⇒ N = mg

eqn. (8.47) · ı̂ ⇒ mv̇ = −µN = −µmg

⇒ v̇ = −µg

⇒ v = v0 − µgt (8.48)

Similarly, from angular momentum balance about the mass-center, we get

−I cm
zz ω̇k̂ = −µNr k̂ = −µmgr k̂

⇒ ω̇ = µmgr

I cm
zz

⇒ ω = ω0︸︷︷︸
0

+µmgr

I cm
zz

t (8.49)

At the instant of transition from mixed rolling and sliding to pure rolling, i.e., at
t = t∗, v = ωr . Therefore, from eqn. (8.48) and eqn. (8.49), we get

v0 − µgt∗ = µmgr2

I cm
zz

t∗

⇒ v0 = µgt∗(1 + mr2

I cm
zz

)

⇒ t∗ = v0

µg(1 + mr2

I cm
zz

)

Now, for a sphere, I cm
zz = 2

5 mr2. Therefore,

t∗ = v0

µg(1 + mr2

2
5 mr2 )

= 2v0

7µg
.

Note that the expression for t∗ is independent of mass and radius of the ball! Therefore,
the bowling ball and the marble are going to change their mixed motion to pure rolling
at exactly the same instant. This is not an intuitive result.

t∗ = 2v0
7µg for both.
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SAMPLE 8.27 Transition from a mix of sliding and rolling to pure rolling, using

cm

r

v

ω

Figure 8.69: (Filename:sfig9.rollandslide.ball2)

impulse-momentum. Consider the problem in Sample 8.26 again: A ball of radius
r = 10 cm and mass m = 1 kg is launched horizontally with initial velocity v0 =
5 m/s on a surface with coefficient of friction µ = 0.12. The ball starts sliding, rolls
and slides simultaneously for a while, and then starts pure rolling. Find the time it
takes to start pure rolling.

Solution Let us denote the time of transition from mixed motion (rolling and sliding)
to pure rolling by t∗. At t = 0, we know that vcm = v0 = 5 m/s, and ω0 = 0. We
also know that at t = t∗, vcm = vt∗ωt∗r , where r is the radius of the ball. We do
not know t∗ and vt∗ . However, we are considering a finite time event (during t∗)
and the forces acting on the ball during this duration are known. Recall that impulse
momentum equations involve the net force on the body, the time of impulse, and
momenta of the body at the two instants. Momenta calculations involve velocities.
Therefore, we should be able to use impulse-momentum equations here and find the
desired unknowns. From linear impulse-momentum, we have

mg

C

F
N ı̂

̂

v

ω

=µΝ

Figure 8.70: Free body diagram of the
ball during sliding.

(Filename:sfig9.rollandslide.ball2a)

∑
⇀
F · t∗ = mvt∗ ı̂ − mv0 ı̂

(−µN ı̂ + (N − mg)̂)t∗ = m(vt∗ − v0)ı̂

Dotting the above equation with ̂ and ı̂, respectively, we get
N = mg

−µ N︸︷︷︸
mg

t∗ = m(vt∗ − v0)

⇒ − µgt∗ = vt∗ − v0 (8.50)

Similarly, from angular impulse-momentum relation about the mass-center, we get∑
⇀
Mcmt∗ = (

⇀
H cm)t∗ − (

⇀
H cm)0

(−µNr k̂)t∗ = (I cm
zz ωt∗ − I cm

zz ω0︸︷︷︸
0

)(−k̂)

or − µmgrt∗ = −I cm
zz ωt∗

⇒ ωt∗ = µmgrt∗/I cm
zz

⇒ vt∗ ≡ ωt∗r = µmgr2t∗/I cm
zz

Substituting this expression for vt∗ in eqn. (8.50), we get

−µgt∗ = µmgr2t∗/I cm
zz − v0

⇒ t∗ = v0

µg(1 + mr2

I cm
zz

)

which is, of course, the same expression we obtained for t∗ in Sample 8.26. Again,
noting that I cm

zz = 2
5 mr2 for a sphere, we calculate the time of transition as

t∗ = 2v0

7µg
= 2 · (5 m/s)

7 · (0.2) · (9.8 m/s2)
= 0.73 s.

t∗ = 0.73 s
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8.5 CollisionsFBDs:

"-"

"+"

before

during

after

collision
impulsive
force

Figure 8.71: Just before a collision is
called “-”, and just after is called “+”. The
only forces that show on a collisional free
body diagram are those that are large and
part of the impact. Either a force or an im-
pulse may be shown. This figure exagger-
ates the difference between the before (-)
and after (+) states. In analysis we assume
that there is no change in the body’s position
or orientation from just before to just after
the collision. The only net changes caused
by the collision are the body’s velocity and
rotation rate.

(Filename:tfigure.collisiongeneral)

Sometimes when things interact, they do so in a sudden manner. The extreme cases
of collisions are dramatic, like car and plane crashes. More esoteric ‘sudden’ inter-
actions include those between subatomic particles in an accelerator and near passes
of satellites with planets. The possible collisions of consumer products with floors is
of obvious interest to a design engineer. But many collisions are simply part of the
way things work. The collisions of racquets, bats, clubs, sticks, hands and legs with
balls, pucks and bodies is a key part of some sports. The clicking of the ratchet in
the winding mechanism of an old mechanical clock involves a collision, as does the
click of a camera shutter, and the flip of an electric light switch.

When things touch suddenly the contact forces can be much larger than during
more smooth motions. But the collision time is short, so not much displacement
occurs while these forces are applied. Thus the elementary analysis of rigid body
collisions is based on these ideas:

I. Collision forces are big, so non-collisional forces are neglected in collisional
free body diagrams.

II. Collision forces are of short duration, so the position and orientation of the
colliding bodies do not change during the collision.

What happens during a collision
During a collision between what would generally be called “rigid” bodies all hell
breaks loose. There are huge contact forces and stresses in the regions near the
nominally 1©contacting points, there could be plastic deformation, fracture, and fric-

1© Nominally means “in name”. That is,
what one calls “contacting points” are not
points at all, but regions of complex inter-
action.

tional slip. Elastic waves may travel all over the body, reflect and scatter this way
and that. Altogether the contact interaction during the collision is the result of very
complex deformations in the contacting bodies (see Fig. 8.71).

It is the deformations (the lack of rigidity) that give rise to the forces between
colliding bodies. So what is meant by “rigid body collisions”? The phrase is an
oxymoron. Trying to understand the collision forces in detail, and how they are
related to deformations, is way beyond this book. Actually, there is no unified theory
of collisions so no book could write about it. Loosely one might imagine that during
part of the collision material is being squeezed, this is called the compression phase
and later on it expands back in a restitution phase. But the realities of collisions are
not necessarily so simple; the forces and deformations can vary in complex ways.

Soon after the collision, however, the vibrations often die out, the body may have
negligible permanent change in shape, and the body returns to motions that are well
described by rigid-body kinematics. To find out the net effect of the collision forces
we use this one key idea:

III. The laws of mechanics apply during collisions even though rigid body kine-
matics does not.



8.5. Collisions 501

While the motions during a collision may be wildly complex, the general linear and
angular momentum balance laws are still applicable. Rather than applying these laws
to understand the details during a collision, we use them to summarize the overall
result of the collision.

That is, in rigid body collision analysis we do not pay attention to how the forces
vary in time, or to the detailed trajectories, velocities or accelerations of any material
points. Rather, we focus on the net change in the velocities of the colliding bodies
that the collision forces cause. Thus, instead of using the differential equation form
of the linear momentum balance, angular momentum balance and energy equations
(Ia, IIa, and IIIa from the inside front cover) we use the time integrated forms (Ib, IIb,
and IIIb). All that we note about a collisional force is its net impulse

⇀
P coll =

∫
collision time

⇀
F coll dt

in terms of which we have, for one body experiencing this impulse at point C
⇀
P coll = �

⇀
L, (8.51)

⇀
rC/0 × ⇀

P coll = �
⇀
HO, and (8.52)

Collisional dissipation = �EK. (8.53)

Most often the first two of these, the impulse-momentum equations are used to find
the motion after collision. The energy equation is just a check to make sure that the
collisional dissipation is positive (otherwise the collision would be an energy source).

Extra assumptions are needed
The momentum balance equations, with the assumptions already discussed, are never
enough in themselves to determine the outcome of a collision. The extra assumptions
come in various forms. To minimize the algebra we discuss the issues first with
one-dimensional collisions.

One dimensional collisions
We start by considering collisions in the context of one-dimensional mechanics: all
motion is constrained to one direction of motion by forces which we ignore. Only
momentum and forces in, say, the ı̂ direction are included.

Figure 8.72: Before the collisions the
masses have velocities to the right of v−

1
and v−

2 . After the collision the velocities

are v+
1 and v+

2 . During the collision the
impulse P acts to the right on mass 2 and
to the left on mass 1.

(Filename:tfigure.1Dcollisions)

Example: 1-D collisions

Consider two masses which collide along their common line of motion.
All velocities and momenta are positive if to the right and P is the impulse
on mass 2 from mass 1. The relevant impulse-momentum relations are

For mass 1 −P = m1(v
+
1 − v−

1 ),

For mass 2 P = m2(v
+
2 − v−

2 ), and
For the system 0 = (m1v

+
1 m2v

+
2 ) − (m1v

−
1 ) + m2v

−
2 ).

The third equation comes from a free body diagram of the system (ie,
conservation of momentum) or by adding the first two equations. In any
case, given the masses and initial velocities we have only two independent
equations and we have three unknowns: v+

1 , v+
2 and P . Momentum

balance is not enough to determine the outcome of a collision.
✷

To “close” (make solvable) the set of equations one needs to make extra assumptions.
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Sticking collisions

The simplest assumption is that the masses stick together after the collision so

v+
1 = v+

2 .

Such a collision is sometimes called a perfectly plastic, a perfectly inelastic, or a dead
collision. Algebraic manipulations of the momentum equations and the “sticking”
constitutive law give

v+
1 v+

2 = = (m1v
−
1 + m2v

−
2 )/mtot (where mtot = m1 + m2),

P = (v−
1 − v−

2 )mcoll, and (where mcoll = m1m2

m1 + m2
).

The collisional mass or contact mass mcoll is not the mass of anything. It is just
a quantity that shows up repeatedly in collision calculations and theory. It is the
reciprocal of the sum of the reciprocals of the two masses. If one mass is much
bigger than the other, the contact mass is mcoll ≈ the smaller of the two masses.

More general 1-D collisions

The momentum equations can be re-arranged to better get at the essence of the
situation which is that

• In the collision the system’s center of mass velocity is unchanged, and
• The effect of the collision is to change the difference between the two mass

velocities.
So we define the center of mass velocity vcm and the velocity difference �v as

vcm ≡ (m1v1 + m2v2)/mtot and �v ≡ v2 − v1.

Note that before a collision the masses are approaching each other so v−
1 > v−

2 and
�v− < 0. A little more algebra shows that for any P ,

v+
2 = vcm + m1

m1 + m2
�v+,

v+
1 = vcm − m2

m1 + m2
�v+, and

P = (�v+ − �v−)mcoll

That is, P acts on �v as if �v were the velocity of an object with mass mcoll. If
P = 0 the equations above are a long winded way of saying that nothing happened,
v+

1 = v−
1 and v+

2 = v−
2 , and the masses pass right through each other.

If P = −�v−mcoll there is a sticking collision.

Elastic collisions

Application of the above formulas will show that if

P = −2�v−mcoll

then the kinetic energy of the system after the collision is the same as the kinetic
energy before. That is

EK
+ = EK

−

m1v
+
1

2 + m2v
+
2

2

2
= m1v

−
1

2 + m2v
−
2

2

2
.

Also, �v+ = −�v−, the relative velocity maintains its magnitude and reverses its
sign.
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The coefficient of restitution

We have that as P ranges from −�v−mcoll to −2�v−mcoll, the collision ranges from
sticking to an energy conserving reversal of relative velocities. The coefficient of
restitution e is introduced as a way of interpolating between these cases. It can be
defined by either of the following two equations

�v+ = −e�v− or

P = −(1 + e)�v−mcoll

If e = 0 we have a sticking collision. If e = 1 we have an energy conserving elastic
collision. If e is between 0 and 1 the collision is variously peppy or dead.

Somewhat of a miracle is that a given pair of objects seems to have a coefficient
of restitution that is roughly independent of the velocities. This is the result of a
conspiracy by all kinds of deformation mechanisms that we don’t really understand.
But that e is a constant of a pair of bodies is only an approximation that has roughly the
same status as the friction coefficient. That is, much lower status than the momentum
balance equations.

Note that a common mistake in many books is to take e as a material property.
It is not. It generally depends on the shapes and sizes of the contacting objects also
(see box 8.5 on 507).

2D collisions

For collisions between rigid bodies with more general motions before and after the
collisions we depend on the three ideas from the start of this section, namely that

I. Collision forces are big,
II. Collisions are quick, and

III. The laws of mechanics apply during the collision.

There are two extra assumptions that are needed in simple analysis:

IV. Collision forces are few. For a given rigid body there is one, or at most two non-
negligible collision forces. This is the real import of idea (I) above. Because
collision forces are big most other forces can be neglected.

V. The collision force(s) act at a well defined point which does not move during
the collision.

Based on these assumptions one then uses linear and angular momentum balance in
their time-integrated form.

Figure 8.73: Two bodies collide at point
C. The only non-negligible collision im-
pulse is

⇀
P acting on body 2 (and − ⇀

P on
body 1) at point C. The material points on
the contacting bodies are C1 and C2. The
outward normal to body 1 at C1 is n̂.

(Filename:tfigure.2Dcollision)

Example: Two bodies in space

Two bodies collide at point C. The impulse acting on body 2 is
⇀
P =∫ ⇀

F coll dt . If the mass and inertia properties of both bodies is known,
as are the velocities and rotation rates before the collision we have the
following linear and angular momentum balance equations for the two
bodies:

⇀
P = m1

(
⇀
v+

G1 − ⇀
v−

G1

)
− ⇀

P = m2
(

⇀
v+

G2 − ⇀
v−

G2

)
⇀
rC/G1 × ⇀

P = I cm
zz

1 (
ω+

1 − ω−
1

)
k̂

⇀
rC/G2 × − ⇀

P = I cm
zz

2 (
ω+

2 − ω−
2

)
k̂.

(8.54)

These make up 6 scalar equations (2 for each momentum equation, 1
for each angular momentum equation). There are 8 scalar unknowns:
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⇀
v+

G1 (2), ⇀
v+

G2 (2), ω+
1 (1), ω+

2 (1), and
⇀
P (2). Thus the motion after the

collision cannot be determined.
[Note that we could write linear and angular momentum balance for

the system, but this would only give equations which could be obtained
by adding and subtracting combinations of the equations above. That is,
the equations so obtained would not be independent.] ✷

So, as for 1-D collisions, momentum balance is not enough to determine the
outcome of the collision. Eqns. 8.54 aren’t enough. A thousand different models
and assumptions could be added to make the system solvable. But there are only two
cases that are non-controversial and also relatively simple: 1) sticking collisions, and
2) frictionless collisions.

Sticking collisions
A ‘perfectly-plastic’ sticking collision is one where the relative velocities of the two
contacting points are assumed to go suddenly to zero. That is

⇀
v+

C1 = ⇀
v+

C2

Writing ⇀
v+

C1 = ⇀
v+

G1(ω
+
1 k̂)× ⇀

rC/G1 and similarly for ⇀
vC2 thus adds a vector equation

(2 scalar equations) to the equation set 8.54. This gives 8 equations in 8 unknowns.
A little cleverness can reduce the problem to one of solving only 4 equations in

4 unknowns. Linear momentum balance for the system, angular momentum balance
for the system and angular momentum balance for object 2 make up 4 scalar equa-
tions. None of these equations includes the impulse

⇀
P . Because the system moves

as if hinged at C1 after the collision, the state of motion after the system is fully
characterized by ⇀

v+
G1, ω+

1 , and ω+
2 . Thus we have 4 equations in 4 unknowns.

immovable object

Figure 8.74: Sticking collision with an
immovable object. The box sticks at A and
then rotates about A. Angular momentum
about point A is conserved in the collision.

(Filename:tfigure.collimmovable)

Example: One body is hugely massive: collision with an immovable
object

If body 2, say, is huge compared to body 1 then it can be taken to be
immovable and collision problems can be solved by only considering
body 1 (see Fig. 8.74). In the case of a sticking collision the full state
of the system after the collision is determined by ω+

1 . This can be found
from the single scalar equation obtained from angular momentum balance
about the collision point.

⇀
H

−
A = ⇀

H
+
A

⇀
rG/A × m ⇀

v−
G + I cm

zz ω−k̂ = ⇀
rG/A × m ⇀

v+
G + I cm

zz ω+k̂

Because the state of the system before the collision is assumed known
(the left “-” side of the equation, and because the post-collision (+) state
is a rotation about A, this equation is one scalar equation in the one
unknown ω+. Note that

⇀
H

+
A could also be evaluated as

⇀
H

+
A = ω+ I A

zz k̂.
So one way of expressing the post-collision state is as

ω+ =
(

⇀
rG/A × m ⇀

v−
G + I cm

zz ω−k̂
)

· k̂

I A
zz

and ⇀
v+

G = ω+k̂ × ⇀
rG/A.

Note also that the same ⇀
rG/A is used on the right and left sides of the

equation because only the velocity and not the position is assumed to
jump during the collision.



8.5. Collisions 505

The collision impulse
⇀
P can then be found from linear momentum

balance as
⇀
P = m

(
⇀
v+

G − ⇀
v−

G

)
.

✷

Sticking collisions are used as models of projectiles hitting targets, of robot and animal
limbs making contact with the ground, of monkeys and acrobats grabbing hand holds,
and of some particularly dead and frictional collisions between solids (such as when
a car trips on a curb).

Frictionless collisions
The second special case is that of a frictionless collision. Here we add two assump-
tions:

(a) There is no friction so
⇀
P = Pn̂. The number of unknowns is thus reduces

from 8 to 7.
(b) There is a coefficient of (normal) restitution e.

The normal restitution coefficient is taken as a property of the colliding bodies.
It is a given number with 0 < e < 1 with this defining equation:

(
⇀
v+

C2 − ⇀
v+

C1) · n̂ = −e(⇀
v−

C2 − ⇀
v−

C1) · n̂.

This says that the normal part of the relative velocity of the contacting points reverses
sign and its magnitude is attenuated by e. This adds a scalar equation to the set
Eqns. 8.54 thus giving 7 scalar equations (4 momentum, 2 angular momentum, 1
restitution) for 7 unknowns (4 velocity components, 2 angular velocities and the
normal impulse).

The most popular application of the frictionless collision model is for billiard or
pool balls, or carrom pucks. These things have relatively small coefficients of friction.

We state without proof that a frictionless collision with e = 1 conserves energy.

Figure 8.75: Frictionless collision be-
tween two identical round objects. Ball one
is initially moving to the right, ball 2 is ini-
tially stationary. The impulse of ball 1 on
ball 2 is

⇀
P .

(Filename:tfigure.poolballs)

Example: Pool balls

Assume one ball approaches the other with initial velocity ⇀
v+

G1 = vı̂ and
has an elastic frictionless collision with the other ball at a collision angle
of θ as shown in Fig. 8.75. Defining n̂ ≡ cos θ ı̂ − sin θ ̂ we have that
⇀
P = Pn̂. To determine the outcome of the equation we have the angular
momentum balance equations which trivially tell us that

ω+
1 = ω+

2 = 0

because the balls start with no spin and the frictionless collision impulses
⇀
P = Pn̂ and − ⇀

P = −Pn̂ have no moment about the center of mass.
Linear momentum balance for each of the balls

−Pn̂ = m ⇀
v+

G1 − mvı̂

Pn̂ = m ⇀
v+

G2 − ⇀

0
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gives 4 scalar equations which are supplemented by the restitution equa-
tion (using e = 1) (

�
⇀
v+) · n̂ = −e

(
�

⇀
v−) · n̂

⇒ −v cos θ = ⇀
v+

G2 · n̂ − ⇀
v+

G1 · n̂

which together make 5 scalar equations in the 5 scalar unknowns ⇀
v+

G1,
⇀
v+

G2, and P (each vector has 2 unknown components). These have the
solution

⇀
v+

G1 = v sin θ(sin θ ı̂ + cos θ ̂),

⇀
v+

G1 = v cos θ(cos θ ı̂ − sin θ ̂), and

P = mv cos θ.

The solution can be checked by plugging back into the momentum and
restitution equations. Also, as promised, this e = 1 solution conserves
kinetic energy. The solution has the interesting property that the outgoing
trajectories of the two balls are orthogonal for all θ but θ = 0 in which
case ball 1 comes to rest in the collision. [The solution can be found
graphically by looking for two outgoing vectors which add to the original
velocity of mass 1, where the sum of the squares of the outgoing speeds
must add to the square of the incoming speed.] ✷

Frictional collisions

If one wants to consider a collision with friction, but not so much friction that sticking
is a good model, the modeling becomes complex and subtle. As of this writing there
are no standard acceptable ways of dealing with such situations. Commercial simu-
lation packages should be used for such with skeptical caution. They are generally
defective in that either they can predict only a limited range of phenomena and/or
they can create energy even with innocent input parameters. See the appendix on
collisions for further discussion of these issues.
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8.6 THEORY
The axial collision of elastic rods

One approach to understanding collisions is to look at the stresses
and deformations during the collision. This leads to the solution
of partial differential equations. The material behavior needed to
define those equations is usually not that well understood. So, hard
as it is to solve such equations, even on a computer, the solution can
be far from reality.

But to get a sense of things one can study an ideal system. The
simple system we look at here was somewhat controversial amongst
the great 19th century scientists Cauchy, Poisson and Saint-Venant
(so said E.J. Routh in 1905).

Two identical linear elastic rods. Imagine two identical
uniform linear elastic rods with length 
. The right one is stationary
and the left one approaches it with speed v.

v

v

v

v

v

0

0

0

v0

0

v0

0

v/2

v/2

v/2

v0 v/2

v/2

initially

first contact

wave 
spreads

reflection
starts

bars
separate

collision
over

No matter how the rods shake and vibrate, their elastic potential
energy plus kinetic energy is constant.

Using reasoning beyond this book (see the paragraph for ex-
perts at the end of this box) one can explain this collision in detail,
as illustrated in the sketches above. The pictures exaggerate the com-
pression in the bar (For most materials the compression wouldn’t be
visible).

First the left rod moves like a rigid body towards the still rod
at the right. Then contact is made and a compressional sound wave
starts off spreading to the left and right. Behind the wave fronts is
compressed material moving at speed v/2 to the right. To the right of
the right wave front the material is still. To the left of the left-moving
wave front the material is still moves at v. When the wave fronts
meet the ends of their respective bars, the bars are compressed and
all material is going to the right at v/2. Then both wave-fronts reflect
off the ends of the bars and head back towards the contact point. To
the left of the right-moving wave front (on the left bar) the material
is still and uncompressed. To the right of the left-moving wave front
(on the right bar) the material is uncompressed but moving to the
right at speed v . Finally, the waves meet in the center and the bars
separate. The right bar is now uniformly moving to the right at speed
v and the left bar is still.

The result of this collision is that all of the momentum of the left
bar is transferred to the right bar. The separation velocity is equal
in magnitude to the approach velocity. The coefficient of restitution
e is 1, and the kinetic energy of the system is the same after the
collision as it was before.

Note that the collision itself was quick. The wave-fronts move
at the speed of sound, about 1000 m/s for metals. So for 1 me-

ter metal rods the collision takes a few thousandths of a second.
But during that few thousandths of a second, the initial energy was
partitioned into elastic strain energy and kinetic energy in different
time-changing regions of the bar.

Despite all the complicated details, the elastic bars lead to the
prediction of an ‘elastic’ collision. Maybe this is not surprising.

An elastic rod hits a rigid wall If you drop a 3 foot wooden
dowel straight down on a thick concrete or stone floor it bounces
quite well. Why? A wave analysis like that described above shows
that a wave travelling from the first contact at the floor travels up
the top and reflecting back to the bottom, leaving the rod moving
uniformly up after the collisions just as fast as it was moving down
before. Of course a wooden dowel is not perfectly described by the
simple wave theory. And the ground is not perfectly rigid. So a real
dowel’s collision is not perfectly elastic.

But again we find that if we assume an elastic material that we
predict an elastic collision. Again, no surprise. But

the previous two examples are completely misleading!

Actually these are maybe the only examples where a detailed elastic
theory predicts an elastic collision. More commonly the details are
more like the next example.

Rods of different length If the rods have length 
1 and

2 > 
1 then the collision works out differently.

v

ev0

0
initially

collision
over

When the reflection from the left end of the left rod comes back to
the contact point, the rods separate. The left rod is stationary but
the right rod has waves moving up and back. The average speed
of the right rod is (
1/
2)v so the effective coefficient of restitu-
tion is e = 
1/
2 < 1. Later, after the vibrations have died out,
the energy of the system will be less than initially. Or, even if the
waves don’t die out, the kinetic energy that can be accounted for in
rigid-body mechanics is lost to remnant vibrations. Thus a totally
elastic system leads to inelastic collisions. It is wrong to think that
the restitution constant e depends on material; it also depends on the
shapes and sizes of the objects. The amount of vibrational energy
left after contact is lost depends on shape and size.

• • •

For experts only: the wave equation In one-dimensional
linear elasticity the displacement u to the right, of a point at location
x on one or the other rod follows this partial differential equation:

∂2u

∂t2
= E

ρ

∂2u

∂x2
.

That is, the collision mechanics in detail is the finding of u(x, t)
that solves the wave equation above with the given initial conditions
(one bar is moving the other isn’t) and the boundary conditions (the
ends of the bars have no stresses but when where they are in contact
where they can have equal compressive stresses). The solution is
most easily found by constructing right and left going waves that
add to meet the initial conditions and boundary conditions (Routh).
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SAMPLE 8.28 The vector equation m1
⇀
v1 + m2

⇀
v2 = m1

⇀
v ′

1 + m2
⇀
v ′

2 expresses
the conservation of linear momentum of two masses. Suppose ⇀

v1 = ⇀

0,
⇀
v2 =

−v0̂ ,
⇀
v+

1 = v+
1 ı̂ and ⇀

v+
2 = v+

2t
êt + v+

2n
ên , where êt = cos θ ı̂ + sin θ ̂ and

ên = − sin θ ı̂ + cos θ ̂ .

(a) Obtain two independent scalar equations from the momentum equation corre-
sponding to projections in the ên and êt directions.

(b) Assume that you are given another equation v′
2t = −v0 sin θ . Set up a matrix

equation to solve for v+
1 , v+

2t
, and v+

2n
from the three equations.

Solution

(a) The given equation of conservation of linear momentum is

m1
⇀
v1︸︷︷︸
0

+ m2
⇀
v2 = m1

⇀
v+

1 + m2
⇀
v+

2

or − m2v0̂ = m1v
+
1 ı̂ + m2(v

+
2t

êt + v+
2n

ên) (8.55)

Dotting both sides of eqn. (8.55) with ên gives

−m2v0(

cos θ︷ ︸︸ ︷
ên · ̂) = m1v

+
1 (

− sin θ︷︸︸︷
ên · ı̂) + m2v

+
2t

(

0︷ ︸︸ ︷
ên · êt ) + m2v

+
2n

(

1︷ ︸︸ ︷
ên · ên)

or − m2v0 cos θ = −m1v
+
1 sin θ + m2v

+
2n

. (8.56)

Dotting both sides of eqn. (8.55) with êt gives

−m2v0(

sin θ︷ ︸︸ ︷
êt · ̂) = m1v

+
1 (

cos θ︷︸︸︷
êt · ı̂) + m2v

+
2t

(

1︷ ︸︸ ︷
êt · êt ) + m2v

+
2n

(

0︷ ︸︸ ︷
êt · ên)

or − m2v0 sin θ = m1v
+
1 cos θ + m2v

+
2t

. (8.57)

−m2v0 cos θ = −m1v
+
1 sin θ + m2v

+
2n

, −m2v0 sin θ = m1v
+
1 cos θ + m2v

+
2t

(b) Now, we rearrange eqn. (8.56) and 8.57 along with the third given equation,
v′

2t = −v0 sin θ , so that all unknowns are on the left hand side and the known
quantities are on the right hand side of the equal sign. These equations, in
matrix form, are as follows.

 −m1 sin θ 0 m2
−m1 cos θ m2 0

0 1 0







v+
1

v+
2t

v+
2n


 =




−m2v0 cos θ

−m2v0 sin θ

−v0 sin θ




This equation can be easily solved on a computer for the unknowns.
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SAMPLE 8.29 Cueing a billiard ball. A billiard ball is cued by striking it hor-

F

d

r

Figure 8.76: (Filename:sfig7.3.DH1)

izontally at a distance d = 10 mm above the center of the ball. The ball has mass
m = 0.2 kg and radius r = 30 mm. Immediately after the strike, the center of mass
of the ball moves with linear speed v = 1 m/s. Find the angular speed of the ball
immediately after the strike. Ignore friction between the ball and the table during the
strike.

Solution Let the force imparted during the strike be F . Since the ball is cued by

mg

C

f
N

ignore

ignore

F

d

ı̂

̂

Figure 8.77: FBD of the ball during the
strike. The nonimpulsive forces mg, N ,

and f can be ignored in comparison to the
strike force F .

(Filename:sfig7.3.DH2)

giving a blow with the cue, F is an impulsive force. Impulsive forces, such as F , are
in general so large that all non-impulsive forces are negligible in comparison during
the time such forces act. Therefore, we can ignore all other forces (mg, N , f ) acting
on the ball from its free body diagram during the strike.

Now, from the linear momentum balance of the ball we get

F ı̂ = ˙⇀L or (F ı̂)dt = d
⇀
L ⇒

∫
(F ı̂)dt = ⇀

L2 − ⇀
L1

where L2 − L1 = �
⇀
L is the net change in the linear momentum of the ball during

the strike. Since the ball is at rest before the strike,
⇀
L1 = m v︸︷︷︸

0

= ⇀

0. Immediately

after the strike, ⇀
v = vı̂ = 1 m/s.

Thus
⇀
L2 = m ⇀

v = 0.2 kg·1 m/sı̂ = 0.2 N· sı̂.

Hence
∫

(F ı̂)dt = 0.2 N· sı̂ or
∫

Fdt = 0.2 N· s. (8.58)

To find the angular speed we apply the angular momentum balance. Let ω be the
angular speed immediately after the strike and ⇀

ω = ωk̂. Now,∑
⇀
Mcm = ˙⇀H cm ⇒

∫ ∑
⇀
Mcm dt =

∫
d

⇀
H cm = (

⇀
H cm)2 − (

⇀
H cm)1.

Since
⇀
H cm = I zz

cm
⇀
ω and just before the strike, ⇀

ω = ⇀

0,

(
⇀
H cm)1 ≡ angular momentum just before the strike = ⇀

0

(
⇀
H cm)2 ≡ angular momentum just after the strike = I zz

cmωk̂,∫ ∑
⇀
Mcm dt = I zz

cmωk̂ = 2

5
mr2ωk̂ (since for a sphere, I zz

cm = 2
5 mr2).

But
∑

⇀
Mcm = −Fdk̂,

therefore −
∫

(Fd)dt k̂ = 2

5
mr2ωk̂

or − d︸︷︷︸
constant

∫
Fdt = 2

5
mr2ω ⇒ ω = − 5d

2mr2

∫
Fdt.

Substituting the given values and
∫

Fdt = 0.2 N· s from equation 8.58 we get

ω = − 5(0.01 m)

2·0.2 kg·(0.03 m)2 ·0.2 N· s = −27.78 rad/s

The negative value makes sense because the ball will spin clockwise after the strike,
but we assumed that ω was anticlockwise.

ω = −27.78 rad/s.
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SAMPLE 8.30 Falling stick. A uniform bar of length 
 and mass m falls on the

G B
C




θ

frictionless

Figure 8.78: (Filename:sfig9.5.fallingbar)

ground at an angle θ as shown in the figure. Just before impact at point C, the entire
bar has the same velocity v directed vertically downwards. Assume that the collision
at C is plastic, i.e., end C of the bar gets stuck to the ground upon impact.

(a) Find the angular velocity of the bar just after impact.
(b) Assuming θ to be small, find the velocity of end B of the bar just after impact.

Solution We are given that the impact at point C is plastic. That is, end C of the bar
has zero velocity after impact. Thus end C gets stuck to the ground. Then we expect
the rod to rotate about point C as rest of the bar moves (perhaps faster) to touch the
ground. The free body diagram of the bar is shown in Fig. 8.79 during the impact
at point C. Note that we can ignore the force of gravity in comparison to the large
impulsive force Fc due to impact at C.

BG

C θ

ı̂ λ̂
n̂

̂

FC
mg

0

Figure 8.79: The free body diagram of
the bar during collision. The impulsive
force at the point of impact C is so large
that the force of gravity can be completely
ignored in comparison.

(Filename:sfig9.5.fallingbar.a)

(a) Now, if we carry out angular momentum balance about point C, there will be
no net moment acting on the bar, and therefore, angular momentum about the
impact point C is conserved. Distinguishing the kinematic quantities before
and after impact with superscripts ‘-’ and ‘+’, respectively, we get from the
conservation of angular momentum about point C,

⇀
H

−
C = ⇀

H
+
C

I cm
zz

⇀
ω− + ⇀

rG/C × m ⇀
v−

G = I cm
zz

⇀
ω+ + ⇀

rG/C × m ⇀
v+

G .

Now, we know that ⇀
ω− = ⇀

0 since every point on the bar has the same vertical
velocity ⇀

v = −v̂ , and that just after impact, ⇀
v+

G = ⇀
ω+ × ⇀

rG/C where we can

take ⇀
ω+ = ω(−k̂). Thus,

Since C is a fixed point for the mo-
tion of the bar after impact, we could
calculate

⇀
H

+
C as follows.

⇀
H

+
C = I C

zz
⇀
ω = 1

3
m
2︸ ︷︷ ︸
I C
zz

ω(−k̂).

⇀
H

−
C = ⇀

rG/C × m ⇀
v−

G = (
/2)λ̂ × mv(−̂)

= −mv


2
cos θ k̂ (since λ̂ = cos θ ı̂ + sin θ ̂)

⇀
H

+
C = I cm

zz
⇀
ω+ + ⇀

rG/C × m(
⇀
ω+ × ⇀

rG/C)

= −I cm
zz ωk̂ + (
/2)λ̂ × m (−ωk̂ × 
/2)λ̂︸ ︷︷ ︸

ω
/2(−n̂)

= − 1

12
m
2ωk̂ − 1

4
m
2ωk̂ = −1

3
m
2ωk̂.

Now, equating
⇀
H

−
C and

⇀
H

+
C we get

ω = 3v

2

cos θ, ⇒ ⇀

ω = −3v

2

cos θ k̂.

⇀
ω = − 3v

2

cos θ k̂

(b) The velocity of the end B is now easily found using ⇀
vB = ⇀

vC + ⇀
vB/C = ⇀

vB/C
and ⇀

vB/C = ⇀
ω × ⇀

rB/C. Thus,

⇀
vB/C = ⇀

ω × ⇀
rB/C = −ωk̂ × 
λ̂

= −ω
n̂ = −3v

2
cos θ(− sin θ ı̂ + cos θ ̂)

but, for small θ , cos θ ≈ 1, and sin θ ≈ 0. Therefore,
⇀
vB/C = −3v

2
̂ .

Thus, end B of the bar speeds up by one and a half times its original speed due to the
plastic impact at C.

⇀
vB/C = −(3/2)v̂
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SAMPLE 8.31 The tipping box. A box of mass m = 20 kg and dimensions 2a = 1 m

Figure 8.80: (Filename:sfig9.5.tipping)

and 2b = 0.4 m moves along a horizontal surface with uniform speed v = 1 m/s.
Suddenly, it bumps into an obstacle at A. Assume that the impact is plastic and point
A is at the lowest level of the box. Determine if the box can tip following the impact.
If not, what is the maximum v the box can have so that it does not tip after the impact.

Solution Whether the box can tip or not depends on whether it gets sufficient initial
angular speed just after collision to overcome the restoring moment due to gravity
about the point of rotation A. So, first we need to find the angular velocity of the
box immediately following the collision. The free body diagram of the box during
collision is shown in Fig. 8.81. There is an impulse

⇀
P acting at the point of impact.

If we carry out the angular momentum balance about point A, we see that the impulse
at A produces no moment impulse about A, and therefore, the angular momentum
about point A has to be conserved. That is,

⇀
HA

+ = ⇀
HA

−. Now,

Figure 8.81: The free body diagram of
the box during collision.

(Filename:sfig9.5.tipping.a)

⇀
HA

− = ⇀
rG/A × m ⇀

vG
− = (−bı̂ + a̂) × mvı̂ = −mavk̂

Let the box have angular velocity ⇀
ω+ = ωk̂ just after impact. Then,

⇀
HA

+ = I cm
zz

⇀
ω+ + ⇀

rG/A × m ⇀
vG

+ = I cm
zz ωk̂ + r λ̂ × m(ωk̂ × r λ̂)

= I cm
zz ωk̂ + mr2ωk̂ = 1

12
(4a2 + 4b2)mωk̂ + m(a2 + b2)ωk̂

= 4

3
(a2 + b2)mωk̂.

Now equating the two momenta, we get

ω = − 3a

4(a2 + b2)
v ⇒ ⇀

ω+ = − 3a

4(a2 + b2)
vk̂.

Thus we know the angular velocity immediately after impact. Now let us find out if
it is enough to get over the hill, so to speak. We need to find the equation of motion
of the box for the motion that follows the impact. Once the impact is over (in a few
milliseconds), the usual forces show up on the free body diagram (see Fig. 8.82).

R

A

Figure 8.82: The free body diagram of
the box just after the collision is over.

(Filename:sfig9.5.tipping.b)

We can find the equation of subsequent motion by carrying out angular momentum
balance about point A (the box rotates about this point),

∑ ⇀
MA = ˙⇀HA.

⇀
rG/A × mg(−̂) = I A

zzω̇k̂

⇒ ω̇ = mgb

I A
zz

= 3gb

4(a2 + b2)

Thus the angular acceleration (due to the restoring moment of the weight of the box)
is counterclockwise and constant. Therefore, we can use ω2 = ω2

0 + 2ω̇�θ to find
if the box can make it to the tipping position (the center of mass on the vertical
line through A). Let us take θ to be positive in the clockwise direction (direction of
tipping). Then ω̇ is negative. Starting from the position of impact, the box must rotate
by �θ = tan−1(b/a) in order to tip over. In this position, we must have ω ≥ 0.

ω2 = ω2
0 − 2ω̇�θ ≥ 0 ⇒ ω2

0 ≥ 2ω̇�θ ⇒ v2 ≥ 24bg(a2 + b2)

9a2 �θ

Substituting the given numerical values for a, b, and g = 9.8 m/s2, we get

v ≥ 1.52 m/s2.

Thus the given initial speed of the box, v = 1 m/s, is not enough for tipping over.

v ≥ 1.52 m/s2
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SAMPLE 8.32 Ball hits the bat. A uniform bar of mass m2 = 1 kg and length

D

Figure 8.83: (Filename:sfig9.5.ballbar)

2
 = 1 m hangs vertically from a hinge at A. A ball of mass m1 = 0.25 kg comes
and hits the bar horizontally at point D with speed v = 5 m/s. The point of impact D
is located at d = 0.75 m from the hinge point A. Assume that the collision between
the ball and the bar is plastic.

(a) Find the velocity of point D on the bar immediately after impact.
(b) Find the impulse on the bar at D due to the impact.
(c) Find and plot the impulsive reaction at the hinge point A as a function of d,

the distance of the point of impact from the hinge point. What is the value of
d which makes the impulse at A to be zero?

Solution The free body diagram of the ball and the bar as a single system is shown in
Fig. 8.84 during impact. There is only one external impulsive force

⇀
FA acting at the

hinge point A. We take the ball and the bar together here so that the impulsive force
acting between the ball and the bar becomes internal to the system and we are left
with only one external force at A. Then, the angular momentum balance about point
A yields ˙⇀HA = ⇀

0 since there is no net moment about A. Thus the angular momentum
about A is conserved during the impact.

(a) Let us distinguish the kinematic quantities just before impact and immediately
after impact with superscripts ‘-’ and ‘+’, respectively. Then, from the con-
servation of angular momentum about point A, we get

⇀
H

−
A = ⇀

H
+
A . Now,

FA

D

Figure 8.84: The free body diagram of
the ball and the bar together during colli-
sion. The impulsive force at the point of
impact is internal to the system and hence,
does not show on the free body diagram.

(Filename:sfig9.5.ballbar.a)

⇀
H

−
A = (

⇀
H

−
A)ball + (

⇀
H

−
A)bar

= ⇀
rD/A × m1

⇀
v− + I A

zz
⇀
ω−

= d ̂ × m1v(−ı̂) + ⇀

0 = m1dvk̂.

Similarly,
⇀
H

+
A = ⇀

rD/A × m1
⇀
v+ + I A

zz
⇀
ω+

but, ⇀
v+ = ⇀

ω+ × ⇀
rD/A = −ωd ı̂, where ⇀

ω+ = ωk̂ (let). Hence,
⇀
H

+
A = d ̂ × m1(−ωd ı̂) + 1

3
m2(2
)2ωk̂

= (m1d2 + 4

3
m2


2)ωk̂.

Equating the two momenta, we get

ω = m1dv

m1d2 + (4/3)m2
2

= v

d
(

1 + 4
3

m2
m1

(


d

)2
)

⇒ ⇀
vD = ⇀

ω+ × ⇀
rD/A = ωd(−ı̂)

= − v

1 + 4
3

m2
m1

(


d

)2 ı̂.

Now, substituting the given numerical values, v = 5 m/s, m1 = 0.25 kg,
m2 = 1 kg, 
 = 0.5 m, and d = 0.75 m, we get ⇀

vD = −2.08 m/sı̂

⇀
vD = −2.08 m/sı̂

(b) To find the impulse at D due to the impact, we can consider either the ball or
the bar separately, and find the impulse by evaluating the change in the linear
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momentum of the body. Let us consider the ball since it has only one impulse
acting on it. The free body diagram of the ball during impact is shown in
Fig. 8.85. From the linear impulse-momentum relationship we get,

⇀
P D =

∫
⇀
FD dt = ⇀

L
+ − ⇀

L
− = m1(

⇀
v+ − ⇀

v−)

= m1


− v

1 + 4
3

m2
m1

(


d

)2 ı̂ + vı̂




= m1v


1 − 1

1 + 4
3

m2
m1

(


d

)2


 ı̂

Substituting the given numerical values, we get
⇀
P D = 0.73 kg·m/sı̂. The

FA

FD

FD

Figure 8.85: Separate free body diagrams
of the ball and the bar during collision.

(Filename:sfig9.5.ballbar.b)

impulse on the bar is equal and opposite. Therefore, the impulse on the bar is
− ⇀

P D = −0.73 kg·m/sı̂.

Impulse at D = −0.73 kg·m/sı̂

(c) Now that we know the impulse at D, we can easily find the impulse at A by
applying impulse-momentum relationship to the bar. Since, the bar is stationary
just before impact, its initial momentum is zero. Thus, for the bar,∫

(
⇀
FA − ⇀

FD)dt = ⇀
L

+ − ⇀
L

− = ⇀
L

+ = m2
⇀
v+

cm.

Denoting the impulse at A with
⇀
P A, the mass ratio m2/m1 by mr , and the

length ratio 
/d byh q , and noting that ⇀
v+

cm = ωk̂ × 
̂ = −ω
ı̂, we get

⇀
P A ≡

∫
⇀
FA dt =

∫
⇀
FD dt + m2(−ω
ı̂)

= m1v

(
1 − 1

1 + 4
3 mr q2

)
ı̂ − m2


v

d
(
1 + 4

3 mr q2
) ı̂

= m1v

(
4
3 mr q2

1 + 4
3 mr q2

)
ı̂ − m2v

(
q

1 + 4
3 mr q2

)
ı̂

= (4/3)m2q2 − m2q

1 + 4
3 mr q2

vı̂ = q(4q − 3)

3
(
1 + 4

3 mr q2
) m2vı̂

Now, we are ready to graph the impulse at A as a function of q ≡ 
/d. However,
note that a better quantity to graph will be PA/(m1v), that is, the nondimensional
impulse at A, normalized with respect to the initial linear momentum m1v of
the ball. The plot is shown in Fig. ??. It is clear from the plot, as well as
from the expression for

⇀
P A, that the impulse at A is zero when q = 3/4 or

d = 4
/3 = 2/3(2
), that is, when the ball strikes at two thirds the length of
the bar. Note that this location of the impact point is independent of the mass
ratio mr .
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Figure 8.86: Plot of normalized impulse
at A as a function of q = 
/d.

(Filename:sweetspot)

d = 2/3(2
) for
⇀
P A = ⇀

0

Comment: This particular point of impact D (when d = 2/3(2
)) which induces no
impulse at the support point A is called the center of percussion. If you imagine the
bar to be a bat or a racquet and point A to be the location of your grip, then hitting a
ball at D gives you an impulse-free shot. In sports, point D is called a sweet spot.
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SAMPLE 8.33 Flying dish and the solar panel. A uniform rectangular plate of

O

A

Figure 8.87: (Filename:sfig9.5.diskplate)

dimensions 2a = 2 m and 2b = 1 m and mass m P = 2 kg drifts in space at a uniform
speed vp = 10 m/s (in a local Newtonian reference frame) in the direction shown
in the figure. Another circular disk of radius R = 0.25 m and mass m D = 1 kg is
heading towards the plate at a linear speed vD = 1 m/s directed normal to the facing
edge of the plate. In addition, the disk is spinning at ωD = 5 rad/s in the clockwise
direction. The plate and the disk collide at point A of the plate, located at d = 0.8 m
from the center of the long edge. Assume that the collision is frictionless and purely
elastic. Find the linear and angular velocities of the plate and the disk immediately
after the collision.

Solution To find the linear as well as the angular velocities of the disk and the
plate, we will have to use linear and angular momentum-impulse relations. In total,
we have 7 scalar unknowns here — 4 for linear velocities of the disk and the plate
(each velocity has two components), 2 for the two angular velocities, and 1 for
the collision impulse. Naturally, we need 7 independent equations. We have 6
independent equations from the linear and angular impulse-momentum balance for
the two bodies (3 each). We need one more equation. That equation is the relationship
between the normal components of the relative velocities of approach and departure
with the coefficient of restitution e (=1 for elastic collision). Thus we have enough
equations. Let us set up all the required equations. We can then solve the equations
using a computer.

O
A A

Figure 8.88: The free body diagram of
the disk and the plate together during col-
lision. The impulsive force at the point of
impact is internal to the system and hence,
does not show on the free body diagram .

(Filename:sfig9.5.diskplate.a)

A

Figure 8.89: Separate free body diagrams
of the disk and the plate during collision.

(Filename:sfig9.5.diskplate.b)

The free body diagrams of the disk and the plate together and the two separately
are shown in Fig. 8.88 and 8.89, respectively. Using an xy coordinate system oriented
as shown in Fig. 8.88, we can write

LMB for disk: m D(
⇀
v+

D − ⇀
v−

D) = −P ı̂

LMB for plate: m P (
⇀
v+

P − ⇀
v−

P ) = P ı̂

AMB for disk: I cm
D (

⇀
ω+

D − ⇀
ω−

D) = ⇀

0
AMB for plate: I cm

P (
⇀
ω+

P − ⇀
ω−

P ) = ⇀
rA/G × P ı̂

kinematics: ı̂ · {⇀
v+

AD
− ⇀

v+
AP

= e(⇀
v−

AP
− ⇀

v−
AD

)}

where, in the last equation ⇀
v AD and ⇀

v AP refer to the velocities of the material points
located at A on the disk and on the plate, respectively. Other linear velocities in
the equations above refer to the velocities at the center of mass of the corresponding
bodies. We are given that ⇀

v−
D = vD ı̂,

⇀
v−

P = −vP ı̂,
⇀
ω−

D = −�D k̂, and ⇀
ω−

P = ⇀

0.

Let us assume that ⇀
ω+

D = ωD k̂,
⇀
ω+

P = ωP k̂, vv+
D = v+

Dx
ı̂ + v+

Dy
̂ , and similarly,

vv+
P = v+

Px
ı̂ + v+

Py
̂ . Then,

⇀
v−

AD
= ⇀

v−
D + ⇀

ω−
D × ⇀

rA/O = vD ı̂ − ωD R̂

⇀
v+

AD
= ⇀

v+
D + ⇀

ω+
D × ⇀

rA/O = v+
Dx

ı̂ + (v+
Dy

+ ω+
D R)̂

⇀
v−

AP
= ⇀

v−
P = −vP ı̂

⇀
v+

AP
= ⇀

v+
P + ⇀

ω+
P × ⇀

rA/G = (v+
Px

− ω+
P d)ı̂ + (v+

Py
− ω+

P d)̂

Substituting these quantities in the kinematics equation above and dotting with the
normal direction at A, ı̂, we get

v+
Dx

− v+
Px

+ ω+
P d = e︸︷︷︸

1

(−vP − vD) = −vP − vD. (8.59)

Now, let us extract the scalar equations from the impulse-momentum equations for
the disk and the plate by dotting with appropriate unit vectors.
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Dotting LMB for the disk with ı̂ and ̂ , respectively, we get
m D(v+

Dx
− vD) = −P (8.60)

m Dv+
Dy

= 0 (8.61)

Dotting LMB for the plate with ı̂ and ̂ , respectively, we get
m P (v+

Px
− vP ) = P (8.62)

m Pv+
Py

= 0 (8.63)

Dotting AMB for the disk and the plate with k̂, we get
I cm

D (ω+
D − ωD) = 0 (8.64)

I cm
P ω+

P = Pd (8.65)

We have all the equations we need. Let us rearrange these equations in a matrix form,
taking the known quantities to the right and putting all unknowns to the left side. We
then, write eqns. (8.60)–(8.65), and then eqn. (8.59) as




m D 0 0 0 0 0 −1
0 m D 0 0 0 0 0
0 0 m P 0 0 0 1
0 0 0 m P 0 0 0
0 0 0 0 I cm

D 0 0
0 0 0 0 0 I cm

P −d
1 0 −1 0 0 d 0







v+
Dx

v+
Dy

v+
Px

v+
Py

ω+
D

ω+
P

P




=




m DvD

0
m PvP

0
I cm

D ωD

0
−vP − vD




Substituting the given numerical values for the masses and the pre-collision velocities,
and the moments of inertia, I cm

D = (1/2)m D R2 and I cm
P = (1/12)m P (4a2 + 4b2),

and then solving the matrix equation on a computer, we get,

⇀
v+

D = 0.34 m/sı̂, ⇀
v+

P = −9.67 m/sı̂
⇀
ω+

D = −5 rad/sk̂,
⇀
ω+

P = −1.26 rad/sk̂

P = −0.66 kg·m/s

You can easily check that the results obtained satisfy the conservation of linear mo-
mentum for the plate and the disk taken together as one system.

⇀
v+

D = 0.34 m/sı̂, ⇀
v+

P = −9.67 m/sı̂, ⇀
ω+

D = −5 rad/sk̂,
⇀
ω+

P = −1.26 rad/sk̂

Comments: In this particular problem, the equations are simple enough to be
solved by hand. For example, eqns. (8.61), (8.63), and (8.64) are trivial to solve and
immediately give, v+

Dy
= 0, v+

Py
= 0, and ω+

D = ωD = 5 rad/s. Rest of the equations
can be solved by usual eliminations and substitutions, etc. However, it is important to
learn how to set up these equations in matrix form so that no matter how complicated
the equations are, they can be easily solved on a computer. What really counts is
do you have 7 linear independent equations for the 7 unknowns. If you do, you are
home.
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9
Kinematics using
time-varying base
vectors

Many parts of practical machines and structures move in ways that can be idealized
as straight-line motion (Chapter 6) or circular motion (Chapters 7 and 8). But often
an engineer most analyze parts with more general motions (as in chapter 9).

In principle one can study all motions of all things using one fixed coordinate
system. If one knows a description of the x, y, and z coordinates or all points at
all times than one can evaluate the linear momentum, the angular momentum, and
their rates of change. In this way one can do all of mechanics. But when a machine
has various parts, each moving relative to the other, it turns out it is useful to make
use of additional base vectors besides those fixed to a Newtonian (“fixed”) reference
frame. That is, the formulas for velocity and acceleration are simplified (or clarified)
by using moving base vectors, for example, base vectors that move with some of the
parts.

You have seen time-varying base vectors, the polar coordinate base vectors êR
and êθ used to describe circular motion. These are the ideas on which we build here.
Altogether we discuss 4 approaches that use time varying base vectors:

I. In section 10.1 polar coordinates are extended for more general use than circular
motion;

II. Path coordinates and base vectors are also introduced in 10.1;
III. Section 10.2 introduces general rotating base vectors and coordinate systems

with an origin that moves; and
IV. Section 10.3 shows formulas for differentiation in moving frames that don’t

depend on any particular base vector choice.

Section 10.4 applies some of these ideas to the kinematics of mechanisms.

517
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The basic idea is to try to use coordinate systems that most simply describe
the motions of interest, even if these coordinate systems are somewhat confusing
because they rotate and move. Most people find the ideas associated with time-
varying base vectors difficult at first. Like many shortcuts, they have a cost in terms
of the sophistication they demand. In the end, however, they aid intuition as well as
calculation.

9.1 Polar coordinates and path coordi-

nates
As you learned in Chapter 7, when a particle moves in a plane while going in circles
around the origin its position velocity and acceleration can be described like this:

⇀
r = RêR
⇀
v = Rθ̇ êθ = vθ êθ

⇀
a = −Rθ̇2êR + Rθ̈ êθ = −v2

θ

R
êR + v̇θ êθ

Which we can describe in words like this. The position is the distance from the origin
times a unit vector towards the point. The velocity is tangent to the circle of motion.
And the acceleration has a centripetal component proportional to the speed squared,
and a tangential component, tangent to the circle of motion with magnitude equal to
the rate of change of speed.

We are now going to generalize these results two different ways. First we will
use polar base vectors relaxing the restriction that R = constant. Next we will use
path base vectors to show that, in some sense, the formulas above apply to any wild
motion of a particle in 3D.

In principle these new methods are not needed. We could just use one fixed
coordinate system with base vectors ı̂, ̂ , and k̂ and write the velocity and acceleration
of a point at position ⇀

r = x ı̂ + y̂ as

⇀
v = ẋ ı̂ + ẏ̂ + żk̂ and ⇀

a = ẍ ı̂ + ÿ̂ + z̈k̂

as was done in sections 5.7-10. But, as for circular motion, rotating base vectors are
helpful for simplifying some kinematics and mechanics problems.

Polar coordinates
The extension of polar coordinates to 3 dimensions as cylindrical coordinates is
shown in Fig. 9.1.

R

R

θ

z

x

y
k̂

êθ

êR

⇀
r

Figure 9.1: Polar coordinates.
(Filename:tfigure6.1)

Rather than identifying the location of a point by its x , y and z coordinates, a
point is located by its cylindrical coordinates

R, the distance to the point from the z axis,
θ, the angle that the most direct line from the z axis to the point makes with the

positive x direction,
z, the conventional z coordinate of the particle,

and base vectors:

êR, a unit vector that most directly points from the z axis to the particle
(in 2-D êR = ⇀

r /r ,
in 3-D êR = (

⇀
r − (

⇀
r · k̂)k̂)/|⇀

r − (
⇀
r · k̂)k̂|

= a unit vector in the direction of the shadow of ⇀
r in the xy plane)
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êθ , a vector in the xy plane normal to êR (Formally êθ = k̂ × êR),

k̂, the conventional k̂ base vector.

It is only the planar part of the position that is different with polar coordinates than
with traditional Cartesian coordinates. The position vector of a particle is

⇀
r = RêR + zk̂.

or, if only two-dimensional problems are being considered

⇀
r = RêR .

As the particle moves, the values of its coordinates R, θ and z change as do the base
vectors êR and êθ .

Example: Oblong path

P

tangent to 
path at P

x

y

ı̂

̂

θ

êθ

êR⇀
r P

Figure 9.2: Particle P on an oblong path.
Note that the velocity is not parallel to êθ

at most points on the path.
(Filename:tfigure6.polar.coord)

A particle that mores on the path R = A+ B cos(2θ) with A > B moves
on an oblong path something like that shown in Fig. 9.2 with

⇀
r = RêR = (A + B cos(2θ))êR

Note that, unlike for circular motion, êθ is not tangent to the particle’s
path in general. (In this example êθ is only tangent to the path where the
path is closest to or furthest from the origin.) ✷

Velocity in polar coordinates
The velocity and acceleration are found by differentiating the position ⇀

r , taking
account that the base vectors êR and êθ also change with time just as they did for
circular motion:

˙̂eR = θ̇ êθ and ˙̂eθ = −θ̇ êR .

We find the velocity by taking the time derivative of the position, using the product
rule of differentiation:

⇀
v = d

dt
⇀
r = d

dt
[RêR + zk̂]

= d

dt
(RêR) + d

dt
(zk̂)

= (ṘêR + R ˙̂eR︸︷︷︸
θ̇ êθ

) + (żk̂)

= Ṙ︸︷︷︸
vR

êR + Rθ̇︸︷︷︸
vθ

êθ + ż︸︷︷︸
vz

k̂. (9.1)

This formula is intuitive: the velocity is the sum of three vectors: one due to moving
towards or away from the z axis, ṘêR , one having to do with the angle being swept,
θ̇ Rêθ , and in 3-D, one to motion perpendicular to the xy plane, żk̂. In 2-D this is
shown in Fig. 9.3.

Figure 9.3: Velocity in polar coordinates
for general planar motion. The velocity has
a radial êR component Ṙ and a circumfer-
ential êθ component Rθ̇ .

(Filename:tfigure.polarvel)
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But, as has been emphasized before, this isn’t a new vector ⇀
v but just a new way

of representing the same vector:

⇀
v = ⇀

v

vx ı̂ + vy ̂ + vz k̂ = vR êR + vθ êθ + vz k̂.

The vector ⇀
v can be represented in different base vector systems, in this case cartesian

and polar.
Note that eqn. (9.1) adds two terms to the circular motion case from Chapter 7:

one for variations in R and one for variations in z.

Acceleration in polar coordinates

Figure 9.4: Acceleration in polar co-
ordinates for general planar motion. The
acceleration has a radial êR component
R̈ − Rθ̇2 and a circumferential êθ compo-
nent Rθ̈ + 2Ṙθ̇ .

(Filename:tfigure.polaracc)

To find the acceleration, we differentiate once again. The resulting formula has new
terms generated by the product rule of differentiation.

⇀
a = d

dt
⇀
v

= d

dt
(ṘêR + Rθ̇ êθ + żk̂)

= (R̈êR + Ṙ ˙̂eR︸︷︷︸
θ̇ êθ

) + (Ṙθ̇ êθ + Rθ̈ êθ + Rθ̇ ˙̂eθ︸︷︷︸
−θ̇ êR

) + (z̈k̂)

= (R̈ − θ̇2 R︸ ︷︷ ︸
aR

)êR + (2Ṙθ̇ + Rθ̈︸ ︷︷ ︸
aθ

)êθ + z̈︸︷︷︸
az

k̂. (9.2)

The acceleration for an arbitrary planar path is shown in Fig. 9.4. Four of the five
terms comprising the polar coordinate formula for acceleration are easy to understand.

R̈ is just the acceleration due to the distance from the origin changing with time.
θ̇2 R is the familiar centripetal acceleration.

Rθ̈ is the acceleration due to rotation proceeding at a faster and faster rate. And
z̈ is the same as for Cartesian coordinates.

(b)
(a)

Figure 9.5: The simplest case for under-
standing of the Coriolis term in the accel-
eration. A particle moves at constant speed
Ṙ out on a line which is rotating at constant
rate θ̇ . The figure shows a velocity vector
as an arrow when the particle is at the ori-
gin and a time �t later. The change in the
velocity vector comes from two effects: (a)
the radial line has rotated, and (b) a circum-
ferential component is added to the velocity
when the particle is away from the origin.
For small �θ these two changes to the ve-
locity are both approximately perpendicular
to ⇀

v and parallel to each other.
(Filename:tfigure.simpleColiolis)

The Coriolis term. The difficult term in the polar coordinate expression for the
acceleration is the

2θ̇ Ṙ term, called the Coriolis acceleration, after the civil engineer Gustave-Gaspard
Coriolis who first wrote about it in 1835 (in a slightly more general context).

The presence of the ‘2’ in this term is due to the two effects from which it derives: 1
from the change of the ṘêR term in the velocity and 1 from the change of the Rθ̇ êθ

term in the velocity (1 + 1 = 2).
The Coriolis acceleration occurs even if both θ̇ and Ṙ are constant, a situation

which would be incorrectly characterized as ‘constant velocity’. One way to under-
stand the Coriolis term is to find a situation where the Coriolis acceleration is the only
non-zero term in the general acceleration expression.

Most simply, a particle that moves on a straight line that is rotating does not have
a straight-line path, and thus has some acceleration.
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Example: The simplest Coriolis example

Imagine a particle moving at constant speed Ṙ along a line which is
itself rotating at constant θ̇ about the origin. Let’s look a the particle
as it passes through the origin at time t and a small amount of time �t
later (see Fig. 9.5). At time t + �t the direction of the scribed line has
changed by an angle �θ = θ̇�t . So that, even if at that later time θ̇ = 0
the direction of ⇀

v has changed so ⇀
v has changed by an amount v�θ .

But the rotation of the line does continue, so the velocity includes a part
in the êθ direction with magnitude θ̇�R. That is ⇀

v is changed by both
�θv and by θ̇�R so

�
⇀
v ≈ (

v�θ + θ̇�R
)
êθ

≈ (
Ṙ(θ̇�t) + θ̇ (Ṙ�t)

)
êθ

≈ (
Ṙθ̇ ) + θ̇ Ṙ

)
êθ�t

⇒ �
⇀
v

�t
≈ (

Ṙθ̇ ) + θ̇ Ṙ
)
êθ

⇒ ⇀
a ≈ (

Ṙθ̇ ) + θ̇ Ṙ
)
êθ = 2Ṙθ̇ êθ

as predicted by the general polar coordinate acceleration formula. ✷

But one need not get confounded by a desire to understand every term intuitively,
eqn. (9.2) way of describing the same acceleration we have described with cartesian
coordinates. Namely,

⇀
a = ⇀

a and

ẍ ı̂ + ÿ̂ + z̈k̂ = (R̈ − θ̇2 R︸ ︷︷ ︸
aR

)êR + (2Ṙθ̇ + Rθ̈︸ ︷︷ ︸
aθ

)êθ + z̈︸︷︷︸
az

k̂.

Example: R(t) and θ(t) are given functions.

Say a and c are given constants and that

θ = at and R = ct2.

Then at any t the position, velocity, and acceleration are (see Fig. 9.6)

⇀
r = RêR = ct2êR,
⇀
v = ṘêR + Rθ̇ êθ = 2ct êR + act2êθ , and
⇀
a = (R̈ − θ̇2 R)êR + (Rθ̈ + 2Ṙθ̇ )êθ

=
(

2c − a2ct2
)

êR + (0 + 4act) êθ

with polar base vectors

êR = cos θ ı̂ + sin θ ̂ = cos(at)ı̂ + sin(at)̂ and

êθ = − sin θ ı̂ + cos θ ̂ = − sin(at)ı̂ + cos(at)̂ .

If we substituted these expressions for the polar base vectors into the

êθ

êR

θ

R

⇀
v

⇀
a

Figure 9.6: A particle moves with θ = at
and R = ct2. In this drawing a = .5 and c
is anything since no scale is shown.

(Filename:tfigure.spiral)

expressions for ⇀
r ,

⇀
v , and ⇀

a we would get the same cartesian represen-
tation that we would get from using x = R cos θ and y = R sin θ with
⇀
r = x ı̂ + y̂ , ⇀

v = ẋ ı̂ + ẏ̂ , and ⇀
a = ẍ ı̂ + ÿ̂ . That is ⇀

r = ⇀
r , ⇀

v = ⇀
v ,

and ⇀
a = ⇀

a even if the representation is different. ✷
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Path coordinates
Another way still to describe the velocity and acceleration is to use base vectors which
are defined by the motion. In particular, the path base vectors used are:

(a) the unit tangent to the path êt , and
(b) the unit normal to the path ên .

Somewhat surprisingly at first glance, only two base vectors are needed to define the
velocity and acceleration, even in three dimensions.

The base vectors can be described geometrically and analytically. Let’s start out
with a geometric description.

The geometry of the path basis vectors.
As a particle moves through space it traces a path ⇀

r (t). At the moment of interest
the path has a unique tangent line. The unit tangent êt is in the direction of this line,
the direction of motion, as shown in figure 9.7.

3D path

ên

êt

⇀
v

osculating circle

tangent line

ρ

Figure 9.7: The base vectors for path co-
ordinates are tangent and perpendicular to
the path. The osculating circle is a circle
that is tangent to the path and has the same
curvature as the path. The circle is in the
plane containing both the tangent to the path
and the rate of change of that tangent. The
osculating circle is not defined for a straight-
line path.

(Filename:tfigure6.2)

Less clear is that the path has a unique ‘kissing’ plane. One line on this plane
is the tangent line. The other line needed to define this plane is determined by the
position of the particle just before and just after the time of interest. Just before
and just after the time of interest the particle is a little off the tangent line (unless the
motion happens to be a straight line and the tangent plane is not uniquely determined).
Three points, the position of the particle just before, just at, and just after the moment
of interest determine the tangent plane.

Another way to picture the tangent plane is to find the circle in space that is tangent
to the path and which turns at the same rate and in the same direction as the path
turns. This circle, which touches the path so intimately, is called the osculating or
‘kissing’ circle. The tangent plane is the plane of this circle. (See figure 9.7).

The unit normal ên is the unit vector which is perpendicular to the unit tangent and
is in the tangent plane. It is pointed in the direction from the edge of the osculating
circle towards the center of the circle as shown in figure 9.7. For 2-D motion in the
xy plane the osculating plane is the xy plane and the osculating circle is in the xy
plane. The path base vectors are unit vectors that vary along the path, always tangent
and normal to the path (see Fig. 9.8).

Figure 9.8: A path in the plane with
the path base vectors and osculating circle
marked at three points.

(Filename:tfigure.2Dpath)

Formal definition of path basis vectors
The path of a particle is ⇀

r (t). The path can also be parameterized by arc length s
along the path, as explained in any introductory calculus text. So the path in space is
⇀
r (s), where s is the path “coordinate”. The unit tangent is:

êt ≡ d ⇀
r (s)

ds
.

Using the chain rule with ⇀
r (s(t)) this is also

êt = d ⇀
r (t)

dt

dt

ds
=

⇀
v

v
.

To define the unit normal let’s first define the curvature ⇀
κ of the path as the rate

of change of the tangent (rate in terms of arc length).

⇀
κ ≡ d êt

ds
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The unit normal ên is the unit vector in the direction of the curvature

ên =
⇀
κ

|⇀
κ | .

Finally, the binormal êb is the unit vector perpendicular to êt and ên :

êb ≡ êt × ên .

For 2-D motion the binormal êb is always in the k̂ direction. The radius of the
osculating circle ρ is

ρ = 1

|⇀
κ | .

Note that, in general, the polar and path coordinate basis vectors are not parallel;
i.e., ên is not parallel to êR and êt is not parallel to êθ . For example, consider a
particle moving on an elliptical path in the plane shown in figure 9.9. In this case, the
polar coordinate and path coordinate basis vectors are only parallel where the major
and minor axes intersect the path. But for the special case of circular motion, as in

tangent to 
path at P

P

x

y

ı̂

̂

θ

êθ

êR

êt

ên

⇀
r P

Figure 9.9: Particle P on an elliptical
path.

(Filename:tfigure6.path.coord)

Chapters 7 and 8, the polar and path coordinate vectors are everywhere parallel on
the path.

Velocity and acceleration in path coordinates.

⇀
a t

⇀
an

⇀
a

⇀
a t = v̇êt

⇀
an =

v2
ρ

ên

Figure 9.10: The acceleration of any par-
ticle can be broken into a part that is paral-
lel to its path and a part perpendicular to its
path.

(Filename:tfigure6.3)

Though it is not necessarily easy to compute the path basis vectors êt and ên , they
lead to simple expressions for the velocity and acceleration:

⇀
v = vêt = ds

dt
êt , and (9.3)

⇀
a = d

dt
⇀
v = d

dt

(
vêt

)
(9.4)

= v̇êt + v ˙̂et (9.5)

= v̇êt + v
d êt

ds

ds

dt
(9.6)

= v̇êt + v
⇀
κv (9.7)

= v̇êt︸︷︷︸
⇀
a t

+ v2

ρ
ên︸ ︷︷ ︸

⇀
an

. (9.8)

This formula for velocity is obvious: velocity is speed times a unit vector in the
direction of motion. The formula for acceleration is more interesting. It says that the
acceleration of any particle at any time is given by the same formula as the formula
for acceleration of a particle going around in circles at non-constant rate. There is
a term directed towards the center of the osculating circle v2/ρ and a second term
tangent to the path (also tangent to the osculating circle), as shown in figure 9.10.

The acceleration has two parts. A part associated with change of direction that is
normal acceleration and does not vanish even if the speed is constant. This normal
acceleration is perpendicular to the path. And a part associated with the change of
speed, the tangential acceleration, which does not vanish even if the particle moves
in a straight line. The tangential acceleration is, appropriately, tangent to the path.
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Example: Estimating the direction of acceleration

By looking at the path of a particle (e.g., see Fig. 9.11) and just knowing
whether it is speeding up or slowing down one can estimate the direction
of the acceleration.

If the particle is known to be speeding up at A then v̇ > 0 so the
tangential acceleration is in the direction of the velocity. Without thinking
about the normal acceleration you know that the acceleration vector is
pointed in the half plane of directions shown.

If at point B nothing is known about the rate of change of speed, you
still know that the acceleration must be in the half plane shown because
that is the direction of ⇀

κ and ên .

speeding up

curving left slowing down
and curving
left

Figure 9.11: A particle moves from 0 to
D on the path shown. At A it is speeding up
so dotv > 0. At B it is turning to the left
so ên points to the left. At C it is slowing
down and turning to the right. So the accel-
eration must be a positive vector pointed in
the quadrant shown.

(Filename:tfigure.pathintuition)

If at C you know that the particle is slowing down then you know
that v̇ < 0. But you also can see the curve is to the right so ên is to the
right. So the acceleration must be in the quadrant shown.

One can use the information about the curvature to further restrict
the possible accelerations at point A also. At point B there is nothing
more to know unless you know how the speed is changing with time. ✷

Earlier we found the curvature by assuming the particle’s path was parameterized
by arc length s. A second way of calculating the curvature ⇀

κ (and then the unit normal
ên) is to calculate the normal part of the acceleration. First calculate the acceleration.
Then subtract from the acceleration that part which is parallel to the velocity.

⇀
an = ⇀

a − (
⇀
a · êt )êt = ⇀

a − (
⇀
a · ⇀

v)
⇀
v

v2

The normal acceleration is ⇀
an = v2 ⇀

κ so

⇀
κ =

⇀
an

v2 =
⇀
a

v2 − (
⇀
a · ⇀

v)
⇀
v

v4 .

Recipes for path coordinates.

Assume that you know the position as a function of time in either cartesian or polar
coordinates. Then, say, at a particular time of interest when the particle is at ⇀

r , you
can calculate the velocity of the particle using:

⇀
v = ẋ ı̂ + ẏ̂ + żk̂ or ⇀

v = ṘêR + Rθ̇ êθ + żk̂

and the acceleration using

⇀
a = ẍ ı̂ + ÿ̂ + z̈k̂ or ⇀

a = (R̈ − Rθ̇2)êR + (2Ṙθ̇ + Rθ̈ )êθ + z̈k̂.

From these expressions we can calculate all the quantities used in the path coordinate
description. So we repeat what we have already said but in an algorithmic form. Here
is one set of steps one can follow. This recipe is of little practical use, but does show
that the motion explicitly determines the path base vectors as well as the osculating
circle.

(a) Calculate êt = ⇀
v/|⇀

v |.
(b) Calculate at = ⇀

a · ⇀
v/v.

(c) Calculate ⇀
an = ⇀

a − (
⇀
a · ⇀

v)
⇀
v/v2.

(d) Calculate ên =
⇀
an

|⇀an |
(e) Calculate the radius of curvature as ρ = |⇀v |2

|⇀an | .
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(f) Write a parametric equation for the osculating circle as

⇀
r osculating = (

⇀
r + ρên)︸ ︷︷ ︸
center

+ ρ(− cos φên + sin φêt )︸ ︷︷ ︸
circle

where φ is the parameter used to parameterize the points on the circle ⇀
r osculating

of the point on the curve ⇀
r . As φ ranges from 0 to 2π the point ⇀

r osculating
goes from ⇀

r around the circle and back. The plane of the osculating circle is
determined by êt and ên . For planar curves, the osculating circle is in the plane
of the curve.

ı̂
̂

êt

ên

r=4R

Figure 9.12: The path of a rock in a tire
of radius R is shown as are the unit tangent,
the unit normal and the osculating circle at
the top position.

(Filename:tfigure.rockintire)

Example: Particle on the rim of a tire

A particle on the rim of a tire whose center is moving at constant speed
v has position r given by

⇀
r = (

vt − R sin(vt/R)
)
ı̂ + R

(
1 − cos(vt/R)

)
̂

where the origin is at the ground contact time t = 0. When the particle
is at its highest point vt = π R and

⇀
v = 2vı̂ and ⇀

a = −(v2/R)̂ .

At that midpoint

êt = ı̂, ên = −̂ ,
⇀
κ = −(1/(4R))̂

and (2v)2/ρ = v2/R ⇒ ρ = 4R

as shown in Fig. 9.12. The osculating circle has 4 times the radius of the
tire. Note the intimacy the osculating circle’s kiss of the cycloidal path.
✷

Summary of polar(cylindrical) coordinates

See the inside back cover, table II, row 3 in for future reference:

⇀
r = RêR + zk̂
⇀
v = vR êR + vθ êθ + vz k̂ = ṘêR + Rθ̇ êθ + żk̂
⇀
a = aR êR + aθ êθ + az k̂ = (R̈ − θ̇2 R)êR + (Rθ̈ + 2Ṙθ̇ )êθ + z̈k̂

êR = (
⇀
r − zk̂)/|⇀

r − zk̂|
êθ = k̂ × êR

For 2-D problems just set z = 0, ż = 0, and z̈ = 0 in these equations.
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Summary of path coordinates
See the inside back cover table II, row 4 and the text under the table for future
reference:

⇀
r = no simple expression in terms of path base vectors
⇀
v = ṡêt = vêt
⇀
a = ⇀

a t + ⇀
an

⇀
a t = at êt = v̇êt = s̈êt = (

⇀
a · êt )êt

⇀
an = an ên = (v2/ρ)ên = ⇀

a − (
⇀
a · êt )êt

êt = d ⇀
r /ds = ⇀

v/v

ên = ⇀
κ/|⇀

κ | = ρ
⇀
κ = (

⇀
a − ⇀

a · êt )/|⇀
a − ⇀

a · êt |
êb = êt × êb
⇀
κ = d êt/ds = (

⇀
a − ⇀

a · êt )/v
2 ρ = 1/|⇀

κ |

Both polar coordinates and path coordinates define base vectors in terms of the motion
of a particle of interest relative to a fixed coordinate system.
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SAMPLE 9.1 Acceleration in polar coordinates. A bug walks along the spiral section

x

y
êθ êR

θ
R

π/2

Figure 9.13: (Filename:sfig10.1.polarshell)

of a natural shell. The path of the bug is described by the equation R = R0eaθ where
a = 0.182 and R0 = 5 mm. The bug’s radial distance from the center of the spiral is
seen to be increasing at a constant rate of 2 mm/ s. Find the x and y components of
the acceleration of the bug at θ = π .

Solution In polar coordinates, the acceleration of a particle in planar motion is

⇀
a = (R̈ − Rθ̇2)êR + (2Ṙθ̇ + Rθ̈ )êθ .

Since we know the position of the bug,

R = R0 eaθ ,

Ṙ = R0 aeaθ θ̇ ⇒ θ̇ = Ṙ

R0a eaθ
,

R̈ = R0 aeaθ θ̈ + R0 a2eaθ θ̇2.

Since the radial distance R of the bug is increasing at a constant rate Ṙ = 2 mm/s,
R̈ = 0, that is,

R0 aeaθ (θ̈ + aθ̇2) = 0

⇒ θ̈ = −aθ̇2

= − Ṙ2

R2
0a e2aθ

.

Therefore,

⇀
a = (R̈ − Rθ̇2)êR + (2Ṙθ̇ + Rθ̈ )êθ

=
(

0 − R0eaθ · Ṙ2

R2
0a2e2aθ

)
êR +

(
2Ṙ2

R0a eaθ
+ R0eaθ · −Ṙ2

R2
0a e2aθ

)
êθ

= Ṙ2

R0a eaθ

[
−1

a
êR + (2 − 1)êθ

]
.

Now substituting R0 = 5 mm, a = 0.182, Ṙ = 2 mm/s, and θ = π in the above
expression, we get

⇀
a = (−13.63 mm/ s2) êR + (2.48 mm/ s2) êθ .

But, at θ = π

êR = cos θ ı̂ + sin θ ̂ = −ı̂ and êθ = − sin θ ı̂ + cos θ ̂ = −̂ ,

therefore,

⇀
a = (13.63 mm/ s2) ı̂ − (2.48 mm/ s2) ̂ ,

⇒ ax = 13.63 mm/ s2 and ay = −2.48 mm/ s2.

ax = 13.63 mm/ s2, ay = −2.48 mm/ s2
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SAMPLE 9.2 Going back and forth between (x, y) and (R, θ). Given the position
of a particle in polar coordinates (R, θ) and its radial and angular velocity (Ṙ, θ̇ ) and
radial and angular acceleration (R̈, θ̈ ), find (ẋ, ẏ) and (ẍ, ÿ). Also, find the inverse
relationship.

Solution

• Polar to Cartesian: In polar coordinates, we are given R, θ, Ṙ, θ̇ , R̈, and θ̈ .
We need to find ẋ, ẏ, ẍ , and ÿ. Let us consider the velocity first. The velocity
of a point is ⇀

v = ẋ ı̂ + ẏ̂ in cartesian coordinates and ⇀
v = ṘêR + Rθ̇ êθ in

polar coordinates. Thus,

ẋ ı̂ + ẏ̂ = ṘêR + Rθ̇ êθ .

where êR = cos θ ı̂ + sin θ ̂ and êθ = − sin θ ı̂ + cos θ ̂ . Dotting this equation
with ı̂ and ̂ , respectively, we get

ẋ = Ṙ

cos θ︷ ︸︸ ︷
(êR · ı̂) +Rθ̇

− sin θ︷ ︸︸ ︷
(êθ · ı̂)

ẏ = Ṙ (êR · ̂)︸ ︷︷ ︸
sin θ

+Rθ̇ (êθ · ̂)︸ ︷︷ ︸
cos θ

or,
ẋ = Ṙ cos θ + Rθ̇ (− sin θ)

ẏ = Ṙ sin θ + Rθ̇ cos θ

or, {
ẋ
ẏ

}
=

[
cos θ − sin θ

sin θ cos θ

] [
1 0
0 R

] {
Ṙ
θ̇

}
. (9.9)

Thus given Ṙ and θ̇ at (R, θ), we can find ẋ and ẏ. Similarly, from the
acceleration formula, ⇀

a = ẍ ı̂ + ÿ̂ = (R̈ − Rθ̇2)êR + (2Ṙθ̇ + Rθ̈ )êθ , we
derive{

ẍ
ÿ

}
=

[
cos θ − sin θ

sin θ cos θ

] ([
1 0
0 R

] {
R̈
θ̈

}
+

{ −Rθ̇2

2Ṙθ̇

})
.

(9.10)

It is not necessary to split the terms on the right hand side. We could have kept
them together as (R̈ − Rθ̇2) and (2Ṙθ̇ + Rθ̈ ) but we split them to keep the
radial acceleration term R̈ and angular acceleration θ̈ in evidence.

• Cartesian to Polar: Given ẋ, ẏ, ẍ , and ÿ at (x, y), we can now find Ṙ, θ̇ , R̈,
and θ̈ easily by inverting eqn. (9.9) and eqn. (9.10):{

Ṙ
θ̇

}
=

[
1 0
0 1

R

] [
cos θ sin θ

− sin θ cos θ

] {
ẋ
ẏ

}
. (9.11)

{
R̈
θ̈

}
=

[
1 0
0 1

R

] ([
cos θ sin θ

− sin θ cos θ

] {
ẍ
ÿ

}
−

{ −Rθ̇2

2Ṙθ̇

})
.

(9.12)

Note that in eqn. (9.12) we need Ṙ and θ̇ in order to compute R̈ and θ̈ . This,
however, is no problem since we have Ṙ and θ̇ from eqn. (9.11). Of course,
R and θ are required too, which are easily computed as R =

√
x2 + y2 and

θ = tan−1(y/x).
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SAMPLE 9.3 Velocity in path coordinates. The path of a particle, stuck at the
edge of a disk rolling on a level ground with constant speed, is called a cycloid. The
parametric equations of a cycloid described by a particle is x = t −sin t , y = 1−cos t
where t is a dimensionless time. Find the velocity of the particle at

(a) t = π
2 ,

(b) t = π , and
(c) t = 2π

and express the velocity in terms of path basis vectors (êt , ên).

Solution The position of the particle is given:

⇀
r = x ı̂ + y̂

= (t − sin t)ı̂ + (1 − cos t)̂

⇒ ⇀
v ≡ d ⇀

r

dt
(9.13)

= (1 − cos t)ı̂ + sin t ̂ ,

and v = |⇀
v | (9.14)

=
√

(1 − cos t)2 + sin2 t

= √
2 − 2 cos t . (9.15)

In terms of path basis vectors, the velocity is given by

⇀
v = vêt where êt = ⇀

v/v.

Here,

êt = (1 − cos t)ı̂ + sin t ̂√
2 − 2 cos t

. (9.16)

Substituting the values of t in equations 9.15 and 9.16 we get

(a) at t = π
2 :

v =
√

2, êt = 1√
2
(ı̂ + ̂),

⇀
v =

√
2êt .

⇀
v = √

2êt , êt = 1√
2
(ı̂ + ̂)

(b) at t = π :
v = 2, êt = ı̂,

⇀
v = 2êt .

⇀
v = 2êt , êt = ı̂

(c) at t = 2π :
v = 0, êt = undefined,

⇀
v = ⇀

0.

⇀
v = ⇀

0
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SAMPLE 9.4 Path coordinates in 2-D. A particle traverses a limacon R = (1 +
2 cos θ) ft, with constant angular speed θ̇ = 3 rad/s.

(a) Find the normal and tangential accelerations (at and an) of the particle at θ = π
2 .

(b) Find the radius of the osculating circle and draw the circle at θ = π
2 .

Solution

(a) The equation of the path is

R = (1 + 2 cos θ) ft

The path is shown in Fig. 9.14. Since the equation of the path is given in polar

x

y

R

θ

Figure 9.14: The limacon R = (1 +
2 cos θ) ft.

(Filename:sfig6.3.1a)

coordinates, we can calculate the velocity and acceleration using the polar
coordinate formulae:

⇀
v = ṘêR + Rθ̇ êθ (9.17)
⇀
a = (R̈ − Rθ̇2)êR + (2Ṙθ̇ + Rθ̈ )êθ . (9.18)

So, we need to find Ṙ, R̈, θ̈ for computing ⇀
v and ⇀

a . From the given equation
for R

R = (1 + 2 cos θ) ft

⇒ Ṙ = −(2 ft) sin θ θ̇

⇒ R̈ = −(2 ft) sin θ θ̈ − (2 ft) cos θ θ̇2

= −(2 ft) θ̇2 cos θ

where we set θ̈ = 0 because θ̇ = constant. Substituting these expressions in
Eqn. (9.17) and (9.18), we get

⇀
v = −(2 ft)θ̇ sin θ êR + θ̇ (1 + cos θ) ftêθ

⇀
a = (R̈ − Rθ̇2)êR + (2Ṙθ̇ + Rθ̈ )êθ

= [−2θ̇2 cos θ − (1 + 2 cos θ) θ̇2] ft êR + (−2θ̇2 sin θ) ft êθ

= −θ̇2[(1 + 4 cos θ) êR + (2 sin θ) êθ ] ft

which give velocity and acceleration at any θ . Now substituting θ = π/2 we
get the velocity and acceleration at the desired point:

⇀
v | π

2
= θ̇ [−2 sin

π

2
êR + (1 + 2 cos

π

2
)êθ ] ft

= 3 ft/s(−2êR + êθ )
⇀
a | π

2
= −9 ft/s2(êR + 2êθ .)

Thus we know the velocity and the acceleration of the particle in polar coor-

x

y

θ = π/2
êθ

êR

ênêt

Figure 9.15: The unit vectors êR, êθ ,

and êt , ên at θ = π/2.
(Filename:sfig6.3.1b)

dinates. Now we proceed to find the tangential and the normal components of
acceleration (acceleration in path coordinates). In path coordinates

⇀
a = ⇀

a t + ⇀
an

≡ at êt + an ên

where êt and ên are unit vectors in the directions of the tangent and the principal
normal of the path. We compute these unit vectors as follows.
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êt =
⇀
v

|⇀
v |

= (
−6 ft/s)êR + (3 ft/s)êθ√

45 ft/s

= − 2√
5

êR + 1√
5

êθ .

So,
⇀
a t = (

⇀
a · êt ) êt

= 9 ft/s2
(

− 2√
5

+ 2√
5

)
êt

= ⇀

0,

and
⇀
an = ⇀

a − ⇀
a t

= −9 ft/s2(êR + 2êθ ).

Therefore,

ên =
⇀
an

|⇀
an|

= − 1√
5
(êR + 2êθ ).

Thus,

⇀
a = 9

√
5 ft/s2ên

⇒ at = 0 and an = 20.12 ft/s2.

at = 0, an = 20.12 ft/s2

x

y osculating circle

ên

êt

Figure 9.16: The osculating circle of ra-
dius ρ = 51/2 ft at θ = π/2. Note that ên
points to the center of the osculating circle.

(Filename:sfig6.3.1c)

(b) In path coordinates the acceleration is also expressed as

⇀
a = v̇êt + v2

ρ
ên

where ρ is the radius of the osculating circle. Since we already know the speed
v and the normal component of acceleration an we can easily compute the
radius of the osculating circle.

an = v2

ρ

⇒ ρ = v2

an
= 45( ft/s)2

9
√

5 ft/s2
=

√
5 ft.

ρ = 2.24 ft
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9.2 Rotating reference frames and their

time-varying base vectors
In this section you will learn about rotating reference frames, how to take the derivative
of a vector ‘in’ a rotating frame, and how to use that derivative to find the derivative
in a Newtonian or fixed frame. We start by showing the alternative, just using one
frame with one set of fixed base vectors.

The fixed base vector method
To motivate the sections that follow we first show the “fixed base vector” method.
Consider the task of determining the acceleration of a bug walking at constant speed
as it walks on a straight line marked on the surface of a tire rolling at constant rate.
Artificial as this problem seems, it is similar to the sort of calculation needed in the
kinematics of mechanisms. For now, imagine you really care how strong the bugs
legs need to be to hold on (unreasonably neglecting air friction). So knowing the
bugs acceleration determines the net force on it by

⇀
F = m ⇀

a . Now we try to find ⇀
a

by taking two time derivatives of position.

d(t)

F

x

y

O'

O

⇀
r O'/O

⇀
r P/O

⇀
r P/O'

⇀
r P'/O',

P

�(t)

sR

θ(t)

Figure 9.17: A bug walks at constant
speed on a straight line marked on a tire.

(Filename:tfigure.fixedbase)

If we want to avoid using rotating base vectors we have to write an expression for
the position of the bug in terms of x and y components. Choosing a suitable origin
of the coordinate system we have

⇀
rP/0 = ⇀

r0′/0 + ⇀
rP/0′

= (
Rθ ı̂ + R̂

) + (
s(cos θ ı̂ − sin θ ̂) + �(sin θ ı̂ + cos θ ̂)

)

= (
Rθ + s cos θ + � sin θ

)
ı̂ + (

R − s sin θ + � cos θ
)
̂ . (9.19)

To find the velocity we take the time derivative, taking account that both θ and � are
functions of t . Thus, for example looking at the term � cos θ both the product rule
and chain rule need be applied. Proceeding we get

⇀
vP/0 = (

Rθ̇ − sθ̇ sin θ + �̇ sin θ + �θ̇ cos θ
)
ı̂

+ (−sθ̇ cos θ + �̇ cos θ − �θ̇ sin θ
)
̂ . (9.20)

Now to get the acceleration of the bug we differentiate yet one more time. This time
we use the product rule and chain rule again, but get to use the simplification for this
problem that the rolling and bug walking are at constant rate so θ̈ = 0 and �̈ = 0.
Proceeding, we get

⇀
aP/0 =

(
−sθ̇2 cos θ + �̇θ̇ cos θ + �̇θ̇ cos θ − �θ̇2 sin θ

)
ı̂

+
(

sθ̇2 sin θ − �̇θ̇ sin θ − �̇θ̇ sin θ − �θ̇2 cos θ
)

̂

=
(
−θ̇2(s cos θ + � sin θ) + 2�̇θ̇ cos θ

)
ı̂

+
(

θ̇2(s sin θ − � cos θ) − 2�̇θ̇ sin θ
)

̂ (9.21)

which is a bit of a mess. We could regroup the terms, but there would still be 6 of
them.

The moving-reference-frame methods that follow don’t change this answer. But
they give a somewhat simpler derivation. And they also group the terms in physically
meaningful way. One would be hard pressed to say if all the terms in eqn. (9.21)
made sense. With the time-varying base vector methods we can interpret the terms.
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Reference frames

Figure 9.18: A fixed reference frame F
is defined by an origin 0 and coordinate axes

xyz or base vectors ı̂ ̂ k̂. Once the xy (or

ı̂ ̂ ) directions are chosen the z (or k̂) direc-
tion is implicitly defined by the right hand
rule.

(Filename:tfigure.firstrefframe)

A reference frame is a coordinate system 1©. It has an origin and a set of preferred

1© A fine point for experts. There is a
semantic debate about the degree to which
the phrases “coordinate system” and “ ref-
erence frame” are synonymous. For sim-
plicity we have taken the phrases to have
the same meaning. An alternative definition
distinguishes reference frames from coordi-
nate systems. We note in the following text
that coordinate systems which are rotated,
but not rotating, with respect to each other
both calculate the same time-derivative of a
given vector. Because these coordinate sys-
tems are equivalent in this regard they are
sometimes called the same reference frame.
That is, some people consider one reference
frame to be the set of all coordinate systems
that are glued to each other, no matter what
their position or orientation. In this way of
thinking, a frame is made manifest by the
use of one of its coordinate systems, but no
particular coordinate system is unique to the
frame.

mutually orthogonal directions represented by base vectors. You can think of a
reference frame as a giant piece of graph paper, or in 3-D as a giant jungle gym, that
permeates space. It has the look of a wire frame. Because we will use various frames,
we name them. We always have one frame that we think of as fixed for the purposes
of Newtonian mechanics. We call this frame F (or sometimes N ). Most often we
choose a frame that is ‘glued’ to the ground with an origin at a convenient point and
with at least one base vector lined up with something convenient (e.g., up, sideways,
along a slope, along the edge of an important part, etc.). F is a frame in which the
mechanics laws we use are accurate. We define it by its origin and the direction of
its coordinate axes, thus we would write

F is 0xyz or F is O ı̂ ̂ k̂.

where we would generally have a picture showing the position of the origin and the
orientation of the coordinate axes (see Fig. 9.18).

When we write casually ‘position ⇀
r ’ of a point we mean ⇀

rP/0. When we write

‘velocity ⇀
v ’ we mean

d

dt
⇀
r as calculated in F . That is, if ⇀

r = x ı̂ + y̂ + zk̂ then we

define the derivative of ⇀
r with respect to t in F as

F d ⇀
r

dt
= F˙⇀r = ẋ ı̂ + ẏ̂ + żk̂.

The script F shows explicitly that when we take the time derivative of the vector we
take the time derivative of its components, using the components associated with F
and holding constant the base vectors associated with F . That is

F d ⇀
vP/0

dt
= F˙⇀r P/0 are just fancy ways of writing what we have been calling ⇀

v .

The elaborate notation just makes explicit how ⇀
v is defined. The only need for this

elaborate notation is if there is ambiguity. There is only ambiguity if more than one
reference frame is used in a given problem.

ı̂'
̂'

B

'

A

P

B

Figure 9.19: A second reference frame
B is defined by an origin 0’ and coordinate

axes x ′y′z′ or base vectors ı̂ ′̂ ′k̂
′
. Once

the x ′y′ (or ı̂ ′̂ ′) directions are chosen the

z′ (or k̂
′
) direction is implicitly defined by

the right hand rule.
(Filename:tfigure.addrefframe)

Using more than one reference frame
Let’s add a second reference frame called B glued to and oriented with the roof of
the building. We will always use script capital letters (A, B, C, D, E , F or N ) to
name reference frames. We define B by writing

B is 0′x ′y′z′ or B is O ′ ı̂′̂ ′
k̂

′

and by drawing a picture (see Fig. 9.19). This new frame, as we have drawn it, is
also a good Newtonian or fixed frame. So we could write all positions using the B
coordinates and base vectors and then proceed with all of our mechanics equations
with the only confusion being that gravity doesn’t point in the −̂

′ direction, but in
some crooked direction relative to ı̂

′ and ̂
′ which we would have to work out from

the angle of the roof. Although one hardly notices when using just a single fixed
frame, we actually use frames for three somewhat distinct purposes:
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I. To define a vector. For example if we were tracking the motion of a canon ball
at P we could define its position vector ⇀

r as ⇀
rP/0, using frame F to define ⇀

r .
Or we could define ⇀

r as ⇀
rP/O′ using frame B to define ⇀

r .
II. To assign coordinate values to a given vector. For example, the vector ⇀

rB/A
could be written as

⇀
rB/A = ⇀

rB/A,

4 mı̂ + 5 m̂ = 6 mı̂
′ − 2.24 m̂

′
.

Alternatively, if we just want to look at the components of a given vector we
use []F to indicate the components of the vector in []s using the base vectors
of F . Thus

[⇀
rB/A]F = [4 m, 5 m]′ and [⇀

rB/A]B = [6 m, −2.23 m]′

where we have used []′ to put the components in their standard column form
(though this is a picky detail). Note that although ⇀

rB/A = ⇀
rB/A that

[⇀
rB/A]F �= [⇀

rB/A]B

because

[
4 m
5 m

]
�=

[
6 m

2.23 m

]
III. To find the rate of change of a given vector. The position of P relative to A

changes with time. We can calculate this rate of change two different ways.
First using frame F

F d ⇀
vP/A

dt
= F˙⇀r P/A =

(
d

dt
xP/A

)
ı̂ +

(
d

dt
yP/A

)
̂

or more informally as
F˙⇀r = ẋ ı̂ + ẏ̂

if we are clear in our minds that x and y are the coordinates of P relative to
A. But we can also calculate the rate of change of the same vector ⇀

rP/A using
frame B as

Bd ⇀
rP/A

dt
= B˙⇀r P/A =

(
d

dt
x ′

P/A

)
ı̂
′ +

(
d

dt
y′

P/A

)
̂

′

or more informally as
B˙⇀r = ẋ ′ ı̂′ + ẏ′̂ ′

.

For the two frames F and B
B˙⇀r = F˙⇀r because the two frames are not rotating

relative to each other. Specifically, for F and B the formula for finding x and y
from x ′ and y′ does not involve time. Similarly, the formulas for finding ı̂

′ and
̂

′ from ı̂ and ̂ do not involve time. For frames that are rotated with respect
to each other but not rotating, the two time derivatives of a given vector are
related the same way the vector itself is related to itself in the two frames. The
vectors are the same but their coordinates are different. That is, for rotated but
not relatively rotating frames

⇀
rP/A = ⇀

rP/A and
F d ⇀

rP/A

dt
=

Bd ⇀
rP/A

dt

but [⇀
rP/A]F �= [⇀

rP/A]B and [
F d ⇀

rP/A

dt
]F �= [

F d ⇀
rP/A

dt
]B .

Going back and forth between these three uses of frames with ease is one of the
advanced skills of a person who can analyze the dynamics of complex systems (And
being confused about the distinctions is an almost universal part of learning advanced
dynamics).
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Example: Two fixed frames F and B

Consider F and B both to be fixed to the ground. Let’s look at ⇀
rP/A

where P is moving at up at constant rate (see Fig. 9.20). First look at the
position using both frames:

⇀
rP/A = ⇀

rP/A and

ct ̂ =
(√

2ct/2
)

ı̂
′ +

(√
2ct/2

)
̂

′ but

[⇀
rB/A]F = [ct, 0]′ �= [⇀

rP/A]B = [
√

2ct/2,
√

2ct/2]′.

Now look at the rate of change of position using both frames. First F :

F d ⇀
rP/A

dt
= F˙⇀r P/A =

(
d

dt
xP/A

)
ı̂ +

(
d

dt
yP/A

)
̂

= c̂

Then the rate of change of ⇀
rB/A as calculated in B:

Figure 9.20: A particle P is moving up
at speed c. Two fixed frames F and B are
used to keep track of it.

(Filename:tfigure.gluedframes)Bd ⇀
rP/A

dt
= B˙⇀r P/A =

(
d

dt
x ′

P/A

)
ı̂
′ +

(
d

dt
y′

P/A

)
̂

′

= (
√

2c/2)ı̂
′ + (

√
2c/2)̂

′ = c̂

You can quickly verify that
F d

⇀
rP/A
dt =

Bd
⇀
rP/A
dt by noting that ı̂′ = √

2(ı̂+
̂)/2 and ̂

′ = √
2(−ı̂ + ̂)/2. ✷

So long as B is not rotating with respect to F then the rate of change of a
given vector is the same in both reference frames.

ı̂'

ı̂''

̂'

̂''

B

'

''

CF

Figure 9.21: A third reference frame C is
defined by an origin 0′′ and coordinate axes

x ′′y′′z′′ or base vectors ı̂ ′′̂ ′′k̂
′′
. In this

case C is moving and rotating with respect
to F and B . Once the x ′′y′′ (or ı̂ ′′̂ ′′) di-

rections are chosen the z′′ (or k̂
′′
) direction

is implicitly defined by the right hand rule.
(Filename:tfigure.carrefframe)

Translating and rotating reference frames
Now look at a third reference frame C that is glued to the roof of the car as it starts
up hill (see Fig. 9.21). We define C by the origin of its coordinate system 0′′ and its
time-varying base vectors ı̂

′′ and ̂
′′. The issues with defining a vector with C and

with writing components using C are the same as for B. However taking the time
derivative of a given vector in C is different then taking the time derivative in B or
F because C is rotating relative to them.

Rate of change of a vector relative to a rotating frame: the ˙⇀Q
formula
Because dynamics involves the time derivatives of so many different vectors (e.g. ⇀

r ,
⇀
v ,

⇀
L,

⇀
HC, and ⇀

ω) it is easier to think about the derivative of some arbitrary or general
vector, call it

⇀

Q, and then apply what we learn to these other vectors.
Recalling our three uses of frames:
I. To define a vector.

II. To express the coordinates of a given vector.
III. To take the time derivative of a vector.

we see that items [III.] and [I.] can be combined. That is, once a vector
⇀

Q is defined
clearly by some means then we can define a new vector as the derivative of that vector

in, say, moving frame C. Once this new vector
C˙⇀Q is defined it can be expressed in

terms of the coordinates of any convenient frame.
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Example: Derivative in a moving frame of a constant vector

Consider as
⇀

Q the relative position vector ⇀
rP/A of the points A and P

that do not move in the fixed frame F . That is, the points A and B don’t
move in the ordinary sense of the words (see Fig. 9.22). Now also look
at the frame B that is rotating with respect to F at the rate θ̇ . We have

Figure 9.22: A fixed frameF and a rotat-
ing frame B both keep track of the position
vector ⇀

rP/A.
(Filename:tfigure.framederiv)

⇀
rP/A = ⇀

rP/A


̂ = 
 sin θ ı̂
′ + 
 cos θ ̂

′

So we can now calculate the derivative in each frame by holding the
corresponding base vectors as constant. So

F d ⇀
rP/A

dt
= 
̇̂ = ⇀

0

and
Bd ⇀

rP/A

dt
= 
θ̇ cos θ ı̂

′ − 
θ̇ sin θ ̂
′

= 
θ̇
(
cos θ ı̂

′ − sin θ ̂
′)︸ ︷︷ ︸

ı̂

= 
θ̇ ı̂

That is, the stationary vector ⇀
rP/A and the rotating frame B define a

new vector, the derivative of ⇀
rP/A in B. This is also ⇀

vP/B − ⇀
vA/B , the

difference between the velocity of P and the velocity of A in the frame
B. This new vector can be expressed in any coordinate system of choice
for example the ı̂ ̂ system. So we wrote above

Bd ⇀
rP/A

dt
= 
θ̇ ı̂

which looks mixed up but isn’t. The frame B is used to help define a
vector which is then expressed in the coordinates of F . ✷

Using the moving-frame derivative to calculate the fixed-
frame derivative
Given a new vector

C˙⇀Q, the derivative of
⇀

Q as calculated in a rotating frame C, one

calculation of common use is the determination of the derivative
F ˙⇀Q of the same vector

in the fixed frame F .
First think of a line segment that is marked between two points that are glued to

a moving frame C. We know (at least in 2-D and for fixed axis rotation) that

⇀
v B/A = ⇀

ωC × ⇀
r B/A.

Likewise for any vector which is fixed in C. It is especially useful to apply this

O,O''

x''

x

y
y''  

[
⇀

Q(t) is an arbitrary vector
not attached to C or F .]

⇀

Q(t)

C

F

Figure 9.23: A fixed frame F defined
by Oxyz and a moving frame C defined by
O ′x ′y′z′. Also shown is an arbitrary vector
⇀

Q which changes relative to both frames.
(Filename:tfigure8.qdot1)

formula to unit base vectors, so

˙̂ı′′ = ⇀
ωC × ı̂

′′
,

˙̂ ′′ = ⇀
ωC × ̂

′′
, and (9.22)

˙̂
k

′′ = ⇀
ωC × k̂

′′
.
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In some minds, Eqns. 9.22 are the core of rigid body kinematics. The two page box
at the end of the section shows how these relations give ‘the Q dot’ formula: For any
time dependent vector

⇀

Q

F ˙⇀Q = C˙⇀Q + ⇀
ωC/F × ⇀

Q. (9.23)

or more simply, but less explicitly,

˙⇀Q = ˙⇀Qrel + ⇀
ω × ⇀

Q.

where
⇀

Qrel is the time derivative of
⇀

Q relative to the moving frame of interest (in
this case C). This formula says that

the derivative of a vector with respect to a Newtonian frame F (or

‘absolute derivative’) can be calculated as the derivative
C˙⇀Q of the vector

with respect to a moving frame C, plus a term that corrects for the rotation
of frame C relative to frame F , ⇀

ωC × ⇀

Q.

Note that if
⇀

Q is a constant in the frame C, like the relative position vector of two

points glued to C, then
C˙⇀Q = ⇀

Qrel = ⇀

0 and the ˙⇀Q formula reduces to

F ˙⇀Q = ⇀
ω × ⇀

Q.

The ˙⇀Q formula 9.23 is useful for the derivation of a variety of formulas and is also
useful in the solution of problems.

While we have shown how to use this formula to calculate the rate of change of a
vector with respect to a Newtonian frame, the formula can be used to calculate its rate
of change with respect to a non-Newtonian frame. Letting A and B be two possibly
non-Newtonian frames, the ˙⇀Q formula for the rate of change of

⇀

Q with respect to
frame A is

A·
⇀

Q= B˙⇀Q + ⇀
ωB/A × ⇀

Q. (9.24)

Both A and B could be non-Fixed (non-Newtonian).

Summary of the ˙⇀Q formula
For a vector

⇀

Q fixed in B,

˙⇀Q = ⇀
ωB × ⇀

Q or
F ˙⇀Q = ⇀

ωB/F × ⇀

Q.

For any time dependent vector
⇀

Q,

˙⇀Q = B˙⇀Q + ⇀
ωB × ⇀

Q or
F ˙⇀Q = B˙⇀Q + ⇀

ωB/F × ⇀

Q.
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Some examples of applying the ˙⇀Q formula are:

˙⇀r P/O ′ = B˙⇀r P/O ′ + ⇀
ωB × ⇀

r P/O ′ (absolute velocity of a point P relative to O ′)
˙̂ı′ = ˙̂ı′rel︸︷︷︸

⇀

0

+⇀
ωB × ı̂

′ (rate of change of a rotating unit vector in B)

The varying base vectors method of computing velocity and
acceleration
One way to calculate velocity, acceleration is to express the position of a particle in
terms of a combination of based vectors, some of which change in time. Velocity
and acceleration are then determined by directly differentiating the expression for
position, taking account that the base vectors themselves are changing. This method
is sometimes convenient for bodies connected in series, one body to the next, etc.
The overall approach is as follows:

1) Glue a coordinate system to every moving body. If needed, also create moving
frames that move independently of any particular body.

2) Call the basis vectors associated with these frames ı̂, ̂ , k̂ for the fixed frame

F ; ı̂
′, ̂

′, k̂
′

for the moving frame B; and ı̂
′′, ̂

′′, k̂
′′

for the moving frame C,
etc.

3) Evaluate all of the relative angular velocities; ⇀
ωB/F , ⇀

ωC/B , etc. in terms of
the scalar angular rates θ̇ , φ̇, etc. and the base vectors glued to the frames.

4) Express all of the absolute angular velocities in terms of the relative angular
velocities.

5) Differentiate to get the angular accelerations using, for example,

˙̂ı′ = ⇀
ωB × ı̂

′ or
˙̂ ′′ = ⇀

ωC × ̂
′′

6) Write the position of all points of interest in terms of the various base vectors.

7) Differentiate the position to get the velocities (again using ˙̂ ′′ = ⇀
ωC × ̂

′′, etc.)
8) Differentiate again to get acceleration.

First, reconsider the bug crawling on the tire in figure 9.24.

Example: Absolute velocity of a point moving relative to a moving
frame: Bug crawling on a tire

We write the position of the bug in terms of the various basis vectors as

⇀
r P/O = ⇀

r O ′/O + ⇀
r P/O ′

=

⇀
r O′/O︷ ︸︸ ︷

d ı̂ + R̂ +

⇀
r P/O′︷ ︸︸ ︷

s ı̂′ + 
̂
′
) .

To get the absolute velocity
F d
dt (

⇀
r P/O) of the bug at the instant shown,

we differentiate the position of the bug once, using the product rule and
the rates of change of the rotating basis vectors with respect to the fixed
frame, to get

d(t)

B
F x

y

O'

x ′

y′

⇀
r O'/O

⇀
r P/O

⇀
r P/O'

⇀
r P'/O',

P, P'


(t)

sR

θ(t)

Figure 9.24: The xyz coordinate system
is attached to the fixed frame with basis vec-
tors ı̂, ̂ , k̂ and the x ′y′z′ coordinate system
is attached to the rolling tire with basis vec-

tors ı̂ ′, ̂ ′, k̂
′

.The absolute angular veloc-

ity of the tire is ⇀
ωB/F = ⇀

ωB = −θ̇ k̂
′ =

−θ̇ k̂.
(Filename:tfigure8.alt.meth1)
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˙⇀r P/O = ⇀
v P = ḋ ı̂ + Ṙ︸︷︷︸

0

̂ + ṡ︸︷︷︸
0

ı̂
′ + s ˙̂ı′ + 
̇̂

′ + 
 ˙̂ ′

= ḋ ı̂ + s(⇀
ωB × ı̂

′
) + 
̇̂

′ + 
(
⇀
ωB × ̂

′
)

= ḋ ı̂ + s(−θ̇ k̂
′ × ı̂

′
) + 
̇̂

′ + 
(−θ̇ k̂
′ × ̂

′
)

= ḋ ı̂ + 
θ̇ ı̂
′ + (
̇ − sθ̇ )̂

′
. (9.25)

✷

Example: Absolute acceleration of a point moving relative to a mov-
ing frame (2-D): Bug crawling on a tire, again

Differentiating equation 9.25 from the example above again, we get the

absolute acceleration
F d2

dt2 (
⇀
r P/O) = F d

dt (
⇀
v P ) of the bug at the instant

shown,

¨⇀r P/O = ˙⇀v P = ⇀
a P = d̈ ı̂ + (
θ̈ + 
̇θ̇ )ı̂

′ + 
θ̇(−θ̇ k̂
′ × ı̂

′
)

+(
̈ − sθ̈ − ṡ︸︷︷︸
0

θ̇ )̂
′ + (
̇ − sθ̇ )(−θ̇ k̂

′ × ̂
′
)

= d̈ ı̂ + (
θ̈ − sθ̇2 + 2
̇θ̇ )ı̂
′ + (
̈ − 
θ̇2 − sθ̈ )̂

′
.

✷

Summary of the varying base-vector method
In the varying base vector method, we calculate the velocity of a point by looking
at the position as the sum of two position vector, one of which is expressed in the
moving base vectors. We then differentiate the position, taking account that the base
vectors of the moving frame change with time. In general

x

y

x'

y'

P

⇀
r P

⇀
r P/O′

⇀
r O′/O

B

F
O

O'

Figure 9.25: The position of a point P
relative to the origin of a fixed frame F
is represented as the sum of two vectors:
the position of the new origin relative to the
old, and the position of P relative to the new
origin. (Here we use “new” as an informal
synonym for “moving frame”.)

(Filename:tfigure8.alt.app2)

⇀
v P = d

dt
⇀
r P

= d

dt

[
⇀
r O ′/O + ⇀

r P/O ′
]

= d

dt

[
(x ı̂ + y̂ + zk̂) + (x ′ ı̂′ + y′̂ ′ + z′k̂

′
)
]

= (ẋ ı̂ + ẏ̂ + żk̂) + (ẋ ′ ı̂′ + ẏ′̂ ′ + ż′k̂
′
) +[

x ′(⇀
ωB × ı̂

′
) + y′(⇀

ωB × ̂
′
) + z′(⇀

ωB × k̂
′
)
]

We could calculate ⇀
a P similarly using a combination of the product rule of differen-

tiation and the facts that ˙̂ı′ = ⇀
ωB × ı̂

′, ˙̂ ′ = ⇀
ωB × ̂

′, and
˙̂
k

′ = ⇀
ωB × k̂

′
, and would

get a formula with 15 non-zero terms.
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9.1 The ˙⇀Q formula

We think about some vector
⇀

Q as a quantity that could be rep-
resented by an arrow. We can write

⇀

Q using the coordinates

of the fixed Newtonian frame with base vectors ı̂, ̂ , k̂:
⇀

Q =
Qx ı̂ + Qy ̂ + Qz k̂. Similarly we could write

⇀

Q in terms of the
coordinates of some moving and rotating frame B with base vectors

ı̂ ′
, ̂ ′

, k̂
′
:

⇀

Q = Qx ′ ı̂ ′ + Qy′ ̂ ′ + Qz′ k̂
′
. Now of course

⇀

Q = ⇀

Q

so Qx ı̂ + Qy ̂ + Qz k̂ = Qx ′ ı̂ ′ + Qy′ ̂ ′ + Qz′ k̂
′
.

Similarly,
⇀̇

Q = ⇀̇

Q so long as what we mean by
⇀̇

Q is its derivative

in a fixed frame. That is, we use
⇀̇

Q as an informal notation for
F⇀̇

Q =
F d

⇀

Q

dt
. We can calculate

⇀̇

Q the same way we have from the

start of the book, namely,
⇀̇

Q = Q̇x ı̂ + Q̇y ̂ + Q̇z k̂.

We didn’t have to use the product rule of differentiation because the

unit vectors ı̂, ̂ , and k̂, associated with a fixed frame, are constant
in time.

What if we wanted to use the coordinate information that was
given to us by a person who was moving and rotating with the moving

frame B? Now we calculate
⇀̇

Q taking account that the B base
vectors change in time.

⇀̇

Q = d

dt
[Qx ′ ı̂ ′ + Qy′ ̂ ′ + Qz′ k̂

′
]

= [Q̇x ′ ı̂ ′ + Q̇y′ ̂ ′ + Q̇z′ k̂
′
]︸ ︷︷ ︸

B⇀̇

Q

(9.26)

+ [Qx ′ ˙̂ı ′ + Qy′ ˙̂ ′ + Qz′
˙̂
k

′
]︸ ︷︷ ︸

?

.

The first term in the product rule is just the derivative of
⇀

Q in the

moving frame
B⇀̇

Q. That is,
B⇀̇

Q is calculated by differentiating the
components in B holding the base vectors in B fixed. The second

term depends on evaluating ˙̂ı ′, ˙̂ ′, and
˙̂
k

′
. We know (at least for

2-D and for fixed-axis rotation in 3-D) that

˙̂ı ′ = ⇀
ωB × ı̂ ′

,

˙̂ ′ = ⇀
ωB × ̂ ′

, and (9.27)
˙̂
k

′ = ⇀
ωB × k̂

′
.

Eqns. 9.27 are the core of rigid body kinematics.
Now we can go back to the second group of terms in Eqn. 9.26.

? = [Qx ′ ˙̂ı ′ + Qy′ ˙̂ ′ + Qz′
˙̂
k

′
]

= [Qx ′ ⇀
ωB × ı̂ ′ + Qy′ ⇀

ωB × ̂ ′ + Qz′ ⇀
ωB × k̂

′
]

= ⇀
ωB × [Qx ′ ı̂ ′ + Qy′ ̂ ′ + Qz′ k̂

′
]

= ⇀
ωB × ⇀

Q

Going back to Eqn. 9.26 we get the desired result:

F⇀̇

Q =
B⇀̇

Q + ⇀
ωB/F × ⇀

Q. (9.28)

or more simply, but less explicitly,

⇀̇

Q = ⇀̇

Qrel + ⇀
ω × ⇀

Q. (9.29)

Geometric ‘derivation’ of the ˙⇀Q formula
Here is a geometrical ‘derivation’ of the

⇀̇

Q formula in two dimen-
sions. Referring to the figure at right, we look at a vector

⇀

Q at two
successive times. We then look at how

⇀

Q seems to change in a
frame that rotates slightly as

⇀

Q changes. The picture shows how to
account for the difference between the change of

⇀

Q as perceived by
the two different frames.

In detail the parts (a) to (e) of the picture show the following.

• Part (a) shows a vector
⇀

Q at time t .

• Part (b) shows
⇀

Q at time t + �t and the change in
⇀

Q,

�
⇀

Q ≈ ⇀̇

Q · �t .

• Part (c) is like (a) but shows a moving body or frame A.

• Part (d) shows the change in
⇀

Q, (⇀
ωA × ⇀

Q) ·�t , that would
occur if

⇀

Q were fixed (constant) in A.

• Part (e) shows the change in
⇀

Q that would be observed in
the moving frame A.

• Part (f) shows the net change in
⇀

Q, �
⇀

Q, that is the same
as that in (b) above; here, it is shown as the sum of the two
contributions from (d) and (e).

Thus, using A, �
⇀

Q for small �t is composed of two parts: (1) the
�

⇀

Q observed in A(t), and (2) the change in
⇀

Q which would occur
if

⇀

Q were constant in A(t) and thus rotating with it. Dividing �
⇀

Q

by �t gives the ‘
⇀̇

Q formula’,
⇀̇

Q =
A·
⇀

Q +⇀
ωA × ⇀

Q.
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x

y

x

y

y,y'

x,x'

yy'

x 

x' 

y'

x' 

yy'

x 

x' 

(a) (b)

(d)

(c)

(f)

(e)

2D Cartoon of the ˙⇀Q Formula

F ˙⇀Q
in F

F ˙⇀Q
using A

time t time t + �t [�t is small]

[
⇀

Q(t) is an arbitrary vector
not attached to A or F .]

x-y axes fixed in F

⇀

Q(t)

�
⇀

Q = [The total change in
⇀

Q
observed in F in time �t]

⇀

Q(t + �t)

�
⇀

Q≈ ˙ ˙
⇀

Q �t

x'-y' axes fixed in A

A(t)

⇀

Q(t)
⇀
ωA

�θ

�θ

A(t +�t)

�θ ≈ |⇀
ωA|�t

[The change in
⇀

Q, if constant in A,
relative to F in time �t ≈ (�θ k̂)× ⇀

Q

≈ (⇀
ωA ˙�t)× ⇀

Q

≈ (⇀
ωA × ⇀

Q)˙�t.]

[What
⇀

Q would look like from F at
time t + �t if it was constant in A.]

[
A˙⇀Q (�t) ≈ the change in

⇀

Q

relative to A in time �t]
˙

A(t +�t)

⇀

Q(t +�t) A˙⇀Q (�t)˙

A(t + �t)

⇀

Q(t +�t)

⇀

Q(t)

A˙⇀Q (�t)˙≈

�
⇀

Q ≈ (⇀
ωA× ⇀

Q +A˙⇀Q) �t˙

�Q

�θ

≈ (⇀
ωA× ⇀

Q) �t˙

�
⇀

Q = [The total change in
⇀

Q

(observed in F in time �t)]

≈ A˙⇀Q (�t)+(⇀
ωA× ⇀

Q) �t˙ ˙

Two different looks at the change in the vector
⇀

Q, �
⇀

Q, over a time interval �t .



542 CHAPTER 9. Kinematics using time-varying base vectors

SAMPLE 9.5 Acceleration of a point moving in a rotating frame. Consider the

L=2 ft L

L

2L
O

P

A B

v/tube
a/tubeω,ω̇

Figure 9.26: (Filename:sfig8.6.1)

rotating tube of Sample 9.9 again. It is given that the arm OAB rotates with coun-
terclockwise angular acceleration ω̇ = 3 rad/s2 and at the instant shown the angular
speed ω = 5 rad/s. Also, at the same instant, the particle P is falling down with speed
v/tube = 4 ft/s and acceleration a/tube = 2 ft/s2. Find the absolute acceleration of the
particle at the given instant. Take L = 2 ft in the figure.

Solution Let us attach a body frame B to the rigid arm OAB. For calculations we
fix a coordinate system x ′y′z′ in this frame such that the origin O ′ of the coordinate
system coincides with O, and at the given instant, the axes are aligned with the inertial
coordinate axes xyz. Since x ′y′z′ is fixed in the frame B and B rotates with the rigid

arm with ˙⇀ωB = 3 rad/s2k̂ and ⇀
ωB = 5 rad/sk̂, the basis vectors ı̂

′, ̂
′ and k̂

′
rotate

with the same ˙⇀ωB and ⇀
ωB .

θ

P

A

B
O,O'

ı̂

̂

ı̂
′

̂
′

θ

θ

x

y

x'

y'
⇀
rP

Figure 9.27: (Filename:sfig8.6.1a)

In the rotating (primed) coordinate system,

⇀
r P = x ′ ı̂′ + y′̂ ′

⇀
v P = d

dt
(

⇀
r P ) = d

dt
(x ′ ı̂′ + y′̂ ′

)

= ẋ ′ ı̂′ + x ′ ˙̂ı′ + ẏ′̂ ′ + y′ ˙̂ ′

Now, we use the ˙⇀Q formula to evaluate ˙̂ı′ and ˙̂ ′, i.e.,

˙̂ı′ = ⇀
ωB × ı̂

′ = ωk̂
′ × ı̂

′ = ω̂
′

˙̂ ′ = ⇀
ωB × ̂

′ = ωk̂
′ × ̂

′ = −ωı̂
′

Also, note that x ′ is constant since in frame B, the motion of the particle is always
along the tube, i.e., along the negative y′ axis (see Fig. 9.27). Thus, x ′ = 2L , ẋ ′ = 0,
y′ = L , and ẏ′ = −v/tube. Substituting these quantities in ⇀

v P , we get:

⇀
v P = x ′ω̂

′ − v/tube̂
′ + y′(−ωı̂

′
)

= (x ′ω − v/tube)̂
′ − ωy′ ı̂′ (9.30)

Now substituting x ′ = 2L = 4 ft, ω = 5 rad/s, y′ = L = 2 ft, v/tube = 4 ft/s and
noting that ı̂

′ = ı̂, ̂
′ = ̂ at the given instant, we get:

⇀
v P = [(20 − 4)̂ − 10ı̂] ft/s = (−10ı̂ + 16̂) ft/s

We can find ⇀
a P by differentiating Eq. (9.30) and noting again that ı̂

′ = ı̂, ̂
′ = ̂

at the given instant:

⇀
a P = d

dt
(

⇀
v P ) = d

dt
[(x ′ω − v/tube)̂

′ − ωy′ ı̂′]

= ( ẋ ′︸︷︷︸
0

ω + x ′ω̇ −
a/tube︷ ︸︸ ︷
v̇/tube)̂

′ + (x ′ω − v/tube)
˙̂ ′ − (ω̇y′ + ω

−v/tube︷︸︸︷
ẏ′ )ı̂

′ − ωy′ ˙̂ı′

= (x ′ω̇ − a/tube)̂
′ + (x ′ω − v/tube)(−ωı̂

′
) − (ω̇y′ − ωv/tube)ı̂

′ − ωy′(ω̂
′
)

= = a/tube̂
′ + 2ωv/tube ı̂

′ − ω2(x ′ ı̂′ + y′̂ ′
) + ω̇(x ′̂ ′ − y′ ı̂′)

= −2 ft/s2̂ + 40 ft/s2 ı̂ − 25(4ı̂ + 2̂) ft/s2 + 3(4̂ − 2ı̂) ft/s2

= −(66ı̂ + 40̂) ft/s2.

⇀
a P = −(66ı̂ + 40̂) ft/s2

1©

1© This problem is the same as Sample 9.9
and has the same solution. Here we use the
⇀̇

Q formula on various base vectors instead
of using the relative velocity and accelera-
tion formulae.
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SAMPLE 9.6 Rate of change of unit vectors. A circular disk D is welded to a rigid

A
B

θ

x

y

ω
ı̂

̂
D

B

ı̂
′

̂
′

êθ êR

Figure 9.28: (Filename:sfig8.qdot.1)

rod AB. The rod rotates about point A with angular velocity ⇀
ω = ωk̂. A frame B is

attached to the disk and therefore rotates with the same ⇀
ω. Two coordinate systems,

(ı̂
′
, ̂

′
) and (êR, êθ ) are fixed in frame B as shown in the figure.

(a) Find the rate of change of unit vectors êR, êθ , ı̂
′ and ̂

′ using the ˙⇀Q formula.
(b) Express the êR and êθ vectors in terms of ı̂

′ and ̂
′ and verify the results obtained

above for ˙̂eR and ˙̂eθ by direct differentiation.

Solution Since the disk is welded to the rod and frame B is fixed in the disk, the
frame rotates with ⇀

ωB = ωk̂.

(a) To find the rate of change of the unit vectors using the ˙⇀Q formula, we substitute
the desired unit vector in place of

⇀

Q in the formula (Eqn 8.12 of the Text). For
example,

˙̂eR = B ˙̂eR + ⇀
ωB × êR .

It should be clear that B ˙̂eR = 0, since êR does not change with respect to an
observer sitting in frame B. Therefore,

˙̂eR = ⇀
ωB × êR = ωk̂ × êR = ωêθ .

Similarly,

˙̂eθ = B ˙̂eθ︸︷︷︸
⇀

0

+⇀
ωB × êθ = ω

−êR︷ ︸︸ ︷
k̂ × êθ = −ωêR .

˙̂ı′ = B ˙̂ı′︸︷︷︸
⇀

0

+⇀
ωB × ı̂

′ = ωk̂ × ı̂
′ = ω̂

′
.

˙̂ ′ = B ˙̂ ′︸︷︷︸
⇀

0

+⇀
ωB × ̂

′ = ωk̂ × ̂
′ = −ωı̂

′
.

ı̂

̂

êθ

êR

θ

θ

Figure 9.29: (Filename:sfig8.qdot.1a)

(b) Since êR = cos θ ı̂
′ + sin θ ̂

′ and êθ = − sin θ ı̂
′ + cos θ ̂

′, we get their rates
of change by direct differentiation as

˙̂eR = cos θ ˙̂ı′ + sin θ ˙̂ ′

= cos θ(ω̂
′
) + sin θ(−ωı̂

′
)

= ω(− sin θ ı̂
′ + cos θ ̂

′
) = ωêθ ,

˙̂eθ = − sin θ ˙̂ı′ + cos θ ˙̂ ′

= − sin θ(ω̂
′
) + cos θ(−ωı̂

′
)

= −ω(cos θ ı̂
′ + sin θ ̂

′
) = −ωêR .

Here we have used the fact that θ , the angle between the unit vectors êR and
ı̂
′, remains constant during the motion. The results obtained are the same as in

part (a). <
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SAMPLE 9.7 Rate of change of a position vector. A rigid rod OAB rotates counter-

60o O

A B

C

0.2 m

ω

1m

x

y

Figure 9.30: (Filename:sfig8.qdot.2)

clockwise about point O with constant angular speed ω = 5 rad/s. A collar C slides
out on the bent arm AB with constant speed v = 0.5 m/s with respect to the arm.
Find the velocity of the collar using the

⇀

Q formula.

Solution Let ⇀
r C be the position vector of the collar. Then the velocity of the collar

is ˙⇀r C . Let the rod OAB be the rotating frame B. Now we can find ˙⇀r C using the
⇀

Q

formula:
˙⇀r C = B ˙⇀r C + ⇀

ωB × ⇀
r C

To compute ˙⇀r C , let us first find B ˙⇀r C , the rate of change of ⇀
r C as seem in frame B

(this term represents the velocity of the collar you see if you sit on the rod and watch
the collar; also called ⇀

v rel ).

x

y

O

A B

C

r

B

λ̂

ω



⇀
rC

θ

x'

y'

Figure 9.31: (Filename:sfig8.qdot.2a)

⇀
r C = ⇀

r A + ⇀
r C/A

B ˙⇀r C = B ˙⇀r A +B ˙⇀r C/A

Note that the vector ⇀
r A = 
λ̂ does not change in frame B since both its magnitude,


, and direction, λ̂, remain fixed in B. Therefore,

B ˙⇀r A = 0

Now ⇀
r C/A = rı̂′. ⇒ B ⇀

r C/A = rı̂′ = 0.5 m/sı̂′

because ı̂
′ does not change in B and ṙ = speed of the collar with respect to the arm.

(see Figure 9.31) Thus,
B ˙⇀r C = 0.5 m/sı̂′.

Hence,

˙⇀r C = B ˙⇀r C + ωk̂ × (
λ̂ + r ı̂
′
)

= B ˙⇀r C + ωL(k̂ × λ̂) + ωr(k̂ × ı̂
′
)

= ṙ ı̂
′ + ω
(sin θ ı̂ + cos θ ̂) + ωr ̂

′

= 0.5 m/sı̂′ + 5 m/s(

√
3

2
ı̂ + 1

2
̂) + 1 m/s̂ ′

= 4.83 m/sı̂ + 3.5 m/s̂

where we have used the fact that at the given instant, ı̂
′ = ı̂ and ̂

′ = ̂ .

⇀
vC = 4.83 m/sı̂ + 3.5 m/s̂
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9.3 General expressions for velocity and

acceleration
Now that we have some comfort with moving frames we can develope formulas that
are not so strongly attached to base vectors. That is we take account that the base
vectors rotate with the frame, but develop formulas that don’t use the base vectors
explicitly. Thus the formulas we develop here work equally for any frame that is
glued to the rotating frame of choice, independent of its orientation.

Absolute velocity of a point moving relative to a moving frame
Imagine that you know the absolute velocity of some point O ′ on a body B, say the
center of a car, tire and the angular velocity of the body, ⇀

ωB/F . Finally, imagine you
also know the relative velocity of point P , ⇀

v P/B , say of a bug crawling on the tire.
If the frame B is translating or rotating, the velocity of particle P relative to the

frame ⇀
v P/B is not the absolute velocity (the velocity relative to a Newtonian frame).

The absolute velocity in this case is ⇀
v P/F , or more simply ⇀

v P , or more simply still,
just ⇀

v . The relationship between the absolute velocity ⇀
v P/B and the relative velocity

⇀
v P/F ≡ ⇀

v is of interest.

P, P'

O
O'

y

x

z

y'

x'

z'

F B

D
⇀
rP/O

⇀
rP/O'

⇀
rO'/O

Figure 9.32: The position of point P relative to the origin O ′ of moving frame B is ⇀
r P/O ′ . The

position of the origin of the frame B relative to the origin O of the fixed frame F is ⇀
r O ′/O . The

position of point P relative to O is the sum of ⇀
r P/O ′ and ⇀

r O ′/O . The motion of point P relative to
the fixed frame may be complicated.

(Filename:tfigure8.v3)

Let’s start by looking at the position. The position of a point P that is moving is:

⇀
r P/O = ⇀

r O ′/O + ⇀
r P/O ′

where O ′ is the origin of a coordinate system which is glued to the rigid body, as
shown in figure 9.32.

To find the absolute velocity of point P we will use the ˙⇀Q formula, equation 9.23,
for computing the rate of change of a vector. The velocity of P is the rate of change
of its position. Here, we use

⇀

Q = ⇀
r P/O ′

⇀
v P/F = F˙⇀r P/O

= F˙⇀r O ′/O + F˙⇀r P/O ′
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= ⇀
v O ′/F +

F⇀̇
r P/O′︷ ︸︸ ︷

B˙⇀r P/O ′︸ ︷︷ ︸
⇀
v P/B

+⇀
ωB/F × ⇀

r P ′/O ′

The ˙⇀Q formula 9.23 was used in the calculation to compute F ˙⇀r P/O ′

F˙⇀r P/O ′ = B˙⇀r P/O ′ + ⇀
ωB/F × ⇀

r P ′/O ′ . (9.31)

Thus, the ‘three term velocity formula’.

✂✂✍

absolute velocity of
point P

⇀
v P =

1. velocity of refer-
ence point O ′ on body
B

❇❇�⇀
v O ′ + ⇀

v P/B︸ ︷︷ ︸
❇❇�

2. velocity of point
P relative to moving
frame B

+

3. velocity relative
to point O ′ of point
P ′ which is glued to
body and coincident
with point P

✂✂✌︷ ︸︸ ︷
⇀
ωB × ⇀

r P ′/O ′ (9.32)

Another way to write the formula for absolute velocity is as

⇀
v P = ⇀

v P ′ + ⇀
v P/B

where P ′ is a point glued to B which is instantaneously coincident with P , so the
absolute velocity of P ′ is

⇀
v P ′ = ⇀

v O ′ + ⇀
ωB × ⇀

r P ′/O ′ . (9.33)

Reconsider the bug crawling on the tire, body B, in figure 9.33. To find the
absolute velocity of the bug, we need be concerned with how the bug moves relative
to the tire and how the tire moves relative to the ground.

Example: Absolute velocity of a point moving relative to a moving
frame (2-D): Bug crawling on a tire, again

d(t)

B

F
x

y

O’

x ′

y′

⇀
r O’/O

⇀
r P/O

⇀
r P/O’

⇀
r P’/O’,

P, P’


(t)

sR

θ(t)

Figure 9.33: (Filename:tfigure8.velabsbug)

Referring to equation 9.31 on page 546, the absolute velocity of the bug
is

⇀
v P/F = ⇀

v O ′/F + B ˙⇀r P/O ′︸ ︷︷ ︸
⇀
v P/B

+⇀
ωB/F × ⇀

r P/O ′

= Rθ̇ ı̂ + 
̇̂
′ + (−θ̇ k̂

′
) × (s ı̂′ + 
̂

′
)

= Rθ̇ ı̂ + 
θ̇ ı̂
′ + (
̇ − θ̇ )̂

′
.

At the instant of interest, the direction of the bug’s absolute velocity
depends upon the relative magnitudes of 
̇ and θ̇ as well as the orientation
of ı̂

′ and ̂
′. ✷
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As we noted earlier, another way to write the formula for absolute velocity is

⇀
v P = ⇀

v P ′ + ⇀
v P/B

where, in the example above, ⇀
v P ′ = Rθ̇ ı̂ + θ̇ (
ı̂

′ − s̂ ′
) and ⇀

v P/B = 
̇̂
′. At the

instant of concern, we can think of the absolute velocity of the bug as the velocity of
the mark labeled P ′ under the bug plus the velocity of the bug relative to the tire.

Acceleration

We would like to find acceleration of a point using information about its motion
relative to a moving frame. The result, the ‘five term acceleration formula’ is the
most complicated formula in this book. (For reference, it is in Table II, 5c).

Acceleration relative to a body or frame

F

P

O'

y'

x'

z'

B

D⇀
rP/O'

ı̂
′

̂
′k̂

′

Figure 9.34: A body or reference frame
B and a point P move around. We are in-
terested in the acceleration of point P.

(Filename:tfigure8.a1)

The acceleration of a point relative to a body or frame is the acceleration you would
calculate if you were looking at the particle while you translated and rotated with the
frame and took no account of the outside world. That is, if the position of a particle
P relative to the origin O ′ of a coordinate system in a moving frame B is given by:

⇀
r P/O ′ = rPx ′/O ′︸ ︷︷ ︸

x ′

ı̂
′ + rPy′/O ′︸ ︷︷ ︸

y′

̂
′ + rPz′/O ′︸ ︷︷ ︸

z′

k̂
′
,

then the acceleration of the particle P relative to the frame is:

⇀
a P/B = r̈Px ′/O ′︸ ︷︷ ︸

ẍ ′

ı̂
′ + r̈Py′/O ′︸ ︷︷ ︸

ÿ′

̂
′ + r̈Pz′/O ′︸ ︷︷ ︸

z̈′

k̂
′
.

That is, the acceleration relative to the frame takes no account of (a) the motion of
the frame or of (b) the rotation of the base vectors with the frame to which they are
fixed. d(t)

B

F
x

y

O’

x ′

y′

⇀
r O’/O

⇀
r P/O

⇀
r P/O’

⇀
r P’/O’,

P, P’


(t)

sR

θ(y)

Figure 9.35: A bug crawling on a tire at
point P. Point P’ is on the tire and instanta-
neously corresponds to point P.

(Filename:tfigure8.accelrelbug)

Reconsider the bug labeled point P crawling on the tire, body B, in figure 9.35.

Example: Acceleration relative to a frame (2-D): Bug crawling on a
tire, again

If we are sitting on the tire, all that we see is the bug crawling in a straight
line at non-constant rate relative to us. Thus, its acceleration relative to
the tire is

⇀
a P/B = 
̈̂

′
.

So, at the instant of interest, the bug has an acceleration relative to the
tire frame parallel to the y′-axis. ✷



548 CHAPTER 9. Kinematics using time-varying base vectors

Absolute acceleration of a point P′ glued to a moving frame
Imagine that you know the absolute acceleration of some point O ′ at the center of a
frame B, say the center of a car tire. Imagine you also know the angular velocity of
the tire, ⇀

ωB/F , and the angular acceleration, ⇀
αB/F . Then, you can find the absolute

acceleration of a piece of gum labeled point D stuck to the sidewall (see Fig. 9.37).
If we start with the equation 9.33 for the absolute velocity of a point glued to a
moving frame on page 546 and differentiate with respect to time, we get the absolute
acceleration of a point D fixed in a moving frame B as follows:

⇀
a D = d

dt
[⇀
v O ′ + ⇀

ωB × ⇀
r D/O ′ ]

= ⇀
a O ′/O + [ ˙⇀ωB × ⇀

r D/O ′ + ⇀
ωB × (

⇀
ωB × ⇀

r D/O ′)]

= ⇀
a O ′/O + ⇀

αB × ⇀
r D/O ′ + ⇀

ωB × (
⇀
ωB × ⇀

r D/O ′) (9.34)

Example: Absolute acceleration of a point glued to a moving frame
(2-D): Bug crawling on a tire, again

O O'

y
x

z

y'

x'

z'

F B

D
⇀
rD/O

⇀
rD/O'

⇀
rO'/O

P,P'

Figure 9.36: Tracking a moving parti-
cle from two different reference frames. (A
copy of figure ?? on page ??.)

(Filename:tfigure8.a2)

d(t)

B

F

Dgum

x

y

O'

x ′

y′

⇀
r O'/O

⇀
r P/O

⇀
r P/O'

⇀
r P'/O',

P, P'


(t)

sR

θ(y)

Figure 9.37: Gum is glued to a rolling
tire at D. The point P′ glued to the tire is just
where the point P happens to be passing at
the moment of interest.

(Filename:tfigure8.accelgluebug)

Here, the acceleration of point P′ glued to the tire, relative to the tire is
zero, ⇀

a P ′/B = 0 (see Fig. 9.37). The angular velocity of the wheel with

respect to the ground is ⇀
ωB/F = −θ̇ k̂ = −θ̇ k̂

′
. The angular speed is

increasing at a rate θ̈ . Thus, ⇀
αB/F = −θ̈ k̂ = −θ̈ k̂

′
. The position of P ′

relative to O ′ is ⇀
r P ′/O ′ = s ı̂′ + 
̂

′.
Using equation 9.34 on page 548, we get the absolute acceleration

of point P ′ to be

⇀
a P ′/F = ⇀

a O ′/F + ⇀
ωB/F × (

⇀
ωB/F × ⇀

r P ′/O ′) + ⇀
αB/F × ⇀

r P ′/O ′

= Rθ̈ ı̂︸︷︷︸
✂✂✍

acceleration of origin of mov-
ing frame

−

centripetal term

❇❇�︷ ︸︸ ︷
θ̇2(s ı̂′ + 
̂

′
) +

tangential term

✂✂✌︷ ︸︸ ︷
Rθ̈ (s̂ ′ − 
ı̂

′
)

In this example, the absolute acceleration P ′ is due to:

1. the increase in the translational speed of the tire relative to the
ground (acceleration of origin of moving frame),

2. its going in circles at non-constant rate about point O ′ relative to
the ground (‘tangential term’), and

3. ‘centripetal term’ towards the origin of the moving frame. (In three-
dimensional problems, this term is directed towards an axis through
⇀
ω that goes through O’).

✷

Absolute acceleration of a point moving relative to a moving
frame

F

P,P'

O'

y'

x'

z'

B

D⇀
rP/O'

O
y

x

z
⇀
rP/O

⇀
rO'/O

Figure 9.38: Keeping track of P
which instantaneously coincides with point
P’ which is glued to frame B .

(Filename:tfigure8.a3)

If we start with the equation for absolute velocity 9.31 on page 546 and differentiate
with respect to time we get the absolute acceleration of a point P using a moving frame
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B. To do this calculation we need to use the product rule of differentiation. Refer to
the ˙⇀Q formula, equation 9.28 on page 540 in section 9.2. Here is the calculation:

⇀
a P = d

dt
[⇀
v O ′/O + ⇀

v P/B + ⇀
ωB × ⇀

r P/O ′ ]

= ⇀
a O ′/O + (

⇀
a P/B + ⇀

ωB × ⇀
v P/B)

+ [ ˙⇀ωB × ⇀
r P/O + ⇀

ωB × ⇀
v P/B + ⇀

ωB × (
⇀
ωB × ⇀

r P/O ′)]

= ⇀
a O ′/O + ⇀

ωB × (
⇀
ωB × ⇀

r P/O ′) + ⇀
αB × ⇀

r P/O ′︸ ︷︷ ︸
⇀
a P ′

+⇀
a P/B + 2⇀

ωB × ⇀
v P/B .

The collection of terms ⇀
a P ′ is the acceleration of a point P ′ which is glued to body

B and is instantaneously coincident with P . It is the same as ⇀
a D using D = P ′ in

equation 9.34. To repeat 1©, the result is 1© True story. Young Professor X was ex-
citedly teaching this material and got to
eqn. (9.35) which he wrote in big letters on a
fresh clean black board, with explanations
in boxes. He then explained to the class
that this was what they had been building
up to, that this was the climax of the course
(Young professors have different priorities
than older professors, by the way.) There
was still silence in the class. A student
broke the quiet and gently asked “Was it
as good for you as it was for us?”

⇀
a P =

1. acceleration of ref-
erence point O ′ on
body B

❇❇�︷ ︸︸ ︷
⇀
a O ′/O + ⇀

ωB × (
⇀
ωB × ⇀

r P/O ′)︸ ︷︷ ︸
✂✂✍

2. centripetal accel-
eration: acceleration
relative to O ′ of point
glued to body, coinci-
dent with P, and going
in circles around O ′ at
constant rate

+⇀
αB × ⇀

r P/O ′︸ ︷︷ ︸
❇❇�

3. tangential accel-
eration: acceleration
relative to O ′ of point
glued to body, coin-
cident with P, due to
non-constant ⇀

ω

+

4. acceleration of
P relative to moving
frame B

✂✂✌︷ ︸︸ ︷
⇀
a P/B +2 ⇀

ωB × ⇀
v P/B︸ ︷︷ ︸

5. Coriolis accel.

(9.35)

= ⇀
aP′ + ⇀

a P/B + 2⇀
ωB × ⇀

v P/B (9.36)

eqn. (9.35) is the famous and infamous ‘five-term-acceleration’ formula. Famous
because it is given a lot of emphasis by some instructors. Infamous because it takes
some getting used to. Eqn. 9.36 is the three term acceleration formula. It combines
the first three terms in the 5-term formula and interprets them as the acceleration of
the point P′ glued to the moving frame at the same point P now occupies.

The first three terms are acceleration of a point P ′ which is fixed relative to B.
One way to get used to this formula is to find situations where various of the terms
drop out.

Reconsider the bug labeled point P crawling on the tire, body B, in figure 9.39.
To find the absolute acceleration of the bug we need to think about how the bug moves
relative to the tire and how the tire moves relative to the ground.

Example: Absolute acceleration of a point moving relative to a mov-
ing frame (2-D): Bug crawling on a tire, again

d(t)

B

F

Dgum

x

y

O'

x ′

y′

⇀
r O'/O

⇀
r P/O

⇀
r P/O'

⇀
r P'/O',

P, P'


(t)

sR

θ(y)

Figure 9.39: (Filename:tfigure8.accelabsbug)
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From the previous bug examples on page 546 and page 547 we know
that

⇀
v P/B = 
̇̂

′
, and ⇀

a P/B = 
̈̂
′
.

Referring to the five term acceleration formula, equation 9.35 on
page 549, the absolute acceleration of the bug is

⇀
a P/F = ⇀

a O ′/O

+⇀
ωB × (

⇀
ωB × ⇀

r P/O ′)

+⇀
αB × ⇀

r P/O ′

+⇀
a P/B

+2⇀
ωB × ⇀

v P/B

= Rθ̈ ı̂ − θ̇2(s ı̂′ + 
̂
′
) + θ̈ (
ı̂

′ − s̂ ′
)︸ ︷︷ ︸

⇀
a P ′/F

+
̈̂
′ + 2θ̇ 
̇ı̂

′

= Rθ̈ ı̂ + (
θ̈ − sθ̇2 + 2θ̇ 
̇)ı̂
′ + (−sθ̈ + 
̈ − 
θ̇2)̂

′
.

So, at the instant of interest, the bug’s absolute acceleration is due to:

1. the translational acceleration of the tire, ⇀
a O ′/O = Rθ̈ ı̂

2. the centripetal acceleration of going in circles of radius
√

s2 + 
2

about the center of the tire as it rolls, −θ̇2(s ı̂′ + 
̂
′
), pointing at

the center of the tire,
3. the tangential acceleration of going in circles about the center of

the tire as the tire rolls at non-constant rate, θ̈ (
ı̂
′ − s̂ ′

),
4. the acceleration of the bug relative to the tire as it crawls on the

line, ⇀
a P/B = 
̈̂

′, and
5. the Coriolis acceleration caused, in part, by the change in direction,

relative to the ground, of the velocity of the bug relative to the tire,
2θ̇ 
̇ı̂

′.
Items 1, 2 and 3 sum to be the acceleration of point P ′ on the tire but
instantaneously coinciding with moving point P. ✷

Motion relative to a point versus motion relative to a frame
We can now give a different interpretation of the expressions we have been using
⇀
vB/A and ⇀

aB/A. Rather than thinking of ⇀
vB/A as the difference between ⇀

vB and ⇀
vA

we can think of ⇀
vB/A as the ⇀

vB/A where A is a frame with origin that moves with
point A and which has no rotation rate relative to F . That is

⇀
vB/A means ⇀

vB/A

Similarly,
⇀
aB/A means ⇀

aB/A.
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9.2 THEORY
Relation between moving frame formulae and polar coordinate formulae

A similarity exists between the polar coordinate velocity formula

⇀
v = ṘêR + Rθ̇ êθ

and the second two terms in the ‘three-term’ velocity formula

⇀
v P = ⇀

v O ′/O + ⇀
ωB × ⇀

r P/O ′ + ⇀
v P/B .

In fact, we have tried to build your understanding of moving frames
by means of that connection.

Similarly, the polar coordinate formula for acceleration

⇀
a = (R̈ − Rθ̇2)êR + (2Ṙθ̇ + Rθ̈ )êθ

is somehow closely linked to the last four terms of the ‘5-term’
acceleration formula

⇀
a P = ⇀

aO ′/O + ⇀
a P/B + ⇀

ω × (
⇀
ω × ⇀

r P/O ′ )

+⇀̇
ω × ⇀

r P/O ′ + 2⇀
ωB × ⇀

v P/B .

Let’s make these connections explicit. Imagine a particle P
moving around on the xy-plane.

x

y

x'
y'

O, O'

⇀
R

θ

P

êθ = ̂
′

êR = ı̂
′

F ≡ fixed frame xy
B ≡ rotating frame x ′y′

Let’s create a moving frame B with rotating coordinate system x ′y′
attached to it whose origin O ′ is coincident with origin O of a coordi-
nate system xy attached to a fixed frame F . Let this frame rotate in
exactly such a way so that the particle is always on the x ′-axis. So, in
this frame, ⇀

r P/O ′ = Rı̂ ′, ⇀
v P/B = Ṙı̂ ′, and ⇀

a P/B = R̈ı̂ ′. Also,

the frame motion is characterized by ⇀
v O ′/O = ⇀

0 ,
⇀
aO ′/O = ⇀

0 ,
⇀
ωB = θ̇ k̂, and ⇀̇

ωB = θ̈ k̂. So, if we plug in the three-term velocity

formula, we get

⇀
v P = ⇀

v O ′/O + ⇀
ωB × ⇀

r P/O ′ + ⇀
v P/B

= ⇀
0 + (θ̇ k̂) × (Rı̂ ′

) + Ṙı̂ ′

= Rθ̇ ̂ ′ + Ṙı̂ ′

= Rθ̇ êθ + Ṙêr (since ı̂ ′ ‖ êr and ̂ ′ ‖ êθ )

which is the polar coordinate velocity formula.

Similarly, if we plug into the five-term acceleration formula, we
get

⇀
a P = ⇀

aO ′/O + ⇀
a P/B + ⇀

ω × (
⇀
ω × ⇀

r P/O ′ )

+⇀̇
ω × ⇀

r P/O ′ + 2⇀
ωB × ⇀

v P/B

= ⇀
0 + R̈ı̂ ′ + θ̇ k̂ × (θ̇ k̂ × Rı̂ ′

)

+(θ̈ k̂) × (Rı̂ ′
) + 2(θ̇ k̂) × Ṙı̂ ′

= (R̈ − Rθ̇2)êR + (2Ṙθ̇ + Rθ̈ )êθ

Again, we recover the appropriate polar coordinate formula.

We have just shown how the polar coordinate formulae are spe-
cial cases of the relative motion formulae.

Warning!

In problems where we want the rotating frame to be a rotating body
on which a particle moves, the polar coordinate formulae only corre-
spond term by term with the relative motion formulae if the particle
path is a straight radial line fixed on a 2D body, as in the example of
a bug walking on a straight line scribed on the surface of a rotating
CD or a bead sliding in a tube rotating about an axis perpendicular
to the tube.

particle moves on
straight line radial
path marked on a

2D body B
θ

ω

B

Since we are sometimes interested in more general relative motions,
the polar coordinate formulae do not always apply and we must make
use of the more general relative motion formulae.



552 CHAPTER 9. Kinematics using time-varying base vectors

SAMPLE 9.8 A ‘T’ shaped tube is welded to a massless rigid arm OAB which

L=2 ft L

L

2L
O

P

A B

v/tube
ω

Figure 9.40: (Filename:sfig8.1.1a)

rotates about O at a constant rate ω = 5 rad/s. At the instant shown a particle P is
falling down in the vertical section of the tube with speed v/tube = 4 ft/s. Find the
absolute velocity of the particle. Take L = 2 ft in the figure.

Solution Let us attach a frame B to arm OAB. Thus B rotates with OAB with
angular velocity ⇀

ωB = ωk̂ where ω = 5 rad/s. To do calculations in B we attach
a coordinate system x ′y′z′ to B at point O. At the instant of interest the rotating
coordinate system x ′y′z′ coincides with the fixed coordinate system xyz. (Since the
entire motion is in the xy-plane, the z-axis is not shown in the figure). Let P ′ be a
point coincident with P but fixed in B. Now,

⇀
v P = ⇀

v P ′ + ⇀
v rel

where

P',P

O,O'

ı̂

̂

⇀
vP'

⇀
vP

⇀
v rel

x

y

x'

y'
⇀
rP'/O'

⇀
vP'

Figure 9.41: (Filename:sfig8.1.1b)

⇀
v P ′ = ⇀

v O ′︸︷︷︸
⇀

0

+⇀
ωB × ⇀

r P ′/O ′

= ωk̂ × (2L ı̂ + L ̂)

= 2ωL ̂ − ωL ı̂,

and

⇀
v rel = Velocity relative to the frame B

= −v/tube̂ .

Thus,

⇀
v P = ⇀

v P ′ + ⇀
v rel

= −ωL ı̂ + (2ωL − v/tube)̂

= −5 rad/s · 2 ftı̂ + (2 · 5 rad/s · 2 ft − 4 ft/s)̂

= −10 ft/sı̂ + 16 ft/s̂ .

⇀
v P = −10 ft/sı̂ + 16 ft/s̂

Comments: The kinematics calculation is equivalent to the vector addition shown in
Figure 9.41. The velocity of P is the sum of ⇀

v P ′ and ⇀
v rel = ⇀

v P/B .
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SAMPLE 9.9 Acceleration of a point in a rotating frame. Consider the rotating

L=2 ft L

L

2L
O

P

A B

v/tube
a/tubeω,ω̇

Figure 9.42: (Filename:sfig8.2.1)

tube of Sample 9.8 again. The arm OAB rotates with counterclockwise angular
acceleration ω̇ = 3 rad/s2 and, at the instant shown, its angular speed ω = 5 rad/s.
Also, at the same instant, the particle P falls down with speed v/tube = 4 ft/s and
acceleration a/tube = 2 ft/s2. Find the absolute acceleration of the particle at the
given instant. Take L = 2 ft in the figure.

Solution We consider a frame B, with coordinate axes x ′y′z′, fixed to the arm

x

y

x'

y'

O,O'

P,P'

O'

P'

L

2L

B

⇀
αB × ⇀

r P′/O′

-ω2
B

⇀
r P′/O′

rP′/O′

Figure 9.43: Acceleration of point P′. P′
is fixed to the frame B and at the moment
coincides with point P. Therefore, ⇀

a P ′ =
⇀
αB × ⇀

r P ′/O ′ − ω2
B

⇀
r P ′/O ′ .

(Filename:sfig8.2.1a)

OAB and thus rotating with ⇀
ωB = ωk̂ = 5 rad/sk̂ and ⇀

αB = ω̇k̂ = 3 rad/s2k̂. The
acceleration of point P is given by

⇀
a P = ⇀

a P ′ + ⇀
acor + ⇀

a rel

where

⇀
a P ′ = acceleration of a point P′ that is fixed in B

and at the moment coincides with P,
⇀
acor = Coriolis acceleration, and
⇀
a rel = acceleration of P relative to frame B.

Now we calculate each of these terms separately. For calculating ⇀
a P ′ , imagine a rigid

rod from point O to point P, rotating with the frame B. Mark the far end of the rod
as P′ (same as point P). The acceleration of this end of the rod is ⇀

a P ′ . To find the
relative terms ⇀

v rel and ⇀
a rel, freeze the motion of the frame B at the given moment and

watch the motion of point P. The non-intuitive term ⇀
acor has no such simple physical

interpretation but has a simple formula. Thus,

⇀
a P ′ =

⇀

0︷︸︸︷
⇀
a O ′ +⇀

αB × ⇀
r P ′/O ′ +

−ω2
B

⇀
r P ′/O′︷ ︸︸ ︷

⇀
ωB × (

⇀
ωB × ⇀

r P ′/O ′)

= ω̇k̂ × (2L ı̂ + L ̂) − ω2(2L ı̂ + L ̂)

= 2ω̇L ̂ − ω̇L ı̂ − 2ω2L ı̂ − ω2L ̂

= −L(ω̇ + 2ω2)ı̂ + L(2ω̇ − ω2)̂

= −(106ı̂ + 38̂) ft/s2,

⇀
acor = 2⇀

ωB × ⇀
v rel

= 2ωk̂ × v/tube(−̂)

= 2ωv/tube ı̂ = 2 · 5 rad/s · 4 ft/s

= 40 ft/s2 ı̂,

⇀
a rel = a/tube(−̂) = −2 ft/s2̂ .

Adding the three terms together, we get

⇀
a P = −106 ft/s2 ı̂ − 38 ft/s2̂ + 40 ft/s2 ı̂ − 2 ft/s2̂

= −66 ft/s2 ı̂ − 40 ft/s2̂ .

⇀
a P = −(66ı̂ + 40̂) ft/s2

Note that the single term ⇀
a P ′ encompasses three terms of the five term acceleration

formula.
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SAMPLE 9.10 A small collar P is pinned to a rigid rod AB at length L = 1 m along

θ

A

P

B

O

r 3r/4

Side view

rodL=1m

disk

x
y

Figure 9.44: (Filename:sfig8.1.2a)

the rod. The collar is free to slide in a straight track on a disk of radius r = 400 mm.
The disk rotates about its center O at a constant ω = 2 rad/s. At the instant shown,
when θ = 45o and the collar is at a distance 3

4r in the track from the center O, find

(a) the angular velocity of the rod AB and
(b) the velocity of point P relative to the disk.

Solution We will think of P in two ways: one as attached to the rod and the other

P',P

P'

P

A

O,O'

O'

xy is the fixed frame. x'y' rotates
with the disk with ωB. P' is fixed
in the rotating frame.

x

y

x'

y'

ı̂

̂

B

⇀
vP'

⇀
vP

⇀
v rel

L

Figure 9.45: (Filename:sfig8.1.2b)

as sliding in the slot. First, let us attach a frame B to the disk. Thus B rotates with
the disk with angular velocity ⇀

ωB = ωk̂ = 2 rad/sk̂. We attach a coordinate system
x ′y′z′ to B at point O. At the instant of interest, the rotating coordinate system x ′y′z′
coincides with the fixed coordinate system xyz. Now let us consider point P ′ which
is fixed on the disk (and hence in B) and coincides with point P at the moment of
interest. We can write the velocity of P as:

⇀
v P = ⇀

v P ′ + ⇀
v rel

where

⇀
v P ′ =

⇀

0︷︸︸︷
⇀
v O ′ +⇀

ωB × ⇀
r P ′/O ′ = ωk̂ ×

(
3

4
r ı̂

′
)

= 3

4
ωr ̂

′ = 3

4
ωr ̂ ,

⇀
v rel ≡ ⇀

v P/B = vrel ı̂
′ = vrel ı̂.

In the last expression, ⇀
v rel = vrel ı̂, we do not know the magnitude of ⇀

v rel and hence
have left it as an unknown vrel, but its direction is known because ⇀

v rel has to be along
the track and the track at the given instant is along the x-axis. Thus,

⇀
v P = 3

4
ωr ̂ + vrel ı̂. (9.37)

Now let us consider the motion of rod AB. Let
⇀

� = �k̂ be the angular velocity of
AB at the instant of interest where � is unknown. Since P is pinned to the rod, it
executes circular motion about A with radius AP = L . Therefore,

⇀
v P = ⇀

� × ⇀
r P/A = �k̂ × L(cos θ ı̂ + sin θ ̂) = �L(cos θ ̂ − sin θ ı̂).(9.38)

But, and this trivial formula is the key, ⇀
v P = ⇀

v P . Therefore, from Eqn. (9.37) and
(9.38),

3

4
ωr ̂ + vrel ı̂ = �L(cos θ ̂ − sin θ ı̂). (9.39)

Taking dot product of both sides of the above equation with ̂ we get

3

4
ωr = �L cos θ

⇒ � = 3ωr

4L cos θ
= 3 · 2 rad/s · 0.4 m

4 · 1 m · 1√
2

= 0.85 rad/s.

Again taking the dot product of both sides of Eqn. (9.39) with ı̂ we get

vrel = −�L sin θ = −0.85 rad/s · 1 m · 1√
2

= −0.6 m/s.

(i)
⇀

� = 0.85 rad/sk̂, (i i) ⇀
v rel = −0.6 m/sı̂
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SAMPLE 9.11 Spinning wheel on a rotating rod in 2-D . A rigid body OA is

PR

r=0.5m

O

A

Q


 = 2m

θ = 30o

ω2

ω̇2

x

y

ω1

Figure 9.46: (Filename:sfig8.2.2)

attached to a wheel that is massless except for three point masses P, Q, and R, placed
symmetrically on the wheel. Each of the three masses is m = 0.5 kg. The rod OA
rotates about point O in the counterclockwise direction at a constant rate ω1 = 3 rad/s.
The wheel rotates with respect to the arm about point A with angular acceleration
ω̇2 = 1 rad/s2 and at the instant shown it has angular speed ω2 = 5 rad/s. Note that
both ω2 and ω̇2 are given with respect to the arm.

Using a rotating frame B attached to the rod and a coordinate system attached to
the frame with origin at O, find

(a) the velocity of the mass P and
(b) the acceleration of the mass P.

Solution Frame B is attached to the rod. We choose a coordinate system x ′y′z′

O,O'

P'

A

x

y

x'

y'

θ

θ
r

⇀
vP'

ω1

B




Figure 9.47: P′ goes in circles around
point O with radius OP′. Therefore, ⇀

v P ′ is
tangential to the circular path at P′.

(Filename:sfig8.2.2a)

in frame B with its origin at O and, at the instant, aligned with the fixed coordinate
system xyz. We consider a point P′ momentarily coincident with point P but fixed in
frame B. Since P′ is fixed in B, it rotates with B with ⇀

ωB = ω1k̂. To visualize the
motion of P′ imagine a rigid rod from O to P′ (see Fig. 9.47). Now we can calculate
the velocity and acceleration of point P′ as follows.

(a) Velocity of point P:
⇀
v P = ⇀

v P ′ + ⇀
v rel.

Now we calculate the two terms separately:

⇀
v P ′ = ⇀

v O ′︸︷︷︸
⇀

0

+⇀
ωB × ⇀

r P ′/O ′

= ω1k̂ × (
⇀
r A/O ′ + ⇀

r P ′/A)

= ω1k̂ × [
(cos θ ı̂ + sin θ ̂)︸ ︷︷ ︸
⇀
r A/O′

+ r(cos θ ı̂ − sin θ ̂)︸ ︷︷ ︸
⇀
r P ′/A

]

= ω1(
 + r) cos θ ̂ − ω1(
 − r) sin θ ı̂

= 3 rad/s · 2.5 m · cos 30o̂ − 3 rad/s · 1.5 m · sin 30o ı̂

= (6.50̂ − 2.25ı̂) m/s.

Since the wheel rotates with angular speed ω2 with respect to the rod, an

A

P

θ

x'

y'
⇀
v rel

Figure 9.48: Velocity of point P with re-
spect to the frame B .

(Filename:sfig8.2.2b)

observer sitting in frame B would see a circular motion of point P about point
A. Therefore,

⇀
v rel = ⇀

ωwheel/B × ⇀
r P/A

= −ω2k̂
′ × r(cos θ ı̂

′ − sin θ ̂
′
)

= −ω2r(cos θ ̂
′ + sin θ ı̂

′
)

= −(2.16̂
′ + 1.25ı̂

′
) m/s.

But at the instant of interest, ı̂
′ = ı̂, ̂

′ = ̂ , and k̂
′ = k̂. So,

⇀
v rel = −(2.16̂ + 1.25ı̂) m/s

Therefore,
⇀
v P = ⇀

v P ′ + ⇀
v rel = 4.33 m/s̂ − 3.50 m/sı̂.

⇀
v P = (−3.50ı̂ + 4.33̂) m/s
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(b) Acceleration of point P: We can similarly find the acceleration of point P:

⇀
a P = ⇀

a P ′ + ⇀
acor + ⇀

a rel

where

P'

O'

A

x'

y'
⇀
aP′

⇀
aP′ = - ω2

B
⇀
r P′/O′

A

P

θ

⇀
v rel

⇀
acor

A

P

θ

⇀
acor = 2⇀

ωB × ⇀
v rel

-ω2
2

⇀
r P/A

˙⇀ω2 × ⇀
r P/A

⇀
a rel = -ω2

2
⇀
r P/A + ˙⇀ω2 × ⇀

r P/A

Figure 9.49: (Filename:sfig8.2.2c)

⇀
a P ′ = acceleration of point P′

= ⇀
a O ′︸︷︷︸

⇀

0

+ ⇀
αB︸︷︷︸
⇀

0

×⇀
r P ′/O ′ + ⇀

ωB × (
⇀
ωB × ⇀

r P ′/O ′)

= −ω2
B

⇀
r P ′/O ′

= −ω2
1[(
 + r) cos θ ı̂ + (
 − r) sin θ ̂ ]

= −9( rad/s)2[2.5 m · cos 30o ı̂ + 1.5 m · sin 30o̂ ]

= −(19.48ı̂ + 6.75̂) m/s2,

⇀
acor = Coriolis acceleration

= 2⇀
ωB × ⇀

v rel

= 2ω1k̂ × ⇀
v rel (see part (a) above for ⇀

v rel).

= (6 rad/s)k̂ × (−2.16̂ − 1.25ı̂) m/s

= (12.99ı̂ − 7.50̂) m/s2,

⇀
a rel = acceleration of P relative to frame B

= ⇀
a P/B = ˙⇀ω2 × ⇀

r P/A − ω2
2

⇀
r P/A

= −ω̇2k̂
′ × r(cos θ ı̂

′ − sin θ ̂
′
) − ω2

2r(cos θ ı̂
′ − sin θ ̂

′
)

= −r [(ω̇2 sin θ + ω2
2 cos θ)ı̂

′ + (ω̇2 cos θ − ω2
2 sin θ)̂

′]
= −0.5 m[(1 rad/s2 · sin 30o + 25( rad/s)2 · cos 30o)ı̂

′

+(1 rad/s2 · cos 30o − 25( rad/s)2 · sin 30o)̂
′]

= (−11.08ı̂
′ + 5.82̂

′
) m/s2

= (−11.08ı̂ + 5.82̂) m/s2.

The term ⇀
a P ′ encompasses three terms of the five term acceleration formula.

The last line in the calculation of ⇀
a rel follows from the fact that at the instant

of interest ı̂
′ = ı̂ and ̂

′ = ̂ .
Now adding the three parts of ⇀

a P we get

⇀
a P = ⇀

a P ′ + ⇀
acor + ⇀

a rel

= −17.57 m/s2 ı̂ − 8.43 m/s2̂ .

⇀
a P = −(17.57ı̂ + 8.43̂) m/s2
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9.4 Kinematics of 2-D mechanisms
An ideal mechanism or linkage is a collection of rigid bodies constrained to move
relative to the ground and each other by hinges but which still has some possible
motion(s). Generally people use the word mechanism or linkage more loosely to
include any collection of machine parts connected by any means.

The analysis of the kinematics of mechanisms is an important part of machine
design. Mechanisms synthesis, coming up with a mechanism design which has desired
motions, is obviously key in creative design, and now days in computer aided design.

Finally, the determination of the dynamics of a mechanism, how it will move
and with what forces, is completely dependent on understanding the kinematics of
the mechanism. The whole subject of mechanism kinematic analysis, though in
some sense a subset of dynamics, is actually a huge and infinitely complex subject
in itself 1©and also a useful subject in itself. Often kinematics is the central interest1© Very advanced aside. The kinematics

of planar linkages is as complicated as the
classification of closed surfaces in any num-
ber of dimensions: spheres, donuts, spheres
with two holes, etc. In math-speak: Any
orientable manifold is a connected compo-
nent of the configuration space of some pla-
nar linkage. This idea was proposed by Bill
Thurston in the 1970’s and later proved by
Kapovich and Millson.

in machine design , and mechanics (force and acceleration) analysis is only used if
something breaks or moves too slowly. This section presents some of the basic ideas
in kinematic analysis. The overall question in mechanism kinematic analysis is this:

Given a collection of parts and a description of how they are connected, in
what ways can they move?

Without getting into the details of the motions yet, the first question to answer is How
many ways can the mechanism move?

Degrees of freedom (DOF)
The number of degrees of freedom (DOF) nDOF of a mechanism is the number of
different ways it can move. More precisely

The number of degrees of freedom nDOF of a mechanism is the minimum
number of configuration variables needed to describe all possible configura-
tions of the mechanism.

The minimum number of configuration variables nDOF is a property of the mechanism.
The choice of what these variables are, however is not unique.

Example: A particle in a plane has 2 degrees of freedom.

The set of ‘configurations’ of a particle in a plane is the set of positions
of the particle. This is fully described by its x and y coordinates. Thus
nDOF = 2. But the configuration is also determined by the particles polar
coordinates R and θ . And there are an infinite number of other pairs of
numbers that could be used to describe the configurations (e.g., the x ′
and y′ coordinates, the w and z coordinates with w = ex and z = ey ,
etc). The minimum number of configuration variables, 2, is unique, but
the choice of variables is not. ✷
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For planar mechanisms one can often determine the number of degrees of freedom
by the following formula

3 · (# of rigid bodies︸ ︷︷ ︸
nbod

) + 2 · (# of particles︸ ︷︷ ︸
npart

) − (# of constraints︸ ︷︷ ︸
ncon

) = nDOF (9.40)

The formula starts with the number of ways one rigid body can move (2 translations
and a rotation makes 3) and one particle can move (just 2 translations) and then
subtracts the restrictions to the motion. In eqn. (9.40) the number ncon of constraints
is counted as the number of degrees of freedom restricted by the connections.

a) hinge (2 constraints)

b) weld (3 constraints)

c) sliding contact (1 constraint)

d) keyed sliding (2 constraints)

e) inextensible link (1 constraint)

f) rolling contact (2 constraints)

(4)

weld 2 or more bolts

ideal massless
wheel

massless inextensible 
         link

no-slip

Figure 9.50: The number of degrees of
freedom that are eliminated by various con-
straints.

(Filename:tfigure.countingconstraints)

Examples of connections and their effect on nDOF

See Fig. 9.50 for some standard idealized connections and their number of constraints.

a) 2 for a pin joint: a pin joint restricts relative motion in 2 directions but still
allows relative rotation. If three bodies are connected at one pin then it counts
as two pin joints and thus 2 × 2 = 4 reductions in the number of degrees of
freedom. There are 6 reductions for 4 bodies connected at one pin, etc.

b) 3 for a welded connection: a weld restricts relative translation in two directions
as well as relative rotation (2 + 1 = 3). So two parts that are welded together
have 2 · 3 − 3 = 3 degrees of freedom. That is, any collection of rigid bodies
welded together is the same as one rigid body. The word ‘weld’ is meant to
include any collection of bolts, glue, string, rivets or bailing wire that prevents
any relative motion.

c) 1 for a sliding contact: the sliding contact restricts relative translation normal
to the contact surfaces and allows translation tangent to the surfaces. Relative
rotation is also allowed.

d) 2 for a keyed sliding contact: allows relative translation in one direction but
disallows translation in one direction as well as rotation.

e) 1 for a massless link hinged at its ends to two bodies: this keeps the distance
between two points fixed which is one restriction (alternatively the bar adds 3
degrees of freedom and each hinge subtracts 2 (+3 − 2 × 2 = −1 degree of
freedom).

f) 2 for a rolling contact: relative slip is not allowed nor is interpenetration.

Be warned that

if some of the constraints are redundant then a system can have more degrees
of freedom than eqn. (9.40) indicates.
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Some simple mechanisms

Fig. 9.51 shows some examples of simple mechanisms and the number of degrees of
freedom. In each case we look at eqn. (9.40): 3 · nbod + 2 · npart − ncon = nDOF.

a) A body connected to ground by a hinge has 1 degree of freedom; the set of
all possible configurations can be described by the angle of the body: nbod =
1, ncon = 2 ⇒ nDOF = 1.

b) An unconstrained body has 3 degrees of freedom; the set of all configurations
can be described by the x and y coordinates of a reference point and by the
rotation θ : nbod = 1, ncon = 0 ⇒ nDOF = 3.

c) A bead on a wire has 1 degree of freedom; its configuration is fully determined
by the distance the bead has advanced along the wire relative to a reference
mark: npart = 1, ncon = 1 ⇒ nDOF = 1.

d) A statically determinate truss has 0 degrees of freedom; a statically de-
terminate truss has no ways to move: nbod = nbars, npart = 0, ncon =
2 · npins + nground const ⇒ nDOF = 0. Note that the number of pins is
more than the number of joints when we studied trusses in statics. There we
focussed on joints as restricted by bars. Here we look at bars as restricted by
joints and a given joint counts 1,2, or 3 times depending on whether it connects
2,3, or 4 bars. Thus the 11 bar truss shown has 3 × 3 + 2 × 2 + 2 = 15 pin
restrictions and three ground restrictions (or 16 pins and one sliding contact).

e) A rolling wheel has 1 degree of freedom; its configuration is fully determined
either by the net angle θ it has rolled or by the x coordinate of its center:
nbod = 1, ncon = 2 ⇒ nDOF = 1.

f) A double pendulum or two-link robot arm has 2 degrees of freedom; its
configuration is determined by the net rotations of its two links (or by the
rotation of the first link and the relative rotation of the second link): nbod =
2, ncon = 4 ⇒ nDOF = 2.

g) A cart with two rolling wheels or a planar rolling bicycle has 1 degree of
freedom; both the rotation of the wheels and the position of the bicycle are
determined by the 1 variable, say, the x coordinate of a reference point on
the vehicle(e.g., the bicycle seat). nbod = 3, ncon = 4 × 2 = 8 (2 hinges
and 2 rolling contacts, the hinge for bicycle steering isn’t relevant for a planar
analysis) ⇒ nDOF = 1.

h) A “four” bar linkage has 1 degree of freedom; the angle of any one of the
bars determines the angles of the others: nbod = 4, ncon = 2 × 4 + 2 + 1 = 11
(there are 4 pin joints between the bars, one pin joint to ground and one roller
connection to the ground) ⇒ nDOF = 1.

i) A slider crank has 1 degree of freedom; the rotation of the crank determines
the configuration of the system nbod = 3, ncon = 3 · 2 + 2 (there are 3 pins and
one keyed connection) ⇒ nDOF = 1 .

j) An ideal gear train (with all gears pinned to ground) has 1 degree of freedom;
the amount of rotation of any one gear determines the rotation of all of the
gears: In this case the counting formula is wrong. Say there are 2 gears, then
nbod = 2, ncon = 3 · 2 = 6 (two pins and one rolling contact) ⇒ nDOF =
0 �= 1. The rolling constraint prevents interpenetration, but this was already
prevented by the hinges at the center of the gears. The constraints are redundant
and the system has more degrees of freedom than eqn. (9.40) indicates.

k) A redundant swing with one horizontal bar suspended by 3 parallel struts
has 1 degree of freedom; the angle of one upright links determines the full
configuration of the mechanism. The counting formula is again wrong: nbod =
4, ncon = 6 · 2 = 12 ⇒ nDOF = 0 underestimates the number of degrees
of freedom because the constraints are redundant.
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l) A 2-D 10-link model of a person with one foot on the ground has 10 degrees
of freedom; the angles of the 10 links determine the full configuration of the
mechanism. There are no redundant constraints and the counting formula
works: nbod = 10, ncon = 10 · 2 = 20 ( counting a hinge at the ground contact
and two hinges at both the hips and the shoulders) ⇒ nDOF = 10.

a) n=1

b) n=3

c) n=1

d) n=0

e) n=1

f) n=2

g) n=1

h) n=1

i) n=1

j) n=1

k) n=1

l) n=10

hockey puck

plane

gear pendulum

2-D, 10 link
model of a
person

redundant
pendulum

gear
trains

slider crank

4-bar
linkage

cart w/ wheels

no slip

double
pendulum

robot arm

no
slip

Statically determinate truss

bead

wire

rolling wheel

Figure 9.51: Some simple mechanisms
and the number of degrees of freedom, n
(called nDOF in the text.
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Configuration variables

Once we know the number of degrees of freedom nDOF of a system it is often useful
to settle on one set of nDOF configuration variables. In this book nDOF will be 1,2 or
at most 3. Thus we pick 1,2 or 3 variables.

Example: Straight line motion

Chapter 6 on straight line motion was mostly about one-degree-of-
freedom systems (nDOF = 1). These systems could all be characterized
by the single configuration variable x , the displacement along the line of
a reference point on the body relative to a reference point on the ground.
All the positions,velocities and accelerations of all points in the system
could be found in terms of x , ẋ and ẍ (in fact all points had (⇀

v = ẋ ı̂ and
⇀
a = ẍ ı̂. ✷

Example: Circular motion about a fixed axis

In chapters 7 and 8 we were almost entirely focussed on systems with
one degree of freedom well characterized by the one configuration vari-
able, the rotation angle θ . For such motions positions, velocities, and
accelerations of all points were determined by the initial positions of the
points θ, θ̇ and ẗheta by equations which you know well by now. ✷

For more general motions we almost always take inspiration from the two examples
above. We use the translation of a conspicuous point, or we use the rotation of a
conspicuous body for a configuration variable. And more of the same if the system
has more than 1 degree of freedom. The natural choice of configuration variables for
some simple mechanisms is given in the text beside Fig. 9.51.

Often our main kinematic task is to express the full configuration of the system
as well as all the velocities and accelerations of all its parts in terms of the positions
of the parts, the configuration variables, and their first and second time derivatives.
Fig. 9.50

Adding relative angular velocities

One last simple kinematic fact is needed before we can plug and chug with the theory
we have so far and apply it to general kinematic mechanisms. It concerns the addition
of rotations and rotation rates. The following example basically tells the whole story
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Example: Double pendulum and the addition of rotation rates

The commonly used configuration variables for the double pendulum
shown in Fig. 9.52 are θ1 and θ2. To actually know the configuration of
the system obviously we need to know φ which is given by

φ = θ1 + θ2 so φ̇ = θ̇1 + θ̇2 and so φ̈ = θ̈1 + θ̈2.

[Aside: One reason for choosing θ2 instead of φ as a configuration
variable is that if one was measuring or controlling the second link, say
as a robotic arm, the angle θ2 can be measured more easily than φ. Also,
it turns out (in hindsight) that the differential equations of motion are
slightly simpler using θ2 instead of φ.] ✷

Figure 9.52: A double pendulums con-
figuration variables are most often taken to
be θ1 and θ2. But one then needs to know
that φ = θ1 + θ2 and that φ̇ = θ̇1 + θ̇2 and
φ̈ = θ̈1 + θ̈2.

(Filename:tfigure.doublependangles)

Looking at the bars as being glued to reference frames (F for the fixed frame, B for
bar AB, and C for bar BC), the above example shows that

⇀
ωC/F = ⇀

ωB/F + ⇀
ωC/B (9.41)

which is often written with the simple notation
⇀
ω = ⇀

ω1 + ⇀
ω2

Which can only be given strict meaning by the more elaborate eqn. (9.41) above it.

Example: Double pendulum (see previous example)

Take ⇀
ωB/F = θ̇1k̂, ⇀

ωC/B = θ̇2k̂ and ⇀
ωC/F = φ̇k̂ and eqn. (9.41) is self

evident from the addition of angles. ✷

Similarly we have

⇀
αC/F = ⇀

αB/F + ⇀
αC/B (9.42)

which is often written with the simple notation
⇀
α = ⇀

α1 + ⇀
α2.

For those going on to study 3-D mechanics (Chapter 12), one should note that, unlike
eqn. (9.41), eqn. (9.42) does not hold in 3-D.

Kinematics of mechanisms

One approach to mechanisms is to do what one can with high-school geometry and
trigonometry, the laws of sines (see page ??), and so on.
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Example: Rod on step using geometry and trigonometry

One end of a rod slides on the ground. The other end slides on a corner
at A (see Fig. 9.53). Given that ⇀

vB = vB ı̂ we can find φ̇ as follows:

h


DB
= tan φ ⇒

{

DB

h
= cos φ

sin φ

}
d

dt

{ }
⇒ 
̇DB

h
= −φ̇

sin2 φ
⇒ φ̇ = −vB sin2 φ

h
✷

Figure 9.53: A rigid rod slides so that it
always touches the ground and the corner
at A. One would like to know the relation
between φ̇ and ⇀

vB.
(Filename:tfigure.rodoncorner)

As the above calculation shows, this problem doesn’t need the heavy machinery of
our moving-frame vector methods. But it provides an instructive example.

Example: Rod on step using moving-frame methods (see previous
example)

We look at point A and note that we can think of it as a fixed point in the
fixed frame F and also as a point that is moving relative to the translating
and rotating frame B. We evaluate its velocity both ways.

⇀
vA = ⇀

vA
⇀

0 = ⇀
vB + ⇀

ωB × ⇀
rA/B + ⇀

vA/B (eqn. (9.32))

{⇀

0 = vB ı̂ − φ̇k̂ ×
(

B Aλ̂B A

)
+ vA/B λ̂B A}

⇒ 0 = vB ı̂ · n̂B A︸ ︷︷ ︸
sin φ

+φ̇
B A ( {} · n̂B A)

⇒ φ̇ = −vB sin φ


B A
= −vB sin2 φ

h
( sin φ = h


AB
)

as we had before. The key equation was the ‘three term velocity formula’
eqn. (9.32) on page 546 and the observation that relative to frame B
point A slides along the rod. Note that we never had to explicitly use the
rotating coordinates associated with frame B to do this calculation. ✷

You should understand the examples above, and the needed background material,
before going on to the following examples.

Figure 9.54: The slider crank mecha-
nism.

(Filename:tfigure.slidercrankkin)

Example: Slider Crank using geometry and trigonometry

The slider crank mechanism (Fig. 9.54) was briefly introduced in the
context of statics where it’s forces could be analyzed assuming inertial
terms were negligible (see 186). But it is a commonly used mechanism
(e.g., in every car) and its motions are of central interest. The angle θ is
the most natural configuration variable for this nDOF = 1 system. One
would like to know the position, velocity and acceleration of the slider
(xC , ẋC and ẍC ) in terms of θ, θ̇ and θ̈ .

xC = xC + 
DC

= d cos θ +
√


2 − h2

= d cos θ +
√


2 − (d sin θ)2

= d

(
cos θ +

√
(
/d)2 − sin2 θ

)

= d

(
cos θ +

√
(
/d)2 + (cos 2θ − 1)/2

)
(9.43)
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The positive √ corresponds to C being to the right of 0. The negative√ corresponds to point C being to the left of 0. The mechanism just
doesn’t work for a full revolution of the link 0A if 
 < d as you can see
from the picture or from that the √ above giving imaginary values for
cos 2θ near -1, sin θ near 1, and θ near π/2.

To get the velocity of point C we just take the derivative of eqn. (9.43)
above.

vC = ẋC (9.44)

= d

dt

{
d

(
cos θ +

√
(
/d)2 + (cos 2θ − 1)/2

)}

= d θ̇


− sin(θ) − sin(2 θ)

1√
4 l2

d2 + 2 cos(2 θ) − 2




To get the acceleration we differentiate once again. For simplicity lets

angle θ, degrees

0 360 0 360
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-1
1

-1
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0

1

-1

0
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d=1 l=10
d=1 l=1.01

x
C

a
C

θ2d
.

v
C

θ2d
.

(a) (b)

CC

Figure 9.55: Position xC of the slider, its
velocity vC and its acceleration ac (Strictly,
e.g.,

⇀
aC = aC ı̂). Two sets of curves are

shown. (a) a long connecting rod, and (b) a
connecting rod a hair longer than the crank.

In case (a) the connecting rod is nearly hor-
izontal at all times and the displacement of
point C is almost entirely due to the hori-
zontal displacement of the end of the crank
arm. Thus point C moves with almost ex-
actly a cosine wave with amplitude equal to
the length of the crank. The velocity and
acceleration curves are thus also sine and
cosine waves.

In case (b) the motion is close to a cosine
curve approximately when −60o < θ <

60o. That is, the displacement of C is about
twice the horizontal displacement of the end
of the crank arm when the end is to the right
of its base bearing. When the end of the
crank arm is to the left of the bearing point
C is nearly stationary and is just to the right
of the crank base bearing. The transition
between these two cases involves a sudden
large acceleration.

(Filename:tfigure.crankcurves)

assume the crank rotates at constant rate, so θ̇ is a constant and θ̈ = 0.
Cranking out the derivative of eqn. (9.44), so to speak, we get

ac = v̇C = d

dt
{the mess on the right of eqn. (9.44)} (9.45)

= −d θ̇2


 cos(θ)

+2 sin2(2 θ)

(
4

l2

d2 + 2 cos(2 θ) − 2

)−3/2

+2 cos(2 θ)
1√

4 l2

d2 + 2 cos(2 θ) − 2




So we now know the position, velocity and acceleration of point C in
terms of θ, θ̇ and θ̈ . You should commit the solution eqn. (9.45) to
memory. Just kidding.

Plots of xC , vC , and aC from these equations are shown in Fig. 9.55ab
for two different extremes of slider crank design: one with a very long
connecting rod that gives sinusoidal motion, and one with a connecting
rod just barely long enough to prevent locking that gives intermittent
motion. ✷

Unlike some more complex mechanisms, the slider crank is solvable in that one
can write a formula for the position of any point of interest in terms of the single
configuration variable θ . For more complex mechanisms this may not be possible.
Further, even if possible the above example shows that the differentiation required to
find velocity and acceleration can lead to a bit of a mess.

A different approach is to assume that at some value of the configuration variable
(θ for the slider crank) that the full configuration of the system is known. That is,
that the locations of all points are known. Then we can use our vector methods to
find velocities and accelerations of all points of interest.

Example: Slider crank using vector methods (see previous example)

Take the slider crank of Fig. 9.54 to be in some known configuration.
We now try to find the velocity and acceleration of point C in terms of
the positions of the points 0, B, and C as well as θ and θ̇ .
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The basic approach is to write true things, and then solve for un-
knowns. First work on velocities. The basic idea is to look at the closure
condition. That is, the velocity of point C as calculated by working down
the linkage from 0 to A to C has to be consistent with the velocity of C
as calculated in the fixed frame.

⇀
vC = ⇀

vC

vC ı̂ = ⇀
vA/0 + ⇀

vC/A

vC ı̂ = (θ̇ k̂) × ⇀
rA/0 + (−φ̇k̂) × ⇀

rC/A (9.46)

eqn. (9.46) is a 2-D vector equation in the 2 unknown scalars vC and
φ̇. It could be solved as a pair of equations, or solved directly by first
dotting both sides with ̂ to find φ̇ and dotting both sides with ⇀

rC/A to
find vC . These yield

φ̇ =
(
(θ̇ k̂) × ⇀

rA/0

)
· ̂(

k̂ × ⇀
rC/A

)
· ̂

and

vC =
θ̇

(
k̂ × ⇀

rA/0

)
· ⇀
rC/A

ı̂ · ⇀
rC/A

where everything on the right of these equations is assumed known.
Without grinding out the vector products in terms, say, of components,
we can just know that we can at this point know φ̇ and vC .

We proceed to find the accelerations by similar means, assuming φ̇

is a constant so ⇀
αA = ⇀

0:

⇀
aC = ⇀

aC

aC ı̂ = ⇀
aA/0 + ⇀

aC/A

aC ı̂ = −θ̇2 ⇀
rA/0 + (−φ̈k̂) × ⇀

rC/A − −φ̇2 ⇀
rC/A (9.47)

eqn. (9.47) is a 2-D vector equation in the two scalar unknowns ac and
φ̈. We can set this up as two equations in two unknowns. Or we can
solve for φ̈ directly by dotting both sides with ̂ and we can solve for
aC directly by crossing both sides with ⇀

rC/A or by dotting with a vector
perpendicular to ⇀

rC/A.
Although we have presented an algorithm rather than a formula, we

have found the velocity and acceleration of C without writing any large
equations of the type needed in the previous example. The shortcoming
is that this method depends on knowing the full configuration at the time
of interest. ✷

Figure 9.56: A four bar linkage.
(Filename:tfigure.4barkin)

Example: Four bar linkage using geometry and trigonometry

Fig. 9.56 shows a “four-bar linkage”. Please see 185 for an introduction
to 4-bar linkages in the context of statics. Four bar linkages are solvable
in the sense that one can write equations for the positions of any point
of interest in terms of the single configuration variable θ marked in
Fig. 9.56. But the formulas are really a mess. And the first and second
time derivatives are an unbelievable mess.

The four-bar linkage is about as complex a system as can be solved
in this sense, and it is probably too-complex for this solution to be useful
in the kinematic analysis of accelerations. ✷
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For complex mechanisms one is often stuck using vector methods, like we are for
practical purposes stuck with the 4-bar linkage. But the vector methods based on the
current configuration are not crippled by complexity.

Example: Four-bar linkage using relative velocities and accelerations

Assuming the configuration is known (i.e., that θ , φ1, and φ2 are known),
we can proceed with the 4-bar linkage just as we did for the slider crank.
We enforce closure by picking a point and thinking about its velocity two
different ways. We could pick any point, say C. From the fixed frame
we know that the velocity of C is zero. Working around the linkage, link
by link, we know it is the sum of relative velocities as

⇀
vC = ⇀

vC
⇀

0 = ⇀
vA/0 + ⇀

vB/A + ⇀
vC/B

=
(
θ̇ k̂

)
× ⇀

rA/0 +
(
φ̇1k̂

)
× ⇀

rB/A +
(
φ̇2k̂

)
× ⇀

rC/B

which is equivalent to two scalar equations in the two unknowns φ̇1
and φ̇2. This equation can be solved directly for φ̇2 by taking the dot
product of both sides with a vector perpendicular to ⇀

rB/A (such as ̂
′′ or

k̂ × ⇀
rB/A) and for φ̇1 by taking the dot product of both sides with for a

vector perpendicular to ⇀
rC/B (such as ̂

′′′ or k̂ × ⇀
rC/B) to get

φ̇1 = −θ̇

(
k̂ × ⇀

rA/0

)
· ̂

′′′(
k̂ × ⇀

rB/A

)
· ̂

′′′ and

φ̇2 = −θ̇

(
k̂ × ⇀

rA/0

)
· ̂

′′(
k̂ × ⇀

rC/B

)
· ̂

′′ .

The dot product with k̂ is used to get a scalar on the top and bottom of the
fraction, both vectors are already only in the k̂ direction. Now that φ̇1
and φ̇2 are known the velocity of any point on the mechanism is known.
For example

⇀
vB =

(
φ̇2k̂

)
× ⇀

rB/C.

The angular accelerations of the two links are found by the same
method. For simplicity lets assume that the driving crank 0A spins at
constant rate so θ̈ = 0. Looking at the acceleration of point C two ways
we have

⇀
aC = ⇀

aC
⇀

0 = ⇀
aA/0 + ⇀

aB/A + ⇀
aC/B

=
(
θ̈ k̂

)
︸ ︷︷ ︸

0

×⇀
rA/0 − θ̇2 ⇀

rA/0

+
(
φ̈1k̂

)
× ⇀

rB/A − φ̇2
1

⇀
rB/A

+
(
φ̈2k̂

)
× ⇀

rC/B − φ̇2
2

⇀
rC/B
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Because φ̇1 and φ̇2 are already known, this is one equation in the two
unknowns φ̈1 and φ̈2. They can be solved for φ̈1 by taking the dot product
of both sides with ̂

′′′ and for φ̈2 by taking the dot product of both sides
with ̂

′′.
At this point you know θ , θ̇ , φ1, φ̇1, φ̈1, φ2, φ̇2, and φ̈2 and can

thus calculate the position, velocity and acceleration of any point in the
mechanism. ✷

In the examples above we used the absolute rotations of the links, however we could
also have done the calculations using the relative rotations and then used the formulas
for velocity and acceleration relative to a rotating frame. For the examples above this
would make the calculations slightly longer.
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SAMPLE 9.12 Velocity of points in a one-DOF mechanism. In machines we often

A

γ
B

G

θ = 30o

R
O

θ ı̂

̂

ωD


θ

φ

Figure 9.57: (Filename:sfig7.1.2a)

encounter mechanisms and links in which the ends of a link or a rod are constrained
to move on a specified geometric path. A simplified typical link AB is shown in
Fig. 9.57.

Link AB is a uniform rigid rod of length 
 = 2 m. End A of the rod is attached to
a collar which slides on a horizontal track. End B of the rod is attached to a uniform
disk of radius R = 0.5 m which rotates about its center O. At the instant shown, when
θ = 30o, end A is observed to move at 2 m/s to the left.

(a) Find the angular velocity of the rod.
(b) Find the angular velocity of the disk.
(c) Find the velocity of the center of mass of the rod.

Solution Let the angular velocities of the rod and the disk be ⇀
ωAB = θ̇ k̂ and

⇀
ωD = φ̇k̂ respectively, where θ̇ and φ̇ are unknowns. We are given ⇀

v A = −vA ı̂

where vA = 2 m/s.

(a) Point B is on the rod as well as the disk. Hence, the velocity of point B can be
found by considering either the motion of the rod or the disk. Considering the
motion of the rod we write,

⇀
v B = ⇀

v A + ⇀
v B/A

= ⇀
v A + ⇀

ωAB × ⇀
r B/A

= −vA ı̂ + θ̇ k̂ × 
(cos θ ı̂ + sin θ ̂)

= −vA ı̂ + θ̇
 cos θ ̂ − θ̇
 sin θ ı̂

= −(vA + θ̇
 sin θ)ı̂ + θ̇
 cos θ ̂ . (9.48)

Now considering the motion of the disk we write,

⇀
v B = ⇀

ωD × ⇀
r B/O

= φ̇k̂ × R(− sin θ ı̂ + cos θ ̂)

= −φ̇R sin θ ̂ − φ̇R cos θ ı̂. (9.49)

But ⇀
v B = ⇀

v B , therefore, from equations (9.48) and (9.49) we get

−(vA + θ̇
 sin θ)ı̂ + θ̇
 cos θ ̂ = −φ̇R sin θ ̂ − φ̇R cos θ ı̂

By equating the ı̂ and ̂ components of the above equation we get

−(vA + θ̇
 sin θ) = −φ̇R cos θ, (9.50)

and θ̇
 cos θ = −φ̇R sin θ

⇒ θ̇ = −φ̇
R



tan θ. (9.51)

Dividing Eqn. (9.50) by (9.51) we get

−
(

vA

θ̇
+ 
 sin θ

)
= 
 cos θ

tan θ
= 


cos2 θ

sin θ

⇒ − vA

θ̇
= 


(
cos2 θ

sin θ
+ sin θ

)

= 


(
cos2 θ + sin2 θ

sin θ

)

= 


sin θ
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⇒ θ̇ = −vA



sin θ = −vA



sin 30o

= −2 m/s

2 m
· 1

2
= −0.5 rad/s.

Thus ⇀
ωAB = θ̇ k̂ = −0.5 rad/sk̂.

⇀
ωAB = −0.5 rad/sk̂

(b) From Eqn. (9.51)

φ̇ = − θ̇


R tan θ
= −

θ̇︷ ︸︸ ︷
−vA



sin θ 


R sin θ
cos θ

= vA

R
cos θ

= −2 m/s

0.5 m

√
3

2
= 2

√
3 rad/s.

Thus ⇀
ωD = φ̇k̂ = 3.46 rad/sk̂.

⇀
ωD = 3.46 rad/sk̂

[At this point, it is a good idea to check our algebra by substituting the values
of θ̇ and φ̇ in equations (9.48) and (9.49) to calculate ⇀

v B .] 1© 1© Substituting θ̇ = −0.5 rad/s in
Eqn. (9.48) and plugging in the given values
of other variables we get

⇀
v B = −(

3

2
ı̂ +

√
3

2
̂ ) m/s.

Similarly, substituting φ̇ = 2
√

3 rad/s in
Eqn. (9.48) and plugging in the other given
values we get

⇀
v B = −(

3

2
ı̂ +

√
3

2
̂ ) m/s,

which checks with the ⇀
v B found above.

(c) Now we can calculate the velocity of the center of mass of the rod by considering
either point A or point B as a reference:

⇀
vG = ⇀

v A + ⇀
vG/A

= ⇀
v A + ⇀

ωAB × ⇀
r G/A

= −vA ı̂ + θ̇ k̂ × 


2
(cos θ ı̂ + sin θ ̂)

= −(vA + θ̇



2
sin θ)ı̂ + θ̇




2
cos θ ̂

= −(2 m/s − 0.5 rad/s · 2 m

2
· 1

2
)ı̂ + (−0.5 rad/s · 2 m

2
·
√

3

2
)̂

= −7

4
m/sı̂ −

√
3

4
m/s̂ .

⇀
vG = −(1.75ı̂ + 0.43̂) m/s

We could easily check our calculation by taking point B as a reference and
writing

⇀
vG = ⇀

v B + ⇀
vG/B

= ⇀
v B + ⇀

ωAB × ⇀
r G/B

By plugging in appropriate values we get, of course, the same value as above.

Comment: We used the standard basis vectors ı̂ and ̂ for all our vector calculations
in this sample. We can shorten these calculations by choosing other appropriate basis
vectors as we show in the following samples.
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SAMPLE 9.13 Another one-DOF mechanism. A mechanism consists of two rods

Figure 9.58: (Filename:sfig10.4.rods1dof)

AB and CD connected together at P with a collar pinned to AB but free to slide on
CD. Rod AB is driven with ⇀

ωAB = 10 rad/sk̂ and ˙⇀ωAB = 4 rad/s2k̂. At the instant
shown, θ = 45o and β = 30o. The length of rod AB is R = 0.4 m. At the instant
shown,

(a) Find the angular velocity and angular acceleration of rod CD.
(b) Find the velocity and acceleration of the collar with respect to rod CD.

Solution Here, we are interested in instantaneous kinematics of this mechanism.
Since point P is on rod AB as well as on rod CD, its velocity and acceleration can be
expressed in terms of the angular motion of rod AB or that of rod CD. Let us consider
rod AB first. Let êR and êθ be basis vectors attached to rod AB that rotate with the
rod. SInce P is fixed on rod AB, it executes simple circular motion about A with
⇀
ωAB = θ̇ k̂ and ˙⇀ωAB = θ̈ k̂ where θ̇ = 10 rad/s and θ̈ = 4 rad/s2, respectively. Then

R

P
r

θβ

Figure 9.59: (Filename:sfig10.4.rods1dof.a)

⇀
vB = Rθ̇ êθ (9.52)
⇀
aB = −Rθ̇2êR + Rθ̈ êθ . (9.53)

Now let us consider rod CD and express the velocity and acceleration of point P in
terms of motion of rod CD. Let the angular velocity and angular acceleration of rod
CD be ⇀

ωC D = β̇k̂ and ˙⇀ωC D = β̈k̂, respectively. Let λ̂ and n̂ be basis vectors attached
to rod CD. Let the instantaneous position of point be on CD be ⇀

rP = r λ̂. Since the
collar can slide along CD, we can write the velocity and acceleration of point P as

⇀
vB = ṙ λ̂ + r β̇n̂ (9.54)
⇀
aB = (r̈ − r β̇2)λ̂ + (2ṙ β̇ + r β̈)n̂. (9.55)

From eqn. (9.52) and 9.54 we get,

Figure 9.60: Geometry of the unit vec-
tors.

(Filename:sfig10.4.rods1dof.b)

ṙ λ̂ + r β̇n̂ = Rθ̇ êθ

⇒ ṙ = Rθ̇ (êθ · λ̂)

β̇ = (1/r)Rθ̇ (êθ · n̂)

Similarly, from eqn. (9.53) and 9.55 we get,
r̈ − r β̇2 = −Rθ̇2(êR · λ̂) + Rθ̈ (êθ · λ̂)

r β̈ + 2ṙ β̇ = −Rθ̇2(êR · n̂) + Rθ̈ (êθ · n̂).

Thus, to find all kinematic quantities of interest, all we need now is to figure out a
few dot products between the two sets of basis vectors. This is easily done by writing
out êR, êθ , λ̂, and n̂. 1©Substituting the dot products in the expressions for ṙ , β̇, r̈ ,1© We have,

êR = cos θ ı̂ + sin θ ̂ ,
êθ = − sin θ ı̂ + cos θ ̂ ,

λ̂ = cos β ı̂ + sin β̂ ,
n̂ = − sin β ı̂ + cos β̂ .
Therefore,
êR · λ̂ = cos(β − θ),

êR · n̂ = sin(β − θ),

êθ · λ̂ = sin(θ − β),

êθ · n̂ = cos(θ − β).

and β̈ we get

ṙ = Rθ̇ sin(β − θ),

β̇ = Rθ̇ cos(β − θ)

r̈ = r β̇2 − Rθ̇2 cos(β − θ) + Rθ̈ sin(β − θ),

β̈ = r−1[−Rθ̇2 sin(θ − β) + Rθ̈ cos(θ − β) − 2ṙ β̇].

Substituting the given values of Ṙ, θ̇ , θ̈ , R, θ, β, and r = R sin θ/ sin β, we get

ṙ = −1.04 m/s, β̇ = 6.83 rad/s, r̈ = −12.66 m/s2, β̈ = 9.43 rad/s2.

(a) ⇀
ωC D = 6.83 rad/sk̂, ˙⇀ωC D = 9.43 rad/s2k̂

(b) ⇀
v/CD = −1.04 m/sλ̂,

⇀
a/CD = −12.66 m/s2λ̂
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SAMPLE 9.14 A two-DOF mechanism. A two degree-of-freedom mechanism made

Figure 9.61: (Filename:sfig10.4.rods2dof)

of three rods and two sliders is shown in the figure. At the instant shown, the crank
AB is rotating with angular velocity ⇀

ωAB = 12 rad/sk̂ and angular acceleration
˙⇀ωAB = 10 rad/s2k̂. At the same instant, the collar at end C of the link rod CD is sliding
on the vertical rod with velocity ⇀

vC = 0.5 m/s̂ and acceleration ⇀
aC = 10 m/s2̂ .

Find the angular velocity and angular acceleration of the link rod CD.

Solution Once again, we are interested in instantaneous kinematics — we wish to
find the angular velocity and acceleration of rod CD at the given instant. This problem
is just like the previous sample problem except that end C of the link rod CD is not
fixed but free to slide on the vertical bar. But the velocity and acceleration of point C
is given; so it is exactly like the previous sample (there, the velocity and acceleration
of point C was identically zero). So, we adopt the same line of attack. We figure
out the velocity and acceleration of point B using the kinematics of rod AB. We then
write the velocity and acceleration of the same point using the kinematics of rod CD
(this will involve the unknown angular velocity and acceleration of CD that we are
interested in). Equate the two and solve for the unknowns we are interested in.
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Figure 9.62: (Filename:sfig10.4.rods2dof.a)

Let the angular velocity and acceleration of rod CD be ⇀
ωC D = β̇k̂ and ˙⇀ωC D = β̈k̂,

respectively. Let êR and êθ be base vectors rotating with rod AB, and λ̂ and n̂ be the
base vectors rotating with rod CD (see Fig. 9.62). Considering rod AB, we have

⇀
vB = Rθ̇ êθ (9.56)
⇀
aB = −Rθ̇2êR + Rθ̈ êθ . (9.57)

Considering rod CD, we have

⇀
vB = ⇀

vC + ⇀
vB/C = vC ̂ + ṙ λ̂ + r β̇n̂ (9.58)

⇀
aB = ⇀

aC + ⇀
aB/C = aC ̂ + (r̈ − r β̇2)λ̂ + (2ṙ β̇ + r β̈)n̂. (9.59)

Now equating eqn. (9.56) and (9.58), and dotting both sides with λ̂ and n̂, we get

ṙ = Rθ̇

− sin(θ−β)︷ ︸︸ ︷
(êθ · λ̂) −vC

sin β︷ ︸︸ ︷
(̂ · λ̂) = −Rθ̇ sin(θ − β) − vC sin β (9.60)

r β̇ = Rθ̇ (êθ · n̂)︸ ︷︷ ︸
cos(θ−β)

−vC (̂ · n̂)︸ ︷︷ ︸
cos β

= Rθ̇ cos(θ − β) − vC cos β (9.61)

where the dot products among the basis vectors are easily found from either their ge-
ometry (see Fig. 9.63) or from their component representation (see previous sample).
Following exactly the same procedure, we get, from eqn. (9.57) and 9.59,

Figure 9.63: (Filename:sfig10.4.rods2dof.b)

r̈ = −Rθ̇2 cos(θ − β) + Rθ̈ (− sin(θ − β)) − aC sin β + r β̇2 (9.62)

r β̈ = −Rθ̇2 sin(θ − β) + Rθ̈ cos(θ − β) − aC cos β − 2ṙ β̇. (9.63)

Now, note that although we are only interested in finding β̇ and β̈. So, we only need
eqn. (9.61) and eqn. (9.63). But, eqn. (9.63) requires ṙ on the right hand side and,
therefore, we do need eqn. (9.60). We can, however, happily ignore eqn. (9.62).

Now, to find the numerical values of β̇ and β̈, we need to find r and θ in addition
to all other given values. Consider triangle ABC in Fig. 9.62. Using the law of sines
( R

sin β
= r

sin θ
= d

sin(θ−β)
), we get r = 0.7 m and θ = 79.45o. Now, substituting all

known numerical values in eqns. (9.60), (9.61), and (9.63), we get

ṙ = −3.75 m/s, β̇ = 6.61 rad/s, β̈ = 8.43 rad/s2.

⇀
ωC D = (6.61 rad/s)k̂, ˙⇀ωC D = (8.43 rad/s2)k̂
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9.5 Advance kinematics of planar mo-

tion
?? In this section we consider three types of problems where the kinematics involves
solution of differential equations. In most cases this means computer solution is
involved for this type of problem. Here are the three problem types:

• I.Closed kinematic chains. The main simple example is a 4-bar linkage with
one bar grounded. This system has one degree of freedom, but it is difficult
to directly calculate the positions, velocities and accelerations of all points
in terms of one variable. Instead, the constraint that the linkage is closed is
expressed as a differential equation.

• II. Rolling contact with not-round objects. For non-round rollers and cams
solving for configuration, velocity and acceleration can sometimes be best done
with integration. A side benefit from studying this topic is the observation that
all non-translational motions are equivalent to rolling of some kind.

• III. Contact with ideal wheels and skates, looking down. Cars, tricycles,
trailers, grocery carts and sleighs have wheels and have dynamics that is some-
times well characterized by planar analysis, where the plane is the horizontal
plane. In this view the simple model of a wheel is as something that prevents
sideways motion but allows motion in the direction of travel (like for some
of the trike and car problems in 1-D constrained motion). Such problems are
called non-holonomic (see box 9.3 on page 576).

Closed kinematic chains

When a series of mechanical links is open you can not go from one link to the next
successively and get back to your starting point. Such chains include a pendulum (1
link), a double pendulum (2 links), a 100 link pendulum, and a model of the human
body (so long as only one foot is on the ground). A closed chain has at least one loop
in it. You can go from link to next and get back to where you started. A slider-crank,
a 4-bar linkage, and a person with two feet on the ground are closed chains.

Closed chains are kinematically difficult because they have fewer degrees of
freedom than do they have joints. So some of the joint angles depend on the others.
The values of any minimal set of configuration variables, say some of the joint angles,
determines all of the joint angles, but by geometry that is difficult or impossible to
express with formulas.

Example: Four bar linkage: configuration variables

It is impractically difficult to write the positions velocities and acceler-
ations of a 4-bar linkage in terms of θ , θ̇ and θ̈ of any one of its joints.
✷

However, given a configuration, the constraint on the rates and accelerations is rela-
tively easy to express, always yielding linear equations.
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Example: Four bar linkage: configuration rates

If you write the relative velocities of the ends of the bars in terms of
configuration rates θ̇1, θ̇2, and θ̇3 and then write the chain closure equation
you get a linear equation in the rates. Likewise if you write the closure
condition in terms of acceleration. The coefficients in these equations
are likely to be complex functions of the configuration, so integrating
these equations requires numerics. But the constraint is linear. ✷

Thus, as shown in the last sample of Sect. 10.4, one way to calculate the evolving
configurations of a closed chain is to integrate the velocity relations numerically.

Rolling of not round objects

When two objects roll on each other they maintain contact and do not slip relative to
each other. That is to say rolling of one rigid curve B on another A means:

• The instantaneous relative motion of B with respect to A is a rotation about
the contact point at the common tangent C, and

• The sequence of points C moves the same distance on both curves.

For simplicity let’s take A to be a curve fixed in space on which rigid curve B rolls.
Take a reference point of interest fixed on body B to be O’. So,

⇀
vO′ = ⇀

ωB × ⇀
rO′/C where ⇀

ω = θ̇B k̂ (9.64)

and θB is, say, the rotation of a ı̂
′ axis fixed in B relative to a ı̂ axis fixed in A. If

we use the rotation θB of body B as our configuration variable, we now know how
to find the velocity of all points in terms of their positions and the rotation rate. Thus
we can find the rate of change of the configuration. To proceed as time progresses
we also need to know how the position of point C evolves. Not the material point C
on either body, but the location of mutual contact.

If we assume that both curves are parameterized by arc-length going counter-
clock wise, if we take curvature as positive if directed towards the interior of each
curve’s body, then the condition of maintaining contact requires that

⇀
vC = ṡêt where êt is the tangent to fixed curve A.

and s is the advance along curve A. To maintain tangency, the angles must be
maintained so

ṡ = 1

κB + κA
θ̇ .

Altogether this gives

⇀
vC = 1

κB + κA
θ̇ êt (not the velocity of any material point).
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To find the acceleration of material point O’ on B we differentiate eqn. (9.64) with
respect to time:

⇀
aO′ = d

dt
⇀
vO′

= d

dt

(
⇀
ωB × ⇀

rO′/C

)
= d

dt

(
⇀
ωB × (

⇀
rO′ − ⇀

rC

))
= ˙⇀ωB × ⇀

rO′/C + ⇀
ωB × ⇀

vO′ − ⇀
ω × ⇀

vC

= ˙⇀ωB × ⇀
rO′/C − ω2

B
⇀
rO′/C − ⇀

ω ×
(

1

κB + κA
θ̇ êt

)

= ˙⇀ωB × ⇀
rO′/C − ω2

B
⇀
rO′/C +

(
θ̇2
B

κB + κA
ên

)

where ên is normal to the curves and directed towards the interior of B. Thus the
acceleration of all points on B is the same as if the body were pinned at C plus an
acceleration due to rolling. This rolling acceleration is small if either of the bodies is
sharp (has very large κ) and large if the bodies are nearly conformal.

Body curve and space curve

As one rigid body moves arbitrarily on a plane with some non-zero rotation rate we
can find a point at relative position ⇀

rC/O′ where ⇀
rC = ⇀

0. That is a place where the
velocity due to rotation about O’ exactly cancels the velocity of O’.

⇀

0 = ⇀
vO′ + ⇀

ωB × ⇀
rC/O′

Crossing both sides with k̂ and using that ⇀
ω = ωk̂ we get

⇀
rC/O′ = k̂ × ⇀

vO′

ωB

as the point “on” the body that has no velocity. This point does not literally have to
be on the body, rather it is fixed to the reference frame defined by the body.

As motion progresses a sequence of such points C is traced on the ground. Simi-
larly a sequence of points is traced on the body. These two sequences are called the
space curve and the body curve (or “polohodie” and “herpolhodie” in older books).
The motion of body B is thus a rolling of the body curve on the space curve.

As a machine designer this means you can generate any desired motion by rolling
of appropriate shapes. Move the object in the desired manner, draw the space curve
and body curve, make parts with those shapes, and the desired motion occurs by a
rolling of those shapes.

Ideal wheels and skates, looking down
If we look down on an ideal skate or wheel at point C on a rigid body and assume that
the skate is oriented with the positive ı̂

′ axis at point C on the body then we know that

⇀
vC = vC ı̂

′
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and hence the velocity of any point G on the body of interest is

⇀
vG = ⇀

vC + ⇀
vG/C

= vc ı̂
′ + θ̇ k̂ × ⇀

rG/C.

The acceleration is found by differentiating this expression as

⇀
aG = d

dt
⇀
vG = ⇀

vC + ⇀
vG/C

= d

dt

(
vc ı̂

′ + θ̇ k̂ × ⇀
rG/C

)
= v̇C ı̂

′ + vC
˙̂ı′ + θ̈ k̂ × ⇀

rG/C − θ̇2 ⇀
rG/C

= v̇C ı̂
′ + vC θ̇ ̂

′︸ ︷︷ ︸
⇀
aC

+ + θ̈ k̂ × ⇀
rG/C − θ̇2 ⇀

rG/C︸ ︷︷ ︸
⇀
aG/C

.

It is interesting to note that the Coriolis-like term vC θ̇ ̂
′ does not have the usual factor

of 2 one encounters in holonomic problems. To find the trajectory of the point C, say,
one needs to integrate the velocity like this:

ẋ = ⇀
vC · ı̂

= vC ı̂
′ · ı̂

= vC cos θ

ẏ = ⇀
vC · ̂

= vC ı̂
′ · ̂

= vC sin θ.
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9.3 THEORY
Skates, wheels and non-holonomic constraints

Of the words in this book “non-holonomic” is probably the most
obscure. This is because the subject of mechanics was mostly stolen
from engineers by physicists about 100 years ago. And physicists,
the authors of most introductions to mechanics, had no use for non-
holonomic mechanics as it wasn’t useful for the development of
quantum mechanics. So many people are unaware of the word, the
subject or its utility.

In two dimensions the word non-holonomic in effect means
the mechanics of objects constrained by ideal skates or massless
ideal wheels. Often these decades non-holonomic constraints are
described as “non integrable”. Literally, the word non-holonomic
means “not whole”. But in what sense is a rolling ideal wheel “non-
integrable” or less “whole” than anything else?

A constrained rigid body. Consider a rigid body that is
free to slide on a plane. It has three degrees of freedom described
by xO ′ , yO ′ and θ , all measured relative to a fixed reference frame
O ı̂ ̂ . Point C on the body has relative position ⇀

rC/O′ = x ′
C ı̂ ′+y′

C ̂ ′

where x ′
C and y′

C are constants. Now lets constrain the body at point
C one of these two different ways:

• a) Pin the body to the ground with an ideal hinge at point
C. This keeps point C from moving but allows the body to
rotate (holonomic).

• b) Put an ideal wheel or skate under the body at C that pre-
vents sliding sideways to the skate but allows point C to move
parallel to the skate and also allows rotation about the skate
(non-holonomic).

Pin Constraint. In the first case, for the pin, we could describe
the constraint with the phrase ‘point C on the body can have no
velocity’ and the write and calculate:

⇀
0 = ⇀

vC = ⇀
vO′ + ⇀

ω × ⇀
rC/O′ (9.65)

⇀
0 = ẋO ′ ı̂ + ẏO ′ ̂ + θ̇ k̂ ×

(
x ′

C ı̂ ′ + y′
C ̂ ′)

{ ⇀
0 = ẋO ′ ı̂ + ẏO ′ ̂ +

(
θ̇x ′

C ̂ ′ − θ̇ y′
C ı̂ ′) }

{}
·ı̂ ⇒ ẋO ′ − θ̇ sin θ ẋ ′

C − θ̇ cos θy′
C = 0

{}
·̂ ⇒ ẏO ′ + θ̇ cos θx ′

C − θ̇ sin θy′
C = 0.

⇒ d

dt

(
xO ′ + cos θ ẋ ′

C − sin θy′
C

)
= 0

⇒ d

dt

(
yO ′ + sin θ ẋ ′

C + cos θy′
C

)
= 0

The last two equations are two differential equations in the three
variables xO ′ , yO ′ and θ . They are “integrable” in the sense that
they are equivalent to

xO ′ + cos θ ẋ ′
C − sin θy′

C = C1

and yO ′ + sin θ ẋ ′
C + cos θy′

C = C2 (9.66)

where C1 and C2 are integration constants that need to be set by the
starting configuration. Solving for xO ′ and yO ′ in terms of θ :

xO ′ = C1 − cos θ ẋ ′
C + sin θy′

C

yO ′ = C2 − sin θ ẋ ′
C − cos θy′

C .

Here we have derived the obvious, that a pinned body has one inde-
pendent configuration variable θ , but we did so starting with a vector
expression of constraint in terms of velocities (eqn. (9.65)). Then
we wrote the constraint as two scalar constraints on the derivatives
of configuration variables and then “integrated” them to write con-
straints on the configuration variables, finally eliminating two of the
configuration variables.

Skate constraint. Now consider the same body constrained
by a skate or ideal wheel at C instead of a pin. The skate is aligned
with the ı̂ ′ so point C can only move in the ı̂ ′ direction. The body
is still free to rotate about the point C (to steer). Thus,

0 = ⇀
vC · ̂ ′ =

(
⇀
vO′ + ⇀

ω × ⇀
rC/O′

)
· ̂ ′ (9.67)

0 =
(

ẋO ′ ı̂ + ẏO ′ ̂ + θ̇ k̂ ×
(

x ′
C ı̂ ′ + y′

C ̂ ′)) · ̂ ′

0 = −ẋO ′ sin θ + ẏO ′ cos θ + θ̇x ′
C

⇒ 0 = d

dt
F(xO ′ , yO ′ , θ) ?

As for the hinge where we found 2 constant functions, we might
want to find the function F(xO ′ , yO ′ , θ) that satisfies the differential
equation above, namely

d

dt
F(xO ′ , yO ′ , θ) = −ẋO ′ sin θ + ẏO ′ cos θ + θ̇x ′

C . (9.68)

Another math nightmare. How do we find this F? You can’t find
one. This is the crux of the matter. Neither your calculus professor
nor Ramanujan could find one either. No computer can find one, or
even a numerical approximation of a solution. There is no function
F(xO ′ , yO ′ , θ) that solves eqn. (9.68). The solution fundamen-
tally does not exist. That is why we say the skate/wheel constraint
eqn. (9.67) is “non-integrable”.

Parallel parking We can use physical reasoning to show that
no function F can solve eqn. (9.68). If such an F did exist it would
mean that only the set of configurations with position xO ′ , yO ′ and
angles θ consistent with F = constant would be allowed by the
skate constraint (assuming F depends nontrivially on at least one
of the variables). This means there would be some angles and po-
sitions that the body couldn’t get to. Remember, we are not doing
mechanics, just kinematics. So we can see what configurations are
geometrically allowed while still respecting the constraint. The sim-
ple observation that motivates the answer is this:

Even though the skate constrains ⇀
vC to not have a side-

ways component, point C can get to a point that is straight
sideways.

How? Like a car can move sideways into a parking space without
skidding sideways; by parallel parking. More generally, the body
can get to any position and any orientation by the following moves.
First rotate the body so the skate aims to its now goal. Then slide the
skate to its new goal. And finally rotate the body to its new desired
orientation.

Thus, the skate constraint does not disallow any configurations!
Yet the constraint does disallow some velocities (the skate can’t
go sideways). In this way, the skate constraint is not “whole”. It
constrains velocities without constraining configurations.

Counting degrees of freedom. How many degrees of free-
dom does a body with a skate constraint have? There are two dif-
ferent answers. By counting possible configurations there are three
degrees of freedom (it takes three variables to describe all possi-
ble configurations). But at any configuration the velocity can be
described by 2 numbers (θ̇ and vı̂′ ). Whenever the number of con-
figuration degrees of freedom is greater than the number of velocity
degrees of freedom (for example, 3>2) there are non-holonomic
constraints.

One might like more examples. But besides artificial math-
ematical ones, there are none. The only smooth non-holonomic
constraint in 2D mechanics is the ideal skate or wheel.
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SAMPLE 9.15 Kinematics of a four bar linkage. A four bar linkage ABCD is shown
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Figure 9.64: (Filename:sfig10.4.fourbar)

in the figure (fourth bar is the ground AD) at some instant t0. The driving bar AB
rotates with angular velocity ⇀

ωAB = θ̇ (t)k̂. Find the angular velocities of rods BC
and CD as a function of θ̇ . How can you solve for the positions of the bars at any t if
the initial configuration is as shown in the figure?

Solution Let the angles that rods AB, BC, and CD make with the horizontal (x-axis)
be θ, β, and φ, respectively. Then, we can write ⇀

ωBC = β̇k̂ and ⇀
ωC D = φ̇k̂. We

have to find β̇ and φ̇.
Note that the motion of point C is a simple circular motion about point A with

given angular velocity ⇀
ωAB . Thus, the velocity of point B is known. Now, we can

find the velocity of point C two ways: (i) by considering rod CD: ⇀
vC = ⇀

vB + ⇀
vC/B =

⇀
vB + ⇀

ωBC × ⇀
rC/B, and (ii) by considering rod CD: ⇀

vC = ⇀
ωC D × ⇀

rC/D. Either way the
velocity must be the same. Thus, we have a 2-D vector equation with two unknowns
β̇ and φ̇. We can get two independent scalar equations from the vector equation and
thus we can solve for the desired unknowns.

Let us use the rotating base vectors (λ̂1, n̂1), (λ̂2, n̂2), and (λ̂3, n̂3) with rods
AB, BC, and CD, respectively. Note that these base vectors are basically the (êR, êθ )

pairs; we use (λ̂, n̂) just for the sake of easy subscripting. Now,

⇀
vB = ⇀

ωAB × ⇀
rB/A = 
1θ̇ n̂1

⇀
vC = ⇀

vB + ⇀
ωBC × ⇀

rC/B = 
1θ̇ n̂1 + 
2β̇n̂2 (9.69)

also, ⇀
vC = ⇀

ωC D × ⇀
rC/D = 
3φ̇n̂3 (9.70)

Thus, from eqn. (9.69) and (9.70), we have,

ı̂

̂

A

B

C

D
θ

β

φ
1


2


3
n̂1

λ̂1

n̂3

λ̂3
n̂2 λ̂2

Figure 9.65: (Filename:sfig10.4.fourbar.a)


1θ̇ n̂1 + 
2β̇n̂2 = 
3φ̇n̂3 (9.71)

Dotting eqn. (9.71) with λ̂2 (to eliminate β̇ term), we get


1θ̇ (n̂1 · λ̂2) = 
3φ̇(n̂3 · λ̂2)

⇒ φ̇ = 
1


3

(n̂1 · λ̂2)

(n̂3 · λ̂2)
θ̇ . (9.72)

Similarly, dotting eqn. (9.71) with λ̂3 (to eliminate φ̇ term), we get

β̇ = −
1


2

(n̂1 · λ̂3)

(n̂2 · λ̂3)
θ̇ . (9.73)

We are practically done at this point with the kinematics — we have found β̇ and φ̇

as functions of θ̇ . The various dot products are just geometry and vector algebra. To
write them explicitly, we note that λ̂1 = cos θ ı̂ + sin θ ̂ , n̂1 = − sin θ ı̂ + cos θ ̂ ,
λ̂2 = cos β ı̂ + sin β ̂ , etc. Thus,

n̂1 · λ̂2 = − sin θ cos β + cos θ sin β = sin(β − θ)

n̂3 · λ̂2 = sin(β − φ)

n̂1 · λ̂3 = sin(φ − θ), n̂2 · λ̂3 = sin(φ − β).

Substituting the appropriate expressions in eqn. (9.73) and (9.72), we get

β̇ = −
1


2

sin(φ − θ)

sin(φ − β)
θ̇, φ̇ = 
1


3

sin(β − θ)

sin(β − φ)
θ̇ .

⇀
ωBC = − 
1


2

sin(φ−θ)
sin(φ−β)

θ̇ k̂,
⇀
ωC D = 
1


3

sin(β−θ)
sin(β−φ)

θ̇ k̂
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Note that the expressions for β̇ and φ̇ are coupled, nonlinear, first order ordinary dif-
ferential equations. To be able to find θ̇ , β(t) and φ(t), we need to integrate θ̇ , β̇, and
φ̇. Here, we set up these differential equations for numerical integration. Although,
we can use any given θ̇ (t) (e.g., αt or θ̇0 sin(�t) or whatever), for definiteness in our
numerical integration, let us take a constant θ̇ , that is, let θ̇ = C = 10 rad/s (say).
So, our equations are,

θ̇ = C, β̇ = 
1


2

sin(φ − θ)

sin(β − φ)
C, φ̇ = 
1


3

sin(β − θ)

sin(β − φ)
C,

and the initial conditions are θ(0) = π/2, β(0) = π/4, φ(0) = 3π/4.

Here is a pseudocode that we use to integrate these equations numerically for a
period of 2π/C = π/5 seconds (one complete revolution of AB).

ODEs = {thetadot = C,
betadot = (l1/l2)*sin(phi-theta)/sin(beta-phi)*C,
phidot = (l1/l3)*sin(beta-theta)/sin(beta-phi)*C}

IC = {theta(0) = pi/2, beta(0) = pi/4, phi(0) = 3*pi/4}
Set C=10, l1=.4, l2=.4*sqrt(2), l3=.8*sqrt(2)
Solve ODEs with IC for t=0 to t=pi/5

After we get the angles, we can compute the xy coordinates of points B and C at
each instant and plot the mechanism at those instants. Plots thus obtained from our
numerical solution are shown in Fig. 9.66 where the configuration of the mechanism
is shown at 9 equally spaced times between t = 0 to t = π/5.
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Figure 9.66: Several configurations of the mechanism at equal intervals of time during one complete
revolution of the driving link. After t8 the mechanism returns to the initial configuration.
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10
Mechanics of
constrained
particles and rigid
bodies

We have studied the mechanics of particles and rigid bodies with constraints that
require progressively more involved kinematics. We now proceed to study the me-
chanics of more complex systems: particles with constrained paths, particles moving
relative to moving frames, and mechanisms with several parts.

The basic strategy throughout is to use, in combination, the following skills which
you have been developing:

1. Basic modeling. Describe a system in an appropriate way using the language
of particle and rigid body mechanics. As described in Chapter 2, the force
modeling and kinematic modeling are coupled. Where relative motion is freely
allowed there is no force. And where motion is caused or prevented there is a
force. Here is where you decide the constitutive (force) laws you are using for
springs, contact, gravity, etc.

2. Draw free body diagrams of the system of interest and of its parts. These
diagrams should show what you do and do not know about the constraint forces
(e.g., at a pin connection cut free in a free body diagram the FBD should show
an arbitrary force and no moment). These are exactly the same free body
diagrams that one would draw for statics.

3. Kinematics calculations. Pick appropriate configuration variables, as many as
there are degrees of freedom. Then write the velocities, accelerations, angular

581
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    Basic modeling.
What things are rigid?
What things can move and how?
How are things connected?

Kinematics modeling.
Description of constraints.

Choose basic configuration
variables

Solve for unknown positions,
velocities and accelerations
of points of interest (hinges, centers of 
mass) in terms of knowns, or 
configuration variables, Also find
rotationalangles, rates and accelerations.

Force modeling.
Contact forces, friction,
hinges, gravity, springs,
etc.

           Draw 
Free body diagrams 
 of system and components.

          Balance equations.

                 

Solve the balance equations for forces,
and accelerations of interest either for

One given configuration
of interest.         

or

General configuration

solve for second derivatives
of configuration variables.
Set up ODEs and initial
conditions, and either

Solve 
numerically

or

Solve with 
pencil and paper

Plug the now-known configuration variables
into the balance equations and kinematics 
equations to solve for quantities of interest.

Make plots:
F vs t, 
position vs t,
trajectories,
animations

b. Instantaneous dynamics 
analysis complete

a. Kinematics analysis complete

d. Dynamics analysis 
complete

c. "Inverse dynamics"
analysis complete

if motion is unknown if motion is known
or

1

2 3

4

5

6

7

8

Use forces and 
moments from 
FBDs  

Use positions, 
velocities and 
accelerations
from  kinematics .

and

   I. Linear momentum,
 II. Angular momentum,
III. Energy or Power.

Figure 10.1: Basic flow chart for solving the various types of dynamics problems. (Filename:tfigure.conceptmap)
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velocities and angular accelerations of interest in terms of the configuration
variables and their first and second time derivatives, possibly using methods
from Chapter 10. Often this is the hardest part of the analysis.

4. Use appropriate balance equations: linear momentum, angular momentum, or
power balance equations.

5. Solve the balance equations for unknown forces or accelerations of interest.
Sometimes this can be done by hand by writing out components and solving
simultaneous equations or by using appropriate dot products. And sometimes
it is best done on by setting up a matrix equation and solving on the computer.

6. Solve the differential equations to find how the basic configuration variables
change with time. For some special problems this can be done by hand, but
most often involves computer solution.

7. Plug the ODE solution from (6) above into the equations from kinematics (3
above) and the balance laws (4 above). This is not a different skill from (3) or
(4), it is just applied at a different time in the work.

8. Make plots of how forces, positions and velocities change with time, or of
trajectories. Animations are also often nice.

These skills are used to solve dynamics problems which often fall into one of these 4
categories.

a. Kinematics. These are problems where only geometry is used, where the
kinematics constraints determine what you are interested in, independent of
the forces or time history. A classic example is determining the path of a point
on a given four-bar linkage. More basic examples include finding position or
acceleration from a given velocity history.

b. Instantaneous dynamics. These are problems where the positions and velocities
of all points are given and you need to find forces or accelerations. Often these
are “first-motion” problems: what are accelerations and forces immediately
after something is released from rest?

c. “Inverse dynamics.” These problems are called “inverse” because they are
backwards of the original hard dynamics problems ((d) below). In these prob-
lems the motion is given as a function of time, and you have to calculate the
forces. These problems are easier than non “inverse” problems because the
differential equations from the balance laws don’t need to be solved. A classic
example is a slider-crank where the motion of the crank is known a priori to be
at constant rate and you need to find the torque required to keep that motion.
Usually in science “inverse” problems are harder. In dynamics this kind of
“inverse” problem is easier than the non “inverse” problems.

d. Dynamics analysis. You are given some information about forces and con-
straints and you have to find the motion and more about the forces. These are
the capstone problems that require use of all the skills.

A flow chart showing how these problem types are solved using the basic skill com-
ponents ideas is shown in Fig. 10.1. As you solve a problem, at any instant in time
you should be able to place your work on this chart.

In terms of putting all the ideas together, this chapter completes the book. But we
only consider two dimensional models and motions in this chapter. Three dimensional
models and motions involve more difficult kinematics and are postponed until Chapter
12.
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10.1 Mechanics of a constrained parti-

cle and of a particle relative to a

moving frame
With the kinematics tools of Chapter 10 we can deal with the mechanics of a new set
of interesting particle motion problems. For one point mass it is easy to write balance
of linear momentum. It is:

⇀
F = m ⇀

a .

The mass of the particle m times its vector acceleration ⇀
a is equal to the total force

on the particle
⇀
F . No problem.

Now, however, we can write this equation in five somewhat distinct ways.

(a) In general abstract vector form:
⇀
F = m ⇀

a .

(b) In cartesian coordinates: Fx ı̂ + Fy ̂ + Fz k̂ = m[ẍ ı̂ + ÿ̂ + z̈k̂].
(c) In polar coordinates:

FR êR + Fθ êθ + Fz k̂ = m[(R̈ − Rθ̇2)êR + (2Ṙθ̇ + Rθ̈ )êθ + z̈k̂].
(d) In path coordinates: Ft êt + Fn ên = m[v̇êt + (v2/ρ)ên]

All of these equations are always right. Additionally, for a given particle moving
under the action of a given force there are many more correct equations that can be
found by shifting the origin and orientation of the coordinate systems. For example
for a moving frame B with origin 0′, rotation rate ⇀

ωB and angular acceleration ⇀
αB :

(e)
⇀
F = m

{
⇀
a0′ − ω2

B
⇀
r + ⇀

αB × ⇀
r + ⇀

a/B + 2⇀
ωB × ⇀

v/B

}
where, to simplify the notation, all motions are relative to F and positions relative to
0 unless explicitly indicated by a /B or /0′. This is quite a collection of kinematic
tools. In general we want to choose the best tools for the job. But to get a sense
lets first look at a simple problem using each of these kinematic approaches, some of
which are rather inappropriate.

A particle that moves with no net force
In the special case that a particle has no force on it we know intuitively, or from
the verbal statement of Newton’s First Law, that the particle travels in a straight line
at constant speed. As a first example, let’s try to find this result using the vector
equations of motion five different ways: in the general abstract form, in cartesian
coordinates, in polar coordinates, in path coordinates, and relative to a moving frame
(see Fig. 10.2).

   FBD:
(no force)

Figure 10.2: A particle P moves. One
can track its motion using the general vec-
tor form ⇀

r , Cartesian coordinates in the
fixed frame F = 0ı̂ ̂ , Polar coordinates
using êR&êθ , path coordinates êt &ên and
cartesian coordinates in a rotating frame
B = 0′ ı̂ ′̂ ′.

(Filename:tfigure.noforce5ways)

General abstract form. The equation of linear momentum balance is
⇀
F = m ⇀

a or,
if there is no force, ⇀

a = ⇀

0, which means that d ⇀
v/dt = ⇀

0. So ⇀
v is a constant. We

can call this constant ⇀
v0. So after some time the particle is where it was at t = 0,

say, ⇀
r 0, plus its velocity ⇀

v0 times time. That is:

⇀
r = ⇀

r 0 + ⇀
v0t. (10.1)

This vector relation is a parametric equation for a straight line. The particle moves
in a straight line, as expected.
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Cartesian coordinates. If instead we break the linear momentum balance equation
into cartesian coordinates we get

Fx ı̂ + Fy ̂ + Fz k̂ = m(ẍ ı̂ + ÿ̂ + z̈k̂).

Because the net force is zero and the net mass is not negligible,

ẍ = 0, ÿ = 0, and z̈ = 0.

These equations imply that ẋ , ẏ, and ż are all constants, lets call them vx0, vy0, vz0.
So x , y, and z are given by

x = x0 + vx0t, y = y0 + vy0t, & z = z0 + vz0t.

We can put these components into their place in vector form to get:

⇀
r = x ı̂ + y̂ + zk̂ = (x0 + vx0t)ı̂ + (y0 + vy0t)̂ + (z0 + vz0t)k̂. (10.2)

Note that there are six free constants in this equation representing the initial position
and velocity. Equation 10.2 is a cartesian representation of equation 10.1; it describes
a straight line being traversed at constant rate.

Polar/cylindrical coordinates. When there is no force, in polar coordinates we
have:

FR︸︷︷︸
0

êR + Fθ︸︷︷︸
0

êθ + Fz︸︷︷︸
0

k̂ = m[(R̈ − Rθ̇2)êR + (2Ṙθ̇ + Rθ̈ )êθ + z̈k̂].

This vector equation leads to the following three scalar differential equations, the first
two of which are coupled non-linear equations (neither can be solved without the
other).

R̈ − Rθ̇2 = 0

2Ṙθ̇ + Rθ̈ = 0

z̈ = 0

A tedious calculation will show that these equations are solved by the following
functions of time:

R =
√

d2 + [v0(t − t0)]2 (10.3)

θ = θ0 + tan−1[v0(t − t0)/d]

z = z0 + vz0t,

where θ0, d, t0, v0, z0, and vz0 are constants. Note that, though eqn. (10.4) looks
different than eqn. (10.2), there are still 6 free constants. From the physical interpre-
tation you know that eqn. (10.4) must be the parametric equation of a straight line.
And, indeed, you can verify that picking arbitrary constants and using a computer to
make a polar plot of eqn. (10.4) does in fact show a straight line. From eqn. (10.4)
it seems that polar coordinates’ main function is to obfuscate rather than clarify. For
the simple case that a particle moves with no force at all, we have to solve non-linear
differential equations whereas using cartesian coordinates we get linear equations
which are easy to solve and where the solution is easy to interpret.

But, if we add a central force, a force like earth’s gravity acting on an orbiting
satellite (the force on the satellite is directed towards the center of the earth), the
equations become almost intolerable in cartesian coordinates. But, in polar coordi-
nates, the solution is almost as easy (which is not all that easy for most of us) as
the solution 10.4. So the classic analytic solutions of celestial mechanics are usually
expressed in terms of polar coordinates.



586 CHAPTER 10. Mechanics of constrained particles and rigid bodies

Path coordinates. When there is no force,
⇀
F = m ⇀

a is expressed in path coordinates
as

Ft︸︷︷︸
0

êt + Fn︸︷︷︸
0

ên = m(v̇êt + (v2/ρ)ên︸ ︷︷ ︸
v2 ⇀

κ

).

That is,
v̇ = 0 and v2/ρ = 0.

So the speed v must be constant and the radius of curvature ρ of the path infinite.
That is, the particle moves at constant speed in a straight line.

Relative to a rotating reference frame Let’s look at the equations using a frame
B that shares an origin with F but is rotating at a constant rate ⇀

ωB = ωk̂ relative to
F . Thus

⇀
αB = ⇀

0 and ⇀
a0′/0 = ⇀

0

and we have that
⇀
F = m ⇀

a is written as

⇀
F = m ⇀

a
⇀

0 = m
{

⇀
a0′︸︷︷︸
⇀

0

−ω2
B

⇀
r + ⇀

αB︸︷︷︸
⇀

0

×⇀
r + ⇀

a/B + 2⇀
ωB × ⇀

v/B

}

= −ω2 ⇀
r + ⇀

a/B + 2ωk̂ × ⇀
v/B . (10.4)

Now, using the rotating base vectors ı̂
′ and ̂

′, we have that Fx ′ ı̂′ + Fy′ ̂ ′ = 0ı̂′ + 0̂ ′
and

⇀
r = x ′ ı̂′ + y′u j ′, ⇀

vB = ẋ ′ ı̂′ + ẏ′̂ ′
, and ⇀

aB = ẍ ′ ı̂′ + ÿ′̂ ′

so eqn. (10.4) can be rewritten as

⇀

0 = −ω2(x ′ ı̂′ + y′u j ′) + (ẍ ′ ı̂′ + ÿ′̂ ′
) + 2ωk̂ × (ẋ ′ ı̂′ + ẏ′̂ ′

)

which in turn can be broken into components and written as:

ẍ ′ = ω2x ′ + 2ω ẏ′ (10.5)

ÿ′ = ω2 y′ − 2ωẋ ′

which makes up a pair of second order linear differential equations. With some work,
someone good at ODEs can solve this with pencil and paper. But most of us would
use a computer for such a system. If, in some consistent units, we had

y′(0) = 0, ẏ′(0) = 0, x ′(0) = 0, ẋ ′(0) = 1, ω = 1

then the solution turns out to be

x ′ = t cos(ωt)

y′ = −t sin(ωt)

as you can check by substituting into eqn. (10.6). That is, a particle which we goes in
a straight line away from the origin goes, as seen in the rotating frame in spirals 1©.

1© This is why we are lucky the earth is
not spinning fast. And it could have been
more complicated yet with variable rate ro-
tation and acceleration. If any of these
were the case, we would see particles spi-
raling around all over the place, as would
have Isaac Newton. He would have written
“A particle in motion tends to go in crazy
spirals, and so does a particle that is ini-
tially stationary” and the equations we have
used through out this book would have been
much harder, if not impossible, to discover.

Constrained motion
A particle in a plane has 2 degrees of freedom. There is basically only one kind of
constraint — to a path. When constrained to a path the particle has one remaining
degree of freedom so its configuration can be described with one variable. For a given
problem you must think about
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• What force(s) constrain the motion to the path?
• What do you want to use for a configuration variable?

You use these ideas to

• draw an appropriate free body diagram, and then
• calculate the velocity and acceleration in terms of the configuration variable

and its derivatives.

After these key first steps you plug into equations of motion and solve for what you
are interested in. Of course the needed math could be difficult or impossible, but the
work is somewhat routine from a mechanics point of view.

Figure 10.3: A point-mass bead slides on
a rigid immobile frictionless wire. The free
body diagram shows that the only force on
the bead is in the direction normal to the
wire.

(Filename:tfigure.beadonwire)

Example: Bead on frictionless wire

A bead slides on a frictionless wire with a crazy but smooth shape. No
forces are applied to the bead besides the constraint force (see Fig. 10.3).

Fig. 10.3b shows a free body diagram where n̂ is the normal to the
wire at the point of interest. It doesn’t matter if you use for n̂ = ên ,
or n̂ = a vector always, say, to the left, just so long as you know what
you mean by n̂. The free body diagram shows that you know that the
constraint force is normal to the path (the frictionless wire) but that you
don’t know how big it is (F is an unknown scalar).

For some purposes, especially general problems like this where no
specific path is given, the most appropriate configuration variable is s,
the arc length along the path. If the path is given we assume we know
the position at any given arc length by the functions

x(s) and y(s).

So
⇀
r = ⇀

r (s), ⇀
v = ṡêt , and ⇀

a = (ṡ2/ρ)ên + s̈êt .

Now we can write linear momentum balance

⇀
F = m ⇀

a (10.6){
F n̂ = m

(
(ṡ2/ρ)ên + s̈êt

)}{} ·êt ⇒ v̇ = 0 and{} ·ên ⇒ F = mv2/ρ.

Eqn. 10.6 tells us that the bead moves at constant speed, no matter what
the shape of the wire. It also tells us that the more curved the wire, the
bigger the constraint force needed to keep the bead on the wire.

Because this is a 1 DOF system, any one equation of motion should
give us the result. Instead of linear momentum balance we could have
used power balance to get the same result like this:

P = ĖK

⇒ ⇀
F tot · ⇀

v = d

dt

{ 1

2
mv2 }

⇒ F ên · vêt = mvv̇

⇒ 0 = v̇.

This is natural enough. The only force on the particle is perpendicular to
its motion, so does no work. So the particle must have constant kinetic
energy and its speed must be constant. ✷
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The example above doesn’t seem that applicable; how often does one see beads on
frictionless wires? It is a bit more useful than it appears. For example, if a car is
coasting on an open road and tire resistance and sideslip can be ignored, the reasoning
above shows that the car is neither speeded nor slowed by turning. Similarly, an
idealization of an airplane wing is as something which only causes force perpendicular
to motion. So in quick manuevers where the gravity force is relatively small, the plane
maintains its speed.

Example: The hard brachistochrone problem.

ı̂

̂

x

sy g

mg

ênF
FBD:

Figure 10.4: A bead slides on a friction-
less wire on the curve implicitly defined by
y = cs2/2, where s is arc-length along the
curve measured from the origin.

(Filename:tfigure.brachistochrones)

B

A

g M

Figure 10.5: The roller coaster that gets
from A to B the fastest is the one with a
track in the shape of the brachistochrone
y = cs2/2.

(Filename:tfigure.brachsoln)

Here is a puzzle proposed by Johann Bernoulli on January 1, 1669 1©:

1© The original brachistochrone (least time)
puzzle:
“I, Johann Bernoulli, greet the most clever
mathematicians in the world. Nothing is
more attractive to intelligent people than an
honest, challenging problem whose possi-
ble solution will bestow fame and remain as
lasting monument. Following the example
set by Pascal, Fermat, etc., I hope to earn the
gratitude of the entire scientific community
by placing before the finest mathematicians
of our time a problem which will test their
methods and the strength of their intellect.
If someone communicates to me the solu-
tion of the proposed problem, I shall then
publicly declare him worthy of praise.

“Let two points A and B be given in a ver-
tical plane. Find the curve that a point M,
moving on a path AMB must follow such
that, starting from A, reaches B in the short-
est time under its own gravity.”

Newton. Besides Bernoulli’s son Dan,
one of the people to solve the puzzle was
55 year old Isaac Newton. He attempted to
keep his solution, said to have been worked
out in one evening while he also invented
the calculus of variations, anonymous. But
Bernoulli supposedly read through this de-
ception, commenting “I recognize the lion
by his paw print”, which was presumably
not a comment about Newton’s handwrit-
ing.

given that a roller coaster has to coast from rest at one place to another
place that is no higher, what shape should the track be to make the trip
as quick as possible.

The solution. Finding the solution, or even verifying it, is a problem
in the calculus of variations, i.e., too advanced for this book. The solu-
tion turns out to be the brachistochrone curve that obeys the following
relationship between arc-length s from the origin and vertical position y
(drawn accurately in Fig. 10.4):

y = 1

2
cs2 (for|s| ≤ 1/c). (10.7)

Starting at the origin this curve is close to y = cx2/2 but gets a bit
higher (bigger y) because for a given value of x , s is greater than x .
The curve terminates at vertical tangents at s = ±1/c where y = 1/2c.
(see Fig. 10.4). To solve the puzzle this curve is scaled (by choosing a
value of c) and displaced so that it has a vertical tangent at A and also
so the curve goes through B. The idea that the hard math seems to be
expressing, is that the particle should first build up as much speed as it
can (by going straight down) and then head off in the right direction (see
Fig. 10.5). ✷

On the other hand, here is an easier problem that is a virtual setup for the techniques
now at hand.

Example: The easy brachistochrone problem

How long does it take for a particle to slide back and forth on a frictionless
wire with y = cs2/2 as driven by gravity? (see Fig. 10.4)

Let’s use s as our configuration variable. The power balance equation
is:

P = ĖK

(F ên) · (vêt ) = 0 ⇒ − mg̂ · (ẋ ı̂ + ẏ̂) = d

dt

{ 1

2
mv2 }

⇒ − mgẏ = m
d

dt

ṡ2

2
⇒ − mgcsṡ = mṡs̈

Assuming ṡ �= 0 ⇒ s̈ + gcs = 0.

This, remarkably, is the simple harmonic oscillator equation with general
solution

s = A cos(
√

gc t) + B sin(
√

gc t).
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Thus the period of oscillation (T such that
√

gcT = 2π ) is

T = 2π√
gc

which is independent of the amplitude of oscillation 1©. 1© Actually, the amplitude can’t be arbi-
trarily large. The solution to the defining
eqn. (10.7) only makes sense for |s| < 1/c.
For |s| > 1/c there is no curve satisfying
eqn. (10.7).

The key to this quick solution was using a configuration variable
that made the expression for the velocity simple, and using an equation
of motion that didn’t involve the unknown reaction force F which we
also didn’t care about. We could have got the same equation of motion
by writing

⇀
F = m ⇀

a and eliminated F ên by dotting both sides with a
convenient vector orthogonal to F ên , say ⇀

v .
The brachistochrone is a famous curve that has various interesting

properties (e.g., Box 10.1 on page 592). ✷

Example: A collar on two rotating rods

Figure 10.6: A point-mass collar slides
simultaneously on 2 rods.

(Filename:tfigure.collaron2rods)

Consider a pair of collars hinged together as a point mass m at P. Each
slides frictionlessly on a rod about whose rotation everything is known
(see Fig. 10.6. What is the force of rod 1 on the mass? For this 2 degree
of freedom system lets use configuration variables θ1 and θ2, and two sets
of rotating base vectors: λ̂1n̂1 and λ̂2n̂2. These rotating base vectors can
be written in terms of the θs, ı̂ and ̂ in the standard manner. Assume
we know �1 and �2 in this configuration. First find �̇1 and �̇2 by thinking
of the velocity of the collar two different ways:

⇀
v = ⇀

v (10.8){
�̇1λ̂1 + θ̇1�1n̂1 = �̇2λ̂2 + θ̇2�2n̂2

}
{} ·n̂2 ⇒ �̇1 = θ̇2�2 − θ̇1�1n̂1 · n̂2

λ̂1 · n̂2{} ·n̂1 ⇒ �̇2 = θ̇1�1 − θ̇2�2n̂2 · n̂1

λ̂2 · n̂1
.

Having found �̇1 and �̇2 we can find the velocity ⇀
v by evaluating either

side of eqn. (10.8). Now we apply identical reasoning with the acceler-
ation. The result looks messy, but the approach is straightforward:

⇀
a = ⇀

a (10.9){
�̈1λ̂1 + θ̈1�1n̂1 + 2�̇1θ̇1n̂1 = �̈2λ̂2 + θ̈2�2n̂2 + 2�̇2θ̇2n̂2

}
{} ·n̂2 ⇒ �̈1 = θ̈2�2 + 2�̇2θ̇2 − θ̈1�1n̂1 · n̂2 − 2�̇1θ̇1n̂1 · n̂2

λ̂1 · n̂2{} ·n̂1 ⇒ �̈2 = θ̈1�1 + 1�̇1θ̇1 − θ̈2�2n̂2 · n̂1 − 2�̇2θ̇2n̂2 · n̂1

λ̂2 · n̂1

We use the results from eqn. (10.8) for �̇1 and �̈2 to evaluate the right
hand sides of the expressions for �̈2 and �̈3 in eqn. (10.9). So now either
the left hand side or the right hand side of the second of Eqns. 10.9 can
be used to evaluate the acceleration ⇀

a , all the terms in both expressions
have been found.

To find the forces we use linear momentum balance and the free body
diagram

⇀
F tot = m ⇀

a (10.10)
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{
F1n̂1 + F2n̂2 = m{�̈1λ̂1 + θ̈1�1n̂1 + 2�̇1θ̇1n̂1}

}
{} ·λ̂2 ⇒ F2 = {�̈1λ̂1 + θ̈1�1n̂1 + 2�̇1θ̇1n̂1} · λ̂2

n̂1 · λ̂2{} ·λ̂1 ⇒ F2 = {�̈1λ̂1 + θ̈1�1n̂1 + 2�̇1θ̇1n̂1} · λ̂1

n̂2 · λ̂1

When actually evaluating the expressions above one can write the base
vectors in terms of ı̂ and ̂ or use geometry.

Often when working out a problem it is best to not substitute numbers
until the end of a problem. This example shows the opposite. If we
left the expressions for �̇1 and �̇2 with letters and substituted that into
the expressions for �̈1 and �̈2 and left those expressions intact while
substituting for the acceleration ⇀

a we would have large expressions for the
force components F1 and F2. On the other hand, by using numbers as the
calculation progresses the formulas do not grow so much in complexity.

As is the case with most mechanism-mechanics problems, the hard
work in getting the dynamics equations is in the kinematics. Generally
there are no great short-cuts. There are alternative methods. In this case
the location of the base points and the two angles determine the base and
two angles of a triangle. This triangle can be solved for the location of
the point P. Once that position is known in terms of θ1 and θ2 the velocity
and acceleration can be found by differentiation.

As a robot manipulator, this design has the advantage that no motors
need to be displaced. It has the disadvantage of requiring good sliding
joints.

An alternative solution of the kinematics of this problem would be
to use trigonometry to find the position of point P in terms of the angles
θ1 and θ2. Then the acceleration of point P is found by taking two
time derivatives. The result is approximately equal in the complexity
of its appearance to the results used above. That method requires more
cleverness at the start (solving an angle-side-angle triangle) and then just
brute force differentiation using the chain rule and the product rule. ✷

Figure 10.7: The base of a pendulum is
vertically vibrated.

(Filename:tfigure.vibratingpend)

Example: Inverted pendulum with a vibrating base

Assume that the base 0′ of an inverted point-mass pendulum of length �

is vibrated according to (see Fig. 10.7)

⇀
r0′ = d sin ωt ı̂.

The point P thus has acceleration

⇀
aP = ⇀

a0′ + ⇀
aP/0′

= −dω2 sin ωt ı̂ + θ̈�êθ − θ̇2�êR

Now apply linear momentum balance as

⇀
Ftot = m ⇀

aP{ −mgı̂ + −T êR = m{−dω2 sin ωt ı̂ + θ̈�êθ − θ̇2�êR} }
{} ·êθ ⇒ − gı̂ · êθ = −dω2 sin ωt ı̂ · êθ + θ̈�

⇒ g sin θ = dω2 sin ωt sin θ + θ̈�
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which you write as

θ̈ + (dω2 sin ωt − g) sin θ/� or θ̈ = (g − dω2 sin ωt) sin θ/�

depending on whether you are analytically or numerically inclined. This
is a second order non-linear ordinary differential equation. If ω = 0
or d = 0 then this is the classic inverted pendulum equation and has
solutions that show that the pendulum doesn’t stay near upright. But,
you can find by analytic cleverness or numerical integration that for some
values of d and ω that the pendulum does not fall down! Just shaking
the base keeps the pendulum up (ω2d > g for all cases where this is
possible). This isn’t just academic nonsense, the device can be built and
the balancing demonstrated.

One alternative to using linear momentum balance in the equations
above would be to use angular momentum balance about the point 0’.
The resulting vector equation

�êR × (−mgı̂) = ⇀
rP/0′ × (m ⇀

a)

yields the same second order scalar ODE.
The vibrating mechanism shown is a “Scotch yoke”. An eccentric

disk is mounted to the shaft of a constant angular velocity motor. The
rectangular slot moves up and down sinusoidally as the disk wobbles. ✷

.
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10.1 Some brachistochrone curiosities

The brachistochrone is a cycloid. There is no straightfor-
ward way to draw the curve y = cs2/2 because the formula doesn’t
tell you the x coordinates of the points. You could find them by inte-

grating dx =
√

ds2 − dy2 numerically or with calculus tricks. But
it turns out (see below) that the curve with y = cs2/2 is described
by the parametric equations

x = r(φ + sin φ) with r = 1
4c .

y = r(1 − cos φ).

ı̂

̂
r

f

y

x

wheel rolls
on ceiling

Brachistochrone

rf

This is the path of a particle on the perimeter of a wheel that rolls
against a horizontal ceiling a distance 2r above the origin, as you
can verify by adding up distances in the picture above (see page
525). We will show below that the upside down cycloid and the
curve y = cs2/2 are one and the same.

Note that the osculating circle of this cycloid at its lowest point
has radius 4r = 1/c, just the length of a simple pendulum that, for
small oscillations, has the same frequency of oscillation as the bead
on the brachistochrone. A point mass swinging on a string is like a
bead on a frictionless circular wire and this, in turn, is close to the
motion of a bead on a brachistochrone wire for small oscillations.

Galileo (1564-1642). Well before Bernoulli’s challenge, Galileo
was interested in things rolling and sliding on ramps. He knew that
the shortest distance between two points is a straight line, and had
noted that a ball rolling down an appropriately curved ramp gets to
its destination faster than a ball traveling the shortest route. A ball
going on a straight ramp just doesn’t pick up much speed, and when it
finally has its greatest speed the trip is over. Imagine sliding straight
sideways; it takes forever on a straight-line route. Better, he must
have reasoned, to get the ball rolling fast at the start and then go fast
for most of its journey, possibly slowing at the end. Galileo thought
the best shape was the bottom of a circle (or fraction thereof), which
isn’t far off either in shape or concept, but isn’t quite right. Galileo
was apparently obsessed with cycloids for other reasons but didn’t
see their connection to this problem.

Huygen's isochronous pendulum

Simple pendulum

2rcycloid

cycloid

cycloidcycloid

A constant period pendulum. For clock time keeping, a
pendulum is better than a bead on a wire because the friction of
sliding is avoided. Unfortunately, a simple pendulum has a period
which is longer if the amplitude is bigger. Not much longer, 18% if

the swinging is ±90o and only 1.7% longer if the amplitude is ±30o,
but enough to annoy clock designers. A bead sliding frictionlessly
on the path y = s2/2 has the nice property that the period does
not depend on the amplitude. But any real bead sliding on any real
wire has substantial friction. So, at first blush the brachistochrone
curve, despite its nice constant-period property, cannot be used to
keep time.

But Huygens, one of the smart old timers, looked for a curve
that, when a string wraps around it, makes the end follow the brachis-
tochrone curve. To this day you can see fancy old clocks with this
wrapping device, a solid piece with the cuspoidal shape of neigh-
boring cycloids, near the hinge of the swinging (“isochronous” or
“tautochrone”) pendulum which wraps around it.

Geometry. The two key features discussed above, that the curve
y = cs2/2 is a cycloid, and that a cycloid can be generated by
wrapping a string around another cycloid, can be found from the
geometric construction below. Two cycloids are shown, one from
wheel 1 rolling under line L1 and another from wheel 2 rolling under
line L2 a distance 2r below. Both wheels have radius r . Imagine
that the cycloids A1M1B and A2M2B are drawn by wheels always
arranged with vertically aligned rolling contact points C1 and C2
and with points M1 and M2 initially aligned vertically a distance 4r
apart at A1 and A2.

The two cycloids are thus the same shape but are displaced with
one being 2r below and πr sideways from the other.

Because both wheels have rolled the same distance (A1C1) they
have rotated the same amount and M2 is as far forward of C1C2D
as M1 is behind. Similarly M1 is as far above L2 as M2 is below.
So the line M1M2 is bisected by the point C2.

Because C1C2 is the diameter of a circle with M1 on the perime-
ter, angle C1M1C2 is a right angle. Because material point C1 on
the wheel has zero velocity the velocity of M1 (and thus the tangent
to the curve) is orthogonal to C1M1. Thus the line M1M2 is tangent
to the upper cycloid.

The rolling of wheel 2 instantaneously rotating about C2 makes
the tangent to the lower cycloid orthogonal to M1M2, the condition
for the motion of M2 to be from the wrapping of an inextensible
line around the curve A1M1B. This shows that cycloid A2M2B is
generated by the wrapping of a line anchored at A1 about the upper
cycloid. And this is Huygen’s wrapping mechanism for making a
pendulum bob follow a cycloid. Because of this wrapping genera-
tion, the arc-length s′ + s of A1M1B must be 4r and the arc length
s of M1B is M1M2 so the length M1C2 is s/2. By the similarity of
the two right triangles that share the length s/2 of M1C2:

y

s/2
= s/2

2r
⇒ y = 1

4r

s2

2
= c

s2

2

L
1

L
2

Wheel 1

Wheel 2

A
2

A
1

C
1

M
1

M
2

BC
2

D

2r

2r

s'

s
y

which shows that the upper cycloid is the curve y = cs2/2 if c =
1/4r , where s is measured from B. This was the equation used to
show the constant period nature of the sliding motion of a bead on a
frictionless cycloidal curve using power balance.
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SAMPLE 10.1 A bead on a straight wire. A straight wire is hung between points

Figure 10.8: (Filename:sfig11.1.beadonline.kin)

A and B in the xy plane as shown in the figure. A bead slides down the wire from
point A. Write the geometric constraint equation for the bead’s motion and derive the
conditions on velocity and acceleration components of the bead due to the constraint.

Solution The constraint on the bead’s motion is that its path must be along the wire,
i.e., a straight line between points A and B. Thus the geometric constraint on the
motion is expressed by the equation of the path which is

y = h − h

�
x .

Since the bead is constrained to move on this path, its velocity and acceleration
vectors are also constrained to be directed along AB. This imposes conditions on
their x and y components that are easily derived by differentiating the geometric
constraint equation with respect to t . Thus,

ẏ = −h

�
ẋ,

ÿ = −h

�
ẍ .

y = h − h
�

x, ẏ = − h
�

ẋ, ÿ = − h
�

ẍ

SAMPLE 10.2 A particle sliding on a parabolic path. A particle slides on a parabolic

Figure 10.9: (Filename:sfig11.1.parabola.kin)

trough given by y = ax2 where a is a constant. Write the geometric constraints of
motion (on the path, velocity, and acceleration) of the particle. Write the velocity and
acceleration of the particle at a generic location (x, y) on its path.

Solution The geometric constraint on the path of the particle is already given,
y = ax2. DIfferentiating the path constraint with respect to time, we get the constraint
on velocity and acceleration components.

ẏ = 2ax ẋ,

ÿ = 2ax ẍ + 2aẋ2.

Now, at a point (x, y), we can write the velocity and acceleration of the particle as

⇀
v = ẋ ı̂ + ẏ̂ = ẋ ı̂ + 2ax ẋ ̂ ,
⇀
a = ẍ ı̂ + ÿ̂ = ẍ ı̂ + (2ax ẍ + 2aẋ2)̂ .

⇀
v = ẋ ı̂ + 2ax ẋ ̂ ,

⇀
a = ẍ ı̂ + (2ax ẍ + 2aẋ2)̂



594 CHAPTER 10. Mechanics of constrained particles and rigid bodies

SAMPLE 10.3 Circular motion of a particle. A particle is constrained to move on

Figure 10.10: (Filename:sfig11.1.circle)

a frictionless circular path of radius R0 with constant angular speed θ̇ . There is no
gravity. Find the equation of motion of the particle in the x-direction and show that
this motion is simple harmonic.

Solution This is simple problem that you have solved before, probably a few times.
Here, we do this problem again just to show how it works out with the constraint
machinery in evidence. The geometric constraint on the path of the particle is R = R0
(in polar coordinates). This constraint gives us Ṙ = 0 and R̈ = 0. Then the
acceleration of the particle (in polar coordinates), ⇀

a = (R̈ − Rθ̇2)êR + (2Ṙθ̇ + Rθ̈ )êt

reduces to ⇀
a = −Rθ̇2êR , (of course).

Figure 10.11: (Filename:sfig11.1.circle.a)

The free body diagram of the particle shows that there is only one force acting on
the particle, the normal reaction N of the path acting in the êR direction. Therefore,
the linear momentum balance gives,

N êR = m ⇀
a = m(−Rθ̇2êR) ⇒ N = −m Rθ̇2.

But, to write the equation of motion in the x-direction, we need to write the linear
momentum balance in the x-direction. We can write

∑ ⇀
F = m ⇀

a using mixed basis
vectors as N êR = m(ẍ ı̂ + ÿ̂). Dotting this equation with ı̂, we get

ẍ = N

m
(êR · ı̂) = −m Rθ̇2

m
cos θ = −θ̇2(R cos θ) = −θ̇2x

or, ẍ + θ̇2x = 0, which is the equation of simple harmonic motion in x . You can
easily show that the motion in the y-direction is also simple harmonic (ÿ + θ̇2 y = 0).

SAMPLE 10.4 A bead slides on a straight wire. Consider the problem of the bead
sliding on a straight, inclined, frictionless wire of Sample 10.1 again. Find the position
of the bead x(t) and y(t) assuming it slides under gravity starting from rest at A.

Solution To find the position of the bead, we need to write the equation of motion
and solve it. This is single DOF system and, therefore, one scalar equation of motion
should suffice.

Figure 10.12: (Filename:sfig11.1.beadonline.a)

The free body diagram of the bead is shown in Fig. 10.12. Using basis vectors
(λ̂, n̂) and (ı̂, ̂) we write the LMB for the bead as

−mg̂ + N n̂ = m ⇀
a = m(ẍ ı̂ + ÿ̂).

We can easily eliminate the constraint force N from this equation by dotting this
equation with λ̂, which gives

−�mg(̂ · λ̂) = �m[ẍ(ı̂ · λ̂) + ÿ(̂ · λ̂)]

⇒ g sin θ = ẍ cos θ − ÿ sin θ.

But, from the geometric constraint y = h − (h/�)x , we have ÿ = −(h/�)ẍ =
−(tan θ)ẍ . Therefore,

g sin θ = ẍ cos θ + ẍ tan θ sin θ ⇒ ẍ = g sin θ cos θ.

Since g sin θ cos θ is constant, we integrate the equation of motion easily to find
x(t) = 1

2 g sin θ cos θ t2 since x(0) = 0, ẋ(0) = 0. And, since y = h − x tan θ , we
have y(t) = h − 1

2 g sin2 θ t2.

x(t) = 1
2 ght2 sin θ cos θ, y(t) = h − 1

2 gt2 sin2 θ
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SAMPLE 10.5 A bead sliding down a parabolic trough. Consider the problem of

Figure 10.13: (Filename:sfig11.1.parabola)

Sample 10.2 again. Find the equation of motion of the bead.

Solution This is, again, a one DOF system. Therefore, we will get a single scalar
equation of motion. The free body diagram shown in Fig. 10.14 shows two forces
acting on the bead. The constraint force N acts normal to the path. Let êt and
ên be unit vectors tangential and normal to the path, respectively. Then the linear
momentum balance gives

Figure 10.14: (Filename:sfig11.1.parabola.a)

−mg̂ + N ên = m ⇀
a = m(ẍ ı̂ + ÿ̂).

To eliminate the unknown constraint force N from this equation, we can take a
dot product of this equation with êt . However, we must first find êt . Now êt is
the unit tangent vector. So, we can find it by finding a tangent vector to the path
(remember gradient of a function ∇ f ?) and then dividing it by the length of the
vector. That is doable but a little complicated. All we need here is the dot product
with a vector normal to ên . Why not use the velocity vector ⇀

v = ẋ ı̂ + ẏ̂? The
velocity vector is always tangential to the path. Furthermore, we know that from
the geometric constraint (y = ax2), ẏ = 2ax ẋ and ÿ = 2ax ẍ + 2ax ẋ2. Therefore,
⇀
v = ẋ ı̂ + 2ax ẋ ̂ . Now, dotting the LMB equation with ⇀

v we get,

−�mg

2ax ẋ︷ ︸︸ ︷
(̂ · ⇀

v) = �m [
ẍ

ẋ︷ ︸︸ ︷
(ı̂ · ⇀

v) +ÿ

2ax ẋ︷ ︸︸ ︷
(̂ · ⇀

v)
]

−2gax� ẋ = ẍ� ẋ + 2a ÿ� ẋ
= ẍ + 2a (2ax ẍ + 2aẋ2)︸ ︷︷ ︸

ÿ

= ẍ(1 + 4a2x) + 4a2 ẋ2.

Rearranging the terms above, we get the required equation of motion:

ẍ + 4a2

1 + 4a2x
ẋ2 + 2gax

1 + 4a2x
= 0.

As you can see, this is a nonlinear ODE. Analytical solution of this equation is rather
difficult. We can, however, always solve it numerically. Note that a solution of this
equation only gives you x(t), i.e., the x coordinate of the position of the bead. But,
you can always find the y coordinate since y = ax2.

ẍ + 4a2

1+4a2x
ẋ2 + 2gax

1+4a2x
= 0

Comment: Note that if we consider x and ẋ to be very small so that we can ignore
the ẋ2 term completely and take 1 + 4a2x ≈ 1, then the equation of motion becomes

ẍ + (2ga) x = 0

which is the equation of simple harmonic motion with frequency
√

2ga. Thus, if we
consider a shallow parabola, and release the bead close to the origin, it executes simple
harmonic motion, much like a simple pendulum. This is an intuitively realizable
motion.
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SAMPLE 10.6 Constrained motion of a pin. During a small interval of its motion,

pin

x

y

R = Ro + kθ

θ

Figure 10.15: A pin is constrained to
move in a groove and a slotted arm.

(Filename:sfig6.2.2)

a pin of 100 grams is constrained to move in a groove described by the equation
R = R0 + kθ where R0 = 0.3 m and k = 0.05 m. The pin is driven by a slotted arm
AB and is free to slide along the arm in the slot. The arm rotates at a constant speed
ω = 6 rad/s. Find the magnitude of the force on the pin at θ = 60o.

Solution Let
⇀
F denote the net force on the pin. Then from the linear momentum

balance
⇀
F = m ⇀

a

where ⇀
a is the acceleration of the pin. Therefore, to find the force at θ = 60o we

need to find the acceleration at that position.
From the given figure, we assume that the pin is in the groove at θ = 60o. Since the

equation of the groove (and hence the path of the pin) is given in polar coordinates, it
seems natural to use polar coordinate formula for the acceleration. For planar motion,
the acceleration is

a = (R̈ − Rθ̇2)êR + (2Ṙθ̇ + Rθ̈ )êθ .

We are given that θ̇ ≡ ω = 6 rad/s and the radial position of the pin R = R0 + k θ .
Therefore, 1©1© Note that R is a function of θ and θ is a

function of time, therefore R is a function of
time. Although we are interested in finding
Ṙ and R̈ at θ = 60o, we cannot first sub-
stitute θ = 60o in the expression for R and
then take its time derivatives (which will be
zero).

θ̈ = d θ̇

dt
= 0 ( since θ̇ = constant)

Ṙ = d

dt
(R0 + kθ) = kθ̇ and

R̈ = kθ̈ = 0.

Substituting these expressions in the acceleration formula and then substituting the
numerical values at θ = 60o, (remember, θ must be in radians!), we get

⇀
a = −

Rθ̇2︷ ︸︸ ︷
(R0 + kθ)θ̇2 êR +

2Ṙθ̇︷︸︸︷
2kθ̇2 êθ

= −(0.3 m + 0.05 m · π

3
) · (6 rad/s)2 êR + 2 · 0.3 m · (6 rad/s)2 êθ

= −13.63 m/s2êR + 21.60 m/s2êθ .

Therefore the net force on the pin is

⇀
F = m ⇀

a

= 0.1 kg · (−13.63êR + 21.60êθ ) m/s2

= (−1.36êR + 2.16êθ ) N

and the magnitude of the net force is

F = | ⇀
F | =

√
(1.36 N)2 + (2.16 N)2 = 2.55 N.

F = 2.55 N
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SAMPLE 10.7 A puck sliding on a rough rotating table. A horizontal turntable

Figure 10.16: (Filename:sfig11.1.puckontable)

rotates with constant angular speed ω = 100 rpm. A puck of mass m = 0.1 kg gently
placed on the rotating turntable. The puck begins to slide. The coefficient of friction
between the puck and the turntable is 0.25. Find the equation of motion of the puck
using

(a) A fixed reference frame with cartesian coordinates
(b) A rotating reference frame with cartesian coordinates

Solution

(a) Equation of motion using a fixed reference frame: The puck has two DOF
on the turntable. So, we will need two configuration variables, say x and y,
and we will have to find equation of motion for each variable.
Let us use a fixed cartesian coordinate system with the origin at the center of
the turntable. Let ⇀

rP = x ı̂ + y̂ be the position of the puck at some instant t ,
so that its velocity is ⇀

vP = ẋ ı̂ + ẏ̂ and acceleration is ⇀
aP = ẍ ı̂ + ÿ̂ .

F

Figure 10.17: A partial free body dia-
gram of the puck. For linear momentum
balance we need to consider only the forces
acting in the plane of motion.

(Filename:sfig11.1.puckontable.a)

The free body diagram of the puck should show three forces — the force of
gravity (in −k̂ direction), the normal reaction of the turntable (in k̂ direction)
and the friction force

⇀
F . Since, there is no motion in the vertical direction, we

know that N = mg and that F = | ⇀
F | = µN = µmg. But, what is the direction

of the friction force? Well, we know that it acts in the opposite direction of the
relative slip, so that

⇀
F = −µN

⇀
vrel

|⇀
vrel|

.

So, we need to find ⇀
vrel. Now ⇀

vrel is the velocity of the puck relative to the
turntable, or more precisely, relative to the point on the turntable just underneath
the puck. Let us denote that point by P ′. Clearly, P ′ goes in circles with
constant speed, so that its velocity is

⇀
vP′ = ⇀

ω × ⇀
rP′ = θ̇ k̂ × (x ı̂ + y̂) = θ̇x ̂ − θ̇ y ı̂.

Therefore, the relative velocity, ⇀
vrel is

⇀
vrel = ⇀

vP − ⇀
vP′ = (ẋ + θ̇ y)ı̂ + (ẏ − θ̇x)̂

Now the linear momentum balance for the puck in the xy plane gives

−µ �mg
⇀
vrel

|⇀
vrel|

= �m(ẍ ı̂ + ÿ̂)

⇒ ẍ = −µg

|⇀
vrel|

(
⇀
vrel · ı̂) = − µg(ẋ + θ̇ y)√

(ẋ + θ̇ y)2 + (ẏ − θ̇x)2

and ÿ = −µg

|⇀
vrel|

(
⇀
vrel · ̂) = − µg(ẏ − θ̇x)√

(ẋ + θ̇ y)2 + (ẏ − θ̇x)2
.

These are coupled nonlinear ODEs that represent the equations of motion of
the puck.

ẍ = − µg(ẋ+θ̇ y)√
(ẋ+θ̇ y)2+(ẏ−θ̇x)2

, ÿ = − µg(ẏ−θ̇x)√
(ẋ+θ̇ y)2+(ẏ−θ̇x)2

Note that these equations are valid only as long as there is relative slip between
the puck and the turntable. If the puck stops sliding due to friction, it simply
goes in circles with the turntable and, therefore, its equations of motion then
are ẍ = −θ̇2x, ÿ = −θ̇2 y.
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(b) Equation of motion using a fixed reference frame: Now we derive the equa-
tions of motion using a rotating reference frame, B, with (x ′, y′) coordinate
axes, fixed to the rotating turntable. Let the position of the puck in the rotating
frame be ⇀

rP/O′ = x ′ ı̂′ + y′̂ ′. Note that the velocity of the puck in the rotating

reference frame is ⇀
vP/B = ẋ ′ ı̂′ + ẏ′̂ ′, and acceleration is ⇀

aP/B = ẍ ′ ı̂′ + ÿ̂ ′.
Now, from the linear momentum balance (

∑ ⇀
F = m ⇀

a) for the puck, we get

'

'

θ
P

Figure 10.18: Axes (x ′, y′) represent
the rotating frame B fixed to the rotating
turntable; ie (x ′, y′) rotate with angular ve-

locity ⇀
ωB = θ̇ k̂.

(Filename:sfig11.1.puckontable.b)

−µ�mg
⇀
vrel

|⇀
vrel|

= �m(
⇀
aP′ + ⇀

aP/B + 2⇀
ωB × ⇀

vP/B)

where we have used the three term acceleration formula for ⇀
aP. Here,

⇀
aP′ = −θ̇2(x ′ ı̂′ + y′̂ ′

)
⇀
aP/B = ẍ ′ ı̂′ + ÿ′̂ ′

2⇀
ωB × ⇀

vP/B = −2θ̇ ẏ′ ı̂′ + 2θ̇ ẋ ′̂ ′

Note that the point P ′, coincident with P and fixed on the turntable, is stationary
with respect to the rotating frame. Therefore, the relative velocity of P as
observed in the rotating frame is ⇀

v rel = ⇀
vP/B = ẋ ′ ı̂′ + ẏ′̂ ′. Substituting these

terms in the LMB equation above, we have

−µg
ẋ ′ ı̂′ + ẏ′̂ ′√

ẋ ′2 + ẏ′2 = (−θ̇2x ′ + ẍ ′ − 2θ̇ ẏ′)ı̂′ + (−θ̇2 y′ + ÿ′ + 2θ̇ ẋ ′)̂ ′

Dotting this equation with ı̂
′ and ̂

′, respectively, we get

ẍ ′ = θ̇2x ′ − µgẋ ′√
ẋ ′2 + ẏ′2 + 2θ̇ ẏ′

ÿ′ = θ̇2 y′ − µgẏ′√
ẋ ′2 + ẏ′2 − 2θ̇ ẋ ′

These are the required equations of motion for the puck in the rotating frame.

ẍ ′ = θ̇2x ′ − µgẋ ′√
ẋ ′2+ẏ′2 + 2θ̇ ẏ′, ÿ′ = θ̇2 y′ − µgẏ′√

ẋ ′2+ẏ′2 − 2θ̇ ẋ ′

Once we find a solution x ′(t) and y′(t) of these equations, we can find the
solution in the fixed frame by transforming (x ′, y′) to (x, y) through{

x(t)
y(t)

}
=

[
cos(θ̇ t) − sin(θ̇ t)
sin(θ̇ t) cos(θ̇ t)

] {
x ′(t)
y′(t)

}

Also, note that when the solution of the equations of motion in the rotating
reference frame brings the puck to halt, the puck stops with respect to the
rotating turntable. To an observer in the fixed frame, the puck will be going in
circles with a constant θ̇ .
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SAMPLE 10.8 A collar sliding on a rough rod. A collar of mass m = 0.5 lb slides

m 

B

O

A

θ

L

ı̂

̂

k̂

ω

Figure 10.19: A collar slides on a rough
bar and finally shoots off the end of the
bar as the bar rotates with constant angu-
lar speed.

(Filename:sfig6.5.1)

on a massless rigid rod OA of length L = 8 ft. The rod rotates counterclockwise with
a constant angular speed θ̇ = 5 rad/s. The coefficient of friction between the rod and
the collar is µ = 0.3. At time t = 0 s, the bar is horizontal and the collar is at rest at
1 ft from the center of rotation O. Ignore gravity.

(a) How does the position of the collar change with time (i.e., what is the equation
of motion of the rod)?

(b) Plot the path of the collar starting from t = 0 s till the collar shoots off the end
of the bar.

(c) How long does it take for the collar to leave the bar?

Solution

O

BN

Fs = µN

θ

Figure 10.20: Free Body Diagram of the
collar. The only forces on the collar are
the interaction forces of the bar, which are
the normal force N and the friction force
Fs = µN .

(Filename:sfig6.5.1a)

(a) First, we draw a Free Body Diagram of the the collar at a general position
(R, θ). The FBD is shown in Fig. 10.20 and the geometry of the position
vector and basis vectors is shown in Fig. 10.21. In the Free Body Diagram
there are only two forces acting on the collar (forces exerted by the bar) —
the normal force

⇀
N = N êθ acting normal to the rod and the force of friction

⇀
F s = −µN êR acting along the rod. Now, we can write the linear momentum
balance for the collar:

m 

O

B

θ

R

ı̂

̂

k̂

êθ

êR

Figure 10.21: Geometry of the collar po-
sition at an arbitrary time during its slide on
the rod.

(Filename:sfig6.5.1b)

∑
⇀
F = m ⇀

a or

−µN êR + N êθ = m[(R̈ − Rθ̇2)êR + (2Ṙθ̇ + R θ̈︸︷︷︸
0

)êθ (10.11)

Note that θ̈ = 0 because the rod is rotating at a constant rate. Now dotting both
sides of Eqn. (10.11) with êR and êθ we get

[Eqn. (10.11)] · êR ⇒ − µN = m(R̈ − Rθ̇2)

or R̈ − Rθ̇2 = −µN

m
[Eqn. (10.11)] · êθ ⇒ N = 2m Ṙθ̇ .

Eliminating N from the last two equations we get

R̈ + 2µθ̇ Ṙ − θ̇2 R = 0.

Since θ̇ = ω is constant, the above equation is of the form

R̈ + C Ṙ − ω2 R = 0 (10.12)

where C = 2µω and ω = θ̇ .
Solution of equation (10.12): The characteristic equation associated with
Eqn. (10.12) (time to pull out your math books and see the solution of ODEs)
is

λ2 + Cλ − ω2 = 0

⇒ λ = −C ± √
C2 + 4ω2

2

= ω(−µ ±
√

µ2 + 1).

Therefore, the solution of Eqn. (10.12) is

R(t) = Aeλ1t + Beλ2t

= Ae(−µ+
√

µ2+1)ωt + Be(−µ−
√

µ2+1)ωt .
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Substituting the given initial conditions: R(0) = 1 ft and Ṙ(0) = 0 we get

R(t) = 1 ft

2

[
e(−µ+

√
µ2+1)ωt + e(−µ−

√
µ2+1)ωt

]
. (10.13)

R(t) = 1 ft
2

[
e(−µ+

√
µ2+1)ωt + e(−µ−

√
µ2+1)ωt

]
.

(b) To draw the path of the collar we need both R and θ . SInce θ̇ = 5 rad/s =
constant,

θ = θ̇ t = (5 rad/s) t.

ow we can take various values of t from 0 s to, say, 1 s, and calculate values

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

t

R
(t

)

Rf

tf

Figure 10.22: N(Filename:sfig11.1.newgunRoft)

of θ and R. Plotting all these values of R and θ , however, does not give us
an entirely correct path of the collar, since the equation for R(t) is valid only
till R = length of the bar = 8 ft. We, therefore, need to find the final time
t f such that R(t f ) = 8 ft. Equation (10.13) is a nonlinear algebraic equation
which is hard to solve for t . We can, however, solve the equation iteratively
on a computer, or with some patience, even on a calculator using trial and
error. One way to find t f would be to simply plot R(t) and find the intersection
with R = 8 (see Fig. 10.22) and read the corresponding value of t . Either by
refining the time interval around the intersection or by interpolation, we can
find t f . Following this method, we find that t f = 0.74518 s here. Now, we
can plot the path of the collar by computing R and θ from t = 0 to t = t f and
making a polar plot on a computer as follows (pseudocode).

tf = 0.74518 % final value of t
t = 0:tf/100:tf; % take 101 points in [0 tf]
R0 = 1; w = 5; mu = .3; % initialize variables
f1 = -mu + sqrt(mu^2 +1); % first partial exponent
f2 = -mu - sqrt(mu^2 +1); % second partial exponent
R = 0.5*R0*(exp(f1*w*t) + exp(f2*w*t)); % calculate R
theta = w*t; % calculate theta
polarplot(theta,r)

  2
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Figure 10.23: Plot of the path of the col-
lar till it leaves the rod.

(Filename:sfig11.1.newgunpath)

The plot produced thus is shown in Fig. 10.23.

(c) The time t f computed above was

t f = 0.7452 s.

By plugging this value in the expression for R(t) (Eqn. (10.13) we get, indeed,

R = 8 ft.

t f = 0.7452 s
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10.2 Mechanics of one-degree-of-

freedom 2-D mechanisms
A one-degree-of-freedom mechanism is a collection of parts linked together so that
they can move in only one way 1©. The word “freedom” has to be taken lightly here1© No physical system can move in only one

way. The idea that a machine has one degree
of freedom is an idealization that takes lit-
erally the rigid body description of the parts
and the ideal nature of the connections. In
fact all parts can deform and no connections
are so strict as to be exact geometric con-
straints. It may be reasonable to respect the
standard rigid body idealizations and con-
sider a machine as one-degree-of-freedom
for basic analysis. But it may also be rea-
sonable to relax some of those assumptions
and consider more degrees of freedom when
trying to figure out why that same machine
vibrates in an undesirable way.

because in practice even the one freedom is often controlled or restricted. Frankly,
most machine designers don’t trust the laws of mechanics to enforce motions that they
want. Instead they choose kinematic restrictions that enforce the desired motions and
then use a motor, a computer controlled actuator or big flywheel to keep that motion
moving at a prescribed rate.

We consider here machines that can move in just one way, whether or not that one
motion is free. So in this sense, “one”-degree-of-freedom machines include machines
with no freedom at all, just so long as they move in only one way.

Some familiar examples of one-degree-of-freedom mechanisms are a 1-D spring
and mass, a pendulum, a slider-crank, a grounded 4-bar linkage, and a gear train.

Most ideal constraints are workless constraints
A fruitful equation for studying one-degree-of-freedom mechanisms is power balance,
or for conservative systems, energy balance. The reason these equations are so useful
is because most ideal connections are workless. That is:

the net work of the interaction forces (and moments) of a pair of parts that
are connected with the standard ideal connections is zero. This includes
welds, frictionless hinges, frictionless sliding contact, rolling contact, or parts
connected by a massless inextensible link.

Example: A frictionless hinge is a workless constraint

Figure 10.24: A frictionless hinge is a
workless constraint. The net fork of the in-
teraction force on the two contacting bodies
is zero.

(Filename:tfigure.hingeisworkless)

Body A is connected to body B by a frictionless hinge at C (see Fig. ??).
The force on body B at C from A is

⇀
F C and the force on A from

body B at C is − ⇀
F C . The power of the interaction force on body

B is PBonA = ⇀
F C · ⇀

vC . This power contributes to the increase in
the kinetic energy of B. The power of the interaction force on A is
PaonB = − ⇀

F C · ⇀
vC = −PB . So the contribution to the increase in the

kinetic energy of body A is minus the contribution to body B and the
net power on the system of two bodies is zero. Writing this out,

The net power of the pair of
interaction forces on the pair
of bodies

❇❇�︷ ︸︸ ︷
Ptotal = PBonA + PAonB

= ⇀
F C · ⇀

vC + (− ⇀
F C ) · ⇀

vC

= (
⇀
F C − ⇀

F C ) · ⇀
vC

= 0.

✷
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Basically the same situation holds for all the standard ideal connections as explained
in the box on page 603.

If one of two interacting bodies is known to be stationary, like the ground, then
the work of the constraint forces is zero on both of the bodies. Thus the work of the
hinge force on a pendulum, and the ground reaction forces on a frictionlessly sliding
body or the ground force on a perfectly rolling body is zero. But be careful with the
words “workless constraint forces”, however.

The workless constraint connecting moving bodies A and B is likely to do
positive work on one of the bodies and negative work on the other.

It is just the net work on the two bodies which is zero.

Energy method: single degree of freedom systems
Although linear and angular momentum balance apply to a single degree of freedom
system and all of its parts, often one finds what one wants with a single scalar equation,
namely energy or power balance.

Imagine a complex machine that only has one degree of freedom, meaning the
position of the whole machine is determined by a single configuration variable, call it
q. Further assume that the machine has no motion when q̇ = 0. The variable q could
be, for example, the angle of one of the linked-together machine parts. Also, assume
that the machine has no dissipative parts: no friction, no collisions, no inelastic
deformation. Because q characterizes the position of all of the parts of the system
we can, in principal, calculate the potential energy of the system as a function of q,

EP = EP(q).

We find this function by adding up the potential energies of all the springs in the
machine and the gravitational potential energies of the parts. Similarly we can write
the system’s kinetic energy in terms of q and it’s rate of change q̇. Because at any
configuration the velocity of every point in the system is proportional to q̇ we can
write the kinetic energy as:

EK = M(q)q̇2/2

10.2 THEORY
Ideal constraints and workless constraints

All of the ideal constraints we consider are interactions between
two bodies A and B . One of these could be the ground. Let’s take
the interaction force

⇀
F and moment

⇀
M to be the force and moment

of A on B . The point of interaction is A on A and B on B . By
the principle of action and reaction, the net power of the interaction
force on the two bodies is

P = ⇀
F · ⇀

vB + ⇀
M · ⇀

ωB + (− ⇀
F ) · ⇀

vA + (− ⇀
M) · ⇀

ωA

= ⇀
F · ⇀

vB/A + ⇀
M · ⇀

ωB/A.

All of our ideal constraints are designed to exactly make these dot
products zero. The ideal hinge is considered in the text. Another

example is perfect rolling. In that case the interaction moment is
assumed to be zero. The no-slip condition means that ⇀

vB/A. On the
other hand for frictionless sliding there ⇀

vB/A can have a component
tangent to the surfaces. But that is exactly the direction where the
friction force is assumed to be zero.

And so it is for all of the ideal “workless” constraints.

Examples of non-workless constraints, that is, interactions that
contribute to the energy equations are: sliding with non-zero fric-
tion, joints with non-zero friction torques, joints with motors, or
interactions mediated by springs, dampers or actuators.
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where M(q) is a function that one can determine by calculating the machine’s total
kinetic energy in terms of q and q̇ and then factoring q̇2 out of the resulting expression.

Now, if we accept the equation of mechanical energy conservation we have

constant = ET by conservation of energy,

⇒ 0 = d

dt
ET taking one time derivative,

= d

dt
[EP + EK] breaking energy into total potential, plus kinetic

= d

dt
[EP(q) + 1

2
M(q)q̇2] substituting from paragraphs above

so,

0 = d

dq
[EP(q)] q̇ + 1

2

d

dq
[M(q)]q̇q̇2 + M(q)q̇q̈

0 = d

dq
[EP(q)] +

(
1

2

d

dq
[M(q)]

)
q̇2 + M(q) q̈ cancelling q̇

0 = f1(q) + f2(q) q̇2 + f3(q) q̈ (10.14)

with f1(q) ≡ d

dq
[EP(q)],

f2(q) ≡ 1

2

d

dq
[M(q)], and

f3(q) ≡ M(q).

The cancellation of q̇ above lacks a bit of mathematical rigor, but doesn’t cause
problems 1©. The equation of motion is complicated because when we take the time1© The cancellation of the factor q̇ from

equation 10.15 depends on q̇ being other
than zero. While moving q̇ is not zero.
Strictly we cannot cancel the q̇ term from
the equation at the instants when q̇ = 0.
However, to say that a differential equation
is true except for certain instants in time
is, in practice to say that it is always true,
at least if we make reasonable assumptions
about the smoothness of the motions.

derivative of a function of M(q) and EP(q) we have to use the chain rule. Also,
because we have products of terms, we had to use the product rule. Eqn. 10.15 is
the general equation of motion of a conservative one-degree-of-freedom system. It is
really just a special case of the equation of motion for one-degree-of-freedom systems
found from power balance. Rather than memorizing eqn. (10.15) it is probably best
to look at its derivation as an algorithm to be reproduced on a problem by problem
basis.

Example: Spring and mass

Figure 10.25: The familiar one degree of
freedom spring and mass system.

(Filename:tfigure.springmassas1DOF)

Although the motion of a spring and mass system can be found easily
enough from linear momentum balance, it is also a good example for
energy balance (see Fig. 10.25). Using conservation of energy for the
spring and mass system:

ET = constant

0 = d

dt
ET

= ĖK + ĖP

= d

dt
(mv2/2) + d

dt
(kx2/2)

= mvv̇ + kx ẋ

v = ẋ ⇒ 0 = mẍ + kx .

Similarly power balance could have been used to get the same result,
looking at just the mass

P = d

dt
EK
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(−kx)(ẋ) = d

dt
(mv2/2)

= mvv̇

⇒ 0 = kx + mẍ

as before. ✷

Example: Pendulum

Figure 10.26: A rigid body suspended
from a frictionless hinge is an energy
conserving one-degree-of-freedom mecha-
nism.

(Filename:tfigure.pendulumas1DOF)

Consider a rigid body with mass m and moment of inertia I o about a
hinge which is a distance � from the center of mass (see Fig. 10.26). The
familiar simple pendulum is another single degree of freedom system for
which the equation of motion can be found from conservation of energy.

ET = constant

→ 0 = d

dt
ET

= ĖK + ĖP

= d

dt
(I oω2/2) + d

dt
(−gm� cos θ)

= I oωω̇ + −g�(− sin θ)θ̇

ω = θ̇ ⇒ 0 = θ̈ + mg�

I o
sin θ.

the pendulum equation that we have derived before by this and other
means (angular momentum balance about point o). ✷

The above examples are old friends which are handled easily with other techniques.
Here is a problem which is much more difficult without the energy method.

Example: Three bars act like a simple pendulum

Figure 10.27: Three identical uniform
bars are pinned with frictionless hinges and
swing, obviously, something like a simple
pendulum.

(Filename:tfigure.threelinkpend)

Assume all three bars in the structure shown in Fig. 10.27are of equal
length � and have mass m uniformly distributed along their length. It is
intuitively obvious that this device swings back and forth something like
a simple pendulum. But how can we get the laws of mechanics to tell
us this? One approach, which will work in the end, is to draw free body
diagrams of all the parts, write linear and angular momentum balance
for each, and then add and subtract equations to eliminate the unknown
constraint forces at the various hinges.

The more direct approach is to write the energy equation, adding up
the potential and kinetic energies of the parts, all evaluated in terms of
the single configuration variable θ . Taking the potential energy to be
zero at θ = π/2 (when all centers of mass are at hinge height) we have

ET = constant

0 = d

dt
ET

= ĖP + ĖK

= d

dt

(
(I oω2/2) + (I oω2/2) + (m(�ω)/2)

)
+ d

dt

(
(−gm(�/2) cos θ − gm(�/2) cos θ) − gm� cos θ

)
I o = m�2/3 ⇒ 0 = d

dt

(
5m�2ω2/6

) + d

dt

( −2gm� cos θ
)
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= (5m�2ωω̇/3 + 2gm�ω sin θ
)

⇒ 0 = 5�ω̇/3 + 2g sin θ

⇒ 0 = θ̈ + 6g

5�
sin θ

which is the same governing equation as for a point-mass pendulum with
length 5�/6. This is just half way between the following two cases. If
the side links had no mass the equation would have been the same as for
a point mass pendulum with length �

0 = θ̈ + g

�
sin θ

and if the bottom link had no mass the equation would be the same as a
stick hanging from one end which goes back and forth like a point mass
pendulum with length 2�/3 according to

0 = θ̈ + 3g

2�
sin θ.

✷

Figure 10.28: A person rides a bike. The
pedaling leg is idealized as a pair of equal
and opposite forces acting on the seat and
pedal.

(Filename:tfigure.bikeandpedal)

Example: One on the rim is like two on the frame.

A bicycle transmission is such that the speed of the bike relative to the
ground is n times the speed pedal relative to the frame :

vbike = nvpedal/bike

Assume the kinetic energy of the relative motion of a rider’s legs can
be neglected, as can be the weight of the rider’s leg. At the moment in
question the velocity of the pedal is parallel to the direction from the
seat to the leg. Thus the free body diagram of the bike/person system,
leaving out the pedaling leg is as shown in Fig. 10.28. Let’s assume
the bike and rider have mass M and that the wheels have mass mr and
m f concentrated on the rim (the hubs are considered part of the frame
and the spokes are neglected). Neglecting air resistance etc.the power
balance equation is:

P = ĖK (10.15)

Let’s do some side calculations for evaluating the terms in eqn. (10.15).
First, the only forces that do work on the system as drawn are the force
on the pedal and the force on the seat.

P = − ⇀
FP · ⇀

vseat + ⇀
FP · ⇀

vpedal

= − ⇀
FP · ⇀

vseat + ⇀
FP· (

⇀
vbike + ⇀

vpedal/bike

)
= − ⇀

FP · ⇀
vseat + ⇀

FP · ⇀
vbike︸ ︷︷ ︸

0

+ ⇀
FP · ⇀

vpedal/bike︸ ︷︷ ︸
FPvpedal/bike

= FPvbike/n

The net power of the leg is expressed by the compression it carries times
its extension rate. The kinetic energy of the wheel comes from both its
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rotation and its translation. The moment of inertia of a hoop about its
center is I = mr2. For rolling contact |ωR| = v so, for one wheel:

EKwheel = mv2
bike/2 + Iω2/2

= mv2
bike/2 + (m R2)(v/R)2/2

= mv2
bike.

The kinetic energy of a rolling hoop is twice that of a point mass moving
at the same speed. Putting these results back in to eqn. (10.15) we have

P = ĖK (10.16)

FPvbike/n = d

dt

(
Mv2

bike/2 + (mr + m f )v
2
bike

)
(10.17)

= (
M v̇bike + 2(mr + m f )v̇bike

)
vbike(10.18)

⇒ FP/n = (M + 2(mr + m f ))v̇bike (10.19)

⇒ v̇bike = FP

n(M + 2(mr + m f ))
. (10.20)

(10.21)

The bigger the pedal force, the bigger the acceleration, obviously. The
higher the gear ratio, the less the acceleration; the faster gears let you
pedal slower for a given bike speed, but demand more pedal force for a
given acceleration. A heavier bike accelerates less. But the contribution
to slowing a bike is twice as much for mass added to the rim as for mass
added to the frame or body.

Some comments. n typically ranges from about 1.7 to 8 for a new
21 speed bike and is about 5 for an adult European, Indian or Chinese
1-speed. For a given speed of bicycle riding your feet go n times slower
relative to your body than for walking or running at that speed. This
calculation is for accelerating a bike on level ground with no wind and
rolling resistance. The net speed of a bike in a bike race is not so
dependent on weight, because the main enemy is wind resistance. To the
extent that weight is a problem it is for steady uphill travel. In this case
the mass on the rim makes the same contribution as mass on the frame.
✷

Vibrations

The preponderance of systems where vibrations occur is not due to the fact that
so many systems look like a spring connected to a mass, a simple pendulum, or a
torsional oscillator. Instead there is a general class of systems which can be expected
to vibrate sinusoidally near some equilibrium position. These systems are one-degree
-of-freedom (one DOF) near an energy minimum.

In detail why this works out is explainedin Box ??.
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Examples of 1 DOF harmonic oscillators
In the previous section, we have shown that any non-dissipative one-degree-of-
freedom system that is near a potential energy minimum can be expected to have
simple harmonic motion. Besides the three examples we have given so far, namely,

• a spring and mass,
• a simple pendulum, and
• a rigid body and a torsional spring,

there are examples that are somewhat more complex, such as

• a cylinder rolling near the bottom of a valley,
• a cart rolling near the bottom of a valley, and a
• a four bar linkage swinging freely near its energy minimum.

The restriction of this theory to systems with only one-degree-of-freedom is not so
bad as it seems at first sight. First of all, it turns out that simple harmonic motion
is important for systems with multiple-degrees-of-freedom. We will discuss this
generalization in more detail later with regard to normal modes. Secondly, one can
also get a good understanding of a vibrating system with multiple-degrees-of-freedom
by modeling it as if it has only one-degree-of-freedom.

Example: Cylinder rolling in a valley

Consider the uniform cylinder with radius r rolling without slip in an
cylindrical ‘ideal’ valley of radius R.

10.3 THEORY
One degree of freedom systems near a potential energy minimum are harmonic oscillators

In order to specialize to the case of oscillations, we want to look
at a one degree of freedom system near a stable equilibrium point, a
potential energy minimum.

At a potential energy minimum we have, as you will recall from
‘max-min’ problems in calculus, that d EP(q)/dq = 0. To keep our
notation simple, let’s assume that we have defined q so that q = 0
at this minimum. Physically this means that q measures how far the
system is from its equilibrium position. That means that if we take
a Taylor series approximation of the potential energy the expression
for potential energy can be expressed as follows:

EP ≈ const + d EP

dq︸︷︷︸
0

·q + 1

2

d2 EP

dq2︸ ︷︷ ︸
Kequiv

·q2 + . . .(10.22)

⇒ d EP

dq
≈ Kequiv · q (10.23)

Applying this result to equation( 10.15) we get:

0 = Kequivq + 1

2

d

dq
[M(q)]q̇2 + M(q)q̈. (10.24)

We now write M(q) in terms of its Taylor series. We have

M(q) = M(0) + d M/dq|0 · q + . . . (10.25)

and substitute this result into equation 10.24. We have not finished
using our assumption that we are only going to look at motions that
are close to the equilibrium position q = 0 where q is small. The

nature of motion close to an equilibrium is that when the deflections
are small, the rates and accelerations are also small. Thus, to be
consistent in our approximation we should neglect any terms that
involve products of q, q̇, or q̈. Thus the middle term involving q̇2

is negligibly smaller than other terms. Similarly, using the Taylor
series for M(q), the last term is well approximated by M(0)q̈ , where
M(0) is a constant which we will call Mequiv. Now we have for the
equation of motion:

0 = d

dt
ET ⇒ 0 = Kequivq + Mequivq̈, (10.26)

which you should recognize as the harmonic oscillator equation. So
we have found that for any energy conserving one degree of freedom
system near a position of stable equilibrium, the equation governing
small motions is the harmonic oscillator equation. The effective
stiffness is found from the potential energy by Kequiv = d2 EP/dq2

and the effective mass is the coefficient of q̇2/2 in the expansion for
the kinetic energy EK. The displacement of any part of the system
from equilibrium will thus be given by

A sin(λ t) + B cos(λ t) (10.27)

with λ2 = Kequiv/Mequiv, and A and B determined by the initial
conditions. So we have found that all stable non-dissipative one-
degree-of-freedom systems oscillate when disturbed slightly from
equilibrium and we have found how to calculate the frequency of
vibration.
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For this problem we can calculate EK and EP in terms of θ . Briefly,

EP = −mg(R − r) cos θ

EK = 1

2

(
3

2
mr2

) (
θ̇ (R − r)

r

)2

= 3

4
m(R − r)2θ̇2

So we can derive the equation of motion using the fact of constant total
energy.

rolling without
slip

datum for EP

R

rθ

Figure 10.29: Cylinder rolling without
slip in a cylinder.

(Filename:tfigure12.bigcyl.smallcyl)0 = d

dt
(ET )

= d

dt
(EK + EP)

= d

dt


−mg(R − r) cos θ︸ ︷︷ ︸

EP

+ 3

4
m(R − r)2θ̇2︸ ︷︷ ︸

EK




= (mg(R − r) sin θ)θ̇ + 3

2
(R − r)2θ̇ θ̈

⇒ 0 = mg(R − r) sin θ + 3

2
(R − r)2mθ̈

Now, assuming small angles, so θ ≈ sin θ , we get

g(R − r)θ + 3

2
(R − r)2θ̈ = 0 (10.28)

θ +
(

2

3

g

(R − r)

)
︸ ︷︷ ︸

λ2

θ̈ = 0 (10.29)

This equation is our old friend the harmonic oscillator equation, as ex-
pected. The period is a funny combination of terms. If r � R it looks
like a point mass pendulum with length 3R/2, more than R. That is,
the rolling effect doesn’t go away and make the roller act like a point
mass even when the radius goes to zero. See page 482 for the angular
momentum approach to this problem. ✷

Although, in some abstract way the energy approach always works, practically speak-
ing it has limitations for systems where the configuration is not easily found from one
configuration variable.

Example: A four bar linkage does not easy with energy methods

Take a four-bar linkage with one bar grounded. Assume the bars all have
different lengths. This is a one-DOF system which can use the angle θ

of one of the links as a configuration variable. But finding the potential
energy as a single formula in terms of all of the links in terms of θ is more
trigonometry than most of us like. And then finding the kinetic energy
in terms of θ and θ̇ is close enough to impossible that people don’t do it.

So, though it is true that there are functions EP(θ) and EK(θ, θ̇) and
that the equations of motion could be written in terms of them, it is really
not practical to do so.
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How do you find the motions of a 4-bar linkage in practice? It’s more
tricky. One approach is to solve the kinematics by integrating kinematic
differential equations, as in Sample 9.5 on page 577. Then you set up
and solve the balance equations of the separate parts as in Sample 10.3
on page 632 ✷
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SAMPLE 10.9 A plate pendulum. A 2a × 2b rectangular plate of mass m hangs

Figure 10.30: (Filename:sfig11.2.platepend)

from two parallel, massless links EA and FD of length � each. The links are hinged
at both ends so that when the plate swings, its edges AD and BC remain horizontal
at all times. The only driving force present is gravity. Find the equation of motion of
the plate.

Solution The given system is a single DOF system. So, we need just one configu-

Figure 10.31: (Filename:sfig11.2.platepend.a)

ration variable and the equation of motion be just one scalar equation in this variable.
Let us take angle θ (Fig. 10.31) as our configuration variable.

Figure 10.32: (Filename:sfig11.2.platepend.b)

The free body diagram of the plate is shown in Fig. 10.32. Note that the link
forces

⇀
F 1 and

⇀
F 2 act along the links because massless links are two force bodies. Let

(x, y) be the coordinates of the center of mass. Then the linear momentum balance
for the plate gives

⇀
F 1 + ⇀

F 2 − mg̂ = m ⇀
a = m(ẍ ı̂ + ÿ̂).

Now, we can eliminate both the unknown link forces from this equation by dotting
the equation with n̂ = cos θ ı̂ + sin θ ̂ , a unit vector normal to the links. Then, we
have

−mg(̂ · n̂) = m
[
ẍ(ı̂ · n̂) + ÿ(̂ · n̂)

]
−g sin θ = ẍ cos θ + ÿ sin θ. (10.30)

Now we need to find a relationship between x and θ , and y and θ , so that we can write
ẍ and ÿ in terms of our configuration variable θ and its derivatives. From Fig. 10.31,
we have

⇀
rG =

x︷ ︸︸ ︷
(� sin θ + a) ı̂ +

y︷ ︸︸ ︷
(−� cos θ − b) ̂

⇒ ẍ = �(cos θ · θ̈ − sin θ · θ̇2)

ÿ = �(sin θ · θ̈ + cos θ · θ̇2)

Substituting these expressions for ẍ and ÿ in eqn. (10.30) , we get

−g sin θ = �θ̈

⇒ θ̈ + g

�
sin θ = 0.

θ̈ + g
�

sin θ = 0

This is the equation of a simple pendulum! Well, the plate does behave just like a
simple pendulum in the given mechanism. From the expressions for the x and y
coordinates of the center of mass, we have

x − a = � sin θ

y + b = −� cos θ

⇒ (x − a)2 + (y + b)2 = �2

that is, the center of mass follows a circle of radius � centered at (−a, b). Since the
orientation of the plate never changes (AD and BC always remain horizontal), the
plate has no angular velocity. Thus the motion of the plate is equivalent to the motion
of a particle of mass m going in a circle centered at (−a, b) and driven by gravity.
That is the simple pendulum.
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SAMPLE 10.10 Equation of motion from power balance. A slider crank mechanism

Figure 10.33: (Filename:sfig11.2.sliderenergy)

is shown in Fig. 10.33 where the crank is a uniform wheel of mass m and radius R
anchored at the center and the connecting rod AB is a massless rod of length �. The
rod is driven by a piston at B with a known force F(t) = F0 cos �t . There is no
gravity. Find the equation of motion of the wheel.

Solution The given mechanism is a one DOF system. So, let us choose a single
configuration variable, θ for specifying the configuration of the system and derive
an equation that determines θ . Since the applied force is given and the point of
application of the force has a simple motion (vertical), it will be easy to calculate
power of this force. Also, the connecting rod is massless, so it does not enter into
dynamic calculations. The wheel rotates about its center and, therefore, it is easy to
calculate its kinetic energy. So, we use the power balance, ĖK = P , here to find the
equation of motion of the wheel. Since EK = 1

2 I cm
zz θ̇2 and P = ⇀

F · ⇀
vB, we have

I cm
zz θ̈ θ̇ = F(t)̂ · vB ̂ = F(t)vB (10.31)

Now, we need to find vB and express it using the configuration variable θ and its

Figure 10.34: (Filename:sfig11.2.sliderenergy.a)

derivatives. There are several ways we could find vB . Vectorially, we could write,
⇀
vB ≡ vB ̂ = ⇀

vA + ⇀
ωAB × ⇀

rB/A where ⇀
ωAB = φ̇k̂. Dotting both sides of this equation

with ı̂ and ̂ we can find φ in terms of θ and vB in terms of θ and θ̇ . But, for a change,
let us use geometry here.

See Fig. 10.34. From triangle ABO, we have

R

sin(90o − φ)
= �

sin(90o + θ)

⇒ � cos φ = R cos θ

⇒ − � sin φ · φ̇ = −R sin θ · θ̇

φ̇ = R sin θ

� sin φ
θ̇

Now,
yB = R sin θ − � sin φ

⇒ vB ≡ ẏB = R cos θ · θ̇ − � cos φ · φ̇

= Rθ̇ cos θ − R cos θ · R sin θ

� sin φ
θ̇

= Rθ̇

(
cos θ − R sin θ cos θ√

�2 − R2 cos2 θ

)

Substituting this expression for vB in power balance eqn. (10.31), we get

I cm
zz θ̈ � θ̇ = F(t) · R� θ̇

(
cos θ − sin 2θ

2
√

(�/R)2 − cos2 θ

)

θ̈ = RF0 cos �t ·
1
2 m R2

(
cos θ − sin 2θ

2
√

(�/R)2 − cos2 θ

)
.

This is the required equation of motion. As is evident, it is a nonlinear ODE which
requires numerical solution on a computer if we would like to plot θ(t).

θ̈ = 2F0 cos �t ·
m R

(
cos θ − sin 2θ

2
√

(�/R)2−cos2 θ

)
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SAMPLE 10.11 Instantaneous dynamics of slider crank. A uniform rigid rod AB

A

L = 4R
B

m

θ = 30o

R
O

ωD

Figure 10.35: End A of bar AB is free to
slide on the frictionless horizontal surface
while end B is going in circles with a disk
rotating at a constant rate.

(Filename:sfig7.3.2)

of mass m and length L = 4R has one of its ends pinned to the rim of a disk of radius
R. The other end of the bar is free to slide on a frictionless horizontal surface. A
motor, connected to the center of the disk at O, keeps the disk rotating at a constant
angular speed ωD . At the instant shown, end B of the rod is directly above the center
of the disk making θ to be 30o.

(a) Find all the forces acting on the rod.
(b) Is there a value of ωD which makes end A of the rod lift off the horizontal

surface when θ = 30o?

Solution The disk is rotating at constant speed. Since end B of the rod is pinned
to the disk, end B is going in circles at constant rate. The motion of end B of the
rod is completely prescribed. Since end A can only move horizontally (assuming it
has not lifted off yet), the orientation (and hence the position of each point) of the
rod is completely determined at any instant during the motion. Therefore, the rod
represents a zero degree of freedom system.

(a) Forces on the rod: The free body diagram of the rod is shown in Fig. 10.36.
The pin at B exerts two forces Bx and By while the surface in contact at A
exerts only a normal force N because there is no friction. Now, we can write
the momentum balance equations for the rod. The linear momentum balance
(
∑ ⇀

F = m ⇀
a) for the rod gives

A

B

θ

G

mg

N

Bx

By

ı̂

̂

Figure 10.36: Free body diagram of the
bar.

(Filename:sfig7.3.2a)

Bx ı̂ + (By + N − mg)̂ = m ⇀
aG . (10.32)

The angular momentum balance about the center of mass G (
∑ ⇀

M/G = ˙⇀H /G)
of the rod gives

⇀
r A/G × N ̂ + ⇀

r B/G × (Bx ı̂ + By ̂) = Izz/G αrod k̂. (10.33)

From these two vector equations we can get three scalar equations (the Angular
Momentum Balance gives only one scalar equation in 2-D since the quantities
on both sides of the equation are only in the k̂ direction), but we have six
unknowns — Bx , By, N ,

⇀
aG (counts as two unknowns), and αrod . There-

fore, we need more equations. We have already used the momentum balance
equations, hence, the extra equations have to come from kinematics.

⇀
v A = ⇀

v B +
⇀
v A/B︷ ︸︸ ︷

⇀
ωrod × ⇀

r A/B

or vA ı̂ = ωD Rı̂ + ωrod k̂ × L(− cos θ ı̂ − sin θ ̂)

= (ωD R + ωrod L sin θ)ı̂ − ωrod L cos θ ̂

Dotting both sides of the equation with ̂ we get

0 = ωrod L cos θ ⇒ ωrod = 0.

Also,

⇀
a A = ⇀

a B +

⇀
a A/B︷ ︸︸ ︷

˙⇀ω × ⇀
r A/B + ⇀

ωrod︸︷︷︸
⇀

0

×(
⇀
ωrod × ⇀

r A/B)

or aA ı̂ = −ω2
D R̂ + ω̇rod k̂ × L(− cos θ ı̂ − sin θ ̂)

= −(ω2
D R + ω̇rod L cos θ)̂ + ω̇rod L sin θ ı̂.
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Dotting both sides of this equation by ̂ we get

ω̇rod = − ω2
D R

L cos θ
. (10.34)

Now, we can find the acceleration of the center of mass:

⇀
aG = ⇀

a B +

⇀
aG/B︷ ︸︸ ︷

˙⇀ω × ⇀
r G/B + ⇀

ωrod︸︷︷︸
⇀

0

×(
⇀
ωrod × ⇀

r G/B)

= −ω2
D R̂ + ω̇rod k̂ × 1

2
L(− cos θ ı̂ − sin θ ̂)

= −(ω2
D R + 1

2
ω̇rod L cos θ)̂ + 1

2
ω̇rod L sin θ ı̂.

Substituting for ω̇rod from eqn. (10.34) and 30o for θ above, we obtain

⇀
aG = −1

2
ω2

D R(
1√
3
ı̂ + ̂).

Substituting this expression for ⇀
aG in eqn. (10.32) and dotting both sides by ı̂

and then by ̂ we get

Bx = − 1

2
√

3
mω2

D R,

By + N = −1

2
mω2

D R + mg (10.35)

From eqn. (10.33)

1

2
L[(By − N ) cos θ − Bx sin θ ]k̂ = 1

12
mL2(− ω2

D R

L cos θ
)k̂

or By − N = −1

6

mω2
D R

cos2 θ
+ Bx tan θ

= −2

9
mω2

D R − 1

6
mω2

D R

= − 7

18
mω2

D R (10.36)

From eqns. (10.35) and (10.36)

By = 1

2

(
mg − 8

9
mω2

D R

)

and

N = 1

2

(
mg − 1

9
mω2

D R

)
.

(b) Lift off of end A: End A of the rod loses contact with the ground when normal
force N becomes zero. From the expression for N from above, this condition
is satisfied when

2

9
mω2

D R = mg

⇒ ωD = 3

√
g

R
.
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SAMPLE 10.12 A bar sliding on a sliding wedge. A bar AB of mass m and length �

Figure 10.37: (Filename:sfig11.2.slidingbar)

is hinged at end A rests on a wedge of mass M at the other end B. The contact at B is
frictionless. The wedge is free to slide horizontally without any friction. The motion
of the system is driven only by gravity. Find the equation of motion of the bar using

(a) momentum balance
(b) energy (or power) balance.

Solution (a) Momentum Balance: The bar and the wedge make up a single DOF

Figure 10.38: (Filename:sfig11.2.slidingbar.a)

system. To derive the equations of motion of the bar, let us choose θ as the configura-
tion variable. The free body diagram of the bar and the wedge are shown in Fig. 10.38.
Note that the normal reaction at B is normal to the wedge surface, i.e.,

⇀
N = N n̂.

Now, the angular momentum balance for the bar about point A gives,

˙⇀HA =
∑

⇀
MA

I A
zz θ̈ k̂ = �

2
êR × (−mg̂) + �êR × N n̂

= −1

2
mg� cos θ k̂ + N� cos(α − θ)k̂ (10.37)

where the last line follows from the fact that êR = cos θ ı̂ + sin θ ̂ , the unit normal
n̂ = − sin αı̂ + cos α̂ , and so, êR × ̂ = cos θ k̂ and êR × n̂ = cos(α − θ)k̂. We now
need to eliminate the unknown normal reaction N from the above equation. Since the
wedge is constrained to move only horizontally, we can write the linear momentum
balance for the wedge as

N n̂ · ı̂ = Mẍ ⇒ N = M ẍ

n̂ · ı̂ = M ẍ

sin α
(10.38)

Thus, we have found N in terms of ẍ that we can use in eqn. (10.37) to get rid of

Figure 10.39: (Filename:sfig11.2.slidingbar.b)

N . But, we now need to express ẍ in terms of our configuration variable θ and its
derivatives. Consider the triangle ABC formed by the bar and the slanted edge of the
wedge. Let x = AC denote the horizontal position of the wedge. Then, from the law
of sines, we have x

sin(α−θ)
= �

sin α
, so that

x = �

sin α
sin(α − θ)

⇒ ẋ = �

sin α
cos(α − θ) · (−θ̇ ) (10.39)

⇒ ẍ = �

sin α

[
θ̈ cos(α − θ) + θ̇2 sin(α − θ)

]
. (10.40)

Now, substituting for N in eqn. (10.37) from eqn. (10.38), using the expression for ẍ
from above, and dotting the resulting equation with k̂, we get

1

3
m�2θ̈ = −mg�

2
cos θ + M�2 cos(α − θ)

sin2 α

[
θ̈ cos(α − θ) + θ̇2 sin(α − θ)

]
⇒ θ̈ = −3mg sin2 α cos θ + 3M�θ̇2 sin 2(α − θ)

2m� sin2 α + 6M� cos2(α − θ)

= −3
[
(g/�) sin2 α cos θ + (M/m)θ̇2 sin 2(α − θ)

]
2
[

sin2 α + 3(M/m) cos2(α − θ)
] (10.41)

θ̈ = − 3
[
(g/�) sin2 α cos θ+(M/m)θ̇2 sin 2(α−θ)

]
2
[

sin2 α+3(M/m) cos2(α−θ)
]
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(b) Power balance: Now we derive the equation of motion for the bar using power
balance ĖK = P . For power balance, we have to consider both the bar and the wedge.
The bar rotates about the fixed point A, therefore, its kinetic energy is (1/2)I A

z zθ̇2.
The wedge moves with horizontal speed ẋ , therefore, its kinetic energy is (1/2)Mẋ2.
Thus, EK = 1/2)I A

z zθ̇2 + (1/2)Mẋ2. The only force that contributes to power is the
force of gravity on the rod because ⇀

vG · (−mg̂) is non-zero. The sliding contact at
B is frictionless and hence the net power due to the contact force there is zero. Now,
⇀
vG = 1

2�θ̇ êθ . So, P = − 1
2 mg�θ̇(êθ · ̂) = − 1

2 mg�θ̇ cos θ . Thus the power balance
for the system gives

I A
zz θ̈ θ̇ + Mẍ ẋ = −1

2
mg�θ̇ cos θ. (10.42)

We can simplify this equation further. Note that, θ̈ θ̇ = d
dt (

1
2 θ̇2) and ẍ ẋ = d

dt (
1
2 ẋ2).

So that we can write the above equation as

d

dt

(
1

2
I A
zz θ̇

2
)

+ d

dt

(
1

2
Mẋ2

)
= −1

2
mg�θ̇ cos θ

or
∫

d
(
I A
zz θ̇

2 + Mẋ2) = −mg�

∫
cos θ dθ

⇒ I A
zz θ̇

2 + Mẋ2 = C − mg� sin θ

where C is a constant of integration to be determined from initial conditions. For
example, when the bar begins to slide from rest, we have, at t = 0, ẋ = 0 and θ̇ = 0.
At that instant, if θ(0) = θ0, then C = mg� sin θ0. So, we can write

I A
zz θ̇

2 + Mẋ2 = mg�(sin θ0 − sin θ).

Now, replacing ẋ in this equation with the expression we obtained in eqn. (10.39),
we have

I A
zz θ̇

2 + M�2θ̇2 cos2(α − θ)

sin2 α
= mg�(sin θ0 − sin θ)

⇒ θ̇2 = mg�(sin θ0 − sin θ)

I A
zz + M�2 cos2(α−θ)

sin2 α

= mg� sin2 α(sin θ0 − sin θ)

(1/3)m�2 sin2 α + M�2 cos2(α − θ)

⇒ θ̇ =
√

3g

�
sin α

√
sin θ0 − sin θ

sin2 α + 3(M/m) cos2(α − θ)
.

This is a first order, nonlinear, ODE compared to the second order equation we got in
eqn. (10.41). However, again, we need to resort to numerical solution if we wish to
solve for θ(t), in which case, this reduction to the first order equation does not save
much work.

θ̇ =
√

3g
�

sin α
√

sin θ0−sin θ

sin2 α+3(M/m) cos2(α−θ)
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10.3 Dynamics of rigid bodies in multi-

degree-of-freedom 2-D mecha-

nisms
To solve problems with multiple degrees of freedom the basic strategy is as described
at the start of the chapter

• draw FBDs of each body,
• pick configuration variables,
• write linear and angular momentum balance equations
• solve the equations for variables of interest (forces, second derivatives of the

configuration variables).
• set up and solve the resulting differential equations if you are trying to find the

motion.

There are two basic approaches to these multi-body problems which, for lack of better
language we cal “brute-force” and “clever”:

A. In the brute force approach you write three times as many scalar balance equa-
tions as you have bodies. That is, for example, for each free body diagram
you write linear momentum balance and angular momentum balance about the
center of mass. Then you take this set of 3n equations and add and subtract
them to solve for variables of interest.

But is quite suitable for computers and most commercial general purpose dy-
namic simulators use a variant of this approach. For individual use the brute-
force approach is generally more reliable and more time consuming.

B. In the clever approach you write as many scalar momentum balance equations
as you have unknowns. For example, if you have 2 degrees of freedom and
you are concerned with motions and not reaction forces, you write 2 equations.
You do this by finding momentum balance equations that do not include the
variables you are not interested in. Usually this involves using angular mo-
mentum balance about hinge points, or linear momentum balance orthogonal
to sliding contacts.

The clever approach does not always work; the four-bar linkage is the clas-
sic problem case. However the desire to find minimal sets of equations of
motion it is historically important 1©.

1© Attempts to automate the clever ap-
proach, to quickly find minimal equations
of motion, led to Lagrange equations which
led to Hamilton’s equations which led to
quantum mechanics (but we won’t be that
clever here).

At this point in the subject all problems are involved if taken from start all the way to
plotting solutions to the differential equations. The examples that follow emphasize
getting to the equations of motion. The skills for numerically solving the differential
equations and plotting the solutions are the same as from the start of dynamics. The
sample problems then show all the work from beginning to end for related problems.

Example: Block sliding on sliding block: clever approach

Block 1 with mass m1 rolls without friction on ideal massless wheels at
A and B (see Fig. 10.40). Block 2 with mass m2 rolls down the tipped
top of block 1 on ideal massless rollers at C and D. The locations of G1
relative to A and B, and of G2 relative to C and D are known. How do
blocks 1 and 2 move. First look at the free body diagram of the system
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and not that there are no unknown forces in the ı̂ direction. So, for the
system { ∑

⇀
Fi = ˙⇀L

}
·ı̂

⇒ 0 = m1 ẍ + m2(̈x ı̂ + ÿ′̂ ′
) · ı̂

= (m1 + m2)ẍ − ÿ′m2 cos θ. (10.43)

Looking at the free body diagram of mass 2 note that there are no unknown
forces in the ̂

′ direction, so
FBDs:

Figure 10.40: Block 2 rolls on block 1
which rolls on the ground. All rollers are
ideal (frictionless and massless). The mov-
ing ı̂ ′̂ ′ frame moves with the lower block
and is oriented with the slope.

(Filename:tfigure.blockslidesonblock)

{ ∑
⇀
Fi = ˙⇀L

}
·̂ ′

⇒ m2g sin θ = m2(̈x ı̂ + ÿ′̂ ′
) · ̂ ′

m2g sin θ = m2(− cos θ ẍ + ÿ′). (10.44)

Eqns. 10.43 and 10.43 are a system of two equations in the two unknowns
ẍ and ÿ′

(m1 + m2) ẍ −m2 cos θ ÿ′ = 0
−m2 cos θ ẍ +m2 ÿ′ = m2g sin θ

which can be solved for ẍ and ÿ by hand or on the computer. Finding
x(t) and y′(t) is then easy because both ẍ and ÿ′ are constants. ✷

Now we look at the same example, but proceed in a more naive manner.

Example: Block sliding on sliding block: brute force approach

Now we look at the free body diagrams of the two separate blocks. We
will use 3 balance equations from each free body diagram, taking account
of the kinematic constraints.

For the lower block we have

AMBG1 ⇒
∑

⇀
M/G1

= ˙⇀H/G1
(10.45)

where
∑

⇀
M/G1

= ⇀
rD/G1

× (−FD ı̂
′
)

+ ⇀
rC/G1

× (−FC ı̂
′
)

+ ⇀
rB/G1

× FB ̂

+ ⇀
rA/G1

× FA̂

and ˙⇀H/G1
= ⇀

0 ( ⇀
ω1 = ⇀

0)

and LMB ⇒
∑

⇀
Fi = ˙⇀L (10.46)

where
∑

⇀
Fi = −FD ı̂

′ − FC ı̂
′ + FB ̂ + FA̂ − m1g̂

and ˙⇀L = m1 ẍ ı̂

Similarly for the upper block:

AMBG2 ⇒
∑

⇀
M/G2

= ˙⇀H/G2
(10.47)

where
∑

⇀
M/G1

= ⇀
rD/G2

× FD ı̂
′

+ ⇀
rC/G2

× FC ı̂
′

and ˙⇀H/G2
= ⇀

0 ( ⇀
ω1 = ⇀

0)



620 CHAPTER 10. Mechanics of constrained particles and rigid bodies

and LMB ⇒
∑

⇀
Fi = ˙⇀L (10.48)

where
∑

⇀
Fi = FD ı̂

′ + FC ı̂
′ − m2g̂

′

and ˙⇀L = m2(ẍ ı̂ + ÿ′̂ ′
)

Eqns. 10.45-10.48 can be written as scalar equations by dotting the LMB
equations with ı̂ and ̂ and the AMB equations with k̂. All is known
in these 6 equations but the six scalars: FA, FB, FC , FD, ẍ, and ÿ′.
These could be set up as a matrix equation and solved on the computer,
or you could try to find your way through by adding and subtracting
equations. In any case you could solve for ẍ and ÿ′ and thus have
differential equations to solve to find the motions.

One quick inference one can make is from looking at the equations.
No term in the coefficients of the unknowns depends on x, ẋ, y, or ẏ′.
So all of the reactions FA, FB, FC , and FD as well as the accelerations
ẍ and ÿ′ are constants in time (until the upper mass hits the ground). ✷

Example: Block sliding on sliding block: even more brute force

This “multi-body” problem can be solved in an even more naive and more
brute force manner. The method is the same as shown in Section 6.1 on
page 331 for a one dimensional problem.

We would use 6 configuration variables: the x and y coordinates of
G1 and G2 and the rotations of the two bodies:

x1, y1, θ1, x2, y2, and θ2

That the two bodies don’t rotate would be expressed indirectly by noting
that the velocities of points A and B on the lower mass must have accel-
eration in the ı̂ direction. These two equations would be added to the
6 linear and angular momentum balance equations. Similar constraint
equations would be written for the interactions at C and D. Altogether
there are now 6 configuration variables and 4 constraint forces. But there
are 6 differential equations of motion and 4 constraint equations. Thus at
one instant in time a set of 10 simultaneous equations needs to be solved.
Then these are used to evaluate the right hand sides in the differential
equations.

All this is an impractical mess for solving one problem. But it lends
itself to easy automation and is closest to the approach used by general
purpose dynamics simulators. ✷

The example above is particularly simple because block 1 moves in a straight line
without rotating and block 2 moves in a straight line without rotating relative to block
1. Even for a system of just two bodies the situation could be much more complex if
the first body had a complex motion and the second a complex motion relative to the
first. But because of the preponderance of hinges in the world, circular motion, and
motion relative to circular motion, is the most complex motion that need be considered
by many engineers. Here is a version of the most common example of that class.

Figure 10.41: A two link robot arm.
Free body diagrams are shown of the whole
system (including the motor torque at the
shoulder) and of the fore-arm (including the
motor torque at the elbow) .

(Filename:tfigure.robotarm2)

Example: A two link robot arm: finesse the finding of reactions

A robot arm has two links. There are motors that apply known torque
Ms at the shoulder (reacted by the base and a torque Me at the elbow
(reacted by the upper arm). Dimensions are as marked. This system



10.3. Dynamics of rigid bodies in multi-degree-of-freedom 2-D mechanisms 621

has 2 degrees of freedom. So we need 2 configuration variables and 2
independent balance equations to find the motion.

The natural configuration variables are the angles of the upper arm
relative to a fixed reference and the angle of the lower arm relative to a
fixed reference. It would also be natural to instead use the angle of the
lower arm relative to the upper arm. This leads to simpler equations in
the end, but more work in set up.

Angular momentum balance for the system about the shoulder con-
tains no unknown reaction forces, nor does angular momentum balance
of the fore-arm about the hinge. So we base our work on these two
equations:

System AMB/O ⇒
∑

⇀
M/O = ˙⇀H/O (10.49)

Forearm AMB/E ⇒
∑

⇀
M/E = ˙⇀H/E. (10.50)

The goal, equations of motion, is reached by evaluating the left and right
sides of these equations in terms of known geometric and mass quantities
as well as the configuration variables When we write

∑ ⇀
M/O

˙⇀H/O we

implicitly mean for the whole system. Likewise
∑ ⇀

M/E and ˙⇀H/E apply
to the forearm.

At each step in the calculations below imagine the results can be
substituted into the later steps. We don’t do that here because the expres-
sions grow in size. Further, if the angles and their rates of change are
known, as they are when doing most dynamics problems, the intermedi-
ate calculations will result in numbers, rather than algebraic expressions
which grow in size.

λ̂1 = cos θ1 ı̂ + sin θ1̂ and λ̂2 = cos θ2 ı̂ + sin θ2̂
⇀
rG1/O = �1λ̂1,

⇀
rE/O = �3λ̂1 and ⇀

rG2/E = �2λ̂2

and then ⇀
rG2/O = ⇀

rE/O + ⇀
rG2/E.

⇀
aG1/O = −θ̇2

1
⇀
rG1/O + θ̈1k̂ × ⇀

rG1/O ,

⇀
aE/O = −θ̇2

1
⇀
rE/O + θ̈1k̂ × ⇀

rE/O ,

⇀
aG2/E = −θ̇2

2
⇀
rG2/E + θ̈2k̂ × ⇀

rG2/E and ⇀
aG2/O = ⇀

aE/O + ⇀
aG2/E.

These terms are all we need to evaluate the 4 terms in Eqns. 10.49 and
10.50. ∑

⇀
M/O = ⇀

rG1/O × (−m1g̂) + ⇀
rG2/O × (−m2g̂) + Ms k̂,∑

⇀
M/E = ⇀

rG2/E × (−m2g̂) + Mek̂,

˙⇀H/O = m1
⇀
rG1/O × ⇀

aG1/O + θ̈1 I1k̂ + m2
⇀
rG2/O × ⇀

aG2/O + θ̈2 I2k̂,

and ˙⇀H/E = m2
⇀
rG2/E × ⇀

aG2/O + θ̈2 I2k̂.

Once these are substituted into Eqns. 10.49 and 10.50 one has 2 vector
equations with only k̂ components. In other words we have two scalar
equations in the two unknowns θ̈1 and θ̈2. One can go through the algebra
and solve for them explicitly, but the expressions are quite complex, even
when simplified. At given values of θ1, θ̇1, θ2, and θ̇2 however these are
just two linear equations in two unknowns. ✷
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Closed kinematic chains
When a series of mechanical links is open you can not go from one link to the next
successively and get back to your starting point. Such chains include a pendulum (1
link), a double pendulum (2 links), a 100 link pendulum, and a model of the human
body (so long as only one foot is on the ground). A closed chain has at least one loop
in it. You can go from link to next and get back to where you started. A slider-crank,
a 4-bar linkage, and a person with two feet on the ground are closed chains.

Closed chains are kinematically difficult because they have fewer degrees of
freedom than do they have joints. So some of the joint angles depend on the others.
The values of any minimal set of configuration variables, say some of the joint angles,
determines all of the joint angles, but by geometry that is difficult or impossible to
express with formulas.

Example: Four bar linkage.

It is impractically difficult to write the positions velocities and acceler-
ations of a 4-bar linkage in terms of θ , θ̇ and θ̈ of any one of its joints.
✷
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SAMPLE 10.13 Dynamics of sliding wedges. A wedge shaped body of mass m2 sits

Figure 10.42: (Filename:sfig11.3.wedges)

on a frictionless ground. Another wedge shaped body of mass m1 is gently placed on
the inclined face of the stationary wedge. The top wedge starts to slide down. The
coefficient of friction between the two wedges is µ. Find the sliding acceleration of
the top wedge along the incline (i.e., the relative acceleration of m1 with respect to
m2).

Solution The free body diagrams of the two wedges are shown in Fig. 10.43. Note

Figure 10.43: (Filename:sfig11.3.wedges.a)

that the friction force is µN since the wedges are sliding with respect to each other (if
they were not sliding already then the friction force is an unknown force F ≤ µN ).
Let the absolute acceleration of m2 be ⇀

a2 = a2 ı̂. Then, the absolute acceleration of
m1 is ⇀

a1 = ⇀
a2 + ⇀

a1/2 = a2 ı̂ +arelλ̂. Now, we can write the linear momentum balance
for m1 and m2 as follows.

N n̂ − m1g̂ − µN λ̂ = m1(a2 ı̂ + arelλ̂) (10.51)

(R − m2g)̂ − N n̂ + µN λ̂ = m2a2 ı̂ (10.52)

where λ̂ = cos αı̂ − sin α̂ and n̂ = sin αı̂ + cos α̂ . Here, we have 4 independent
scalar equations (from the two 2-D vector equations) in four unknowns N , R, a2, and
arel. Thus, we can certainly solve for them. We are, however, only interested in arel.
So, we should try to find the answer with fewer calculations. Dotting eqn. (10.51)
with λ̂, we have

m1arel = −m1a2 cos α − µN + m1g sin α (10.53)

So, to find arel, we need a2 and N . Dotting eqn. (10.51) with n̂, we have

m1a2 sin α = N − m1g cos α, (10.54)

and dotting eqn. (10.52) with ı̂, we have

m2a2 = −N sin α + µN cos α. (10.55)

Solving eqn. (10.54) and (10.55) simultaneously, and using new variables (for con-
venience) M = m1/m2, C = cos α, and S = sin α, we get

a2 = MC(µC − S)

1 − M S(µC − S)
g, N = m1g

C

1 − M S(µC − S)

Substituting these expression in eqn. (10.53), we get

arel = gS − gC
[
MC(µC − S) − µ

]
1 − M S(µC − S)

arel = g sin α − g cos α
[

m1
m2

cos α(µ cos α−sin α)−µ
]

1− m1
m2

sin α(µ cos α−sin α)

Note that when there is no friction (µ = 0), the expression for arel reduces to

arel = gS + gMC2S

1 + M S2

and if we let m2 → ∞ (i.e., m2 represents fixed ramp) so that M → 0, then
arel = g sin α which is the acceleration of a point mass down a frictionless ramp of
slope tan α.
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SAMPLE 10.14 Dynamics of a new gun. A new gun consists of a uniform rod AB

m2 

m1 
C

B

A
θ

ı̂

̂

k̂

�

T

Figure 10.44: (Filename:sfig11.3.newgun)

of mass m1 and a small collar C of mass m2 that slides freely on the rod. A motor at
A rotates the rod with constant torque T .

(a) Find the equations of motion of the collar.
(b) Show that if T = 0 then the equations of motion imply conservation of angular

momentum about point A.

Solution

A

A

B

N
F

R

θ

T

C

C

êθ

êR

ı̂

̂

m2 

m2 

m1 

Figure 10.45: (Filename:sfig11.3.newgun.a)

(a) Let us denote the configuration of the collar with R, the radial distance from
the fixed point A along the rod, and θ , the angular displacement of the rod. We
need to find differential equations that determine R and θ as functions of time.
The free body diagram of the whole system (rod and collar together) and that
of the collar is shown in Fig. 10.45. We can write angular momentum balance
for the whole system about point A so that the unknown reaction force F at
A does not enter the equations. Noting that the acceleration of the collar is
⇀
aC = (R̈ − Rθ̇2)êR + (2Ṙθ̇ + Rθ̈ )êθ , and letting I1 ≡ I A

z z be the moment of
inertia of the rod about A, we have,∑

⇀
MA = ˙⇀HA

T k̂ = I1θ̈ k̂ + RêR × m2
[
(R̈ − Rθ̇2)êR + (2Ṙθ̇ + Rθ̈ )êθ

]
= I1θ̈ k̂ + m2 R2θ̈ k̂ + 2m2 R Ṙθ̇ k̂

Dotting this equation with k̂, we have

θ̈ = T

I1 + m2 R2 − 2m2 R

I1 + m2 R2 Ṙθ̇ . (10.56)

Thus we have obtained the equation of motion for theta. Now we consider the
free body diagram of the collar alone and write the linear momentum balance
for it in the êR direction, i.e., êR · (∑ ⇀

F = m ⇀
a), so that we do not have to care

about the unknown normal reaction
⇀
N . So, we have,

0 = êR · m2
[
(R̈ − Rθ̇2)êR + (2Ṙθ̇ + Rθ̈ )êθ

]
= m2(R̈ − Rθ̇2)

⇒ R̈ = Rθ̇2. (10.57)

Thus we have the required equations of motion. Note that eqn. (10.56) and
(10.57) are coupled nonlinear differential equations. So, to find θ(t) and R(t)
we need to solve them numerically.

θ̈ = T
I1+m2 R2 − 2m2 R

I1+m2 R2 Ṙθ̇ , R̈ = Rθ̇2

(b) Now we set T = 0 in our equations of motion. Note that the equation for R is
independent of T . The equation for θ becomes

θ̈ = − 2m2 R

I1 + m2 R2 Ṙθ̇ . ⇒ (I1 + m2 R2)θ̈ + 2m2 R Ṙθ̇ = 0

But the last expression is simply ḢA for the system. Thus we have ḢA = 0
which implies that HA = constant. That is conservation of angular momentum
about point A. <
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SAMPLE 10.15 Numerical solutions of new gun equations. Consider Sample 10.14
again. Set up the equations of motion for numerical solution. Take T = 1 N·m, � =
1 m, m2 = 1 kg, and m1 = m2/3. Carry out numerical solutions for the following
cases.

(a) Let the system start from rest at θ = 0 and R = 0.1 m. Find the solution from
t = 0 to t = 1 s. Plot R(t), θ(t) and R(θ) (in polar coordinates).

(b) Find the solution till the collar leaves the rod. What is the speed of the collar
at this instant?

(c) Compute and plot the total energy of the system as a function of time. Also,
plot the work done by the torque as a function of time and show that the work
done is equal to the total energy of the system at each instant.

(d) Vary torque T and carry out solutions for several values of T . Find the terminal
value of θ f (when the collar leaves the rod) for each T . Justify your observation
about θ f by plotting Ṙ/θ̇ as a function of T .

Solution We first need to write the equations of motion, eqn. (10.56) and (10.57),
as a set of first order ODEs. We can easily do so by introducing new variables ω ≡ θ̇

and vR ≡ Ṙ, so that we have,


θ̇

ω̇

Ṙ
v̇R


 =




ω
T

I1+m2 R2 − 2m2 R
I1+m2 R2 vRω

vR

Rω2




Given the values of all constants, we only need to specify the initial conditions for
θ, ω, R, and vR for solving these equations numerically.

(a) We use the following pseudocode to carry out the numerical solution.

Set T = 1, L = 1, m2 = 1, m1 = m2/3
Let I1 = m1*L^2/3, I2 = m2*R^2,
ODEs = {thetadot = w,

wdot = (T-2*m2*R*vR*w)/(I1+I2),
Rdot = vR,
vRdot = R*w^2}

IC = {theta = 0, w = 0, R = 0.1, vR = 0}
Solve ODEs with IC for t=0 to t=1
Plot t vs R, Plot t vs theta,
Polarplot theta vs R
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Figure 10.46: (Filename:sfig11.3.newgunRth)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t (sec)

R
 (

m
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

t (sec)

θ
 (

ra
d)

Figure 10.47: (Filename:sfig11.3.newgunSol)

The R(t) and θ(t) plots obtained from the numerical solution are shown in
Fig. 10.47 and the polar plot of R(θ) is shown in Fig. 10.46.
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(b) We do not know apriori the value of t at which the collar leaves the rod. So, we
have to carry out the solution for some assumed t f which gives us R(t f ) > �

so that we know the collar has gone past the end of the rod. We then plot
R(t), including the unreal value of R(t f ) > �, and find the time t at which
R(t) = �, either by zooming into the graph or by interpolation (although, there
are various sophisticated algorithms to find this t). Following the method of
zooming into the graph (see Fig. ??) we find the terminal value of t to be
1.147 s. We carry out the numerical solution again from t = 0 to t f = 0.147 s
and find that R(t f ) = 1 m, vR(t f ) = 2.13 m/s, and ω(t f ) = 1.03 rad/s, so

that v f =
√

Ṙ2 + (Rθ̇ )2 = 2.37 m/s. This is the terminal speed of the collar.
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Figure 10.48: Finding the time t at which the collar leaves the rod from the graph of R(t).
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(c) The work done by the torque is W = T θ at any instant. The system only
possesses kinetic energy. So the energy of the system at any instant is E =
E1 + E2 where E1 = 1

2 I1ω
2 and E2 = 1

2 m2(Ṙ2 + R2ω2). Computing these
quantities for the solution obtained above, we plot W and E vs t as shown in
Fig. 10.50. Clearly, W = E .
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Figure 10.50: Work done by the torque and the kinetic energy of the system.
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(d) Now we take several values of T (0.1, 0.5, 1, 1.5, 2, 2.5, and 3) and carry out
the numerical solutions for each T . We note the terminal values of θ, ω(= θ̇ ),
and vR(= Ṙ). By plotting the terminal value of θ against T (Fig. 10.49), we
see that the collar leaves the rod at exactly the same θ = 2.86 rad for each T !
But this is possible only if Ṙ and θ̇ both change in the same proportion for each
T . So, plot the ratio Ṙ/θ̇ just for the terminal values against T and find that
the ratio is indeed constant (see Fig. 10.51).
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SAMPLE 10.16 Dynamics of a sliding-base pendulum. A cart of mass M slides

Figure 10.52: (Filename:sfig11.3.slidingpend)

down a frictionless inclined plane as shown in the figure. A simple pendulum of mass
m and length � hangs from the center of mass of the cart. Find the equation of motion
of the pendulum.

Solution Let us measure the angular displacement of the pendulum with respect to

Figure 10.53: (Filename:sfig11.3.slidingpend.a)

the cart with angle θ measured anticlockwise from the normal to the inclined plane.
Let s be the position of the cart along the inclined plane from some reference point.
Then, the acceleration of the cart can be written as ⇀

aC = s̈λ̂ and the acceleration of
the pendulum mass as ⇀

a = ⇀
aC + ⇀

arel = s̈λ̂ + �θ̈ êθ − �θ̇2êR .
The free body diagram of the cart and the pendulum system is shown in Fig. 10.53.

Writing angular momentum balance of the system about point C, we get

⇀
MC = ˙⇀HC

�êR × (−mg̂) = �êR × m(s̈λ̂ + �θ̈ êθ − �θ̇2êR)

−mgl sin(θ − α)k̂ = ms̈� cos θ k̂ + m�2θ̈ k̂

⇒ θ̈ = −g

�
sin(θ − α) − s̈

�
cos θ. (10.58)

To find s̈, we write the linear momentum balance for the whole system in the λ̂ (so
that we do not involve the unknown normal reaction N ) direction.

λ̂ · (−Mg̂ − mg̂) = λ̂ · [
Ms̈λ̂ + m(s̈λ̂ + �θ̈ êθ − �θ̇2êR)

]
⇒ (M + m)g sin sin α = (M + m)s̈ + m�θ̈ cos θ − m�θ̇2 sin θ

⇒ s̈ = g sin α − m�

M + m
(θ̈ cos θ + θ̇2 sin θ)

(10.59)

Substituting eqn. (10.59) in eqn. (10.58) and rearranging terms, we get

θ̈ = −g

�
sin θ

(1 + m
M ) cos α

1 + m
M sin2 θ

+
m
M θ̇2 sin θ cos θ

1 + m
M sin2 θ

θ̈ = − g
�

sin θ
(1+ m

M ) cos α

1+ m
M sin2 θ

+
m
M θ̇2 sin θ cos θ

1+ m
M sin2 θ

Note that if we set α = 0 and let M → ∞ so that the cart behaves like a fixed ground,
then we recover the equation of simple pendulum, θ̈ = − g

�
sin θ , from the equation of

motion above. It is a good practice to carry out such simple checks wherever possible.

Remarks: We could write the equations of motion, eqn. (10.58) and eqn. (10.59) in
the coupled form as[

� cos θ

m� cos θ M + m

] (
θ̈

s̈

)
=

( − g
�

sin(θ − α)

(M + m)g sin α − m�θ̇2 sin θ

)

and leave it at that, since for most computational purposes, it is enough. It is not so
hard to find expressions for θ̈ and s̈ from here by solving the matrix equation, even
by hand.
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SAMPLE 10.17 Resonant capture. A slightly unbalanced motor mounted on an

Figure 10.54: (Filename:sfig11.3.eccentricmotor)

elastic machine part is modeled as a spring mass system with a simple pendulum of
mass m and length ε driven by a constant torque T as shown in the figure. The spring
has stiffness k and the motor has mass M . There is no friction between mass M and
the horizontal surface.

(a) Find the equation of motion of the system.
(b) Take M = m = 1 kg, k = 1 N/m, T = 15 × 10−3 N·m. Solve (numerically)

the equations of motion with zero initial conditions and plot x(t) and θ(t) for
t = 0 to 100 s.

Solution

Figure 10.55:
(Filename:sfig11.3.eccentricmotor.a)

(a) The free body diagram of the system is shown in Fig. 10.55. Let the angular
displacement of the eccentric mass m at some instant t be θ . At the same
instant, let the displacement of the motor be x from the relaxed state of the
spring. Then we can write the acceleration of the motor as ẍ ı̂ and that of the
eccentric mass as ⇀

aP = ẍ ı̂ + εθ̈ êθ − εθ̇2êR . Now, we can write the angular
momentum balance for the system about point C (fixed in the stationary frame
of reference but instantly coincident with the center of mass of motor M) as

T k̂ = εêR × m(ẍ ı̂ + εθ̈ êθ − εθ̇2êR)

= mε ẍ(êR × ı̂) + mε2θ̈ (êR × êθ )

= mε(−ẍ sin θ + εθ̈)k̂

⇒ εθ̈ − sin θ ẍ = T

mε
(10.60)

This is just one scalar equation in θ̈ and ẍ . We need one more independent
equation θ̈ and ẍ without involving any other unknowns. So, we write the
linear momentum balance for the system in the x-direction:
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Figure 10.56: (Filename:sfig11.3.eccmotor.x)

t (sec)
0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

35

40

45

θ 
(r

ad
)

Figure 10.57: (Filename:sfig11.3.eccmotor.th)

−kx = Mẍ + m(ẍ ı̂ + εθ̈ êθ − εθ̇2êR) · ı̂
= (M + m)ẍ − mεθ̈ sin θ − mεθ̇2 cos θ

⇒ ε sin θ θ̈ −
( M + m

m

)
ẍ = k

m
x − εθ̇2 cos θ. (10.61)

Thus we have the required equations of motion. We can write eqn. (10.60) and
(10.61) compactly as[

ε − sin θ

ε sin θ −m+M
M

] (
θ̈

ẍ

)
=

( T
mε

k
m x − εθ̇2 cos θ.

)
<

(b) We use the following pseudocode to solve the equations of motion. Note that
we first convert the two second order ODEs into four first order ODEs by
introducing new variables ω = θ̇ and u = ẋ .

Set T = 0.015, m = 1, M = 1, k = 1, e = 1
A=[e -sin(theta); e*sin(theta) -(1+M/m)];
b = [T/(m*e); k/m*x-e*omega^2*cos(theta)];
solve A*acln = b for acln % acln = accelerations
ODEs = {omega = thetadot, u = xdot,

omegadot = acln(1), udot = acln(2)}
IC = {theta = 0, x = 0, omega = 0, u = 0}
Solve ODEs with IC for t=0 to t=100

The plots of x(t) and θ(t) obtained from the numerical solution are shown in
Fig. 10.56 and Fig. 10.57, respectively. Note the resonance of M for the given
values of the system.
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SAMPLE 10.18 Dynamics using a rotating and translating coordinate system.
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Figure 10.58: (Filename:sfig8.2.2again)

Consider the rotating wheel of Sample 9.11 which is shown here again in Figure 10.58.
At the instant shown in the figure find

(a) the linear momentum of the mass P and
(b) the net force on the mass P.

For calculations, use a frame B attached to the rod and a coordinate system in B with
origin at point A of the rod OA.

Solution We attach a frame B to the rod. We choose a coordinate system x ′y′z′ in

O

P'
A

x

y

θ

θ

⇀
vP'/O'

⇀
vO'

ω1

B
O' x'

y'

⇀
vP'

⇀
vO'

⇀
vP'/O'

Figure 10.59: The velocity of point P ′
is the sum of two terms: the velocity of O ′
and the velocity of P ′ relative to O ′.

(Filename:sfig8.2.2d)

this frame with its origin O′ at point A. We also choose the orientation of the primed
coordinate system to be parallel to the fixed coordinate system xyz (see Fig. 10.59),

i.e., ı̂
′ = ı̂, ̂

′ = ̂ , and k̂
′ = k̂.

(a) Linear momentum of P: The linear momentum of the mass P is given by

⇀
L = m ⇀

v P .

Clearly, we need to calculate the velocity of point P to find
⇀
L. Now,

⇀
v P = ⇀

v P ′ + ⇀
v rel = ⇀

v O ′ + ⇀
v P ′/O ′︸ ︷︷ ︸

⇀
v P ′

+⇀
v rel.

Note that O′ and P′ are two points on the same (imaginary) rigid body OAP′.
Therefore, we can find ⇀

v P ′ as follows:

⇀
v P ′ =

⇀
v O′︷ ︸︸ ︷

⇀
ωB × ⇀

r O ′/O +

⇀
v P ′/O′︷ ︸︸ ︷

⇀
ωB × ⇀

r P ′/O ′

= ω1k̂ × L(cos θ ı̂ + sin θ ̂) + ω1k̂ × r(cos θ ı̂ − sin θ ̂)

= ω1[(L + r) cos θ ̂ − (L − r) sin θ ı̂]

= 3 rad/s · [2.5 m · cos 30o̂ − 1.5 m · sin 30o ı̂]

= (6.50̂ − 2.25ı̂) m/s (same as in Sample 9.11.),

⇀
v rel = ⇀

v P/B

= −ω2k̂
′ × r(cos θ ı̂

′ − sin θ ̂
′
)

= −ω2r(cos θ ̂
′ + sin θ ı̂

′
)

= −(2.16̂ ′ + 1.25ı̂′) m/s

= −(2.16̂ + 1.25ı̂) m/s.

Therefore,

⇀
v P = ⇀

v P ′ + ⇀
v rel

= (4.34̂ − 3.50ı̂) m/s and
⇀
L = m ⇀

v P

= 0.5 kg · (4.34̂ − 3.50ı̂) m/s

= (−1.75ı̂ + 2.17̂) kg·m/s.

⇀
L = (−1.75ı̂ + 2.17̂) kg·m/s
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(b) Net force on P: From the ∑
⇀
F = m ⇀

a

for the mass P we get
∑ ⇀

F = m ⇀
a P . Thus to find the net force

∑ ⇀
F we need

to find ⇀
a P . The calculation of ⇀

a P is the same as in Sample 9.11 except that
⇀
a P ′ is now calculated from

⇀
a P ′ = ⇀

aO ′ + ⇀
a P ′/O ′

where

⇀
F net = �

⇀
F

P

Figure 10.60: (Filename:sfig8.2.2again1)

⇀
aO ′ = ⇀

ωB × (
⇀
ωB × ⇀

r O ′/O)

= −ω2
1

⇀
r O ′/O

= −ω2
1 L(cos θ ı̂ + sin θ ̂)

= −(3 rad/s)2 · 2 m · (cos 30o ı̂ + sin 30o̂)

= −(15.59ı̂ + 9.00̂) m/s2,

⇀
a P ′/O ′ = ⇀

ωB × (
⇀
ωB × ⇀

r P ′/O ′)

= −ω2
1

⇀
r P ′/O ′

= −ω2
1r(cos θ ı̂ − sin θ ̂)

= −(3 rad/s)2 · 0.5 m · (cos 30o ı̂ − sin 30o̂)

= −(3.90ı̂ − 2.25̂) m/s2.

Thus,
⇀
a P ′ = −(19.49ı̂ + 6.75̂) m/s2

which, of course, is the same as calculated in Sample 9.11. The other two
terms, ⇀

acor and ⇀
a rel, are exactly the same as in Sample 9.11. Therefore, we get

the same value for ⇀
a P by adding the three terms:

⇀
a P = −(17.83ı̂ + 3.63̂) m/s2.

The net force on P is∑
⇀
F = m ⇀

a P

= 0.5 kg · (−17.83ı̂ − 3.63̂) m/s2

= −(8.92ı̂ + 1.81̂) N.

∑ ⇀
F = −(8.92ı̂ + 1.81̂) N
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SAMPLE 10.19 Inverse dynamics of a four bar mechanism. A four bar mechanism
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Figure 10.61: (Filename:sfig11.4.fourbar)

ABCD consists of three uniform bars AB, BC, and CD of length �1, �2, �3, and mass
m1, m2, m3, respectively. The mechanism is driven by a torque T applied at A such
that bar AB rotates at constant angular speed. Write equations to find the torque T at
some instant t .

Solution This is an inverse dynamics problem, that is, we are given the motion and
we are supposed to find the forces (torque T in this case) that cause that motion. We
are given that rod AB rotates at constant angular speed, say θ̇ . From kinematics, we
can find out angular velocities and angular accelerations of the other two bars as well
as the accelerations of center of mass of each rod. Then we can write the momentum
balance equations and compute the forces and moments required to generate this
motion. So, in contrast to what we usually do, let us do the kinematics first. Please
see Sample 9.5 on page 577. We found the angular velocities, β̇ (eqn. (9.73)) and φ̇

(eqn. (9.72)), of rods BC and CD, respectively, in terms of θ̇ . We can rewrite those
equations as [ −�2 sin β �3 sin φ

−�2 cos β �3 cos φ

] (
β̇

φ̇

)
= θ̇

(
�1 sin θ

�1 cos θ

)
(10.62)

We wrote this equation in matrix form to make it easier for us to find the angular
accelerations which we do by simply differentiating this equation once:[ −�2 cos β β̇ �3 cos φ φ̇

�2 sin β β̇ −�3 sin φ φ̇

] (
β̇

φ̇

)
+

[ −�2 sin β �3 sin φ

−�2 cos β �3 cos φ

] (
β̈

φ̈

)

= �1

(
θ̈ sin θ + θ̇2 cos θ

θ̈ cos θ − θ̇2 sin θ

)
Rearranging terms we get[ −�2 sin β �3 sin φ

−�2 cos β �3 cos φ

] (
β̈

φ̈

)
= −

[ −�2 cos β �3 cos φ

�2 sin β �3 sin φ

] (
β̇2

φ̇2

)

+�1

[
sin θ cos θ

cos θ − sin θ

] (
θ̈

θ̇2

)
(10.63)

Thus, we can find the angular accelerations of BC and CD, β̈ and φ̈, because the
quantities on the right hand side are known (θ̈ (= 0) and θ̇ are given, and β̇ and φ̇ are
determined by eqn. (10.62)). Now, we can find the accelerations of center of mass of
each rod as follows.

⇀
aG1

= −�1

2
θ̇2λ̂1 (10.64)

⇀
aG2

= ⇀
aB + ⇀

aG2/B = −�1θ̇
2λ̂1 − �2

2
β̇2λ̂2 + �2β̈n̂2 (10.65)

⇀
aG3

= −�3

2
φ̇2λ̂3 (10.66)

We are now ready to write momentum balance equations. Since we are only interested
in finding the torque T , we should try to write equations involving minimum number
of unknown forces. So, we draw free body diagrams of the whole mechanism, of part
BCD, and of bar CD alone; and write angular momentum balance equations about
appropriate points so that we involve only the unknown torque T and the unknown
reaction

⇀
RD at D. Thus, we will have only three scalar unknowns T , RDx and RDy

(since
⇀
RD = RDx ı̂ + RDy ̂ ). So, we will need only three independent equations.

Consider the free body diagram of the whole mechanism. We cab write angular
momentum balance about point A for the whole mechanism as

Figure 10.62: (Filename:sfig11.4.fourbar.fbd1)
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T k̂ + ⇀
rD/A × ⇀

RD = ˙⇀HA = ˙⇀H1/A + ˙⇀H2/A + ˙⇀H3/A (10.67)

where

˙⇀H1/A = I1θ̈ k̂ + ⇀
rG1

× m1
⇀
aG1

˙⇀H2/A = I2β̈k̂ + ⇀
rG2

× m2
⇀
aG2

= I2β̈k̂ + (
⇀
rB + ⇀

rG2/B) × m2
⇀
aG2

˙⇀H3/A = I3φ̈k̂ + ⇀
rG3

× m3
⇀
aG3

= I3φ̈k̂ + (
⇀
rD + ⇀

rG3/D) × m3
⇀
aG3

.

Similarly, the angular momentum balance about point B for BCD gives

Figure 10.63: (Filename:sfig11.4.fourbar.fbd2)

⇀
rD/B × ⇀

RD = ˙⇀H2/B + ˙⇀H3/B (10.68)

where

˙⇀H2/B = I2β̈k̂ + ⇀
rG2/B × m2

⇀
aG2

˙⇀H3/B = I3φ̈k̂ + ⇀
rG3/B × m3

⇀
aG3

and angular momentum balance of bar CD about point C gives

Figure 10.64: (Filename:sfig11.4.fourbar.fbd3)

⇀
rD/C × ⇀

RD = ˙⇀H3/C = I3φ̈k̂ + ⇀
rG3/C × m3

⇀
aG3

. (10.69)

Note that we can easily write the position vectors in terms of �1, �2, �3 and the unit
vectors (λ̂1, n̂1), (λ̂2, n̂2) and (λ̂3, n̂3) where

λ̂1 = cos θ ı̂ + sin θ ̂ , n̂1 = − sin θ ı̂ + cos θ ̂

λ̂2 = cos β ı̂ + sin β ̂ , n̂2 = − sin β ı̂ + cos β ̂

λ̂1 = cos φ ı̂ + sin φ̂ , n̂1 = − sin φ ı̂ + cos φ̂ .

We can put all the three angular momentum balance equations, (10.67), (10.68),
and (10.69), in one matrix equation by dotting both sides of the equations with k̂ and
assembling them as follows.
 1 0 �4

0 k̂ · (�2λ̂2 − �3λ̂3) × ı̂ k̂ · (�2λ̂2 − �3λ̂3) × ̂

0 k̂ · (−�3λ̂3 × ı̂) k̂ · (−�3λ̂3 × ̂)





 T

RDx

RDy


 =


 Ḣ123/A

Ḣ23/B

Ḣ3/C



(10.70)

where Ḣ123/A = k̂ · ( ˙⇀H1/A + ˙⇀H2/A + ˙⇀H3/A), Ḣ23/B = k̂ · ( ˙⇀H2/B + ˙⇀H3/B), and

Ḣ3/C = k̂ · ˙⇀H3/C.

Note that we know the ˙⇀H ’s on the right hand side and the matrix on the left side
can be evaluated for any given (θ, β, φ). Thus we can solve for T, RDx , and RDy .
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SAMPLE 10.20 Numerical solution of the inverse dynamics problem. Consider
Sample 10.3 again. Using numerical solutions on a computer, find and plot torque T
against θ for one complete cycle of the drive arm AB. Take m1 = m2 = m3 = 1 kg
and �1 = 400 mm, �2 = 400

√
2 mm, �3 = 800

√
2 mm, and �4 = 1200 mm.

Solution
Since we have to plot T against θ for one complete revolution, we need to find

angular velocities, angular accelerations and center of mass accelerations for several
values of θ and then solve for T for each of those θ ’s. We can do this several ways.
One way would be to first solve kinematic equations to find θ(t), β(t), and φ(t) at
discrete times over one complete cycle and then compute all other quantities at each
(θ(ti ), β(ti ), φ(ti )) where ti represents a discrete time. So, let us follow this method
step by step with pseudocodes. Here, we assume that we have vector functions called
dot and cross that compute the dot product and the cross product of two vectors
that are given as input arguments.

Step-1: solve for angular positions. Specify the given geometry

L1=0.4, L2=0.4*sqrt(2), L3=0.8*sqrt(2), L4=1.2

and use the pseudocode of Sample 9.5 to find θ(ti ), β(ti ), φ(ti ) for, say, 100
values of ti between 0 and 1 sec. Now, for each triad of (θ(ti ), β(ti ), φ(ti )),
follow all the steps below.

Step-2: solve for angular velocities. Since θ̇ = 2π rad/s is given, we only need to
solve for β̇ and φ̇. We use eqn. (9.73) and eqn. (9.72) to compute β̇ and φ̇ as
follows (or modify the pseudocode of Sample 9.5 to save β̇ and φ̇ along with
the values for β and φ.

define thdot=thetadot, bdot=betadot, pdot=phidot
thdot = 2*pi % this is given
set th = theta(ti), b = beta(ti), p = phi(ti)
set unit vectors

l1=[cos(th) sin(th) 0]’, n1=[-sin(th) cos(th) 0]’
l2=[cos(b) sin(b) 0]’, n2=[-sin(b) cos(b) 0]’
l3=[cos(p) sin(p) 0]’, n3=[-sin(p) cos(p) 0]’

bdot = -(L1/L2)*(cross(n1,l3)/cross(n2,l3))*thdot
pdot = (L1/L3)*(cross(n1,l2)/cross(n3,l2))*thdot

Step-3: solve for angular accelerations. Now that we have (θ, β, φ) and the corre-
sponding values of (θ̇ , β̇, φ̇), we can use eqn. (10.63) to calculate β̈ and φ̈ (we
are given θ̈ = 0).

define thddot=thetaddot, bddot=betaddot,
pddot=phiddot

thddot = 0 % this is given
B = [-L2*sin(b) L3*sin(p); -L2*cos(b) L3*cos(p)]
C = L1*[sin(th) cos(th); cos(th) -sin(th)]
D = [-cos(b) cos(p); sin(b) -sin(p)]
c = [thddot thdot^2]’, d = [L2*bdot^2 L3*pdot^2]’
assume w = [bddot pddot]’
solve B*w = C*c + D*d for w

So, now we know θ̈ , β̈, φ̈ also. We are now ready to compute ˙⇀H ’s required for
dynamic calculations.

Step-4: set up equations and solve for unknown forces. We need to set up and
solve eqn. (10.70). Note that we need to compute several quantities for this
equation but the vector computations are more or less straightforward.
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% set mass and inertia properties
m1 = 1, m2 = 1, m3 = 1
I1 = m1*L1^2/12, I2 = m2*L2^2/12, I3 = m3*L3^2/12

% set fixed unit vectors
i = [1 0 0]’, j = [0 1 0]’, k = [0 0 1]’

% compute position vectors
rA = [0;0;0], rB = rA+L1*l1
rC = rB+L2*l2, rD = L4*l4
rG1 = L1/2*l1
rG2 = rB+L2/2*l2
rG3 = rD+L3/2*l3

% compute center of mass accelerations
aG1 = 0.5*L1*(tddot*n1-tdot^2*l1)
aG2 = 2*aG1+0.5*L2*(bddot*n2-bdot^2*l2) % aB = 2*aG1
aG3 = 0.5*L3*(pddot*n3-pdot^2*l3)
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Figure 10.65: Torque T as a functions
of θ over one complete cycle of motion
(θ(0) = π/2, θ(1) = 5π/2).

(Filename:sfig11.4.fourbar.torque)

% compute Hdot_cms

Hdot_cm1 = I1*tddot*uk
Hdot_cm2 = I2*bddot*uk
Hdot_cm3 = I3*pddot*uk

% compute Hdots
Hdot_123_A = Hdot_cm1 + cross(rG1, m1*aG1)

+ Hdot_cm2 + cross(rG2, m2*aG2)
+ Hdot_cm3 + cross(rG3, m3*aG3)

Hdot_23_B = Hdot_cm2 + cross(rG2-rB, m2*aG2)
+ Hdot_cm3 + cross(rG3-rB, m3*aG3)

Hdot_3_C = Hdot_cm3 + cross(rG3-rC, m3*aG3)

% set up the linear eqns for torque and RD

b = [dot(Hdot_123_A,k) dot(Hdot_23_B,k) dot(Hdot_3_C,k)]
A = [1 dot(k,cross(rD,i)) dot(k,cross(rD,j))

0 dot(k,cross(rD-rB,i)) dot(k,cross(rD-rB,j))
0 dot(k,cross(rD-rC,i)) dot(k,cross(rD-rC,j))]

% let forces = [T RDx RDy]’
solve A*forces = b for forces

Step-5, repeat calculations. Now repeat Step-2 – Step-4 for each triad (θ, β, φ)

obtained in Step-1 and save the corresponding values of T in a vector. Finally,

plot T vs theta
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Figure 10.66: Torque T as a functions of
time over one complete cycle of motion.

(Filename:sfig11.4.fourbar.Tvst)

The plot thus obtained is shown in Fig. 10.65. We can also plot T vs time (as
shown in Fig. 10.66), and, of course, expect to see the same graph of T since θ

is just a linear function of t . Note that the area under the graph of T over one
complete cycle must equal zero since the net impulse must be zero over one
cycle.
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11
Introduction to
three dimensional
rigid body
mechanics

Figure 11.1: A car crankshaft is a com-
plex three-dimensional object which is well
approximated for many purposes as rotat-
ing about a fixed axis. The relative timing
of the reciprocating pistons is controlled by
this complex shape. “Connecting rods” are
pinned to the cylinders at one end and to
the short offset cylinders on the crankshaft
at the other.

(Filename:tfigure.crankshaft)

In chapter 7 we discussed the motions of particles and rigid bodies that lie in a plane
and rotate about a fixed axis perpendicular to that plane. In this chapter we again are
going to think about fixed axis rotation, but now in three dimensions. The axis of
rotation might be in any skew direction and the rotating bodies might be arbitrarily
complicated three-dimensional shapes. As a cartoon, imagine a rigid body skewered
with a rigid rod and then turned by a motor that speeds up and slows down. More
practically think of the crankshaft in a car engine (Fig. 11.1). Other applications
include accelerating or decelerating shafts of all kinds, gears, turbines, flywheels,
pendula, and swinging doors.

To understand this motion we need to take a little more care with the kinematics
because it now involves three dimensions, although in some sense the basic ideas
are unchanged from the previous two-dimensional chapter. The three dimensional
mechanics naturally gets more involved.

This one special motion, rotation about a fixed axis, serves as our introduction to
three dimensional rigid body mechanics.

As for all motions of all systems, the momentum balance equations apply to any
system or any part of a system that has fixed axis rotation. So our mechanics results
will be based on these familiar equations:

Linear momentum balance:
∑

⇀
F i = ˙⇀L,

637
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Angular momentum balance:
∑

⇀
M i/O = ˙⇀HO.

and
Power balance: P = ĖK.

As always, we will evaluate the left hand sides of the momentum equations using the
forces and moments in the free body diagram. We evaluate the right hand sides of
these equations using our knowledge of the velocities and accelerations of the various
mass points.

The chapter starts with a discussion of kinematics. Then we consider the me-
chanics of systems with fixed axis rotation. The moment of inertia matrix is then
introduced followed by a section where the moment of inertia is used as a shortcut in
the evaluation of ˙⇀HO. Finally we discuss dynamic balance, an important genuinely
three-dimensional topic in machine design.

11.1 3-D description of circular motion
Let’s first assume each particle is going in circles around the z axis, as in the previous
chapter. The figure below shows this two dimensional situation first two dimension-
ally (left) and then as a two-dimensional motion in a three dimensional world (right).

3D2D

⇀
v

⇀
v

xx

y

y

z

θθ

Either way, the velocity and acceleration are the same:

x

y
z

ω

P

axis

⇀
r

φ êθ

êR

⇀
R

O

⇀
ω=ωk̂

Figure 11.2: When a point P is going in
circles about the z axis, we define the unit
vector êR to be pointed from the axis to
the point P. We define the unit vector êθ to
be tangent to the circle at P. Both of these
vectors change in time as the point moves
along its circular path.

(Filename:tfigure4.2)
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Figure 11.3: The acceleration is the sum
of two components. One directed towards
the center of the circle in the −êR direc-
tion, and one tangent to the circle in the êθ

direction.
(Filename:tfigure5.3)

• the velocity is tangent to the circle it is going around and is proportional in
magnitude to the radius of the circle and also to its angular speed. That is, the
direction of the velocity is in the direction êθ and has magnitude ωR, where ω

is the angular rate of rotation and R is the radius of the circle that the particle
is going around.

• the acceleration can be constructed as the sum of two vectors. One is pointed
to the center of the circle and proportional in magnitude to both the square of
the angular speed and to the radius. The other vector is tangent to the circle
and equal in magnitude to the rate of increase of speed.

These two ideas are summarized by the following formulas:

⇀
v = ωRêθ and ⇀

a = − ω2 R︸︷︷︸
v2/R

êR + Rθ̈︸︷︷︸
v̇

êθ (11.1)

with
v = ωR. (11.2)

The axis of rotation might not be the z-axis of a convenient xyz coordinate system.
So the xy plane of circles might not be the xy plane of the coordinate system you
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might want to use for some other reasons. Fortunately, we can write the formulas 11.1
in a way that rids us of these problems.

Here are some formulas which are equivalent to the formulas 11.1 but which do
not make use of the polar coordinate base vectors.

⇀
v = ⇀

ω × ⇀
r , (11.3)

⇀
a = ⇀

ω × (
⇀
ω × ⇀

r ) + ˙⇀ω × ⇀
r . (11.4)

To check that equations 11.3 and 11.4 are really equivalent to 11.1 we need to verify
that the vector ⇀

ω × ⇀
r is equal to ωRêθ , that the vector ⇀

ω × (
⇀
ω × ⇀

r ) is equal to the
vector −ω2 RêR , and that ˙⇀ω × ⇀

r is equivalent to Rθ̈ êθ .
First, define ⇀

r as the position of the point of interest relative to any point on the
axis of rotation. If this point happens to be the center of the circle then ⇀

r = ⇀
R. But,

in general, ⇀
r �= ⇀

R.
Now look at ⇀

v = ⇀
ω × ⇀

r with respect to Fig. 11.2. Using the right hand rule, it is
clear that the direction of the cross product ⇀

ω × ⇀
r is in fact the êθ direction. What

about the magnitude? The magnitude |⇀
ω × ⇀

r | = |⇀
ω||⇀

r | sin φ. But |⇀
r | sin φ = R. So

the magnitude of ⇀
ω × ⇀

r is ωR. That is,

⇀
ω × ⇀

r = (|⇀
ω × ⇀

r |) · (unit vector in the direction of ⇀
ω × ⇀

r ) (11.5)

= (ωR) · êθ (11.6)

= ⇀
v (11.7)

So ⇀
v = ⇀

ω × ⇀
r is correct. The check of the second term in the acceleration formula

follows the same reasoning. But the check of the first term involves the triple cross
product.

Triple cross product

The formula for acceleration of a point on a rigid body includes the centripetal term
⇀
ω × (

⇀
ω × ⇀

r ). This expression is a special case of the general vector expression

⇀

A × (
⇀
B × ⇀

C)

which is sometimes called the ‘vector triple product’ because its value is a vector (as
opposed to the scalar value of the ‘scalar triple product’). The primary useful identity
with vector triple products is:

⇀

A × (
⇀
B × ⇀

C) = (
⇀

A · ⇀

C)
⇀
B − (

⇀

A · ⇀
B)

⇀

C. (11.8)

This formula may be remembered by the semi-mnemonic device ‘cab minus bac’
since

⇀

A · ⇀

C = ⇀

C · ⇀

A and
⇀

A · ⇀
B = ⇀

B · ⇀

A. This formula is discussed in box 11.1 on
page 643.

So now we can write

⇀
ω × (

⇀
ω × ⇀

r ) = ⇀
ω × (ωR)·êθ = −ω2 RêR︸︷︷︸

⇀
R

= −ω2 ⇀
R = ⇀

a . (11.9)

Note that equations 11.3 and 11.4 are vector equations. They do not make use of
any coordinate system. So, for example, we can use them even if ⇀

ω is not in the z
direction.
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Angular velocity of a rigid body in 3D
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axis

êθ

êR
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ω=ωk̂

⇀
r O

θ̇

θ

Figure 11.4: A rigid body spinning about
the z axis. Every point on the body, like
point P at ⇀

r , is going in circles. All of these
circles have centers on the axis of rotation.
All the points are going around at the same
angular rate, θ̇ = ω.

(Filename:tfigure4.3D)

If a rigid body is constrained to rotate about an axis then all points on the body have
the same angular rate about that axis. Hence one says that the body has an angular
velocity. So the measure of rotation rate of a three-dimensional rigid body is the
body’s angular velocity vector ⇀

ω. At any instant in time a given body has one and
only one angular velocity ⇀

ω. Although we only discuss fixed axis rotation in this
chapter, a given body has a unique angular velocity for general motion.

For rotations about the z-axis, ⇀
ω = ωk̂. ω is the θ̇ shown in figure 11.4. Since all

points of a rigid body have the same θ̇ , even if they have different θ ’s, the definition
is not ambiguous. We would like to make this idea precise enough to be useful for
calculations. Why, one may ask, do we talk about rotation rate ω or ⇀

ω instead of just
using the derivative of an angle θ , namely θ̇? The answer is that for a rigid body one
would have trouble deciding what angle θ to measure.

First recall the situation for a two dimensional rigid body. Consider all possible
θ1, θ2, θ3, . . ., the angles that all possible lines marked on a body could make with
the positive x-axis, the positive y axis, or any other fixed line that does not rotate.
As the body rotates all of these angles increment by the same amount. Therefore,
each of these angles increases at the same rate. Because all these angular rates are
the same, one need not define θ̇1 = ω1, θ̇2 = ω2, θ̇3 = ω3, etc. for each of the
lines. Every line attached to the body rotates at the same rate and we call this rate
ω. So θ̇1 = ω, θ̇ = ω, θ̇3 = ω, etc. Rather than say the lengthy phrase ‘the rate of
rotation of every line attached to the rigid body is ω’, we instead say ‘the rigid body
has angular velocity ω’. For use in vector equations, we define the angular velocity
vector of a two-dimensional rigid body as ⇀

ω = ωk̂ and for a 3-D body rotating about
an axis in the λ̂ direction as ⇀

ω = ωλ̂.

λ̂

θ1

θ2θ3

Figure 11.5: The shadows of lines
marked in a 3-D rigid body are shown on
a plane perpendicular to the axis of rota-
tion. The shadows rotate on the plane at the
rate θ̇1 = θ̇2 = ω. The angular velocity

vector is ⇀
ω = ωλ̂.

(Filename:tfigure.shadowlines.4.3)

What do we mean by these angles θi for crooked lines in a three-dimensional
body? We simply look at shadows of lines drawn in or on the body of interest onto a
plane perpendicular to the axis of rotation; i.e., perpendicular to λ̂. See figure 11.5.
The rate of change of their orientation (θ̇1 = θ̇2 = θ̇3) is ω, and ⇀

ω is therefore ωλ̂.
This intuitive geometric definition of ω in terms of the rotation of shadows has run
its course. It gives you a picture but is not very convenient for developing formulas.

Example: What are the velocity and acceleration of one corner of a
cube that is spinning about a diagonal?

x

z

y

O C

B

Figure 11.6: A spinning cube.
(Filename:tfigure4.cube)

A one foot cube is spinning at 60 rpm about the diagonal OC . What
are the velocity and acceleration of point B? First let’s find the velocity
using ⇀

v = ⇀
ω × ⇀

r :

⇀
v = ⇀

ω × ⇀
r

= (60 rpm λOC ) × ⇀
r O B

=
(

2π s−1 (ı̂ + ̂ + k̂)√
3

)
× (1 ft(̂ + k̂))

= (2π/
√

3)(−̂ + k̂) ft/s.

Now of course this equation could have been worked out with the first
of equations ?? but it would have been quite tricky to find the vectors
êθ ,

⇀
R, and êR! To find the acceleration we just plug in the formula

⇀
a = ⇀

ω × (
⇀
ω × ⇀

r ) as follows:

⇀
a = ⇀

ω × [⇀
ω × ⇀

r ]
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= (60 rpm λOC ) × [(60 rpm λOC ) × ⇀
r O B]

= (2π s−1 (ı̂ + ̂ + k̂)√
3

)

×
[
(
2π s−1(ı̂ + ̂ + k̂)√

3
) × (1 ft(̂ + k̂)

]

= (2π/
√

3)2(2ı̂ − ̂ − k̂) ft/s2.

The last line of calculation is eased by the calculation of velocity above
where the term in square brackets, the velocity, was already calculated.
✷

Relative motion of points on a rigid body
The relative velocity of two points A and B is defined to be

⇀
vB/A ≡ ⇀

vB − ⇀
vA

So, the relative velocity of two points glued to one rigid body, as observed from a
Newtonian frame, is given by

⇀
vB/A ≡ ⇀

vB − ⇀
vA (11.10)

= ⇀
ω × ⇀

rB/O − ⇀
ω × ⇀

rA/O (11.11)

= ⇀
ω × (

⇀
rB/O − ⇀

rA/O) (11.12)

= ⇀
ω × ⇀

rB/A, (11.13)

where point O is a point in the Newtonian frame on the fixed axis of rotation. Clearly,
since points A and B are fixed in the body B their velocities and hence their relative
velocity as observed in a reference frame fixed to B is

⇀

0. But, point A has some
absolute velocity that is different from the absolute velocity of point B, as viewed from
point O in the fixed frame. The relative velocity of points A and B, the difference in
absolute velocity of the two points, is due to the difference in their positions relative
to point O . Similarly, the relative acceleration of two points glued to one rigid body

⇀
r B/O

B

⇀
r B/A

⇀
r A/O

⇀
ωB

⇀
vB/A = ⇀

ωB × rB/A

A

B

O

Figure 11.7: Two points on a rigid body.
(Filename:tfigure4.vel.accel.rel)

spinning about a fixed axis is
⇀
aB/A ≡ ⇀

aB − ⇀
aA = ⇀

ω × (
⇀
ω × ⇀

rB/A) + ˙⇀ω × ⇀
rB/A. (11.14)

Again, the relative acceleration is due to the difference in the points’ positions relative
to the point O fixed on the axis. Like their junior 2D cousins, these kinematics results,
11.13 and 11.14, are useful for calculating angular momentum relative to the center
of mass as well as for the understanding of the motions of machines with moving
connected parts. O

B

A
⇀
r

⇀
ω

Figure 11.8: Two points, A and B on one
body that has a fixed axis of rotation.

(Filename:tfigure.twoptsonabody.4.3)

To repeat, for two points on one rigid body we have that

˙⇀r B/A = ⇀
ω × ⇀

rB/A. (11.15)

Equation (11.15) is the perhaps the most fundamental equation for those desiring an
understanding of the motions of rigid bodies. Unless one desires to pursue matrix
representations of rotation, equation (11.15) is the defining equation for ⇀

ω. There is
always exactly one vector ⇀

ω so that equation (11.15) is true for every pair of points
on a rigid body.

Equation (11.15) is not so simple a defining equation as one would hope for such
an intuitive concept as spinning. But, besides the pictorial definition with shadows,
its the simplest definition we have.



642 CHAPTER 11. Introduction to three dimensional rigid body mechanics

Relative velocity and acceleration using rotating frames
If we glued a coordinate system x ′y′ to a rotating rigid body C, we would have what
is called a rotating frame as shown in figure 11.9. The base vectors in this frame

C

y′

x ′O

P
⇀
r
P

Figure 11.9: A rotating rigid bodyC with
rotating frame x ′y′ attached.

(Filename:tfigure4.intro.rot.frames)

change in time the same way as did êR and êθ in section 7.1. That is

d

dt
ı̂
′ = ⇀

ωC × ı̂
′ and

d

dt
̂

′ = ⇀
ωC × ̂

′
.

If we now write the relative position of B to A in terms of ı̂
′ and ̂

′, we have

⇀
rB/A = x ′ ı̂′ + y′̂ ′

.

Since the coordinates x ′ and y′ rotate with the body to which A and B are attached,
they are constant with respect to that body,

ẋ ′ = 0 and ẏ′ = 0.

So

d

dt
(

⇀
rB/A) = d

dt

(
x ′ ı̂′ + y′̂ ′)

= ẋ ′︸︷︷︸
0

ı̂
′ + x ′ d

dt
ı̂
′ + ẏ′︸︷︷︸

0

̂
′ + y′ d

dt
̂

′

= x ′(⇀
ωC × ı̂

′
) + y′(⇀

ωC × ̂
′
)

= ⇀
ωC × (x ′ ı̂′ + y′̂ ′

)︸ ︷︷ ︸
⇀
r B/A

= ⇀
ωC × ⇀

rB/A.

If we now try to calculate the rate of change of ⇀
v B/A,

d

dt
(

⇀
vB/A) = d

dt

(
⇀
ωC × ⇀

rB/A

)
= d ⇀

ωC

dt
× ⇀

rB/A + ⇀
ωC × d ⇀

r B/A

dt
⇀
aB/A = ˙⇀ωC × ⇀

rB/A + ⇀
ωC × (

⇀
ωC × ⇀

rB/A).

Mechanics
Now that we know the velocity and acceleration of every point in the system we are
ready, in principle, to find ˙⇀L and ˙⇀HO in terms of the angular velocity vector ⇀

ω, its
rate of change ˙⇀ω, and the position of all the mass in the system. This we do in the
next section.
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11.1 THEORY
The triple vector product

⇀
A × (

⇀
B × ⇀

C)

The formula

⇀

A × (
⇀
B × ⇀

C) = (
⇀

A · ⇀

C)
⇀
B − (

⇀

A · ⇀
B)

⇀

C. (11.16)

can be verified by writing each of the vectors in terms of its or-

thogonal components (e.g.,
⇀

A = Ax ı̂ + Ay ̂ + Az k̂) and checking
equality of the 27 terms on the two sides of the equations (only 12 are
non-zero). If this 20 minute proof seems tedious it can be replaced
by a more abstract geometric argument partly presented below that
surely takes more than 20 minutes to grasp.

Geometry of the vector triple product

⇀
B × ⇀

C

⇀

A

⇀
B

⇀

C

⇀

A × (
⇀
B × ⇀

C)

θ

Because
⇀
B × ⇀

C is perpendicular to both
⇀
B and

⇀

C it is perpen-
dicular to the plane of

⇀
B and

⇀

C, that is, it is ‘normal’ to the plane
BC .

⇀

A × (
⇀
B × ⇀

C) is perpendicular to both
⇀

A and
⇀
B × ⇀

C, so it is
perpendicular to the normal to the plane of BC . That is, it must be
in the plane of

⇀
B and

⇀

C. But any vector in the plane of
⇀
B and

⇀

C
must be a combination of

⇀
B and

⇀

C. Also, the vector triple product
must be proportional in magnitude to each of

⇀

A,
⇀
B and

⇀

C. Finally,
the triple cross product of

⇀

A × (
⇀
B × ⇀

C) must be the negative of
⇀

A × (
⇀

C × ⇀
B) because

⇀
B × ⇀

C = − ⇀

C × ⇀
B . So the identity

⇀

A × (
⇀
B × ⇀

C) = (
⇀

A · ⇀

C)
⇀
B − (

⇀

A · ⇀
B)

⇀

C

is almost natural: The expression above is almost the only expres-

sion that is a linear combination of
⇀

A and
⇀
B that is linear in both,

also linear in
⇀

C and switches sign if
⇀
B and

⇀

C are interchanged.
These properties would be true if the whole expression were multi-
plied by any constant scalar. But a test of the equation with three unit
vectors shows that such a multiplicative constant must be one. This
reasoning constitutes an informal derivation of the identity 11.8.

Using the triple cross product in dynamics
equations

We will use identity 11.8 for two purposes in the development of
dynamics equations:

(a) In the 2D expression for acceleration, the centripetal acceler-
ation is given by ⇀

ω×(
⇀
ω× ⇀

R) simplifies to−ω2 ⇀
R if ⇀

ω ⊥ ⇀
R.

This equation follows by setting
⇀

A = ⇀
ω,

⇀
B = ⇀

ω and
⇀

C = ⇀
R in equation 11.8 and using

⇀
R · ⇀

ω = 0 if ⇀
ω ⊥ ⇀

R. In
3D ⇀

ω × (
⇀
ω × ⇀

r ) gives the vector shown in the lower figure
below.

⇀
ω

⇀
R

⇀
ω × ⇀

R

= −ω2 ⇀
R

⇀
ω×(⇀

ω× ⇀
R)

⇀
ω

⇀
r

⇀
ω×(⇀

ω× ⇀
r )

(⇀
ω × ⇀

r )

(b) The term ⇀
r × (

⇀
ω × ⇀

r ) will appear in the calculation of the
angular momentum of a rigid body. By setting

⇀

A = ⇀
r ,

⇀
B = ⇀

ω and
⇀

C = ⇀
r , in equation 11.8 and use ⇀

r · ⇀
r = r2

because ⇀
r ‖ ⇀

r we get the useful result that ⇀
r × (

⇀
ω × ⇀

r ) =
r2 ⇀

ω − (
⇀
r · ⇀

ω)
⇀
r .
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SAMPLE 11.1 For a particle in circular motion, we frequently use angular velocity
⇀
ω and angular acceleration ⇀

α to describe its motion. You have probably learned in
physics that the linear speed of the particle is v = ωr , the tangential acceleration is
at = αr , and the centripetal or radial acceleration is ar = ω2r , where r is the radius
of the circle. These formulae have scalar expressions. Their vector forms, as learned
in Chapters 5 and 6, are ⇀

v = ⇀
ω × ⇀

r , ⇀
a t = ⇀

α × ⇀
r , and ⇀

ar = ⇀
ω × (

⇀
ω × ⇀

r ). Using
these definitions, find (i) ⇀

v , (ii) ⇀
a t , and (iii) ⇀

ar and show the resulting vectors for
⇀
ω = 2 rad/sk̂,

⇀
α = 4 rad/s2k̂ and ⇀

r G = 3 m(cos 30o ı̂ + sin 30o̂), where ⇀
r G is the

position vector of the particle.

Solution

x

y

z

G

30o

⇀
ω

⇀
ω × ⇀

rG

⇀
rG

Figure 11.10: ⇀
v = ⇀

ω × ⇀
r G .

(Filename:sfig1.2.10a)

⇀
ω = ωk̂ = 2 rad/sk̂
⇀
α = αk̂ = 4 rad/s2k̂

⇀
r G = rGx ı̂ + rG y ̂ = 3 m(cos 30o ı̂ + sin 30o̂).

(i) From the given formulae, the linear velocity

⇀
v = ⇀

ω × ⇀
r G

= ωk̂ × (rGx ı̂ + rG y ̂) = ωrGx ̂ + ωrG y (−ı̂)

= 6 m/s(cos 30o̂ − sin 30o ı̂)

= 3 m/s(−ı̂ +
√

3̂).

The velocity vector ⇀
v is perpendicular to both ⇀

ω and ⇀
r G . These vectors are shown

in Fig. 11.10. You should use the right hand rule to confirm the direction of ⇀
v .

⇀
v = 3 m/s(−ı̂ + √

3̂)

(ii) The tangential acceleration
⇀
α × ⇀

r G

z

⇀
α x

y

G

30o

⇀
rG

Figure 11.11: ⇀
a t = ⇀

α × ⇀
r G .

(Filename:sfig1.2.10b)

⇀
a t = ⇀

α × ⇀
r G

= αk̂ × (rGx ı̂ + rG y ̂) = αrGx ̂ − αrG y ı̂

= 8 m/s2(cos 30o̂ − sin 30o ı̂).

Since ⇀
ω and ⇀

α are in the same direction, calculation of ⇀
a t is similar to that of ⇀

v and
⇀
a t has to be in the same direction as ⇀

v . This vector is shown in Fig. 11.11. Once
again, just as in the case of ⇀

v we could easily check that ⇀
a t is perpendicular to both

⇀
α and ⇀

r G .

⇀
a t = 4 m/s2(3 m/s(−ı̂ + √

3̂)

(iii) Finally, the radial acceleration

⇀
ω

⇀
ω × ⇀

r G

⇀
ω × (

⇀
ω × ⇀

r G)

Figure 11.12: ⇀
ar = ⇀

ω × (
⇀
ω × ⇀

r G )

(Filename:sfig1.2.10c)

⇀
ar = ⇀

ω × (
⇀
ω × ⇀

r G)

= ωk̂ × (ωrGx ̂ − ωrG y ı̂)

= ω2rGx (−ı̂) − ω2rG y ̂ = −ω2 ⇀
r G

= 12 m/s2(− cos 30o ı̂ − sin 30o̂).

This cross product is illustrated in Fig. 11.12. Both from the illustration as well as
the calculation you should be able to see that ⇀

ar is in the direction of −⇀
r G . In fact,

you could show that ⇀
ar = −ω2 ⇀

r G .

⇀
ar = 6 m/s2(−√

3ı̂ − ̂)
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SAMPLE 11.2 Simple 3-D circular motion. A system with two point masses A and

x

y

O

A

B

C
1m

l = 1m
ω

θ

Figure 11.13: (Filename:sfig4.2.DH1)

d
R

x

y

O

A

C

l

θ

θ

θ
⇀
ω

⇀
r

ı̂

̂

Figure 11.14: (Filename:sfig4.2.DH2)

B is mounted on a rod OC which makes an angle θ = 45o with the horizontal. The
entire assembly rotates about the y-axis with constant angular speed ω = 3 rad/s,
maintaining the angle θ . Find the velocity of point A. What is the radius of the circular
path that A describes? Assume that at the instant shown, AB is in the xy plane.

Solution The angular velocity of the system is

⇀
ω = ω̂ = 3 rad/s̂ .

Let ⇀
rA be the position vector of point A. Then the velocity of point A is

⇀
v = ⇀

ω × ⇀
rA ( and ⇀

rA = ⇀
rC + ⇀

rA/C)

= ω̂ × (l cos θ ı̂ + l sin θ ̂︸ ︷︷ ︸
⇀
rC

+ d cos θ ̂ − d sin θ ı̂︸ ︷︷ ︸
⇀
rA/C

)

= ω̂ × [(l cos θ − d sin θ)ı̂ + (l sin θ + d cos θ)̂ ]

= −(ωl cos θ − ωd sin θ)k̂

= −[3 rad/s(1 m· cos 45o − 0.5 m· sin 45o)]

= −1.06 m/sk̂

⇀
v = −1.06 m/sk̂.

R

A x

z

êθ

Figure 11.15: Circular trajectory of point
A as seen by looking down along the y-axis.

At the instant shown, êθ = −k̂.
(Filename:sfig4.2.DH3)

We can find the radius of the circular path of A by geometry. However, we know that
the velocity of A is also given by

⇀
v = ωRêθ

where R is the radius of the circular path. At the instant of interest, êθ = −k̂ (see
figure 11.15).

Thus ⇀
v = −ωRk̂.

Comparing with the answer obtained above, we get

−1.06 m/sk̂ = −ωRk̂

⇒ R = 1.06 m/s

3 rad/s
= 0.35 m.

R = 0.35 m
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SAMPLE 11.3 Kinematics in 3-D—some basic questions: The following questions
are about the velocity and acceleration formulae for the non-constant rate circular
motion about a fixed axis:

⇀
v = ⇀

ω × ⇀
r

⇀
a = ˙⇀ω × ⇀

r + ⇀
ω × (

⇀
ω × ⇀

r )

(a) In the formulae above, what is ⇀
r ? How is it different from

⇀
R = RêR used in

the formulae ⇀
v = Rθ̇ êθ ?

(b) What is the difference between θ̇ and ⇀
ω, and θ̈ and ˙⇀ω?

(c) Are the parentheses around the ⇀
ω × ⇀

r term necessary in the acceleration for-
mula?

(d) Under what condition(s) can a particle have only tangential acceleration?

Solution

(a) In the formulae for velocity and acceleration, ⇀
r refers to a vector from any

point on the axis of rotation to the point of interest. Usually the origin of a
coordinate system located on the axis of rotation is a convenient point to take
as the base point for ⇀

r . You can, however, choose any other point on the axis
of rotation as the base point.
The vector ⇀

r is different from
⇀
R in that

⇀
R is the position vector of the point

of interest with respect to the center of the circular path that the point traces
during its motion. See Fig. 5.2 of the text.

(b) θ̇ and θ̈ are the magnitudes of angular velocity and angular acceleration, re-
spectively, in planar motion, i.e., ⇀

ω = θ̇ k̂ and ˙⇀ω = θ̈ k̂. We have introduced
these notations to highlight the simple nature of planar circular motion. Of
course, you are free to use ⇀

ω = ωk̂ and ˙⇀ω = αk̂ if you wish.
(c) Yes, the parentheses around ⇀

ω × ⇀
r in the acceleration formula are mandatory.

The parentheses imply that this term has to be calculated before carrying out
the cross product with ⇀

ω in the formula. Since the term in the parentheses is
the velocity, you may also write the acceleration formula as

⇀
a = ˙⇀ω × ⇀

r + ⇀
ω × ⇀

v .

Even if the formula is clear in your mind and you know which cross product to
carry out first, it is a good idea to put the parentheses.

(d) First of all let us identify the tangential and the normal (or radial) components
of the acceleration:

⇀
a =

tangential︷ ︸︸ ︷
˙⇀ω × ⇀

r +
radial/normal︷ ︸︸ ︷

⇀
ω × (

⇀
ω × ⇀

r ).

Clearly, for a particle to have only tangential acceleration, the second term must
be zero. For the second term to be zero we must have either ⇀

r = ⇀

0 or ⇀
ω = ⇀

0.
But if ⇀

r = ⇀

0, then the tangential acceleration also becomes zero; the particle
is on the axis of rotation and hence has no acceleration. Thus the condition
that allows only tangential acceleration to survive is ⇀

ω = ⇀

0. Now remember
that ˙⇀ω is not zero. Therefore, the condition we have found can be true only
momentarily. This disappearance of the radial acceleration happens at start-up
motions and in direction-reversing motions. 1©

1© In all start-up motions, the velocity is
zero but the acceleration is not zero at the
start up (t = 0). In direction-reversing mo-
tions, such as that of the washing machine
drum during the wash-cycle, just at the mo-
ment when the direction of motion reverses,
velocity becomes zero but the acceleration
is non-zero.
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SAMPLE 11.4 Velocity and acceleration in 3-D: The rod shown in the figure rotates

x

y

z

O

P

h

r

A
L

ω

Figure 11.16: (Filename:sfig5.2.2)

about the y-axis at angular speed 10 rad/s and accelerates at the rate of 2 rad/s2. The
dimensions of the rod are L = h = 2 m and r = 1 m. There is a small mass P glued
to the rod at its free end. At the instant shown, the three segments of the rod are
parallel to the three axes.

(a) Find the velocity of point P at the instant shown.
(b) Find the acceleration of point P at the instant shown.

Solution We are given:

⇀
ω = ω̂ = 10 rad/s̂ and ˙⇀ω = ω̇̂ = 2 rad/s2̂ .

(a) The velocity of point P is
⇀
v = ⇀

ω × ⇀
r .

At the instant shown, the position vector of point P (the vector ⇀
r P/O) seems to

be a good choice for ⇀
r . 1©Thus,

1© An even better choice, perhaps, is the
vector ⇀

r P/A. Remember, the only require-
ment on ⇀

r is that it must start at some point
on the axis of rotation and must end at the
point of interest.

⇀
r ≡ ⇀

r P/O = L ı̂ + h̂ + r k̂.

Therefore,

x

z

A

P

Path of point P seen from the top:

x

y

z

O

P

h
r

A L

ω

⇀
r

⇀
vP

⇀
vP

Figure 11.17: By drawing the velocity
vector at point P (a vector tangent to the
path) we see that ⇀

v P must have a positive
x-component and a negative z-component.

(Filename:sfig5.2.2a)

⇀
v = ω̂ × (L ı̂ + h̂ + r k̂)

= ω(−Lk̂ + r ı̂)

= 10 rad/s · (−2 mk̂ + 1 mı̂)

= (20ı̂ − 10k̂) m/s.

As a check, we look down the y-axis and draw a velocity vector at point P
(tangent to the circular path at point P) without paying attention to the answer
we got. From the top view in Fig. 11.17 we see that at least the signs of the
components of ⇀

v seem to be correct.

⇀
v = (20ı̂ − 10k̂) m/s

(b) The acceleration of point P is

⇀
a = ˙⇀ω × ⇀

r + ⇀
ω × (

⇀
ω × ⇀

r )

= ω̇̂ × (L ı̂ + h̂ + r k̂) + ω̂ × ω(−Lk̂ + r ı̂)︸ ︷︷ ︸
⇀
ω×⇀

r

= ω̇(−Lk̂ + r ı̂) + ω2(−L ı̂ − r k̂)

= 2 rad/s2(−2 mk̂ + 1 mı̂) − 100( rad/s)2(2 mı̂ + 1 mk̂)

= −(98ı̂ + 104k̂) m/s2.

We can check the sign of the components of ⇀
a also. Note that the tangential

acceleration, ˙⇀ω × ⇀
r , is much smaller than the centripetal acceleration, ⇀

ω ×
(

⇀
ω × ⇀

r ) . Therefore, the total acceleration is almost in the same direction as
the centripetal acceleration, that is, directed from point P to A. If you draw a
vector from P to A, you should be able to see that it has negative components
along both the x- and z-axes. Thus the answer we have got seems to be correct,
at least in direction.

⇀
a = −(98ı̂ + 104k̂) m/s2
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11.2 Dynamics of fixed-axis rotation
We now address mechanics questions concerning objects which are known a priori to
spin about a fixed axis. We would like to calculate forces and moments if the motion
is known. And we would like to determine the details of the motion, the angular
acceleration in particular, if the applied forces and moments are known. Once the
angular acceleration is known (as a function of some combination of time, angle and
angular rate) the angular rate and angular position can be found by integration or
solution of an ordinary differential equation.

The full content of the subject follows from the basic mechanics equations

linear momentum balance,
∑

⇀
F i = ˙⇀L

angular momentum balance,
∑

⇀
M i/C = ˙⇀HC,

and power balance: P = ĖK + ĖP + Ėint.

The quantities ˙⇀L and ˙⇀HC are defined in terms of the position and acceleration of

the system’s mass (see the second page of the inside cover). To evaluate ˙⇀L and ˙⇀HC
for fixed-axis rotation we can use the kinematics relations from the previous chapter
which determine velocity and acceleration of points on a body spinning about a fixed
axis in terms of the position ⇀

r of the point of interest relative to any point on the axis.

⇀
v = ⇀

ω × ⇀
r ,

⇀
a = ⇀

ω × (
⇀
ω × ⇀

r ) + ˙⇀ω × ⇀
r .

For fixed-axis rotation ⇀
ω = ωλ̂ and ˙⇀ω = ω̇λ̂ with λ̂ a constant unit vector along the

axis of rotation.
To solve problems we draw a free body diagram, write the equations of linear and

angular momentum balance, and evaluate the terms using the kinematics relations.
In general this will lead to the evaluation of a sum or an integral. A short cut, the
moment of inertia matrix, will be introduced in later sections.

Before proceeding to more difficult three-dimensional problems, let’s review a
simple 2D problem.

Example: Spinning disk

The round flat uniform disk in figure 11.18 is in the xy plane spinning
at the constant rate ⇀

ω = ωk̂ about its center. It has mass mtot and radius
R0. What force is required to cause this motion? What torque? What
power?

From linear momentum balance we have:∑
⇀
F i = ˙⇀L = mtot

⇀
acm = ⇀

0,

which we could also have calculated by evaluating the integral ˙⇀L ≡∫
⇀
a dm instead of using the general result that ˙⇀L = mtot

⇀
acm . From

angular momentum balance we have:∑
⇀
M i/O = ˙⇀H /O
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⇒ ⇀
M =

∫
⇀
r /O × ⇀

a dm

=
∫ R0

0

∫ 2π

0
(RêR) × (−Rω2êR)

mtot

π R2
O

d A︷ ︸︸ ︷
R dθ d R︸ ︷︷ ︸
dm

=
∫ ∫

⇀

0 dθ d R

= ⇀

0.

✷

y

RO

R
x

dm

O

FBD

ω

êR

⇀
F

⇀
M

ı̂

̂

Figure 11.18: A uniform disk turned by
a motor at a constant rate.

(Filename:tfigure4.3.motordisk)

Power balance is of limited use for constant rate circular motion. If all parts of a
system move at constant angular rate at a constant radius then they all have constant
speed. Thus the kinetic energy of the system is constant. So the power balance
equation just says that the net power into the system is the amount dissipated inside
(assuming no energy storage).

Example: Spinning disk with power balance

Consider the spinning disk from figure 11.18 and the previous example.
The power balance equation III gives

P = ĖK + ĖP︸︷︷︸
0

+ Ėint︸︷︷︸
0

⇒ P =
∫

⇀
v · ⇀

a dm =
∫

0 dm = 0.

(11.17)

In this example there is no force or torque acting on the disk so the power
P must turn out to be zero. In other constant rate problems the force and
moment will not turn out to be zero, but the kinetic energy of the system
will still be constant and so, assuming no energy storage or dissipation,
we will still have P = 0. ✷

A stick sweeps out a cone
Now we consider a genuinely three-dimensional problem involving fixed-axis, rigid
body rotation. Consider a long narrow stick swinging in circles so that it sweeps out
a cone (Fig. 11.19). Each point on the stick is moving in circles around the z-axis at
a constant rate ω. What is the relation between ω and the angle of the stick φ? The
approach to this problem is, as usual, to draw a free body diagram, write momentum
balance equations, evaluate the left and right hand sides, and then solve for quantities
of interest. The hard part of this problem is evaluating the right hand side of the
angular momentum balance equations.

y

z

O

⇀
FO

MOz k̂

MOy ̂

�/2

φ

-mgk̂

Figure 11.20: Free body diagram of the
rod.

(Filename:tfigure4.spherical.pend.fbd)

To simplify calculation, we look at the pendulum at the instant it passes through
the yz-plane, assuming the xyz axes are fixed in space.

The free body diagram shown in figure 11.20 shows the gravity force at the center
of mass, the reaction force at point O , and, consistent with the shown construction of
the hinge, the moments at O perpendicular to the hinge.

Because we are interested in the relation between φ and ω and not the reaction
force, at least for now, we look at angular momentum balance about point O .∑

⇀
MO = ˙⇀HO

First, we show and discuss the results of evaluating the equation of angular momentum
balance. Then, we will show the details of calculating

∑ ⇀
MO and the details of several

methods for calculating ˙⇀HO.
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Evaluation of
∑ ⇀

MO

To find
∑ ⇀

MO, we had to find the moment of the gravity force. The most direct
method is to use the definition

∑
⇀
MO = ⇀

r /O × ⇀
F

= �

2
[cos φ(−k̂) + sin φ̂ ] × (−mgk̂)

= −mg� sin φ

2
ı̂

One could also ‘slide’ the gravity force to the level of O (a force displaced in its

O

s·sin(θ)

s·cos(θ)

φ

s

�

·dm = ρ ds

y

z

Figure 11.21: The rod is shown on the
yz plane. We use this figure to locate the
bit of mass dm corresponding to the bit of
length of rod ds.

(Filename:tfigure4.sphere.ds)

direction of action is mechanically equivalent). Then you can see from the figure that
the force is perpendicular to its position relative to O . Moment is then force (mg)
times distance ( �

2 sin φ) in the direction given by the right hand rule (−ı̂).

φ

x y

z

�

⇀
ω

ı̂ ̂

k̂

Figure 11.19: A spherical rigid body pendulum (uniform thin rod) going in circles at constant rate
⇀
ω.

(Filename:tfigure4.spherical.pend)
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Evaluation of ˙⇀HO

We now evaluate ˙⇀HO by adding up the contribution to the sum from each bit of mass.

˙⇀HO =
∫

⇀
r /O = −s cos φk̂ + s sin φ̂

❇❇�︷︸︸︷
⇀
r /O × ⇀

a︸︷︷︸
❇❇�

For constant rate circular mo-
tion,

⇀
a = ⇀

ω × (
⇀
ω × ⇀

r /O)

= (ωk̂) ×
[
(ωk̂)×

s(sin φ̂ − cos φk̂)
]

= −ω2s sin φ̂

dm = ρ ds, where
ρ = mass per unit length

✂✂✌︷︸︸︷
dm

=
∫ �

0
(−s cos φk̂ + s sin φ̂)︸ ︷︷ ︸

⇀
r /O

× (−ω2s sin φ̂)︸ ︷︷ ︸
⇀
a

(ρ ds)

=
∫ �

0
−s2 cos φ sin φ ω2 ı̂ρds (evaluating the cross product)

= − cos φ sin φ ω2ρ ı̂

∫ �

0
s2 ds (φ, ρ, and ω do not vary with s)

= − cos φ sin φ ω2(ρ
�3

3
)ı̂ (evaluating the integral)

˙⇀HO = − cos φ sin φ ω2(
m�2

3
)ı̂ (because m = ρ�).

We could have taken a short-cut in the calculation of acceleration ⇀
a . Instead of using

⇀
a = ⇀

ω × (
⇀
ω × ⇀

r ), we could have used ⇀
a = −ω2 ⇀

R where
⇀
R is the radius of the circle

each particle is traveling on. It is evident from the picture that the appropriate radius
is

⇀
R = s sin φ̂ , so ⇀

a = −ω2s sin φ̂ .
We will show two more methods for calculating ˙⇀HO in section 11.4 on page 672

once you have studied the moment of inertia matrix in section 11.3.

The results for the conically swinging stick

We can now evaluate the terms in the angular momentum balance equation as∑ ⇀
MO︷ ︸︸ ︷

−mg sin φ
�

2
ı̂ + MOy ̂ + MOz k̂ =

⇀̇
H /O︷ ︸︸ ︷

− sin φ cos φ
m�2

3
ω2 ı̂ . (11.18)

We can get three scalar equations from eqn. 11.18 by dotting it with ̂ , k̂, and ı̂ to get

MOy = 0 and MOz = 0

and

ω2 = 3g
2� cos φ

.
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Note that MOy = MOz = 0. That is, for this special motion, the hinge joint at O
could be replaced with a ball-and-socket joint.

Note that the solution for a point mass spherical pendulum is ω2 = g
� cos φ

. That
is, this stick would rotate at the same rate and angle as a point mass at the end of a
rod of length 2�

3 . One could not easily anticipate this result. We point it out here to
emphasize that the analysis of this rigid-body problem cannot be reduced a priori to
any simple particle mechanics problem.

ω2�/g

φ

π
2

1

1

2

3

4

5

6

7

2

ω2 = 3g
2�cos(φ)

Figure 11.22: Plot of non-dimensional

rotational speed ω2�
g versus hang angle φ.

For ω2�/g < 3/2 the only solution is φ = 0
(hanging straight down). At or very close
to ω2�/g = 3/2 a range of φ’s is possible.
As φ → π/2 and the rod becomes close to
horizontal, the spin rate ω goes to infinity.

(Filename:tfigure4.spherical.vv)

In figure 11.22, non-dimensional rotational speed ω2�
g is plotted versus hang angle

φ. As one might expect intuitively unless ω is high enough, (ω2 >
3g
2�

), the only

solution is hanging straight down (φ = 0). At the critical speed (ω2 = 3g
2�

), the
curve is nearly flat, implying that a range of hang angles φ is possible all with nearly
the same angular velocity. As is also intuitively plausible, the bar gets close to the
horizontal (close to π

2 ), the spin rate goes to infinity.

The scalar equations governing rotation about an axis
For two dimensional motion of flat hinged objects we had the simple relation “M =
Iα”. This formula captures our simple intuitions about angular momentum balance.
When you apply torque to a body its rate of rotation increases. It turns out that, for
three-dimensional motion of a rigid body about a fixed axis, the same result applies
if we interpret the terms correctly. 1©1©Caution: For more general three dimen-

sional motion than rotation about a fixed
axis the equation M = Iα does not apply.
Trying to vectorize by underlining various
terms gives the wrong answer.

If the axis of rotation goes through C and is in the direction λ̂ we can define
M = λ̂ · ⇀

MC as the moment about the axis of rotation. We can similarly look at the

λ̂ component of ˙⇀HC (assume, for definiteness, that the system is continuous).

λ̂ · ˙⇀HC = λ̂ ·
∫

⇀
r × ⇀

a dm

= λ̂ ·
∫

⇀
r ×

[
(ωλ̂) ×

(
(ωλ̂) × ⇀

r
)

+ (ω̇λ̂) × ⇀
r
]

dm.

= ω̇

∫
R2 dm, (11.19)

where R is the distance of the mass points from the axis. The last line follows from the
previous most simply by paying attention to directions and magnitudes when using
the right-hand rule and the geometric definition of the cross product. We thus have
derived the result that

M = Iα,

if by M we mean moment about the fixed axis and by I we mean
∫

R2 dm. Actually,
the scalar we call I in the above equation is a manifestation of a more general matrix
[I ] that we will explore in the next section.
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SAMPLE 11.5 Going on a carnival ride at a constant rate. A carnival ride with roof

R = 4m

A
O

C

B

l = 5m

ω

θ

ı̂

̂

Figure 11.23: A carnival ride rotating at
a constant speed

(Filename:sfig4.2.1)

AB and carriage BC is rotating about the vertical axis with constant angular velocity
⇀
ω = ω̂ . If the carriage with its occupants has mass m = 100 kg, find the tension in
the inextensible and massless rod BC when θ = 30o. What is the required angular
speed ω (in revolutions/minute) to maintain this angle?

Solution The free body diagram of the carriage is shown in Fig. 11.24(a). The

θ

r

O

C

B

mg

O'

v

O C

(a)  FBD of C (b)  Geometry of motion 
       looking down   -axis

ı̂

̂

ı̂

̂

k̂

a = ω2r

Figure 11.24: (Filename:sfig4.2.1a)

geometry of motion of the carriage is shown in Fig. 11.24(b). The carriage goes around
a circle of radius r = O ′C with constant speed v = ωr . The only acceleration that the
carriage has is the centripetal acceleration and at the moment of interest ⇀

a = −ω2r ı̂.

The linear momentum balance (
∑ ⇀

F = ˙⇀L) for the carriage gives:

T λ̂C B − mg̂ = m ⇀
a

or T (− sin θ ı̂ + cos θ ̂) − mg̂ = −mω2r ı̂ (11.20)

Scalar equations from eqn. (11.20) are:

[eqn. (11.20)] · ̂ ⇒ T cos θ − mg = 0

⇒ T = mg

cos θ

= 100 kg · 9.8 m/s2

√
3/2

= 1133 N.

[eqn. (11.20)] · ı̂ ⇒ − T sin θ = −mω2r

⇒ ω2 = T sin θ

mr

= T sin θ

m(R + l sin θ)

= 1133 N · 1
2

100 kg(4 m + 5 m · 1
2 )

= 0.87
1

s2
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⇒ ω = 0.93
rad

s

= 0.93
1

� s · 1rev

2π
· 60� s

1 min
= 8.9 rpm.

T = 1133 N, ω = 8.9 rpm

Alternatively,

we could also find the angular speed using angular momentum balance. The angular
momentum balance about point B gives∑

⇀
M/B = ˙⇀H /B

∑
⇀
M/B = ⇀

r C/B × (−mg̂)

= −mgl sin θ k̂

˙⇀H /B = ⇀
r C/B × (−mω2r ı̂)

= −mω2rl cos θ k̂

Equating the two quantities, we get

�mω2r� l cos θ = �mg� l sin θ

⇒ ω2 = g

r
tan θ

= g tan θ

R + l sin θ

= 9.8 m/s2 · 0.577

4 m + 5 m 1
2

= 0.87
1

s2

ω = 0.93 s−1 = 8.9 rpm

which is the same value as we found using the linear momentum balance .
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SAMPLE 11.6 A crooked bar rotating with a shaft in space. A uniform rod CD of

R2

A

D

C

B

R1

m

�=1mθ
ı̂

̂

k̂

ω

Figure 11.25: A bar held by two strings
rotates in 3-D.

(Filename:sfig4.6.2)

mass m = 2 kg and length � = 1 m is fastened to a shaft AB by means of two strings:
AC of length R1 = 30 cm, and BD of length R2 = 50 cm. The shaft is rotating at a
constant angular velocity ⇀

ω = 5 rad/sk̂. There is no gravity. At the instant shown,
find the tensions in the two strings.

Solution The free body diagram of the rod is shown in Fig. 11.26. The linear
momentum balance (

∑ ⇀
F = m ⇀

a ) for the rod gives:

T1 + T2 = mω2rG . (11.21)

D

C
T1

T2

(b) Geometry of motion

D

C

dm

P

G

rG

RP

(a) FBD

ı̂
̂

k̂

θ
⇀
a

l

ω

Figure 11.26: (Filename:sfig4.6.2a)

Usually, linear momentum balance gives us two scalar equations in 2-D and three
scalar equations in 3-D. Unfortunately, in this case, it gives only one equation for two
unknowns T1 and T2. Therefore, we need one more equation.

The angular momentum balance about point D gives:∑
⇀
M/D = ˙⇀H /D,

where
∑

⇀
M/D = ⇀

r C/D × (−T1̂)

= �(− sin θ ̂ + cos θ k̂) × (−T1̂)

= � T1 cos θ ı̂,

and
˙⇀H /D =

∫
m

⇀
r P/D × (−ω2 RP ̂)dm

=
∫ �

0

⇀
r P/D︷ ︸︸ ︷

l(− sin θ ̂ + cos θ k̂) ×(−ω2

RP︷ ︸︸ ︷
(R2 − l sin θ) ̂)

dm︷ ︸︸ ︷
m

�
dl

= mω2

�

(
R2 cos θ

∫ �

0
l dl − cos θ sin θ

∫ �

0
l2 dl

)
ı̂
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= mω2

�

(
R2 cos θ

�2

2
− cos θ sin θ

�3

3

)
ı̂

= mω2� cos θ(
1

2
R2 − 1

3
� sin θ)ı̂.

Thus,

� � T1 �cos θ = mω2� � �cos θ(
1

2
R2 − 1

3
� sin θ)

⇒ T1 = mω2(
1

2
R2 − 1

3
� sin θ).

Substituting in (11.21) we get

T2 = mω2(rG − 1

2
R2 + 1

3
� sin θ).

Plugging in the given numerical values and noting that rG = (R1 + R2)/2 = 40 cm
and � sin θ = R2 − R1 = 20 cm, we get

T1 = 2 kg · (5
1

s
)2 · (0.4 m − 1

2
0.5 m + 1

3
0.2 m)

= 9.17
kg · m

s2 = 9.17 N

and T2 = 10.83 N.

T1 = 9.1 N, T2 = 10.9 N
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SAMPLE 11.7 A crooked plate rotating with a shaft in space. A rectangular plate

A

B

x

y

z

m

�

�/2

b
φ

ω

Figure 11.27: A rectangular plate,
mounted rigidly at an angle φ on a shaft,
wobbles as the shaft rotates at a constant
speed.

(Filename:sfig4.6.6)

of mass m, length �, and width b is welded to a shaft AB in the center. The long edge
of the plate is parallel to the shaft axis but is tipped by an angle φ with respect to the
shaft axis. The shaft rotates with a constant angular speed ω. The end B of the shaft
is free to move in the z-direction. Assume there is no gravity. Find the reactions at
the supports.

Solution A simple line sketch and the Free Body Diagram of the system are shown
in Fig. 11.28ab. The linear momentum balance equation for the shaft and the plate

(a) (b)

O O
m

b

A

B

�
φ

ω

ı̂

̂ k̂

Ay

Ax

Bx

By

Az

Mz

Figure 11.28: (Filename:sfig4.6.6a)

system is: ∑
⇀
F = mtotal

⇀
acm .

Since the center of mass is on the axis of rotation, ⇀
acm = ⇀

0. Therefore,

(Ax + Bx )ı̂ + (Ay + By)̂ + Az k̂ = ⇀

0

⇒ Ax + Bx = 0, Ay + By = 0, Az = 0. (11.22)

The angular momentum balance about the center of mass O is:∑
⇀
MO = ˙⇀HO

• Calculation of
∑ ⇀

MO:∑
⇀
MO = ⇀

r A/O × ⇀
F A + ⇀

r B/O × ⇀
F B + Mz k̂

= −�

2
k̂ × (Ax ı̂ + Ay ̂ + Az k̂) + �

2
k̂ × (Bx ı̂ + By ̂) + Mz k̂

= �

2
(Ay − By)ı̂ + �

2
(Bx − Ax )̂ + Mz k̂ (11.23)

• Calculation of ˙⇀HO: ˙⇀HO can be computed in various ways. 1©Here, to1© ⇀̇
H could also be computed using the

moment of inertia matrix of the body. See
the next two text sections.

compute ˙⇀HO, we use

˙⇀HO =
∫

M

⇀
r dm/O × ⇀

adm dm,

the formula which we have used so far. To carry out this integration for the
plate, we take, as usual, an infinitesimal mass dm of the body, calculate its
angular momentum about O, and then integrate over the entire mass of the
body:

˙⇀HO =
∫

M

⇀
r dm/O × ⇀

adm dm
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We need to write carefully each term in the integrand. Let us define an axis
w (don’t confuse this dummy variable w with ω) along the length of the plate
(see Fig. 11.29(a)). We take an area element d A = dw dy on the plate as our
infinitesimal mass. Fig. 11.29(b) shows this element and its coordinates.

b
�

ww

z

z

x

y y
φ

z

x

y φ
w

z y

dA=dwdy

(a)

(b)

Figure 11.29: Calculation of
⇀̇
HO: (a)

mass element dm is shown on the plate, (b)
the mass element as an area element and its
geometry.

(Filename:sfig4.6.6b)

dm = ρ d A = m

�b
dw dy (ρ = mass per unit area)

⇀
adm = ⇀

ω × (
⇀
ω × ⇀

r dm/O)

⇀
r dm/O = x ı̂ + y̂ + zk̂

where
x = w sin φ, y = y, z = w cos φ. (11.24)

Therefore,

⇀
acm = ωk̂ × (ωk̂ × (w sin φ ı̂ + y̂ + w cos φk̂))

= ωk̂ × (ω w sin φ̂ − ω y ı̂) = −ω2(w sin φ ı̂ + y̂),
⇀
r dm/O × ⇀

adm = (w sin φ ı̂ + y̂ + w cos φk̂) × [−ω2(w sin φ ı̂ + y̂)]

= ω2(−w2 sin φ cos φ̂ + wy cos φ ı̂).

Thus,

˙⇀HO =
∫ b/2

−b/2

∫ �/2

−�/2

⇀
r dm/O×⇀

adm︷ ︸︸ ︷
ω2(−w2 sin φ cos φ̂ + wy cos φ ı̂)

dm︷ ︸︸ ︷
m

�b
dw dy

= m

�b
ω2

∫ b/2

−b/2

(∫ �/2

−�/2
(−w2 sin φ cos φ̂ + wy cos φ ı̂)dw

)
dy

= m

�b
ω2

∫ b/2

−b/2


− sin φ cos φ

w3

3

∣∣∣∣
�/2

−�/2
+ y cos φ

w2

2

∣∣∣∣
�/2

−�/2︸ ︷︷ ︸
0


 dy

= −mω2�2

12
sin φ cos φ̂ . (11.25)

• Now, back to angular momentum balance: Now equating (11.23) and (11.25)
and dotting both sides with ı̂, ̂ , and k̂ we get

Ay − By = 0, Bx − Ax = −mω2�

6
sin φ cos φ, Mz = 0, (11.26)

respectively. Solving (11.22) and (11.26) simultaneously we get

Ay = By = 0, Ax = mω2�

12
, sin φ cos φBx = −mω2�

12
sin φ cos φ.

Ax = mω2�
12 sin φ cos φ, Bx = −mω2�

12 sin φ cos φ, Ay = By = Az = Mz = 0
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SAMPLE 11.8 A short rod as a 3-D pendulum. A uniform rod AB of mass m and

m

g
ball & socket

joint

O

A

B

3�

2�
ı̂

̂

k̂

θ

ω

Figure 11.30: A short rod swings in 3-D.
(Filename:sfig4.6.1)

length 2� is welded to a massless, inextensible thin rod OA at point A. Rod OA is
attached to a ball and socket joint at point O. The rods are going around in a circle
with constant speed maintaining a constant angle θ with the vertical axis. Assume
that θ is small.

(a) How many revolutions does the system make in one second?

Solution

(a) The free body diagram of the system (rod OA + rod AB) is shown in Fig. 11.31.
Let ω be the angular speed of the system. Then, the number of revolutions in
one second is n = ω/(2π). Therefore, to find the answer we need to calculate
ω.

dm

mg

O

A

B

(a) FBD

O

�

ı̂
̂

k̂

⇀
R

θ

ω
⇀
a

(b) Calculation of ˙⇀H

Figure 11.31: (Filename:sfig4.6.1a)

The angular momentum balance about point O gives
∑ ⇀

MO = ˙⇀HO. Now,∑
⇀
MO = ⇀

r G/O × (−mgk̂)

= 4�(sin θ ̂ − cos θ k̂) × (−mgk̂)

= −4� mg sin θ ı̂.

and ˙⇀HO =
∫

m

⇀
r dm/O × ⇀

adm dm

=
∫ 5�

3�

⇀
r dm/O︷ ︸︸ ︷

�(sin θ ̂ − cos θ k̂) ×

⇀
adm︷ ︸︸ ︷

(−ω2l sin θ ̂)

dm︷ ︸︸ ︷
m

2�
d�

= − m

2�
ω2 sin θ cos θ ı̂

∫ 5�

3�

�2 d�

= −49

3
�2mω2 sin θ cos θ ı̂.

By equating the two quantities (
∑ ⇀

MO = ˙⇀HO ), we get

−4� mg sin θ ı̂ = −49

3
�2mω2 sin θ cos θ ı̂

⇒ ω2 = 12g

49� cos θ
.

But for small θ , cos θ ≈ 1. Therefore,

ω =
√

12g

49�
= 2

√
3

7

√
g

�

and the number of revolutions per unit time is n = 2
√

3
14π

√
g
�
.

n = 2
√

3
14π

√
g
�

(b) Note, the natural frequency of this rod swinging back and forth as a simple
pendulum turns out to be the same as the angular speed ω of the rotating
system above for small θ .
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11.3 Moment of inertia matrices
We now know how to find the velocity and acceleration of every bit of mass on a rigid
body as it spins about a fixed axis. It is just a matter of doing integrals or sums to
calculate the various motion quantities (momenta, energy) of interest. As the body
moves and rotates the region of integration and the values of the integrands change.
So, in principle, in order to analyze a rigid body one has to evaluate a different integral
or sum at every different configuration. But there is a shortcut. A big sum (over all
atoms, say), or a difficult integral is reduced to a simple multiplication using the
moment of inertia. In three-dimensions this multiplication is a matrix multiplication.

[I], the moment of inertia matrix 1©, is defined for the purpose of simplifying the 1© In fact the moment of inertia matrix for
a given object depends on what reference
point is used. Most commonly when people
say ‘the’ moment of inertia they mean to use
the center of mass as the reference point.
For clarity this moment of inertia matrix
is often written as [I cm] in this book. If
a different reference point, say point O is
used, the matrix is notated as [IO].

expressions for the angular momentum, the rate of change of angular momentum,
and the energy of a system which moves like a rigid body.

First review the situation for flat objects in planar motion. A flat object spinning
with ⇀

ω = ωk̂ in the xy plane has a mass distribution which gives a polar moment of
inertia I cm

zz or just ‘I ’ so that:

⇀
H cm = Iωk̂ (11.27)
˙⇀H cm = ⇀

0 (11.28)

EK/cm = 1

2
ω2 I. (11.29)

Now, for a rigid body spinning in 3-D about a fixed axis with the angular velocity ⇀
ω

we need matrix multiplication, where the determination of the needed matrix is the
central topic of this section.

⇀
H cm = [I cm] · ⇀

ω (11.30)
˙⇀H cm = ⇀

ω × [I cm] · ⇀
ω︸ ︷︷ ︸

⇀
H cm

+[I cm] · ˙⇀ω (11.31)

EK/cm = 1

2
⇀
ω · ([I cm] · ⇀

ω) = 1

2
⇀
ω · ⇀

H cm. (11.32)

In detail, for example,[ Hx/cm

Hy/cm

Hz/cm

]
=

[ I cm
xx I cm

xy I cm
xz

I cm
xy I cm

yy I cm
yz

I cm
xz I cm

yz I cm
zz

]
xyz

·
[

ωx

ωy

ωz

]
(11.33)

where
⇀
H cm = Hx/cm ı̂ + Hy/cm ̂ + Hz/cm k̂. Note that the 2-D results are a special

case of the 3-D results because, as you will soon see, for 2-D objects Ixz = Iyz = 0.
We postpone the use of these equations till section 11.4.

The moment of inertias in 3-D: [Icm] and [IO]

For the study of three-dimensional mechanics, including the simple case of constant
rate rotation about a fixed axis, one often makes use of the moment of inertia matrix,
defined below and motivated by the box 11.3 on page 668.

The distances x, y, z in the formulas below are the x, y, z components of the
position of mass relative to a coordinate system which has either the center of mass
(cm) or the point O as its origin. 2©

2©Caution: While we have Ixy =
−

∫
xy dm, some old books define Ixy =∫

xy dm. They then have minus signs in
front of the off-diagonal terms in the mo-
ment of inertia matrix. They would say
I12 = −Ixy . The numerical values in the
matrix they write is the same as in the one
we write. They just have a different sign
convention in the definition of the compo-
nents.
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[I ] =
[ Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

]
(11.34)

=
[ ∫

(y2 + z2) dm − ∫
xy dm − ∫

xz dm
− ∫

xy dm
∫
(x2 + z2) dm − ∫

yz dm
− ∫

xz dm − ∫
yz dm

∫
(x2 + y2) dm

]
(11.35)

If all mass is on the xy plane then it is clear that Ixz = Iyz = 0 since z = 0 for
the whole xy plane. If rotation is also about the z-axis then ⇀

ω = ωk̂.
Applying the formulas above we find that, if all of the mass is in the xy-plane

and rotation is about the z-axis, the only relevant non-zero term in [I ] is Izz =∫
(x2 + y2) dm . And, Ixx , Iyy , and Ixy don’t contribute to

⇀
H , ˙⇀H , or EK. In this

manner you can check that the three dimensional equations, when applied to two-
dimensional bodies, give the same results that we found directly for two-dimensional
bodies.

Example: Moment of inertia matrix for a uniform sphere

A sphere is a special shape which is, naturally enough, spherically sym-
metric. Therefore,

I cm
xx = I cm

yy = I cm
zz

and
I cm
xy = I cm

xz = I cm
yz = 0.

So, all we need is I cm
xx or I cm

yy or I cm
zz . Here is the trick:

x

y

R r

z

rdr

Uniform Sphere

Spherical shell

dm = ρ(4πr2dr )

Figure 11.32: (Filename:tfigure4.3Dsphere)

I cm
xx = 1

3
(I cm

xx + I cm
yy + I cm

zz )

= 1

3

[∫
(y2 + z2)dm +

∫
(x2 + z2)dm +

∫
(x2 + y2)dm

]

= 2

3

∫
(x2 + y2 + z2)dm

= 2

3

∫
r2 dm

= 2

3

∫ R

0
r2(4ρπr2 dr)

= 8

3
ρπ

∫ R

0
r4 dr

= 8

15
ρπ R5

= 2

5
m R2 (m = 4

3
ρπ R3).

So,

[I cm] = 2

5
m R2


 1 0 0

0 1 0
0 0 1


 .

✷



11.3. Moment of inertia matrices 663

The parallel axis theorem for rigid bodies in three dimensions
The 3-D parallel axis theorem is stated below and in the table on the inside back cover.
It is derived in box 11.4 on page 670. The parallel axis theorem for rigid bodies in
three dimensions is the equation

[IO] = [I cm] + m


 y2

cm/o + z2
cm/o −xcm/o ycm/o −xcm/ozcm/o

−xcm/o ycm/o x2
cm/o + z2

cm/o −ycm/ozcm/o

−xcm/ozcm/o −ycm/ozcm/o x2
cm/o + y2

cm/o


 (11.36)

In this equation, xcm/o, ycm/o, and zcm/o are the x , y, and z coordinates, respectively, of
the center of mass defined with respect to a coordinate system whose origin is located
at some point O not at the center of mass cm. That is, if you know [I cm], you can find
[IO] without doing any more integrals or sums. Like the 2-D parallel axis theorem.
The primary utility of the 3-D parallel axis theorem is for the determination of [I] for
an object that is a composite of simpler objects. Such are not beyond the scope of
this book in principle. But in fact, given the finite time available for calculation, we
do not leave much time for practice of this tedious but routine calculation.

Matrices and tensors
We have just introduced the 3 by 3 moment of inertia matrix [I ]. We will find it in
expressions having to do with angular momentum sitting next to either a vector ⇀

ω or
a vector ⇀

α: [I ] · ⇀
ω or [I ] · ⇀

α. What we mean by this expression is the three
element column vector that comes from matrix multiplication of the matrix [I ] and

the column vector for ⇀
ω,


 ωx

ωy

ωz


, an expression that only makes sense if everyone

knows what bases are being used.
More formally, and usually only in more advanced treatments, people like to

define a coordinate-free quantity called the tensor I . Then we would have

I ·⇀
ω

by which we would mean the vector whose components would be found by [I ] ·
 ωx

ωy

ωz


.

Eigenvectors and Eigenvalues
A square matrix [A] when multiplied by a column vector [v] yields a new vector
[w]. A given matrix has a few special vectors, somehow characteristic of that matrix,
called eigenvectors. The vector ⇀

v is an eigenvector of [A] if

[A] · [v] is parallel to [v] .

In other words, if
[A] · [v] = λ [v]

for some λ.
The scalar λ is called the eigenvalue associated with the eigenvector [v] of the

matrix [A]. The eigen-values and eigen-vectors of a matrix are found with a single
command in many computer math programs. In statics you had little or no use
for eigen-values and eigen-vectors. In dynamics, eigenvectors and eigenvalues are
useful for understanding dynamic balance, 3-D rigid body rotations, and normal mode
vibrations.
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Eigenvectors of [I ]

The moment of inertia matrix is always a symmetric matrix. This symmetry means
that [I ] always has a set of three mutually orthogonal eigenvectors. The importance
of the eigenvectors of [I ] will be discussed in section 11.5 on dynamic balance.
Sometimes a pair of the eigenvalues are equal to each other implying that any vector
in the plane of the corresponding eigenvectors is also an eigenvector.

If the physical object has any natural symmetry directions these directions will
usually manifest themselves in the dynamics of the body as being in the directions of
the eigenvectors of object’s moment of inertia matrix. For example, the dotted lines
on figure ?? are all in directions of eigenvectors for the objects shown. But even
if an object is wildly asymmetric in shape, its moment of inertia matrix is always
symmetric and thus all objects have moment of inertia matrices with at least three
different eigenvectors at least three of which are mutually orthogonal.

Properties of [I ]

For those with experience with linear algebra various properties of the moment of
inertia matrix [I ] are worth noting (although not worth proving here). Unless all
mass is distributed on one straight line, the moment of inertia matrix is invertible (it
is non-singular and has rank 3). Further, when invertible it is positive definite. In the
special case that all the mass is on some straight line, the moment of inertia matrix
is non-invertible and only positive semi-definite. The positive (semi) definiteness of
the moment of inertia matrix is equivalent to the statement that the rotational kinetic
energy of a body is always equal to or greater than zero. Finally, the eigenvalues of
the moment of inertia matrix are all positive and have the property that no one can be
greater than the sum of the other two (the same inequalities are satisfied the lengths
of the sides of a triangle, the “triangle inequality”).
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SAMPLE 11.9 For the dumbbell shown in Figure 11.33, take m = 0.5 kg and

�

m

m

O

θ y

z

x

Figure 11.33: (Filename:sfig4.6.4)

� = 0.4 m. Given that at the instant shown θ = 30o and the dumbbell is in the
yz-plane, find the moment of inertia matrix [IO], where O is the midpoint of the
dumbbell.

Solution The dumbbell is made up of two point masses. Therefore we can calculate
[IO] for each mass using the formula from the table on the inside back cover of the
text and then adding the two matrices to get [IO] for the dumbbell.
Now, from Table 4.9 of the text,

[IO] = m


 y2 + z2 −xy −xz

−xy x2 + z2 −yz
−xz −yz x2 + y2




For mass 1 (shown in Figure 11.34)

x = 0, y = −�

2
cos θ, z = �

2
sin θ.

Therefore,

O θ

θ

1

�/2 cos θ

�/2 sin θ

2

y

z

Figure 11.34: (Filename:sfig4.6.4a)

[IO]mass1 = m




�2

4 0 0

0 �2

4 sin2 θ �2

4 cos θ sin θ

0 �2

4 cos θ sin θ �2

4 cos2 θ




= 0.5 kg


 0.04 m2 0 0

0 0.04 m2· 1
4 0.04 m2·

√
3

4

0 0.04 m2·
√

3
4 0.04 m2· 3

4




= 0.02 kg· m2


 1 0 0

0 1
4

√
3

4

0
√

3
4

1
4




Similarly for mass 2,

x = 0, y = �

2
cos θ, z = −�

2
sin θ

⇒ [IO]mass2 = 0.02 kg· m2


 1 0 0

0 1
4

√
3

4

0
√

3
4

1
4


 .

Therefore,

[IO] = [IO]mass1 + [IO]mass2

= 0.04 kg· m2


 1 0 0

0 1
4

√
3

4

0
√

3
4

1
4


 .

<
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11.2 Some examples of 2-D Moment of Inertia

Here, we illustrate some simple moment of inertia calculations for
two-dimensional objects. The needed formulas are summarized, in
part, by the lower right corner components (that is, the elements in
the third column and third row (3,3)) of the matrices in the table on
the inside back cover.

One point mass

r

x

y

O

x2 + y2 = r2

If we assume that all mass is concentrated at one or more points,
then the integral

I o
zz =

∫
r2
/o dm

reduces to the sum
I o
zz =

∑
r2
i/omi

which reduces to one term if there is only one mass,

I o
zz = r2m = (x2 + y2)m.

So, if x = 3 in, y = 4 in, and m = 0.1 lbm, then I o
zz = 2.5 lbm in2.

Note that, in this case, I cm
zz = 0 since the radius from the center of

mass to the center of mass is zero.

Two point masses

m1

m2

r2

r1

O x

y

In this case, the sum that defines I o
zz reduces to two terms, so

I o
zz =

∑
r2
i/omi = m1r2

1 + m2r2
2 .

Note that, if r1 = r2 = r , then I o
zz = mtot r2.

A thin uniform rod

x

y

d

s

ds

O�1

�1 + �2 = �

�2

� m = ρ�
dm = ρds
ρ = mass per

unit length

Consider a thin rod with uniform mass density, ρ, per unit length,
and length �. We calculate I o

zz as

I o
zz =

∫
r2

ρds︷︸︸︷
dm

=
∫ �2

−�1

s2ρds (s = r)

= 1

3
ρs3

∣∣∣ �2

−�1

(since ρ ≡ const.)

= 1

3
ρ(�3

1 + �3
2).

If either �1 = 0 or �2 = 0, then this expression reduces to I o
zz =

1
3 m�2. If �1 = �2, then O is at the center of mass and

I o
zz = I cm

zz = 1

3
ρ

((
�

2

)3
+

(
�

2

)3
)

= ml2

12
.

We can illustrate one last point. With a little bit of algebraic histri-
onics of the type that only hindsight can inspire, you can verify that
the expression for I 0

zz can be arranged as follows:

I 0
zz = 1

3
ρ(�3

1 + �3
2)

= ρ(�1 + �2)︸ ︷︷ ︸
m


 �2 − �1

2︸ ︷︷ ︸
d




2

+ ρ
(�1 + �2)

3

12︸ ︷︷ ︸
m�2/12

= md2 + m
�2

12

= md2 + I cm
zz

That is, the moment of inertia about point O is greater than that
about the center of mass by an amount equal to the mass times the
distance from the center of mass to point O squared. This derivation
of the parallel axis theorem is for one special case, that of a uniform
thin rod.
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A uniform hoop

R

O x

y dm = ρRdθ

dθ

m = 2ρπ R

For a hoop of uniform mass density, ρ, per unit length, we might
consider all of the points to have the same radius R. So,

I o
zz =

∫
r2dm =

∫
R2dm = R2

∫
dm = R2m.

Or, a little more tediously,

I o
zz =

∫
r2dm

=
∫ 2π

0
R2ρRdθ

= ρR3

∫ 2π

0
dθ

= 2πρR3 = (2πρR)︸ ︷︷ ︸
m

R2 = m R2.

This I o
zz is the same as for a single point mass m at a distance R from

the origin O . It is also the same as for two point masses if they both
are a distance R from the origin. For the hoop, however, O is at the
center of mass so I o

zz = I cm
zz which is not the case for a single point

mass.

A uniform disk

R

rO x

y dm = ρ dA = ρr dr dθ

rdθ
dθ

dA dr

m = ρπ R2

Assume the disk has uniform mass density, ρ, per unit area. For a
uniform disk centered at the origin, the center of mass is at the origin
so

I o
zz = I cm

zz =
∫

r2dm

=
∫ R

0

∫ 2π

0
r2ρrdθdr

=
∫ R

0
2πρr3dr

= 2πρ
r4

4

∣∣∣∣R

0

= πρ
R4

2
= (πρR2)

R2

2

= m
R2

2
.

For example, a 1 kg plate of 1 m radius has the same moment of
inertia as a 1 kg hoop with a 70.7 cm radius.

Uniform rectangular plate

a

b
O x

y

dm = ρdx dy

m = ρab

For the special case that the center of the plate is at point O , the
center of mass of mass is also at O and I o

zz = I cm
zz .

I o
zz = I cm

zz =
∫

r2dm

=
∫ b

2

− b
2

∫ a
2

− a
2

(x2 + y2)

dm︷ ︸︸ ︷
ρdxdy

=
∫ b

2

− b
2

ρ

(
x3

3
+ xy2

)∣∣∣∣∣
x= a

2

x=− a
2

dy

= ρ

(
x3 y

3
+ xy3

3

)∣∣∣∣x= a
2

x=− a
2

∣∣∣∣∣
y= b

2

y=− b
2

= ρ

(
a3b

12
+ ab3

12

)
= m

12
(a2 + b2).

Note that
∫

r2dm =
∫

x2dm +
∫

y2dm for all planar objects (the

perpendicular axis theorem). For a uniform rectangle,
∫

y2dm =
ρ
∫

y2d A. But the integral y2d A is just the term often used for I ,
the area moment of inertia, in strength of materials calculations for
the stresses and stiffnesses of beams in bending. You may recall that∫

y2d A = ab3

12 = Ab2

12 for a rectangle. Similarly,
∫

x2d A = Aa2

12 .

So, the polar moment of inertia J = I o
zz = m 1

12 (a2 + b2) can be
recalled by remembering the area moment of inertia of a rectangle
combined with the perpendicular axis theorem.
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11.3 Discovering the moment of inertia matrix

Derivation 1
Here we present a direct derivation of the moment of inertia matrix;
that is, a derivation in which the moment of inertia matrix arises as
a convenient short hand. Assume a rigid body is moving in such a
way that point O is fixed (i.e., It is either on the line of a hinge or a
ball-and-socket joint).

R
O

dm
⇀
r /O

⇀
ω

⇀
v

The most basic kinematic relation for a rigid body is that
⇀
v = ⇀

ω × ⇀
r

where ⇀
r /O = x ı̂ + y̂ + zk̂ is the position of a point on the body

relative to O and ⇀
ω, the angular velocity of the body.

Now, we tediously calculate and arrange the terms in the angu-
lar momentum about point O ,

⇀
H O =

∫
⇀
r /O × ⇀

vdm

=
∫

⇀
r /O × (

⇀
ω × ⇀

r /O )dm

=
∫

(x ı̂ + y̂ + zk̂) ×[
(ωx ı̂ + ωy ̂ + ωz k̂) × (x ı̂ + y̂ + zk̂)

]
dm

=
∫

(x ı̂ + y̂ + zk̂) ×[
(ωy z − ωz y)ı̂ + (ωz x − ωx z)̂ + (ωx y − ωy x)k̂

]
dm

=
∫ [(

y(ωx y − ωy x) − z(ωz x − ωx z)
)
ı̂

+
(
z(ωy z − ωz y) − x(ωx y − ωy x)

)
̂

+
(

x(ωz x − ωx z) − y(ωy z − ωz y)
)
k̂
]

dm

=
∫ [(

(y2 + z2)ωx − xyωy − xzωz
)
ı̂

+
(
−yxωx + (z2 + x2)ωy − yzωz

)
̂

+
(
−zxωx − xyωy + (x2 + y2)ωz

)
k̂
]

dm

Since the integral is over the mass and ⇀
ω is constant over the body,

we can pull ⇀
ω out of the integral so that we may write the equation

in matrix form. Writing
⇀
H O as a column vector, we can rewrite the

last equation as

[ HOx
HOy
HOz

]
=

[∫
(y2 + z2) dm −

∫
xy dm −

∫
xz dm

−
∫

xy dm
∫

(x2 + z2) dm −
∫

yz dm

−
∫

xz dm −
∫

yz dm
∫

(x2 + y2) dm

]
︸ ︷︷ ︸

[IO]

·
[

ωx
ωy
ωz

]
.

Finally, defining [IO] by the matrix above, we can compactly write

⇀
HO = [IO] · ⇀

ω

assuming O is a fixed point on the body where we represent
⇀
HO

and ⇀
ω in terms of x , y, and z components.

Center-of-mass inertia matrix
For any system moving, distorting, and rotating any crazy way, we
have the general result that

⇀
HO =

Contribution of the system to
⇀
HO

if treated as a particle at the system
center of mass

❇❇�︷ ︸︸ ︷
⇀
r cm/O × mtot

⇀
v cm +

⇀
H cm︷ ︸︸ ︷∫

(
⇀
r /cm ×

✂✂✍
⇀
v /cm = (

⇀
v − ⇀

v cm)

⇀
v /cm)dm

as you can verify by substituting ⇀
v = ⇀

v cm + ⇀
v /cm and ⇀

r = ⇀
r cm +

⇀
r /cm into the general definition of

⇀
HO =

∫
⇀
r /O × ⇀

vdm. For a
rigid body, we have

⇀
v /cm = ⇀

ω × ⇀
r /cm .

So, by a derivation essentially identical to that for
⇀
HO, we get

⇀
H cm = [I cm] · ⇀

ω

with [I cm] being defined using x , y, and z, as the distances from
the center of mass rather than from point O . So, for a rigid body in
general motion, we can find the angular momentum by

⇀
HO = ⇀

r cm/O × ⇀
v cmmtot + [I cm] · ⇀

ω (11.37)

Comment (aside)
In the special case that the body is rotating about point O , we also
have

⇀
HO = [IO] · ⇀

ω. (11.38)

You will see, if you look at the parallel axis theorem, that these two
expressions 11.37 and 11.38 do in fact agree.
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Derivation 2
Here, we present a less direct but perhaps more intuitive derivation
of the moment of inertia matrix. We start with the special case of a
3-D rigid body spinning in circles at constant rate about a fixed axis.

To see from where the moment of inertia matrix comes, we
will first calculate the angular momentum about point O of a gen-
eral 3-D rigid body spinning about the z-axis with constant rate

θ̇ ≡ const. = ωz or ⇀
ω = ωz k̂. We will refer to this case as (1).

x

y

z
axis O

dm

θ

êR

êθ

⇀
R

⇀
r/O = zk̂ + ⇀

R

zk̂
ωz

⇀
ω = ωz k̂

Starting with the definition of angular momentum, we get

⇀
H O =

∫
⇀
r /O × ⇀

vdm

=
∫

(zk̂ + ⇀
R) × (θ̇ Rêθ )dm.

y

x
dm

êθ

êR

ı̂
̂

θ⇀
R

ωz

Looking down the z-axis in the figure, we see that

⇀
R = RêR =

x︷ ︸︸ ︷
R cos θ ı̂ +

y︷ ︸︸ ︷
R sin θ ̂ , or

⇀
R = x ı̂ + y̂ .

where R =
√

x2 + y2. To compute the cross product in the inte-
grand, we need

k̂ × êθ = k̂ × (− sin θ ı̂ + cos θ ̂ ) = −êR and
⇀
R × êθ = RêR × êθ = Rk̂.

Therefore, we now have
⇀
H O =

∫
−zθ̇ RêRdm +

∫
θ̇ R2k̂dm

= θ̇


−

∫
z(R cos θ︸ ︷︷ ︸

x

ı̂ + R sin θ︸ ︷︷ ︸
y

̂ )dm +
∫

(x2 + y2)k̂dm




= θ̇

[(
−

∫
zx dm

)
ı̂ +

(
−

∫
zy dm

)
̂ +

(∫
(x2 + y2)dm

)
k̂
]

.

To ‘un-clutter’ this expression, let’s define the following:

I O
xz = −

∫
xz dm

I O
yz = −

∫
yz dm

I O
zz = −

∫
(x2 + y2) dm

So, now, we have for case (1)

(
⇀
H O )1 = I O

xzωz ı̂ + I O
yzωz ̂ + I O

zz ωz k̂.

The substitutions we have defined form the elements of the third
column of the inertia matrix, as we will see below in the general
case. Let’s now move on to general 3-D rigid body motion and infer
the first and second columns of the inertia matrix.

In general, the angular velocity of a rigid body is given by
⇀
ω = ωx ı̂ + ωy ̂ + ωz k̂

So far, we have considered the special case above, ⇀
ω = ωz k̂. But,

we could have looked at ⇀
ω = ωx ı̂, case (2), and, similarly, would

obtain instead the following angular momentum about point O

(
⇀
H O )2 = I O

xxωx ı̂ + I O
yxωx ̂ + I O

zxωx k̂.

Likewise, for ⇀
ω = ωy ̂ , case (3), we would obtain

(
⇀
H O )3 = I O

xyωy ı̂ + I O
yyωx ̂ + I O

zyωx k̂.

Finally, for ⇀
ω = ωx ı̂ + ωy ̂ + ωz k̂, we obtain
⇀
H O = (

⇀
H O )1 + (

⇀
H O )2 + (

⇀
H O )3

= I O
xzωz ı̂ + I O

yzωz ̂ + I O
xzωz k̂

+ I O
xxωx ı̂ + I O

yxωx ̂ + I O
zxωx k̂

+ I O
xyωy ı̂ + I O

yyωx ̂ + I O
zyωx k̂.

Collecting components, we get
⇀
H O = HOx ı̂ + HOy ̂ + HOz k̂

where
HOx = I O

xxωx + I O
xyωy + I O

xzωz

HOy = I O
yxωx + I O

yyωy + I O
yzωz

HOz = I O
zxωx + I O

zyωy + I O
zz ωz .

We can combine the above results into a matrix representation. Rep-
resenting

⇀
H O as a column vector, we can re-write the above set of

three equations as a product of a matrix and the angular velocity
written as a column vector.[ HOx

HOy
HOz

]
=

[ I O
xx I O

xy I O
xz

I O
yx I O

yy I O
yz

I O
zx I O

zy I O
zz

]
·
[

ωx
ωy
ωz

]
We define the coefficient matrix above to be the moment of inertia
matrix about point O

[IO] =
[ I O

xx I O
xy I O

xz

I O
yx I O

yy I O
yz

I O
zx I O

zy I O
zz

]
.

whose components are

I O
xx =

∫
(y2 + z2)dm I O

xy = −
∫

xy dm I O
xz = −

∫
xz dm

I O
yx = −

∫
yx dm I O

yy =
∫

(x2 + z2)dm I O
yz = −

∫
yz dm

I O
zx = −

∫
zx dm I O

zy = −
∫

zy dm I O
zz =

∫
(x2 + y2)dm.

By inspection, one can see that I O
xy = I O

yx , I O
xz = I O

zx , and I O
yz = I O

zy .

Thus, the inertia matrix is symmetric; i.e., [IO]T = [IO]. So, there
are always at most only six, not nine, independent components in
the inertia matrix to compute.
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11.4 THEORY
3-D parallel axis theorem

In three dimensions, the two matrices [IO] and [I cm] are related
to each other in a way similar to the two-dimensional case. Since
the inertia matrix has six independent entries in it, the derivation
involves six integrals. Let’s look at a typical term on the diagonal,
say, I O

zz and a typical off-diagonal term, say, I O
xy . The calculation

for the other terms is similar with a simple change of letters in the
subscript notation.

First, I O
zz =

∫
(x2

/O + y2
/O )dm = I cm

zz + m(x2
cm/O + y2

cm/O )

by exactly the same reasoning used to derive the 2-D parallel axis
theorem. We cannot do the last line in that derivation, however, since
r2

cm/O = x2
cm/O + y2

cm/O +z2
cm/O �= x2

cm/O + y2
cm/O , because now,

for three-dimensional objects, zcm/O �= 0.

Now, let’s look at an off-diagonal term.

I O
xy = −

∫
x/O y/O dm

= −
∫ x/O︷ ︸︸ ︷

(xcm/O + x/cm)(

y/O︷ ︸︸ ︷
ycm/O + y/cm)dm

= −xcm/O ycm/O

∫
dm︸ ︷︷ ︸

m

−ycm/O

∫
x/cmdm︸ ︷︷ ︸

0

−xcm/O

∫
y/cmdm︸ ︷︷ ︸

0

−
∫

x/cm y/cmdm︸ ︷︷ ︸
−I cm

xy

= −mxcm/O ycm/O + I cm
xy

Similarly, we can calculate the other terms to get the whole 3-D
parallel axis theorem.

[IO] = [I cm]+

m


 y2

cm/o + z2
cm/o −xcm/o ycm/o −xcm/ozcm/o

−xcm/o ycm/o x2
cm/o + z2

cm/o −ycm/ozcm/o

−xcm/ozcm/o −ycm/ozcm/o x2
cm/o + y2

cm/o


 .

Again, one can think of this result as follows. The moment of inertia
matrix about point O is the same as that for parallel axes through the
center of mass plus the moment of inertia matrix for a point mass at
the center of mass.

Relation between 2-D and 3-D parallel
axis theorems
The (3,3) (lower right corner) element in the matrix of the 3-D par-
allel axis theorem is the 2-D parallel axis theorem.



11.3. Moment of inertia matrices 671

SAMPLE 11.10 A uniform rod of mass m = 2 kg and length � = 1
2 m is pivoted at

m

O

�

θ

x

y

z

Figure 11.35: (Filename:sfig4.6.3)

one of its ends. At the instant shown, the rod is in the xy-plane and makes an angle
θ = 45o with the x-axis. Find the moment of inertia matrix [IO] for the rod.

Solution The moment of inertia matrix [IO] for a continuous system is given by

[IO] =
∫

over all mass


 y2 + z2 −xy −xz

−xy x2 + z2 −yz
−xz −yz x2 + y2


 dm.

Thus we need to carry out the integrals for the rod to find each component of the

x

y

O

dm

l
dl

θ

Figure 11.36: (Filename:sfig4.6.3a)

inertia matrix [IO]. Let us consider an infinitesimal length element dl of the rod at

distance l from O (see Fig 11.36). The mass of this element is dm = m

�︸︷︷︸
mass/length

· dl,

where m is the total mass.
The coordinates of this element are

x = l cos θ, y = l sin θ, z = 0 (since the rod is in the xy-plane).

Therefore,

Ixx =
∫

m
(y2 + z2︸︷︷︸

0

)dm =
∫ �

0
l2 sin2 θ︸ ︷︷ ︸

y2

· m

�
dl︸︷︷︸

dm

= m

�
sin2 θ

∫ �

0
l2dl = m

�
sin2 θ ·�

3

3
= m�2

3
sin2 θ.

Similarly,

Iyy =
∫

m
(x2 + z2︸︷︷︸

0

)dm =
∫ �

0
l2 cos2 θ

m

�
dl = m�2

3
cos2 θ.

Izz =
∫

m
(x2 + y2)dm =

∫ �

0
l2 m

�
dl = m�2

3
.

Ixy = −
∫

m
xy dm = −

∫ �

0
l2 cos θ sin θ ·m

�
dl = −m�2

3
cos θ sin θ.

Ixz = −
∫

m
x z︸︷︷︸

0

dm = 0. Iyz = −
∫

m
y z︸︷︷︸

0

dm = 0.

Thus,

[IO] = m�2

3


 sin2 θ − sin θ cos θ 0

− sin θ cos θ cos2 θ 0
0 0 1


 .

Substituting the values of m, � and θ , we get

[IO] = 0.083 kg· m2


 1 −1 0

−1 1 0
0 0 1


 .

<
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11.4 Mechanics using the moment of

inertia matrix
Once one knows the velocity and acceleration of all points in a system one can find
all of the motion quantities in the equations of motion by adding or integrating using
the defining sums from the inside cover. This addition or integration is an impractical
task for many motions of many objects where the required sums may involve billions
and billions of atoms or a difficult integral. Linear momentum and the rate of change
of linear momentum can be calculated by just keeping track of the center of mass
of the system of interest. One would like something so simple for the calculation of
angular momentum.

We are in luck if we are only interested in the two-dimensional motion of two-
dimensional rigid bodies, the scalar moment of inertia from Chapter 7 is all we need.
The luck is not so great for 3-D rigid bodies but still there is some simplification 1©.1© For general motion of non-rigid bodies,

a topic not covered in this book, the sim-
plification for linear momentum still holds;
linear momentum and its rate of change are
given by the system mass times the veloc-
ity and acceleration of the center of mass.
But there is no general simplification for the
sums needed to evaluate angular momen-
tum and energy or their rates of change.

The simplification is to use the moment of inertia matrix [I cm] from the previous
section. One may have to do a sum or integral to find I ≡ I cm

zz or [I cm] if an adequate
table is not handy. But once you know [I cm], say, you need not work with the
integrals to evaluate angular momentum and its rate of change. Assuming that you
are comfortable calculating and looking-up moments of inertia, we proceed to use it
for the purposes of studying mechanics.

Lets now consider again the conically swinging rod of Fig. 11.19 on page 650.
Method 1 for evaluating ˙⇀HO was evaluating the sums directly. If we accept the
formulae presented for rigid bodies in Table I at the back of the book, we can find all
of the motion quantities by setting ⇀

ω = ωk̂ and ⇀
α = ⇀

0.

Method 2 of evaluating ˙⇀HO: using the xyz moment of inertia matrix about point O

In section 11.1 we examined the conical swinging of a straight uniform rod. Now
let’s look at that example again using its moment of inertia matrix. For a rigid body
in constant rate circular motion about an axis through O ,

˙⇀HO = ⇀
ω × ⇀

HO

because the
⇀
HO vector rotates with the body. For a rigid body rotating about point

O ,
⇀
HO = [IO] · ⇀

ω.

We assumed at the outset that

⇀
ω = ωk̂ =


 0

0
ω


 .

So, the only trick is to find [IO] for a rod in the configuration shown. We recall, look
up, or believe for now that

[IO] =

 I O

xx I O
xy I O

xz

I O
yx I O

yy I O
yz

I O
zx I O

zy I O
zz


 .

I O
xy = −

∫
x︸︷︷︸
0

y dm = 0 (x = 0, all mass in the yz plane)
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I O
xz = −

∫
x︸︷︷︸
0

z dm = 0 (x = 0, all mass in the yz plane)

I O
yy =

∫
( x2︸︷︷︸

0

+z2)dm (x = 0, all mass in the yz plane)

=
∫ �

0
(−s · cos φ)2︸ ︷︷ ︸

z

ρ ds

= cos2 φ ρ
�3

3
= cos2 φ m

�2

3

I O
zz =

∫
( x2︸︷︷︸

0

+y2)dm (x = 0, all mass in the yz plane)

=
∫

(s · sin φ)2︸ ︷︷ ︸
y

ρ ds

= sin2 φ ρ
�3

3
= sin2 φ m

�2

3

I O
xx =

∫
(y2 + z2)dm (both integrals have been evaluated above)

= I O
yy + I O

zz (perpendicular axis theorem)

= (cos2 φ + sin2 φ)m
�2

3

= m
�2

3

I O
yz = −

∫
yz dm

= −
∫

(s · sin φ)(−s · cos φ)2 ρ ds

= sin φ cos φ · ρ
�3

3
= sin φ cos φ · m

�2

3
.

Putting these terms all together in the matrix, we get

[IO] = m
�2

3

[ 1 0 0
0 cos2 φ cos φ sin φ

0 cos φ sin φ sin2 φ

]
.

Now we can calculate
⇀
HO as

⇀
HO = [IO] · ⇀

ω

= m
�2

3

[ 1 0 0
0 cos2 φ cos φ sin φ

0 cos φ sin φ sin2 φ

]
︸ ︷︷ ︸

[IO]

·

 0

0
ω




︸ ︷︷ ︸
⇀
ω

= m
�2

3


 0

ω cos φ sin φ

ω sin2 φ




= mω
�2

3
sin φ(cos φ̂ + sin φk̂).

You may notice, by the way, that for this problem,
⇀
HO (in the direction of cos φ̂ +

sin φk̂) is perpendicular to the rod (in the direction of sin φ̂ − cos φk̂). So
⇀
HO is

not in the direction of ⇀
ω. 1©

1© ⇀
HO is only parallel to ⇀

ω if rotation
is about one of the principal axes (eigen-
vector directions) of the inertia matrix.



674 CHAPTER 11. Introduction to three dimensional rigid body mechanics

Now we calculate ˙⇀HO as

˙⇀HO = ⇀
ω × ⇀

HO

= (ωk̂) ×
[
ωm

�2

3
(cos φ sin φ̂ + sin2 φk̂)

]

= −m
�2

3
cos φ sin φω2 ı̂,

the same result we got before.

Method 3 of calculating ˙⇀HO: using [IO] and a coordinate system lined up with the
rod

φ

�

z
z'

y

y'

z'

y'φ

φO ω

⇀
ω = ωk̂

= ω(-cos(φ)̂ ′ + sin(φ)k̂
′
)

ω cos(φ)

ω sin(φ)

̂
k̂

̂
′
k̂

′

Figure 11.37: The spherical pendulum
using x ′y′z′ axes aligned with the rod.

(Filename:tfigure4.spherical.rotaxis)

Here, as suggested above, we redo the problem using a rotated set of axes better
aligned with the rod. This method makes calculation of the moment of inertia matrix
quite a bit easier — we can even look it up in a table — but makes the determination
of ⇀

ω a little harder. We are stuck finding the components of ⇀
ω in a rotated coordinate

system. Referring to the table of moment of inertias on the inside of the back cover
and taking care because different coordinates are used, the moment of inertia matrix
about point O for a thin uniform rod, in terms of the rotated coordinates is

[IO]x ′ y′z′ = m
�2

3

[ 1 0 0
0 0 0
0 0 1

]
.

and the angular velocity in rotated coordinates is ⇀
ω = −ω cos φ̂

′ +ω sin φk̂
′
, which

can be written in component form as

[⇀
ω]x ′ y′z′ = ω


 0

− cos φ

sin φ


 .

We calculate the angular momentum about point O as

vector equation, independent
of coordinates

✂✂✌︷ ︸︸ ︷
⇀
HO = [IO] · ⇀

ω
 H/Ox ′

H/Oy′
H/Oz′


 = m

�2

3

[ 1 0 0
0 0 0
0 0 1

]
x ′ y′z′

· ω


 0

− cos φ

sin φ




x ′ y′z′︸ ︷︷ ︸
❇❇�

all components in x ′y′z′ co-
ordinate system

 H/Ox ′
H/Oy′
H/Oz′


 = m

�2

3
ω


 0

0
sin φ




x ′ y′z′

.

Finally, we calculate ˙⇀HO as

˙⇀HO = ⇀
ω × ⇀

HO
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= [ω(− cos φ̂
′ + sin φk̂

′
] × (ωm

�2

3
sin φk̂

′
)

= − sin φ cos φ mω2 �2

3
ı̂
′
.

This answer is again the same as what we got before because the x and x ′ axis are
coincident so ı̂

′ = ı̂.

The multitude of ways to calculate ˙⇀HO

We just showed three ways to calculate ˙⇀HO for a conically swinging stick, but there are
many more. You can get a sense of the possibilities by studying table I summarizing
momenta and energy in the back of the book. Here are three basic choices.

(1) ˙⇀HO =
∫

⇀
r /O × ⇀

a dm,

(2) ˙⇀HO = ⇀
ω × ⇀

HO, or

(3) ˙⇀HO = ⇀
r cm/O × ⇀

acmmtot + ˙⇀H cm.

Choice (3) is the safest choice to make if you are in doubt, since it is the only one of
the three choices that does not depend on point O being a fixed point (which it was
for this example). For option (2) above, we can calculate

⇀
HO various ways as

(a)
⇀
HO =

∫
⇀
r /O × ⇀

v dm or,

(b)
⇀
HO = [IO] · ⇀

ω or,

(c)
⇀
HO = ⇀

r cm/O × ⇀
v cmmtot + ⇀

H cm.

For option (3) above, we can calculate ˙⇀H cm as

(d) ˙⇀H cm =
∫

⇀
r /cm × ⇀

a/cmdm or,

(e) ˙⇀H cm = ⇀
ω × ⇀

H cm.

For (c) and (e) above, we can calculate
⇀
H cm as

(f)
⇀
H cm =

∫
⇀
r /cm × ⇀

v/cm dm or,

(g)
⇀
H cm = [I cm] · ⇀

ω.

For either of options (b) or (g), we can calculate [I ] relative to the xyz axes (as we did
for the second method on the previous pages) or relative to some rotated axes better
aligned with the rod (as we did for the third method on the previous pages. )

As you can surmise from all the choices above, the list of options for the calculation
of ˙⇀HO is too long and boring to show here.

The pros and cons of these methods depend on the problem at hand. If you want
to avoid integration you are pretty much stuck using either [IO] or [I cm] with (e) and
(g) above). Avoiding the integrals depends on your having a table of moments of
inertia (like table IV in the back of this book).
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Energy of things going in circles at variable rate
The energy only depends on the speeds of the parts of a system, not their accelerations.
So, as with constant rate motion,

EK = 1

2

∫
v2︸︷︷︸

⇀
v ·⇀v

dm

= 1

2

∫
(

⇀
ω × ⇀

r ) · (
⇀
ω × ⇀

r ) dm

= 1

2
ω2

∫
R

❇❇�

R is the distance from the axis
to the mass

2 dm

= 1

2
⇀
ω · [IO] · ⇀

ω

= 1

2
ω2 I o

zz︸ ︷︷ ︸
❇❇�

For rotation about the z axis
the 9 terms in the matrix for-
mula reduce to this one sim-
ple term.

The safest bet
The following are the most reliable (least prone to error) formulas for evaluating
the motion quantities for a rigid body rotating about a fixed axes (they also apply to
arbitrary motion of a rigid body).

⇀
HO = ⇀

rcm/o × mtot
⇀
vcm + [IO] · ⇀

ω (11.39)

˙⇀HO = ⇀
rcm/o × mtot

⇀
acm + ⇀

ω × [I cm] · ⇀
ω︸ ︷︷ ︸

⇀
H cm

+[I cm] · ˙⇀ω (11.40)

EK = 1

2
mtotv

2
cm + ⇀

ω · ([I cm] · ⇀
ω) (11.41)

Please survey table I at the back of the book which summarizes the ways of evaluating

⇀
HO

⇀
ω × ⇀

HO [I O] · ˙⇀ω

⇀
ω

Figure 11.38: The two terms in the rate
of change of angular momentum are shown.

(Filename:tfigure5.7)

momenta and energy.

The geometry of ˙⇀HO
It is possible to understand the formula for the change of angular momentum geomet-
rically. Here is one way of looking at it. For this example it is most direct to look at
˙⇀HO calculated using [IO], but the same discussion would work with ˙⇀H cm calculated

using [I cm].

˙⇀HO = ⇀
ω × ⇀

HO︸ ︷︷ ︸
Contribution from rotation of

⇀
HO

+ [IO] · ˙⇀ω︸ ︷︷ ︸
Due to the changing length of

⇀
HO
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The first term in the equation describes the rotation of the angular momentum vector.
The second term describes its rate of change of length.

Since the body is spinning about a fixed axis, the orientation of the axis of rotation
is not only fixed relative to the Newtonian frame, the room environment, but also
relative to the body. At one instant of time we use a coordinate system to calculate
⇀
HO. After the body has rotated a little, if we now used a coordinate system that
rotated the same amount as the body, a coordinate system ‘glued’ to the body, we
could calculate

⇀
HO again.

This new calculation of
⇀
HO will be almost identical to the calculation before the

small rotation, however, because the moment of inertia matrix does not change in
time relative to a coordinate system that moves with the body. Also, the coordinates
of ⇀

ω will be unchanged except for possibly a multiplication by a constant because
the direction of ⇀

ω doesn’t change. Thus the only change of
⇀
HO as represented in this

rotated coordinate system, is a possible change in its length due to a change in the
spinning rate.

But this new coordinate system is a rotated coordinate system. To find the actual
change in

⇀
HO we need to take this rotation into account. To picture this rotation

consider the special case when the rotation rate is constant. Then the vector
⇀
HO is

constant in the rotating coordinate system. That is, the vector
⇀
HO rotates with the

body.
So the net change in

⇀
HO is a change due to rotation of the body added to a change

due to the change in the rotation rate. For small angular changes, the direction of the
first term is the same as the tangent to the circle that is traced by the tip of the angular
momentum vector

⇀
HO as drawn on the body. To approximate the first term, consider

the following reasoning. First, let’s denote the first term by ( ˙⇀HO)rot = ⇀
ω × ⇀

HO,

where the subscript ‘rot’ indicates that this term is the contribution to ˙⇀HO from

the rotation of
⇀
HO. For small angular changes, ( ˙⇀HO)rot = (d

⇀
HO/dt)rot = ⇀

ω ×
⇀
HO ≈ (�

⇀
HO)rot/�t . Thus, the term due to rotation is approximately, for small �t ,

(�
⇀
HO)rot = �t (⇀

ω × ⇀
H 0).

The contribution to ˙⇀HO due to change of length of
⇀
HO is [IO] · ˙⇀ω. Similarly, this

term is approximately, for small �t , �t ([IO] · ˙⇀ω).

Rotation of a rigid body about a fixed axis: the general case
Consider a general rigid body of mass m and moment of inertia matrix with respect
to the center of mass [I cm] rotating about a fixed axis. Without loss of generality, let
the axis of rotation be the k̂ axis.

x

y

z

FBD

O
O

⇀
r cm/O

ω = ωk̂

⇀
F net

⇀
Mnet

Figure 11.39: Free body diagram of a general rigid body rotating about the z-axis.
(Filename:tfigure5.gen.rigid.body)
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Linear momentum balance

Referring to the free body diagram of the rigid body, linear momentum balance gives∑
⇀
F = ˙⇀L

⇀
F net = m ⇀

acm

= m[ωk̂ × (ωk̂ × ⇀
r cm/O) + ω̇k̂ × ⇀

r cm/O ]. (11.42)

The first term on the right hand side of equation 11.42, the centripetal term, is directed
from the center of mass ( ) through the axis of rotation; that is, it lies in the xy-plane
(or has no k̂ component). The second term on the right hand side of equation 11.42,
the tangential term, is normal to the plane determined by the axis and the center of
mass. It is tangent to the circle that the center of mass travels on. It is zero if the
center of mass is on the axis.

Angular momentum balance

Angular momentum balance about point O gives∑
⇀
MO = ˙⇀HO

⇀
Mnet = ⇀

r cm/O × m ⇀
acm︸ ︷︷ ︸

term (i)

+ ωk̂ ×
{

[I cm] · ωk̂
}

︸ ︷︷ ︸
term (ii)

+ [I cm] · (ω̇k̂)︸ ︷︷ ︸
term (iii)

. (11.43)

Let’s look at each of the three terms on the right hand side in turn.

term (i)

The first term (i) on the right hand side of equation 11.43 is

term (i) = ⇀
r cm/O × m

⇀
acm=ωk̂× (ωk̂× ⇀

r cm/O) +
ω̇k̂ × ⇀

r cm/O

✂✂✌︷︸︸︷
⇀
acm

= m[⇀
r cm/O × (ωk̂ × (ωk̂ × ⇀

r cm/O))

+ ⇀
r cm/O × (ω̇k̂ × ⇀

r cm/O)]

Now, let’s consider the two parts of term (i) in turn. The first part of term (i) is in the

d

w

O

⇀
r cm/O

ωk̂× (ωk̂× ⇀
rcm/O)m

m ⇀
rcm/O×(ωk̂×(ωk̂ × ⇀

rcm/O ))

k̂

Figure 11.40: The first part of term (i)
(Filename:tfigure5.term1.a)

direction of −k̂ × ⇀
r cm/O . For example, if the center of mass is in the xz plane, this

contribution to
⇀
Mnet is in the −̂ direction and could be accommodated by reaction

forces on the axis in the ı̂ and −ı̂ directions. Now, the second part of term (i) can be
φ φ

w

d

side view

O

O

⇀
r cm/O

k̂

k̂

φ

φ

⇀
r cm/O× (ω̇k̂× ⇀

rcm/O)m

⇀
r cm/O× (ω̇k̂× ⇀

rcm/O)m

ω̇k̂ × ⇀
r cm/O

⇀
r cm/O

Figure 11.41: The second part of term (i)
(Filename:tfigure5.term1.b)

decomposed into a part along the k̂ direction and a part perpendicular to k̂ (along d).
The part along k̂ is

⇀
r cm/O × (ω̇k̂ × ⇀

r cm/O) · k̂ = md2ω̇k̂.
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The part of term (i) perpendicular to k̂ has magnitude mω̇dw.

term (ii)

Now, let’s look at the second term in equation 11.43, term (ii), and expand it.

term (ii) = ωk̂ × [I cm] · ωk̂

= ωk̂ ×
[ I cm

xx I cm
xy I cm

xz
I cm
xy I cm

yy I cm
yz

I cm
xz I cm

yz I cm
zz

]
·
[ 0

0
ω

]

= ωk̂ ×
[

I cm
xz ωı̂ + I cm

yz ω̂ + I cm
zz ωk̂

]
= I cm

xz ω2̂ − I cm
yz ω2 ı̂

So, the second term in equation 11.43, term (ii), has no k̂ component. The ı̂ and ̂

components are due to the off-diagonal terms in [I cm]. The off-diagonal terms are
responsible for dynamic imbalance.

term (iii)

Now, the third term in equation 11.43, term (iii), is

[I cm] · ω̇k̂ =
[ I cm

xx I cm
xy I cm

xz
I cm
xy I cm

yy I cm
yz

I cm
xz I cm

yz I cm
zz

]
·
[ 0

0
ω̇

]

= I cm
xz ω̇ı̂ + I cm

yz ω̇̂ + I cm
zz ω̇k̂.

Putting terms (i), (ii), and (iii) back together

Now, let’s put the three terms back together into the equation of angular momen-
tum balance about point O , equation 11.43. To help with the interpretation, assume
the center of mass is in the xz plane. So, we start with

⇀
Mnet = ˙⇀HO.

Breaking this vector equation into components, we get

Mxx = ⇀
Mnet · ı̂ = ˙⇀HO · ı̂

Myy = ⇀
Mnet · ̂ = ˙⇀HO · ̂

Mzz = ⇀
Mnet · k̂ = ˙⇀HO · k̂.

Now, using all the results so far, we find the torques about the x , y, and z axes. For
the z-axis,

Mz = [m

d = distance of cm from axis
of rotation

✂✂✌︷︸︸︷
d2 +I cm

zz ]︸ ︷︷ ︸
✂✂✍

sometimes called ‘[IO]’

ω̇. (11.44)

The only torque about the z-axis, the axis of rotation, is due to the acceleration about
that axis.
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Next, for the x-axis,

Mx = −I cm
yz ω2 + I cm

xz ω̇ + mω̇dw. (11.45)

There is a torque about the x-axis due to off-diagonal terms in [I cm]. One term is the
dynamic imbalance term I cm

yz and the other is associated with angular acceleration.
(Recall, the center of mass is on the xz plane.) There is also a term due to the center
of mass tangential acceleration since the center of mass is on a plane that does not
contain point O .

Finally, the torque about the y-axis is

My = I cm
xz ω2 + I cm

yz ω̇ + (−mω2dw). (11.46)

Here, we have nearly the same types of terms as in equation 11.45. In this case,
though, the centripetal acceleration causes the center of mass motion to contribute to
the torque.

So, if
⇀
ω = ωk̂ and ˙⇀ω = ω̇k̂

then

⇀
MO = ˙⇀HO =

(
−I cm

yz ω2 + (I cm
xz + mdw)ω̇

)
ı̂

+((I cm
xz − mdw)ω2 + I cm

yz ω̇)̂

+(md2 + I cm
zz )ω̇k̂.
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SAMPLE 11.11 A scalar times a vector is a vector. A matrix times a vector is a
vector. What is the difference? Find the vectors

⇀
H 1 = IG

⇀
ω and

⇀
H 2 = [IG]⇀

ω, if

⇀
ω = 2 rad/sı̂ + 3 rad/s̂ , IG = 10 kg m2 and [IG] =


 5 0 0

0 5 −2
0 −2 10


 kg m2.

Draw ⇀
ω,

⇀
H 1 and

⇀
H 2.

Solution
y

x

z

θ

⇀
ω

⇀
H 1

⇀
H 2

Figure 11.42: (Filename:sfig1.2.12)

⇀
H 1 = IG

⇀
ω

= 10 kg m2(2 rad/sı̂ + 3 rad/s̂)

= (20ı̂ + 30̂) kg m2/ s.

⇀
H 2 = [IG] · ⇀

ω

=

 5 0 0

0 5 −2
0 −2 10


 kg m2 ·




2
3
0


 rad/s

= (10ı̂ + 15̂ − 6k̂) kg m2/ s.

These two vectors,
⇀
H 1 and

⇀
H 2, are shown along with ⇀

ω in Fig. 11.42. Note that
⇀
H 1

has the same direction as ⇀
ω but

⇀
H 2 does not.

⇀
H 1 and ⇀

ω are both in the xy-plane but
⇀
H 2 is not; it is in 3-D.

Comments: Multiplying a vector by a scalar does not change the direction of the
vector but multiplying by a matrix does change the direction, in general. Find the
angles between ⇀

ω and
⇀
H 1 and between ⇀

ω and
⇀
H 2 to convince yourself.
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SAMPLE 11.12 The composite rod OABCD shown in Figure 11.43 is made up

O A

B C

D

ω

ı̂

̂

x

y

Figure 11.43: (Filename:sfig4.6.5)

of three identical rods OA, BC, CD of mass 0.5 kg and length 20 cm each, and the
rod AB which is half of rod CD. The composite rod goes in circles about the y-axis
at a constant rate ω = 5 rad/s. Find the angular momentum and the rate of change
of angular momentum of the rod at the instant shown (i.e., when the rod is in the
xy-plane).

(a) Are all the components of [IO] necessary to compute
⇀
HO and ˙⇀HO? Find [IO]

or the necessary components of [IO].
(b) Find the angular momentum

⇀
HO.

(c) Find the rate of change of angular momentum ˙⇀HO.
(d) If the rod were rotating about the z-axis instead, (i.e., if the motion were in

the xy-plane) which components of [IO] would be required to find
⇀
HO? What

would be the value of ˙⇀HO in that case?

Solution Since the rod rotates about the y-axis, and O is a fixed point on this axis,

⇀
ω = ω̂ and

⇀
HO = [IO]·⇀

ω.

(a) Since

⇀
HO =


 I O

xx I O
xy I O

xz
I O
xy I O

yy I O
yz

I O
xz I O

yz I O
zz







0
ω

0




= I O
xyωı̂ + I O

yyω̂ + I O
yzωk̂

= (I O
xy ı̂ + I O

yy ̂ + I O
yz k̂)ω, (11.47)

we only need to find three components of [IO] to compute
⇀
HO, namely I O

xy ,

I O
yy and I O

yz .
We can compute these components by considering each rod individually. For
any rod, the components can be calculated using the values of the components
about the center of mass of the rod (see table IV in the back of the book) and
then using the parallel axis theorem.

x

y

O Acm

m�/2
x'

y'

Figure 11.44: (Filename:sfig4.6.5a) Rod OA: I O
yy = I cm

y′ y′ + m
l2

4
= 1

12
ml2 + 1

4
ml2

I O
xy = I cm

x ′ y′︸︷︷︸
0

+m(−xcm/O ycm/O︸ ︷︷ ︸
0

) = 0

I O
yz = I cm

y′z′︸︷︷︸
0

+m(− ycm/O︸ ︷︷ ︸
0

zcm/O︸ ︷︷ ︸
0

) = 0.

x

y

O

B

A

cm

�

�/2
x'

y'

Figure 11.45: (Filename:sfig4.6.5b)

Rod AB: I O
yy = I cm

y′ y′︸︷︷︸
0

+m

2
(x2

cm/O + z2
cm/O︸ ︷︷ ︸

0

) = ml2

2

I O
xy = I cm

x ′ y′︸︷︷︸
0

+m

2
(− xcm/O︸ ︷︷ ︸

l

ycm/O︸ ︷︷ ︸
l
4

) = −ml2

8

I O
yz = I O

y′z′︸︷︷︸
0

+m(−ycm/O zcm/O︸ ︷︷ ︸
0

) = 0.
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O

cm

3�/2

�/2

B C

x

y

x'

y'

Figure 11.46: (Filename:sfig4.6.5c)

Rod BC: I O
yy = I cm

y′ y′ + m(x2
cm/O + z2

cm/O︸ ︷︷ ︸
0

) = ml2

12
+ m

9l2

4
= 7

3
ml2

I O
xy = I cm

x ′ y′︸︷︷︸
0

+m(−xcm/O ycm/O) = −m
3l

2
· l

2
= −3ml2

4

I O
yz = 0.

O

C

D

cm

2�

x'

y'

y

x

Figure 11.47: (Filename:sfig4.6.5d)

Rod CD: I O
yy = I cm

y′ y′︸︷︷︸
0

+m(x2
cm/O + z2

cm/O︸ ︷︷ ︸
0

) = m(2l)2 = 4ml2

I O
xy = 0

I O
yz = 0.

Thus for the entire rod,

I O
yy = 1

3
ml2 + 1

2
ml2 + 7

3
ml2 + 4ml2 = 43

6
ml2

I O
xy = −1

8
ml2 − 3

4
ml2 = −7

8
ml2

I O
yz = 0.

I O
yy = 43

6 ml2, I O
xy = − 7

8 ml2, I O
yz = 0.

(b)

⇀
HO = (I O

yy ı̂ + I O
xy ̂ + I O

yz k̂)ω (from Eqn 11.47)

= ml2ω(
43

6
̂ − 7

8
ı̂)

= 0.5 kg(0.2 m)2·5 rad/s(7.17̂ − 0.87)ı̂)

= (0.717̂ − 0.087ı̂) kg· m2/ s.

⇀
HO = (0.717̂ − 0.087ı̂) kg· m2/ s.

(c)

˙⇀HO = ⇀
ω × ⇀

HO = ω̂ × (
[IO]·⇀

ω
)

= 5 rad/s̂ × (0.717̂ − 0.087ı̂) kg· m2/ s

= 0.435 N·mk̂.

˙⇀HO = 0.435 N·mk̂.

(d) If the rod were rotating in the xy-plane, it would be planar circular motion.
The only component of [IO] required for the calculation of

⇀
HO = I O

zz
⇀
ω will be

I O
zz . Also,

˙⇀HO = ⇀
ω × ⇀

HO = ⇀
ω × I O

zz
⇀
ω = 0

since ⇀
ω is parallel to I O

zz
⇀
ω. <
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SAMPLE 11.13 A 0.5 kg uniform rectangular solar panel rotates about an off-

O

z

z'

z'

y

1.6m

cm x

ω

Figure 11.48: (Filename:sfig4.5.6)

centered axis z′z′ with constant angular speed ω = 1.5 rad/s. Axis z′z′ is parallel to
the transverse z-axis of the plate and is 1.6 m away from the center of mass of the plate.
The in-plane moments of inertia I cm

xx and I cm
yy of the plate are given: I cm

xx = 4.0 kg· m2

and I cm
yy = 12.4 kg· m2. At the instant shown in Fig 11.48, calculate

(a) the linear momentum of the panel,
(b) the angular momentum of the panel, and
(c) the kinetic energy of the panel.

Solution Since the plate rotates about the z′z′-axis which is parallel to the z-axis,

⇀
ω = ωk̂ = 1.5 rad/sk̂.

(a) Linear momentum:

⇀
L = mtot

⇀
v cm = m(

⇀
ω × ⇀

r cm/O)

= 0.5 kg·(1.5 rad/sk̂ × 1.6 mı̂)

= 1.2 kg·m/s̂

⇀
L = 1.2 kg·m/s̂

O
x

zz'

z'

y

cm

circular path of cm

⇀
vcm

Figure 11.49: (Filename:sfig4.5.6a)

We can easily check the direction of
⇀
L since

⇀
L = m ⇀

v cm, it has to be in the
same direction as ⇀

v cm. The center of mass goes in circles about O, therefore,
⇀
v cm is tangential to the circular path, i.e. in the y-direction (see Fig 11.49).

(b) Angular momentum:
⇀
H = I O

z′z′ ωk̂

Thus to find
⇀
H , we need to find I O

z′z′ . Since z′z′ ‖ zz, we can use the parallel
axis theorem to find I O

z′z′ if we know I cm
zz . We are given the in-plane moments

of inertia I cm
xx and I cm

yy . Therefore, from the perpendicular axis theorem:

I cm
zz = I cm

xx + I cm
yy = (4.0 + 12.4) kg· m2 = 16.4 kg· m2.

Now using the parallel axis theorem,

I O
z′z′ = I cm

zz + Mr2
cm/O

= 16.4 kg· m2 + 0.5 kg(1.6 m)2 = 17.68 kg· m2.

Therefore,
⇀
H = 17.68 kg· m2·(1.5 rad/sk̂)

= 26.52 kg· m2/ sk̂.

⇀
H = 26.52 kg· m2/ sk̂.

(c) Kinetic energy:

EK = 1

2
I O
z′z′ω2 = 1

2
(17.68 kg· m2)(1.5 rad/s)2

= 19.89
kg· m2

s2 == 19.89 N·m
= 19.89 J

EK = 19.89 J
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SAMPLE 11.14 The rotating crooked plate again. For the crooked plate considered
in Sample 11.7 and shown again in Fig. 11.50,

A

B

xx'

y,y'

z

z'
m

�

�/2

b
φ

φ

ω

O

Figure 11.50: A rectangular plate of
mass m rotates with shaft AB at a con-
stant speed ⇀

ω = ωk̂. A coordinate system
x ′y′z′ is aligned with the principal axes of
the plate.

(Filename:sfig4.6.8)

(a) compute the moment of inertia matrix [I ] in the x ′y′z′ coordinate system,

(b) compute the rate of change of angular momentum ˙⇀HO using the moment of
inertia [I ]x ′ y′z′ computed above,

(c) express ˙⇀HO as a vector in the xyz coordinate system.

Solution A line sketch of the plate and the two coordinate systems attached to it are

shown in Fig. 11.51. The set of basis vectors (ı̂, ̂ , k̂) and (ı̂
′
, ̂

′
, k̂

′
) associated with

coordinate systems xyz and x ′y′z′ respectively are shown separately for the sake of
clarity. From the diagram of the two basis vector sets, we may write

O
φ

φxx'

y,y'

z

z'
m

φ

φ

O

ı̂

k̂

ı̂
′

k̂
′

̂ ,̂
′

Figure 11.51: A line sketch of the ro-
tating plate along with the two coordinate
systems x ′y′z′ and xyz. The basis vectors
associated with the two systems are also
shown.

(Filename:sfig4.6.8a)

ı̂
′ = cos φ ı̂ − sin φk̂

̂
′ = ̂

k̂
′ = sin φ ı̂ + cos φk̂


 . (11.48)

(a) Calculation of [I ]x ′ y′z′ :

[I ]x ′ y′z′ =

 Ix ′x ′ Ix ′ y′ Ix ′z′

Ix ′ y′ Iy′ y′ Iy′z′
Ix ′z′ Iy′z′ Iz′z′


 .

Let us first consider the off diagonal terms of [I ]x ′ y′z′ .
Since x ′ = 0 on the entire plate (the plate is in the y′z′ plane and the origin is
on the plate.),

Ix ′ y′ =
∫

m
x ′︸︷︷︸
0

y′ dm = 0, Ix ′z′ =
∫

m
x ′︸︷︷︸
0

z′ dm = 0.

How about Iy′z′? Well, you can calculate it two ways: (a) carry out the

y'

z'
x'

�

b

(y',z')

(-y',z')

dA = dy'dz'

Figure 11.52: Symmetry about the z′
axis implies that Iy′z′ = 0. Same result
holds if we consider the symmetry about
the y′ axis.

(Filename:sfig4.6.8b)

integration Iy′z′ = ∫
m y′z′ dm over the entire plate mass and find that Iy′z′ = 0,

or (b) realize that for every mass element dm (= m
�b d A) with coordinates

(+y′z′), there exists another element dm at (−y′z′) such that the sum of their
contributions to the integral is zero. Therefore, Iy′z′ = ∫

m y′z′ dm = 0 1©Now

1© You can use similar argument to find the
off-diagonal terms in [I ] whenever there is
such symmetry with respect to the coordi-
nate axes.

the other terms:

Iz′z′ =
∫

m
( x ′2︸︷︷︸

0

+y′2) dm =
∫ �/2

−�/2

∫ b/2

−b/2
y′2 · m

�b
dy′ dz′

= m

�b

∫ �/2

−�/2

(
y′3

3

∣∣∣∣
b/2

−b/2

)
dz′ = m

�b
· b3

12

∫ �/2

−�/2
dz′

= m

�b
· b3

12
· � = mb2

12
,

and similarly,

Iy′ y′ =
∫

m
( x ′2︸︷︷︸

0

+z′2) dm = m�2

12
,

Ix ′x ′ =
∫

m
(y′2 + z′2) dm = Iy′ y′ + Iz′z′ = m

12
(�2 + b2).
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Thus,

[I ]x ′ y′z′ = m

12


 �2 + b2 0 0

0 �2 0
0 0 b2


 .

(b) Calculation of ˙⇀HO:

˙⇀HO = ⇀
ω × ⇀

HO and
⇀
HO = [I ]x ′ y′z′ {⇀

ω}x ′ y′z′ .

The subscripts x ′y′z′ in [I ] and ⇀
ω have been used to denote that both [I ] and

⇀
ω are expressed in x ′y′z′ coordinate system. 1©We have calculated [I ]x ′ y′z′ 1© We can express [I ] and ⇀

ω in any coordi-
nate system of our choice but both of them
must be in the same system for their product
to be valid.

above. Now we need to find {⇀
ω}x ′ y′z′ .

Let ⇀
ω = ωx ′ ı̂′ + ωy′ ̂ ′ + ωz′ k̂

′
. But, we can also write, ⇀

ω = ωk̂. So,

ωk̂ = ωx ′ ı̂′ + ωy′ ̂ ′ + ωz′ k̂
′

(11.49)

Dotting both sides of Eqn. (11.49) with ı̂
′, ̂ ′, and k̂

′
and using the relationships

in (11.48) we get

ωx ′ = ω(

− sin φ︷︸︸︷
k̂ · ı̂′ ) = −ω sin φ, ωy′ = ω(

0︷ ︸︸ ︷
k̂ · ̂ ′

) = 0, ωk′ = ω(

cos φ︷ ︸︸ ︷
k̂ · k̂′

) = ω cos φ.

Thus,
{⇀
ω}x ′ y′z′ = −ω sin φ ı̂

′ + ω cos φk̂
′

So,

⇀
HO = m

12


 �2 + b2 0 0

0 �2 0
0 0 b2







−ω sin φ

0
ω cos φ




=



− m
12 (�2 + b2)ω sin φ

0
m
12 b2ω cos φ




or
⇀
HO = mω

12
[−(�2 + b2) sin φ ı̂

′ + b2 cos φk̂
′
].

Now we can easily compute ˙⇀HO as follows:

˙⇀HO = ⇀
ω × ⇀

HO

= (−ω sin φ ı̂
′ + ω cos φk̂

′
) × mω

12
[−(�2 + b2) sin φ ı̂

′ + b2 cos φk̂
′
]

= mω2

12
b2 sin φ cos φ̂

′ − mω2

12
(�2 + b2) sin φ cos φ̂

′

= −mω2

12
�2 sin φ cos φ̂

′
.

(c) Now, back to the xyz coordinate system: Since ̂
′ = ̂ [Eqn (11.48)], we

have
˙⇀HO = −mω2

12
�2 sin φ cos φ̂

which is the same result as obtained in Sample 11.7.
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SAMPLE 11.15 The calculation of ˙⇀H using the moment of inertia matrix. For the
crooked plate considered in Sample 11.7, find the rate of change of angular momentum
˙⇀HO, using the moment of inertia [IO], calculated in the xyz coordinate system

Solution We calculate ˙⇀HO using the following formula:

˙⇀HO = [IO] · ˙⇀ω︸︷︷︸
⇀

0

+⇀
ω ×

︷ ︸︸ ︷
([IO] · ⇀

ω)
⇀
H O .

Note that point O is the center of mass of the plate. Let us write the expression for
the angular momentum

⇀
HO in matrix form.


Hx/O

Hy/O

Hz/O


 =


 Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz







0
0
ω


 .

It is clear from the components of ⇀
ω that we only need the last column of [I ] matrix

since other elements of [I ] will multiply with zeros of ⇀
ω vector. Carrying out the

multiplication we get 


H0x

H0y

H0z


 =




Ixzω

Iyzω

Izzω




or, in vector form
⇀
HO = Ixzωı̂ + Iyzω̂ + Izzωk̂.

Therefore,

˙⇀HO = ωk̂ × ω(Ixz ı̂ + Iyz ̂ + Izz k̂)

= −ω2 Iyz ı̂ + ω2 Ixz ̂ .

But,

Ixz = −
∫

m
xz dm and Iyz = −

∫
m

yz dm

and x = w sin φ, y = y, z = w cos φ (see Fig. 11.29), hence

˙⇀HO = −ω2
∫

m
(−wy cos φ ı̂ + w2 sin φ cos φ̂) dm

=
∫ b/2

−b/2

∫ �/2

−�/2
ω2(−w2 sin φ cos φ̂ + wy cos φ ı̂)

m

�b
dw dy

which is the same integral as obtained in Sample 11.7 for ˙⇀HO. Therefore, the result
is also the same:

˙⇀HO = −mω2�2

12
sin φ cos φ̂ .

˙⇀HO = −mω2�2

12 sin φ cos φ̂
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SAMPLE 11.16 Direct application of formula: A rectangular plate is mounted
on a massless shaft with the center of mass of the plate on the shaft axis. The shaft
rotates about its axis with angular acceleration ˙⇀ω = 0.5 rpm/ s(ı̂+̂). At the instant of
interest, the angular velocity is ⇀

ω = 100 rpm(ı̂+̂) and the components of the moment
of inertia matrix of the plate are Ixx = 2 kg·m2, Iyy = 4 kg·m2, Izz = 6 kg·m2 and
Ixy = Iyz = Ixz = 0.

(a) Find the angular momentum of the plate about its mass-center and show that it
is not in the same direction as the angular velocity.

(b) Find the net moment acting on the plate.

Solution We are given the angular velocity, the angular acceleration, and the moment
of inertia matrix of the plate:

⇀
ω = 100 rpm(ı̂ + ̂) = 10.47 rad/s(ı̂ + ̂)

˙⇀ω = 5 rpm/ s(ı̂ + ̂) = 0.52 rad/s2(ı̂ + ̂)

[I cm] =

 2 0 0

0 4 0
0 0 6


 kg·m2.

(a) The angular momentum: The angular momentum of the plate is
⇀
H cm = [I cm] · ⇀

ω

=

 2 0 0

0 4 0
0 0 6


 kg·m2 ·




10.47
10.47

0


 rad/s

= (20.94ı̂ + 41.88̂) kg·m2 · s−1︸ ︷︷ ︸
N·m· s

= (20.94ı̂ + 41.88̂) N·m · s.

⇀
H cm = (20.94ı̂ + 41.88̂) N·m · s

There are many ways of showing that
⇀
H cm is not parallel to ⇀

ω. We can simply
draw the two vectors and show that they are not parallel We can, alternatively,
take the cross product of the two vectors:

⇀
H cm × ⇀

ω = (20.94ı̂ + 41.88̂) N·m · s × 10.47 rad/s(ı̂ + ̂)

=
∣∣∣∣∣∣

ı̂ ̂ k̂

20.94 41.88 0
10.47 10.47 0

∣∣∣∣∣∣ N·m

= k̂(219.24 − 438.48) N·m = −20.94 N·mk̂

which is not zero, implying that the two vectors are not parallel.
(b) The net moment: The net moment on the plate can be found by applying

angular momentum balance:

⇀
M/cm = ˙⇀H cm = ⇀

ω × [I cm] · ⇀
ω︸ ︷︷ ︸

⇀
H cm

+[I cm] · ˙⇀ω

= 20.94 N·mk̂︸ ︷︷ ︸
⇀
ω×

⇀
H cm

+ 1.04 N·mı̂ + 2.08 N·m̂︸ ︷︷ ︸
[I cm]·⇀̇ω

⇀
M/cm = (1.04ı̂ + 2.08̂ + 20.94k̂) N·m
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SAMPLE 11.17 A rod swings around a tipped axis in 3-D. A rigid shaft of negligible

Looking 
down the
y'-axis

y'

yz'
z

x,x' x'

z'

φ

φ
C'

C

O

A

B

 γ

γ

g

Figure 11.53: A rod, welded to a tipped
shaft AB, swings around the shaft axis if it
is tipped slightly from the vertical plane yz.

(Filename:sfig5.5.2)

mass is connected to frictionless hinges at A and B. The shaft is tipped from the
horizontal plane (xy-plane) such that the shaft axis makes an angle γ with the vertical
axis. A uniform rod OC of mass m and length � is welded to the shaft. At time t = 0,
the rod is tipped by a small angle φ from its position OC ′ in the yz (or y′z′) plane.
Find the equation of motion of the rod.

Solution Let ı̂
′
, ̂

′
, k̂

′
be the basis vectors associated with the x ′y′z′ coordinate

system. Since y′z′ axes can be obtained by rotating yz axes counterclockwise about
the x-axis by an angle 90o − γ , we can relate the basis vectors of the two coordinate
systems with the help of Fig. 11.54:

yx,x'

y'

zz'

 γ

γ
 γ

γ

Figure 11.54: y′z′ axes are obtained by
rotating yz axes counterclockwise about the
x-axis by an angle 90o − γ .

(Filename:sfig5.5.2a)

ı̂
′ = ı̂,

̂
′ = sin γ ̂ + cos γ k̂,

k̂
′ = − cos γ ̂ + sin γ k̂.

(11.50)

The free body diagram of the shaft with rod OC is shown in Fig. 11.55. We
can write angular momentum balance for this system about any point on the axis of
rotation AB. However, rather than writing angular momentum balance about a point,
let us write angular momentum balance about axis AB. This ‘trick’ will eliminate
reactions

⇀
RA and

⇀
RB from our equations. Angular Momentum Balance about axis

AB is:

λ̂AB · [ ∑
⇀
MO = ˙⇀HO

]
or ̂

′ ·
∑

⇀
MO = ̂

′ · ˙⇀HO.

Calculation of (̂ ′ · ∑ ⇀
MO) : Since

⇀
RA and

⇀
RB pass through axis AB, they do not

produce any moment about this axis. Therefore,

φ C

O

A

B

G

G

mg

mg

z' y'

x'

⇀
RA

⇀
RB

Looking 
down the
y'-axis

x'

z'
φ

Figure 11.55: Free body diagram of the
bar and shaft system. In the inset, only the
weight of the bar, mg, is shown for clarity
of geometry.

(Filename:sfig5.5.2b)

̂
′ ·

∑
⇀
MO = ̂

′ · [⇀
r G/O × mg(−k̂)]

= ̂
′ ·

[
L

2
(sin φ ı̂

′ + cos φk̂
′
) × mg(−k̂)

]

= (

̂ ′︷ ︸︸ ︷
sin γ ̂ + cos γ k̂) · [

L

2
mg(

using Eqn.(11.50)︷ ︸︸ ︷
sin φ̂ + cos φ cos γ ı̂)]

= �

2
mg sin φ sin γ

Calculation of ̂
′ · ˙⇀HO : Since the rod rotates about axis AB, we may write

⇀
ω = φ̇̂

′
,

˙⇀ω = φ̈̂
′
.

Now,
˙⇀HO = [IO]{ ˙⇀ω} + ⇀

ω × [IO]{⇀
ω}
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where

[IO]{ ˙⇀ω} = [IO]x ′ y′z′ { ˙⇀ω}x ′ y′z′

=

 Ix ′x ′ Ix ′ y′ Ix ′z′

Ix ′ y′ Iy′ y′ Iy′z′
Ix ′z′ Iy′z′ Iz′z′







0
φ̈

0




=



Ix ′ y′ φ̈
Iy′ y′ φ̈
Iy′z′ φ̈


 .

Similarly,

[IO]{⇀
ω} =




Ix ′ y′ φ̇
Iy′ y′ φ̇
Iy′z′ φ̇


 ,

⇒ ⇀
ω × [IO]{⇀

ω} = φ̇̂
′ × [Ix ′ y′ φ̇ ı̂

′ + Iy′ y′ φ̇̂
′ + Iy′z′ φ̇k̂

′
]

= −Ix ′ y′ φ̇2k̂
′ + Iy′z′ φ̇2 ı̂

′
.

Therefore,

̂
′ · ˙⇀HO = ̂

′ · [(Ix ′ y′ φ̈ ı̂
′ + Iy′ y′ φ̈̂

′ + Iy′z′ φ̇k̂
′
) + (−Ix ′ y′ φ̇2k̂

′ + Iy′z′ φ̇2 ı̂
′
)]

= Iy′ y′ φ̈.

Now, setting ̂
′ · ∑ ⇀

MO = ̂
′ · ˙⇀HO, we get

L

2
mg sin φ sin γ = Iy′ y′ φ̈

or φ̈ = mg (L/2) sin γ

Iy′ y′
sin φ

or φ̈ = C sin φ

where

C = mg (L/2) sin γ

Iy′ y′
.

For rod OC,

Iy′ y′ =
∫

m
(x ′2 + z′2) dm =

∫ L

0
l2 m

L
dl = 1

3
mL2.

Therefore, the equation of motion of the rod is

φ̈ − mg (L/2) sin γ

(1/3)mL2 sin φ = 0

φ̈ − 3g sin γ

2L
sin φ = 0.

φ̈ − 3g sin γ
2L sin φ = 0
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SAMPLE 11.18 Kinetic energy in 3-D rotation. A thin rod of mass 2 kg and length

ω

shaft

O

rod of
m = 2 kg

& L = 1/2m
45o

x

y

z

Figure 11.56: (Filename:sfig7.4.2)

L = 1
2 m is welded to a massless shaft at an angle θ = 45o. The shaft rotates about

its longitudinal axis (y-axis) at 100 rpm. The moment of inertia matrix of the rod
about the weld point O is

[IO] = 0.08 kg· m2


 1 −1 0

−1 1 0
0 0 2


 .

Find the kinetic energy of the rod.

Solution The rod rotates about the fixed point O with angular velocity

⇀
ω = ω̂ where ω = 100 rpm = 10.47 rad/s.

The kinetic energy of a rigid body rotating about a fixed point O is given by

EK = 1

2
⇀
ω· [[IO]·⇀

ω
]

For the given problem, let us write the moment of inertia matrix [IO] of the rod as 1©1© This step is simply to facilitate compu-
tation. We carry out the multiplication and
at the end substitute the value of K0.

[IO] = K0


 1 −1 0

−1 1 0
0 0 2




where K0 = 0.08 kg· m2. Now

⇀
ω = ω̂ = {0 ω 0}T .

Therefore,

[IO]·⇀
ω = K0


 1 −1 0

−1 1 0
0 0 2







0
ω

0




= K0




−ω

ω

0




= −K0ωı̂ + K0ω̂ .

Substituting the expression in the formula for EK we get

EK = 1

2
ω̂ ·(−K0ωı̂ + K0ω̂)

= 1

2
K0ω

2

= 1

2
·0.08 kg· m2·(10.47 rad/s)2

= 4.38 N·m = 4.38J

EK = 4.38J
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11.5 Dynamic balance
Sometimes when something spins it can shake the structure that holds it. A familiar
example is an ‘unbalanced’ car tire which makes a car shake. But rotor balance is
important in all kinds of machines. Most often one seeks to eliminate or minimize
the imbalance. For example the strange design of car crank-shafts is due in large
part to an attempt to minimize its imbalance. But what does it mean, in the language
of mechanics, to say a rotating body is ‘unbalanced’? It means that non-zero forces
and/or torques are required to hold the axis still while the object spins at constant
rate. Going back to the basic momentum balance equations:

Linear momentum balance:
∑

⇀
F = ˙⇀L

and
Angular momentum balance:

∑
⇀
MC = ˙⇀HC,

we see that forces and torques are required if ˙⇀L �= ⇀

0 or if ˙⇀HC �= ⇀

0.

So imbalance means ˙⇀L and/or ˙⇀HC is not zero. We break the concept of balance
into the following two concepts:

(1) An object is said to be statically balanced with respect to a given axis of rotation
if ˙⇀L = ⇀

0 when it spins at constant rate about that axis.
(2) An object is said to be dynamically balanced with respect to a given axis of

rotation if both ˙⇀L = ⇀

0 and ˙⇀H = ⇀

0 for constant rate rotation about that axis.

The origin of the words ‘static’ balance and ‘dynamic’ balance is in how the
imbalance can be measured. Static imbalance can be measured with a static test,
dynamic imbalance requires a dynamic test.

Static balance
If the center of mass of a rigid body is on the fixed axis of rotation then it will not
accelerate. Thus, ˙⇀L = ⇀

acmmtot = ⇀

0 and the object is statically balanced. An
equivalent definition of static balance is that the net force on the spinning body is
zero. Whether or not this net force is so can be tested with a statics experiment. Put
the axis of rotation on good bearings and see if the mass hangs down in any preferred
direction. In a tire shop, this kind of balancing is something called bubble balancing
because of the bubble in the level measuring device.

Dynamic balance
The first condition for dynamic balance of an object with respect to spinning about an
axis is that the object be statically balanced. The center of mass must lie on the axis
of rotation. The second condition for dynamic balance, that ˙⇀H = ⇀

0, is a little more
subtle. To make things more specific, let’s calculate the rate of change of angular
momentum ˙⇀HO with respect to a point O that is on the axis of rotation. So, for
constant rate rotation about a fixed axis we have:

˙⇀HO = ⇀
ω × ⇀

HO (11.51)

because
⇀
HO spins with the body. ˙⇀HO is evidently zero if the angular momentum,
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⇀
HO , is parallel to the angular velocity, ⇀

ω. However,
⇀
HO = [IO] · ⇀

ω which means
⇀
HO is parallel to ⇀

ω only when ⇀
ω is an eigenvector of [IO] 1©.1© When you go to ACME garage and get

your car tires balanced you can politely ask
the mechanic: “Ma’am, could you make
sure that one of the eigenvectors of my
wheel’s moment of inertia matrix is paral-
lel to the car axle? Thanks.” The mechanic,
if she is a decent person, will make sure
that it is the appropriate eigenvector that is
parallel to the axle. Otherwise the wheel
would point straight sideways with the axle
piercing the rubber.

So an object which is spinning about a fixed axis is dynamically balanced
if its center of mass is on the axis (static balance) and the angular velocity
vector ⇀

ω is an eigenvector of the moment of inertia matrix.

If we restrict 1©our attention to cases where the axis of rotation is the z-axis then

1©Caution: A common misperception
about angular momentum is that it is al-
ways parallel to angular velocity. In gen-
eral, angular momentum is not parallel to
angular velocity. When is angular momen-
tum about the center of mass, say, parallel
to angular velocity? When ⇀

ω is an eigen-
vector of [I cm]. This is always the case for
planar objects rotating about an axis per-
pendicular to the plane, but not generally in
3D.

this condition is easy to recognize. It is when Ixz = Iyz = 0, that is, when the only
non-zero element in the third column and in the third row of the [IO] matrix is I O

zz in
the lower right corner.

Since these terms cause wobbling if one of the coordinate axis is an axis of
rotation, the terms that are off the main diagonal in the moment of inertia matrix are
sometimes called the ‘imbalance’ terms. These terms lead to dynamic imbalance
when the object is spun about the x , y, or z-axes. The off diagonal terms are also
sometimes called the ‘centrifugal’ terms. This naming has an intuitive basis. One
way to understand dynamic imbalance is to think of it being due to the unbalanced
centrifugal pull of bits of mass that are spinning in circles.

Often, but not always, you can tell by inspection if something is dynamically
balanced for rotation about a certain axis. If, for every bit of mass that is not on the
axis there is another equal bit of mass that is exactly opposite, with respect to the axis,
then the object is balanced. Some objects that do not meet this symmetry condition
are also dynamically balanced, however.

Example: Some common objects

All of the figures in figure ?? on page ?? are dynamically balanced
about all the axes shown and about any axis perpendicular to any pair of
these axes. ✷

Example: A cube = a sphere

Both a cube and a sphere have moment of inertia matrices proportional
to the identity matrix

[I cm]cube = m�2

6


 1 0 0

0 1 0
0 0 1




[I cm]sphere = m D2

10


 1 0 0

0 1 0
0 0 1


 .

So, for any ⇀
ω, we get that

⇀
H cm is parallel to ⇀

ω and, thus, both of these
objects are dynamically balanced for rotation about any axis through
their centers of mass.

Here is an example where the mathematics contradicts intuition; it
does not seem like a cube should be balanced for rotation about a random
skewed axis through its center of mass! ✷
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SAMPLE 11.19 Static and dynamic balance in 2-D motion. A system with two

A
m = 1 kg

m = 1 kg

B

O ω = 10 rpmr1 = 0.3 m

r2 = 0.5 m
x

y

Figure 11.57: (Filename:sfig4.7.DH1)

equal masses at A and B rotates about point O at a constant rate ω = 10 rpm. The
system is shown in the figure. The rod connecting the two masses has negligible
mass.

(a) Is the system statically balanced? If not, suggest a way to balance it.
(b) Is the system dynamically balanced? If not, suggest a way to balance it.

Solution

A

m'

B

O
O'

r1

r2

Figure 11.58: (Filename:sfig4.7.DH2)

(a) Since the two masses are equal, the center of mass of the system is at the
geometric center of rod AB, i.e., at a point O′, halfway between A and B. Clearly,
O′ is not on the axis of rotation which passes through O and is perpendicular
to the plane of motion. Therefore, the system is not statically balanced.
To balance the system, we must move the center of mass to O or pivot the
system at O′. Say we cannot move the pivot point. So, to move the center of
mass O, we add mass m′ to m at A. From the definition of center of mass:

(m + m′)r1 = mr2

⇒ m′ = m′(r2 − r1)

r1

= 1 kg(0.5 m − 0.3 m)

0.3 m
= 0.67 kg.

Add 0.67 kg to mass at A.

x

y

m1

m2 

O

r1

r2
ω

êR

Figure 11.59: (Filename:sfig4.7.DH3)

(b) The system, as given, is not dynamically balanced since it is not statically
balanced. Let us check if it is dynamically balanced after adding m′ to A as
suggested above. ∑

⇀
MO = ˙⇀HO.

Let us calculate ˙⇀HO to see if it is zero:

˙⇀HO = ⇀
r 1 × m1

⇀
a1 + ⇀

r 2 × m2
⇀
a2

= (−r1êR) × m1(ω
2r1êR) + (r2êR) × (−ω2r2êR)m2

= −m1ω
2r2

1 (êR × êR︸ ︷︷ ︸
⇀

0

) − m2ω
2r2

2 (êR × êR︸ ︷︷ ︸
⇀

0

)

= ⇀

0.

The net torque on the system is zero, therefore it is dynamically balanced. Note
that ˙⇀HO = ⇀

0 irrespective of the values of m1, m2, r1, and r2. Thus ˙⇀HO = ⇀

0
even for the system as given. But the system, as given, is not dynamically
balanced because static balance is a necessary condition for dynamic balance.
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SAMPLE 11.20 Imbalance of a rotor due to rotating masses. Two masses m1 and

B

A

y

x

z

ω

m1

m2

b

h

�

�

Figure 11.60: Imbalance of a rotor due
to point masses spinning at a constant rate.

(Filename:sfig4.7.1)

m2 are attached to a massless shaft AB by massless rigid rods of length h each. The
two masses are separated by distance b along the shaft and are in the same plane but
on the opposite sides of the shaft. The shaft is rotating with a constant angular speed
ω. The shaft is free to move along the z-axis at point B. Ignore gravity.

(a) Is the system statically balanced?
(b) What is the torque required to keep the motion going about the z-axis (i.e.,

Mz) ?
(c) What are the reactions at the support points of the shaft?

Solution

(a) A simple line sketch and the free body diagram of the system are shown in
Fig. 11.61. The linear momentum balance (

∑ ⇀
F = m ⇀

a ) for the system gives:

(a) (b)

B

D

C

A

ω

m1

m2

b

h

�

�

D

C
m1

m2

ı̂

̂ k̂

AyAz

Mz

Ax

Bx

By

Figure 11.61: (a) A simple line diagram of the system. (b) Free Body Diagram of the system.
(Filename:sfig4.7.1a)

y

x

a1

m2

m1 v1

a2

v2

Figure 11.62: Accelerations of m1 and
m2.

(Filename:sfig4.7.1b)

(Ax + Bx )ı̂ + (Ay + By)̂ + Az k̂ = m1
⇀
a1 + m2

⇀
a2

= m1ω
2h(−ı̂) + m2ω

2h ı̂

⇒ Ax + Bx = ω2h(m2 − m1) (11.52)

Ay + By = 0 (11.53)

Az = 0

Clearly,
∑ ⇀

F �= ⇀

0 which means the system is not statically balanced.
(b) Mz can be easily calculated by writing angular momentum balance about axis

AB. In fact, we do not even need to write the equation in this case; since all
the forces pass through this axis and the accelerations of m1 and m2 also pass
through it,∑

M/AB(due to reaction forces) = 0 and Ḣ/AB = 0.

But ∑
M/AB = Ḣ/AB

or Mz +
∑

M/AB(due to reaction forces) = Ḣ/AB

⇒ Mz = 0.

Mz = 0
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(c) For the four unknown reactions at A and B (we have already found Az and
Mz) we have two scalar equations so far (from Linear Momentum Balance ).
Angular Momentum Balance about point A gives:∑

⇀
M/A = ˙⇀H /A

Now,∑
⇀
M/A = ⇀

r B/A ×
∑

⇀
F B

= (2� + b)k̂ × (Bx ı̂ + By ̂)

= Bx (2� + b)̂ − By(2� + b)ı̂

˙⇀H /A = ⇀
r C/A × m1

⇀
a1 + ⇀

r D/A × m2
⇀
a2

= (�k̂ + h ı̂) × m1(−ω2h ı̂) + ((� + b)k̂ − h ı̂) × m2(ω
2h ı̂)

= ω2h(m2(� + b) − m1�)̂

Equating
∑ ⇀

M/A and ˙⇀H /A we get

Bx (2� + b)̂ − By(2� + b)ı̂ = ω2h(m2(� + b) − m1�)̂

Dotting both sides of the equation with ı̂ and ̂ , we get

By = 0

and Bx = ω2h

(2� + b)
[m2(� + b) − m1�].

Substituting Bx and By in (11.52) and (11.53) we find

Ax = ω2h

(2� + b)
[m2� − m1(� + b)]

Ay = 0

Ax = ω2h
(2�+b)

[m2� − m1(� + b)]
Ay = Az = 0

Bx = ω2h
(2�+b)

[m2(� + b) − m1�]
By = 0
Mz = 0
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SAMPLE 11.21 Balancing a rotor with spinning masses. Consider the same system

B

A

y

x

z

ω

m

m

b

h

�

�

Figure 11.63: Imbalance of a rotor due
to point masses spinning at a constant rate.

(Filename:sfig4.7.2)

as in the previous sample problem (Sample 11.20). Assume that m1 = m2 = m.

(a) Set m1 = m2 in the reactions calculated. Is the system statically balanced now?
Explain.

(b) Is the system dynamically balanced? Explain.
(c) Balance the system dynamically by (a) adjusting the geometry, (b) adding two

masses to the system.

Solution

A B

m

m

Ax

Bx

cm
h

h

m

m

Figure 11.64: Reaction forces at A and
B are required to keep the motion going.

(Filename:sfig4.7.2a)

(a) Recall from the solution of Sample 11.20 that

Ax = ω2h

(2� + b)
[m2� − m1(� + b)]

Bx = ω2h

(2� + b)
[m2(� + b) − m1�]

Ay = By = Az = Mz = 0

Setting m1 = m2 = m in the above expressions for the reactions, we get

Ax = ω2h

(2� + b)
(−mb) and Bx = ω2h

(2� + b)
(mb).

Thus, Ax + Bx = 0. Therefore,
∑ ⇀

F = ⇀

0 which means the system is statically
balanced.

Static Balance: When the two masses are equal, the center of mass of the
system is on the axis of rotation. Therefore, the static reactions are zero
irrespective of the orientations of the two masses.
The requirement for static balance is

∑ ⇀
F = ⇀

0 in any static orientation
of the system. As long as the center of mass of the system lies on the axis
of rotation, the system will be in static balance.

Dynamic Balance: When the masses are rotating at constant speed, reaction
forces at A and B are required to keep the motion going. Clearly,

∑ ⇀
M �=

⇀

0 now. Therefore, the system is not in dynamic balance.
At the instant shown the reaction forces are Ax and Bx as shown in
Fig. 11.64, but they change directions as the position of the masses
changes. For example, if the masses are in the y–z plane the reaction
forces will be Ay and −By . The magnitudes of these forces will remain
the same. Thus, we have rotating reaction forces at A and B. These rotary
forces cause wear in the bearings and induce vibrations in the frame of
the machine and the supporting structure. Therefore, these forces are
undesirable.
If we can somehow make these dynamic reactions zero, the bearings, the
machine frame, the supporting structure, the machine operator and the
company will all be very happy. So, how do we do it? Read on.

(b) There are many ways in which the rotor can be dynamically balanced:

• Trivial solution: Remove both the masses. Of course, there is nothing
left to produce any nonzero ˙⇀H . Thus,∑

⇀
M/any point = ⇀

0. Also,
∑

⇀
F = ⇀

0

.
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• Adjust geometry: Set b = 0. The center of mass is still on the axis of
rotation.

⇒
∑

⇀
F = ⇀

0

In addition, ˙⇀H /A = ⇀

0

⇒
∑

⇀
M/A = ⇀

0.

• Add two masses: If b is required to be nonzero, we can balance the rotor
by adding two masses in any two selected transverse (to the shaft-axis)
planes to make ˙⇀H /A = ⇀

0. 1©For example: 1© Balancing a rotor by adding two masses
in two selected transverse (to the shaft axis)
planes is quite a general method. Even if the
rotor has more than two spinning masses the
net angular momentum due to all masses
can be reduced to the angular momentum
produced by an equivalent system with just
two masses such as the one under consider-
ation.

– We can take two equal masses m and m, and place them in the
opposite directions of the masses already on the shaft as shown in
Fig. 11.65(a). It should be clear that the net angular momentum
about any point on the shaft will be zero now.

A B

m

m

m

m m
c

b

(a) (b)

A B

m

m'

m'

Figure 11.65: Dynamic balancing of the
rotor by adding two masses. (a) The two
added masses (shown by dotted circles) are
the same as the original masses on the shaft.
(b) The two added masses are different from
the original masses (m′ �= m).

(Filename:sfig4.7.2b)

– We can add two masses m′ and m′ different from the masses attached
to the shaft and place them a distance c apart on the shaft. Let the
length of the connecting rods of the new masses be h′. For the net
angular momentum to be zero we need

⇀̇
H

due to m′
s︷ ︸︸ ︷

m′ω2h′c =

⇀̇
H due to ms︷ ︸︸ ︷
mω2hb

⇒ m′ h′ c = m h b

Thus, we have the freedom 2©of selecting any combination of m′, h′

2© In practice, this freedom is usually re-
stricted by geometric and space constraints.

and c to give the required product. Here are two examples:

(i) Let m′ = m/2, c = b/2, then h′ = mhb
m′c = 4h.

(ii) Let m′ = m/2, c = 2b, then h′ = mhb
m′c = h.

A B

m

m/2

b/2

m/2

m/2
2b

m/2

m

h

h

4h

4h

A B

m

m

h

h

h

h

b

(a) (b)

Figure 11.66: Dynamic balancing of the rotor by adding two masses. (a) m′ = m/2, c = b/2 and
h′ = 4h. (b) m′ = m/2, c = 2b and h′ = h.

(Filename:sfig4.7.2c)
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A Units and dimensions

A.1 Units and dimensions
Many engineering texts have, somewhere near the start, a tedious and pedantic section
about units and dimensions. This book is different. That section is here at the end; not
to diminish the importance of the topic but because students are immune to preaching.
The only way a student will get good at managing units is by imitation, or in time
of panic or idle curiosity. As for imitation, we have tried to set a good example in
the whole of the book. As for panic and curiosity, this section is here. The central
message, mentioned in the preface, is this:

balance your units and carry your units.

1 inch

1 cm

Figure A.1: Relative size of an inch and
a centimeter.

(Filename:tfigure1.a)

Balance your units
Every line of every calculation should be dimensionally sensible. That is, the di-
mensions on the left of the equal sign should be consistent with the dimensions on
the right the same way numbers have to balance. Otherwise the equations are not
equations. For example, if two bicycles tied in a race you could say they were in

701
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some way equal. But even if you noticed that the weight difference between them
was 10% over 2 pounds you would not write

8 kg = 9 kg.

The equivalence between the two bikes does not make eight kilograms equal to nine
kilograms. In this same way it would be wrong to write

1 in = 1 s.

if you noticed that it takes a bug about a minute (60 seconds) to walk the length of
your body (say about 60 inches). That the passing of a second corresponds to the
passing of an inch, so for some purposes an inch is equivalent to a second, and 1 = 1,
does not mean that an inch is a second. An inch has dimensions of length which
cannot be equal to a second with dimensions of time. Length can equal time no more
than 8 can equal 9.

Of course it is correct to write that

5.08 cm = 2 in

whether or not you have noticed anything. Both centimeters and inches have dimen-
sions of length and one inch is equivalent to 2.54 centimeters always (figure A.1). An
equation where the units on both sides of the equation are the same physical quantities
(length in the example above) is balanced with regard to units.

Carry your units
When you go from one line of a calculation to the next you should carry (keep written
track of) the units with as much care as any other numerical or algebraic quantities.
This written presentation of your units will help you as well as the people to whom
you show your work. The rest of this section is, more or less, a discussion of how
and why to ‘carry your units.’

Most physical quantities are dimensional and are represented by a number mul-
tiplying a unit: 7 m means 7 times (one meter). Thus, the ‘m’ and the 7 are of equal
status in any equations in which they are used. When you do arithmetic and don’t
forget any terms you have ‘carried’ the numbers. Similarly, carrying the units just
means not forgetting them in your calculations (not just next to your calculations).

Dimensions, units and changing units
Distance has dimensions of length [L] that can be measured with various units —
centimeters ( cm), yards ( yd), or furlongs (an obsolete unit equal to 1/8 mile). A
meter is the standard unit of length in the SI system. In answer to the question ‘What
is the length of a bicycle crank �?’ we say ‘� is seven inches’ and write � = 7 in or
say ‘� is seventeen point seven centimeters’ and write � = 17.7 cm. In each case, a
number multiplies a dimensional unit.

Force has dimension of mass times acceleration [m ·a]. Because acceleration itself
has dimensions of length over time squared [L/T 2], force also has dimensions of mass
times length divided by time squared [M ·L/T 2]. Because force has such a central role
in mechanics, it is often convenient to think of force as having its own units. Force then
has dimensions of, simply, force [F]. The most common units for force are Newton
( N) and the pound ( lbf). The ‘f’ in the notation for the pound lbf is to distinguish a
pound force lbf from the pound mass lbm, 1 lbf = lbm · g ≈ 32.2 lbm · ft/s2. Some
people use lb to mean pound force or pound mass, depending on context. We use
lbm for pound mass and lbf for pound force to avoid confusion.
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Changing units

We can say ‘The typical force of a seated racing bicyclist on a bicycle pedal is only
thirty pounds,’ and write any of the following:

F = 30 lbf

F = 30 lbf · (1)

F = 30 �lbf ·
(

4.45 N

1 �lbf

)
︸ ︷︷ ︸

1

F = 133.5 N.

Here we have shown one way to change units. Multiply the expression of interest by
1 pdl

1 N

1 lbf

1 kgf

Figure A.2: Relative size of a poundal
pdl, a Newton N, a pound force lbf, and
a kilogram force kgf. 1 N = 7.24 pdl,
1 lbf = 4.45 N, and 1 kgf = 1 kilopond =
9.81 N = 2.2 lbf.

(Filename:tfigure1.b)

one (1) and then make an appropriate substitution for one. Any table of units will tell
us that 1 lbf is approximately 4.45 N. So we can write 1 = (4.45 Newtons/1 lbf) and
multiply any part of an equation by it without affecting the equation’s validity. See
figure A.2 to get a sense of the relation between a pound force, a Newton, and the
less used force units, the poundal and the kilogram-force.

What if we had made a mistake and instead multiplied the right hand side by
1 = (1 lbf/4.45 Newton)? No problem. We would then have

F = 30 lbf = 30 lbf · 1 lbf

4.45 Newton
= 30

4.45
lbf2/ N.

This expression is admittedly weird, but it is correct. If you should end up with such
a correct but weird solution you can compensate by multiplying by one again and
again until the units cancel in a way that you find pleasing. In this case we could get
an answer in a more conventional form by multiplying the right hand side by 12 using
1 = (4.45 N/ lbf):

F = 30

4.45

lbf2

N
· 12 = 3.0

4.45

�lbf2

N
·
(

4.45 N

�lbf

)2

= 133.5 N (as expected).

A trivial but surprisingly useful observation is that F = F . A quantity is equal
to itself no matter how it is represented. That is, 30 lbf = 133.5 N even though
30 �= 133.5. To summarize:

Units are manipulated in any and all calculations as if they were
numbers or algebraic symbols. For example, canceling equal units from
the top and bottom of a fraction is the same as canceling numbers or
algebraic symbols.

An advertisement for careful use of units
Units and dimensions are part of scientific notation just as spelling, punctuation, and
grammar are parts of English composition. If used properly, they aid both thinking
and the communication of these thoughts to others. If units and dimensions are used
improperly they can impede communication, even with oneself, and convey the wrong
meaning.
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Example: Breaking load

A gadget that breaks with a 300 N (300 Newtons) load instead of a needed
300 lbf (300 pounds force) load is exactly as bad as one that breaks with
a 67 lbf load instead of a needed 300 lbf load. An unsatisfied consumer
will not be placated by learning that the engineer’s calculation was ‘nu-
merically correct’. ✷

If anybody is ever to use your calculation, giving them the wrong units is just as bad
as giving them the wrong numerical value.

Although using units properly often seems annoyingly tedious, it also often pays.
If units are carried through honestly, not just tagged on to the end of an equation for
appearance, you can check your work for dimensional consistency. If you are trying
to find a speed and your answer comes out 13 kg· m/ s, you know you have made a
mistake — kg· m/ s just isn’t a speed. Such dimensional errors in a calculation often
reveal corresponding algebraic or conceptual mistakes. Also, if a problem is based on
data with mixed units, such as cm and m, or pound force and pound mass, you may
often not know the units of your answer unless you properly ‘carry’ your units 1©.1© You can easily generate errors of approx-

imately a factor of 1000 with English units
if you wishfully multiply or divide answers
by 32.2 (the value of g in ft/s2) at the end of
a sloppy calculation. If you do it wrong you
get an error of a factor of 32.22 which is 3%
greater than 1000. Following sloppiness
with unscrupulousness, some are tempted
to then slide a decimal point three places
to the right or left to ‘fix’ things. The de-
crepit insecurity that provokes such crimes
is precluded by carrying units.

Three ways to be fussy about units.
People are most pleased if you speak their language, speak correctly, and make
sense. Similarly, scientists and engineers with whom you communicate will be most
comfortable if you use the units they use and use them with correct notation. But
most importantly, you should use units in a way that makes physical sense. Just as
the United Nations argues over which language to use for communication, educators,
editors, and makers of standards have argued for decades over conventions for units:
whether they should come in multiples of 10, whether they should use the standard
international scientific conventions, and whether they will be clear to someone who
has worked in the stock room of a supplier of 1

2 -inch bolts for 35 years and thinks SI
might be a friend of his cousin Amil.

Even if you are not fluent in someone’s favorite language, you can still say sensible
things. Similarly, no matter what you or your work place’s choice of units (SI, English,
or hodge-podge), no matter whether you use upper case and lower case correctly, you
should make sense. Physically sensible units — that is, balanced units — should
be used to make your equations dimensionally correct. Then you should work on
refining your notation so as to be more professional.

So, in order of importance,

1. use balanced units.
2. use units of the type that are liked by your colleagues.
3. spell and punctuate these units correctly.

If you are in a situation where your only problem is the third item on the list you
are doing fine, unless you are really fussy, or work for someone who is really fussy.
(That is, you are doing as well as the authors of this book, anyway.)

Not everyone will take the care that we advise for you. You will find that, in both
school and work, there are a variety of ways in which people use and abuse units,
all within the context of productive engineering. So you will have to be aware and
tolerant of the various conventions, even if they sometimes seem somewhat vague
and imprecise.

Units with calculators and computers
Calculators and computers generally do not keep track of units for you. In order for
your numerical calculations to make sense you have the following choices.
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Use dimensionless variables. Using dimensionless variables is the preferred
method of scientists and theoretical engineers. The approach requires that you define
a new set of dimensionless variables in terms of your original dimensional variables.

Use a consistent unit system. Express all quantities in terms of units that are
consistent. 1©For example, all lengths should be in the same units and the unit of 1©Caution: Doing a computer calculation

using quantities from an inconsistent unit
system can easily lead to wrong results. To
be safe make sure that all quantities are ex-
pressed in terms of only one row of the table
shown.

force should equal the unit of mass times the unit of distance divided by the unit
of time squared. Each row of the table below defines a consistent set of units for
mechanics.

Name length mass force time angle

mks meter kilogram Newton second radian
cgs centimeter gram dyne second radian
English foot lbm poundal second radian
English2 foot slug lbf second radian

The radian is the unit of angle in all consistent unit systems. Whether or not a radian
is a proper unit or not is an issue of some philosophical debate. Practically speaking,
you can generally replace 1 radian with the number 1.

Use numerical equations. If you are using the computer to evaluate a formula
that you trust, and you have balanced the units in a way that makes you secure, you
can have the computer do the arithmetic part of the calculation. It is easy to make
mistakes, however, unless the formula is expressed in consistent units.

Example: Force units conversion

What, in the SI system, is the net braking force when a 2000 lbm car skids
to a stop on level ground? For this units problem we skip the careful
mechanics and just work with the formula

F = µmg

where m is the mass of the car, g is the local gravitational constant and
µ is the coefficient of friction for sliding between the tire and the road.
We won’t be off by more than a quarter of a percent using the standard
rather than the local value of the gravitational constant, g = 32.2 ft/s2.
The coefficient of friction for rubber and dry road is about one, so we
use µ = 1. We proceed by plugging in values into the formula and then
multiplying by 1 until things are in standard SI (Systémé Internationale)
form. We use a table of units to make the various substitutions for 1.
A few of the detailed steps could be contracted. The approach below is
only one, albeit an awkward one, of many routes to the answer.

F = µmg

F = 1 · 2000 lbm · (32.2 ft/s2)

= (2000·32.2)
lbm· ft

s2

= (2000·32.2)
�lbm·� ft

s2 ·
(

1 kg

2.2 �lbm

)
︸ ︷︷ ︸

1

·
(

30.48 �cm

1� ft
)

︸ ︷︷ ︸
1

·
(

1 m

100 �cm

)
︸ ︷︷ ︸

1
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= 8917
�kg· �m
�s2 ·

(
1 �N

1 �kg· �m/ �s2

)
︸ ︷︷ ︸

1

·
(

1 kN

1000 �N
)

︸ ︷︷ ︸
1

= 8.92 kN

The net braking force is 8.92 kN. ✷

In engineering we do math not just with numbers, but with dimensional quantities.
The bad habits of many of us not withstanding, there are good and useful standards
for how to deal with units in calculations 1©. Here we describe how some people use1© An excellent description of good prac-

tice is the “Guide for the Use of the Interna-
tional System of Units (SI)” by Barry Tay-
lor, 1998. This is NIST (National Institute
of Standards and Technology) publication
# 811.

units and also present our biases.

Use of units in old-style handbooks.

Many standard empirical formulas, formulas based on experience and not theory,
are presented in an undimensional or numerical form. The units are not part of the
equations. We present the approach here, not because we want to promote it, but
because we don’t want your more formal approach to units to stop you from reading
and using empirical sources.

A.1 Advised and ill-advised use of units

Good use of units Say a car has a constant speed of v =
50 mi/ hr for half an hour. The following is true and expressed
correctly.

The distance traveled in time t is x = vt , so

x = vt

= (50 mi/hr)(30 min) = 50 · 30 mi · min/hr

(Awkward but true!)

= 50 · 30 mi· �min/ �hr
(

1 �hr

60 �min

)
︸ ︷︷ ︸

1

= 25 mi

That is, unsurprisingly, the distance covered in half an hour is
25 mi.

Another good use of units. If we start with the dimension-
ally correct formula x = (50 mi/hr)t we can differentiate to get

v = dx

dt
= 50 mi/hr.

The answer is dimensionally correct without having to think about
the units. v is speed and contains its units, x is distance and contains
its units. In any formula that contains t , x or v we can substitute any
time, distance or speed. How far does the car go in one minute? As
in the previous example,

x = vt

= (50 mi/hr)(1 min)

= (50 mi/�hr)(1 �min)

(
1 �hr

1 �min

)
︸ ︷︷ ︸

1

= 5

6
mi

Not such good use of units It is common practice to write
sentences like ‘the distance the car travels is

x = 50t,

where x is the distance in miles and t is the time of travel in hours’,
although we discourage it. Why? Because the variables x and t are
ambiguously defined. We would like to use the fact that speed v is
the derivative of distance with respect to time:

v = dx

dt
= d

dt
(50t) = 50.

But now we have a speed equal to a pure number, 50, rather than a
dimensional quantity. In this simple example, common sense tells
us that the speed v is measured in mi/hr. But if we want to think of
v as a speed, a variable with dimensions of length divided by time,
the formula misleads us and requires us to add the units. For this
simple example it is not much of a problem to determine what units
to add.

But better is if units are included correctly in the equations; then
they take care of themselves whenever they are needed. The ‘not
such good’ use of units above is sometimes called using numerical
equations, that is equations that have numbers in them only. The
good use of units uses quantity equations, that is equations that use
dimensional quantities.
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For example, Mark’s Handbook for Mechanical Engineers (8th edition, page
8-138) presents the following useful formula to describe the working life of commer-
cially manufactured ball bearings:

L10 = 16, 700

N

(
C

P

)K

,

where
L10 = the number of hours that pass before 10% of the bearings fail,
N = the rotational speed in revolutions per minute
C = the rated load capacity of the bearing in lbf,
P = the actual load on the bearing in lbf, and
K = 3 for ball bearings, 10/3 for roller bearings.

In this approach the idea of dimensional consistency has been disguised for the
sake of brevity. L10, N , C , and P are just numbers. Such an equation is sometimes
called a ‘numerical equation. It is a relation between numerical quantities. If you
happen to know the rotation speed of the shaft in radians per second instead of
revolutions per minute you will have to first convert before plugging in the formula.
Unlike a dimensional formula, the formula does not help you to convert these units.

Units with calculators and computers
Unfortunately, most calculators and computers are not equipped to carry units. They
are only equipped to carry numbers. How do we handle this problem? The best and
clearest option is only to do calculations with dimensionless variables.

The simplest way to use dimensionless variables, though not necessarily the best,
is to do something that involves notational compromise. For example, let x represent
dimensionless distance rather than distance. That is, x represents distance divided
by 1 mi. Similarly, t is time divided by 1 hr. And dx/dt is dimensionless distance
differentiated with respect to dimensionless time, which is, evidently, dimensionless
speed. In this example, recovering the dimensional speed is common sense: speed
is in mi/hr. The notational compromise is that v is being used to represent both
dimensional and dimensionless speed, with the precise meaning depending on context

A.2 An improvement to the old-style handbook approach

An alternative to the standard approach to empirical formulas is
to write a formula that makes sense with any dimensional variables.
The bearing life formula would be replaced with the formula below:

l10 = 16, 700

n

(
c

p

)K
hr· rev/min

where
l10 = the time that passes before 10% of the bearings fail,
n = the rotational speed,
c = the rated load capacity of the bearing,
p = the actual load on the bearing, and
K = 3 for ball bearings, 10/3 for roller bearings.

and the variables l10, n, c, and p are dimensional quantities. One can
use any dimensions one wants for all of the variables. For example,
using

n = 50 rev/sec
c = 1 kN
p = 100 lbf, and
K = 3 for the given ball bearing,

we can calculate the life of the bearing by plugging these values in

to the formula directly.

l10 = 16, 700

50 rev
�sec

(
1 kN

100 lbf

)3
hr· rev/min

= 16, 700

50 rev/ �sec

(
60sec

min

)
︸ ︷︷ ︸

1

·


 1 �kN

100 �lbf

(
1 �lbf

4.448� N
)

︸ ︷︷ ︸
1

(
1� N

1000 �kN

)
︸ ︷︷ ︸

1




3

hr· min/rev

≈ 45000 hr

This approach has the advantage of precision if mixed units are used.
Any of the quantities can be measured with any units and the answer
always comes out right.
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• Example: Using notational compromise we can use the formula x = vt with
v = 50 mi/ hr to do a set of calculations. Say we want to know the distance x
every quarter of an hour for two hours. So we multiply 50 by .25, .5, .75, . . .

and thus make a table with two columns labeled t ( hr) and x ( mi).
t (hr) x (mi)

0 0
.25 12.5
.5 25
.75 37.5

• Example: The exact meaning of the columns in the above example are a little
ambiguous. We can make it more precise by labeling the columns as follows

t/(hr) x/(mi)
0 0

.25 12.5
.5 25

.75 37.5
That is, the columns of numbers are dimensionless. The first column, is the
time divided by one hour the second is distance divided by one mile.

• Example:If we take x to be dimensional distance, t to be dimensional time, and
v to be dimensional speed, we can define new dimensionless variables. t∗ =
t/(1 hr), x∗ = x/(1 mi), and v∗ = v/(1 mi/hr). Now there is no ambiguity:
x is dimensional and x∗ is dimensionless. This approach is more precise, if
cumbersome, than using x to be both dimensional and dimensionless depending
on context. Dividing the equation x = vt on both sides by one mile, and
multiplying the right side by 1, in the form of 1 = (1 hr/1 hr) we get:

x

1 mi
= v

1 mi/hr
· t

1 hr

which is, using the dimensionless variables,

x∗ = v∗t∗.

Because v is 50 mi/ hr, v∗ = 50. We can show this reasoning somewhat
formally as follows.

v∗ = v/(1 mi/hr) = (50 mi/hr)/(1 mi/hr) = 50.

The dimensionless speed v∗ is just the dimensionless number 50. Now we can
make a table by multiplying 50 by .25, .5, .75, . . .. The columns of the table
can be labeled t∗ and x∗ and all variables are clearly defined.

t∗ x∗
0 0

.25 12.5
.5 25
.75 37.5

Most often, most people will not go to such trouble unless they have confused
themselves by not being careful. But it is easy to get in doubt if problems get
complicated, if you loose track of what the difference is between a pound force
and a pound mass, or if some variables are measured in meters and others in
feet, etc.
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A.3 Force, Weight and English Units

The force of gravity on an object is its weight — well, almost. A
given object has different weight on different parts of the earth, with
up to 0.5% variation. That is, g, the earth’s gravitational ‘constant,’
varies from about 9.78 m/s2 at the equator to about 9.83 m/s2 at
the North Pole. The official value of the ‘constant’ g is in between
at exactly 9.80665 m/s2 (about 32.1740486 ft/s2). Multiplying the
official g by the mass m will give you exactly the force it takes
to hold it up if you are in exactly the official place, somewhere in
Potsdam. Outside of Potsdam you have to accept an error of up to
1/4% when calculating gravitational forces — unless you know the
value of g in your neighborhood very accurately.

Historically, people understood weight before they understood
mass: bigger things are harder to hold up so they have more weight.
This relationship is easier to perceive than that bigger things are
harder to accelerate, i.e., have more mass. So people defined the
quantity of matter by weight. ‘How much flour?’ one would ask.
‘A pound of flour,’ meaning one pound weight, might be the answer.
A one pound weight is pulled with a 1 lbf by gravity, or in the older
notation where one did not worry about mass, by 1 lb. People didn’t
notice that it was a little harder, i.e.. would stretch a given spring
more, to hold something up on the north pole than at the top of Mount
Everest, so the earth’s gravity force on an object was a fine measure
of quantity.

When it became important to talk about mass, as opposed to
weight, the pound mass was defined as the mass of something that
weighed a pound. That is,

1 lbm ≡ 1 lbf/g.

Then people thought ‘what is the mass that accelerates one foot per
second squared if a one-pound force is applied?’ They found

m = F/a

= (1 lbf)/(1 ft/s2) = 1
(

lbf/ ft/s2
)(

32.174 lbm ft/s2

lbf

)
︸ ︷︷ ︸

1

= 32.174 lbm.

But this 32.174 was awkward. People felt that if a unit force causes
something to accelerate at a unit rate that thing should have a unit
mass. So they invented the slug. 1 slug ≡ 1 lbf/(1 ft/s2). So what
do we get for the mass in the previous equation?

m = F/a

= (1 lbf)/(1 ft/s2) = 1
(

lbf/ft/s2
)(

32.174 lbm ft/s2

lbf

)
︸ ︷︷ ︸

1

de f= 1 slug

That is, 1 slug accelerates 1 ft/s2 when 1 lbf is applied. How much
does a slug weigh? The force of gravity on a slug, in Potsdam, is
32.174 lbf.

Now the invention of the slug did not make people happy
enough. They thought, ‘what is the force required to accelerate
1 lbm at an acceleration of 1 ft/s2?’ It is

F = ma

= (1 lbm)(1 ft/s2) = 1
(

�lbm �ft/s2
)(

1 lbf

32.174 �lbm �ft/s2

)
︸ ︷︷ ︸

1

=
(

1

32.174

)
lbf.

People found this 1/32.174 awkward also, so in order to simplify
some arithmetic and confuse many generations of engineers, they
invented the poundal. They defined the poundal to be the force it
takes to accelerate one pound mass at one foot per second squared.
So they got

F = ma

= (1 lbm)(1 ft/s2)
de f= 1 pdl.

So, because scientists and engineers of old liked the number 1
better than both the number 32.174 and the number 1/32.174 they
left us two new units to worry about: the poundal = 1 lbm ft/s2 =
(1/32.174) lbf, and the slug = 1 lbf/( ft/s2) = 32.174 lbm. If you
are used to the internationally acceptable units for force and mass
1 pdl = .138255 N and 1 slug = 14.5939 kg. Fortunately, the slug
and the poundal are used less and less as the decades roll by. Cer-
tainly there are more people who laugh at their confusion about slugs
and poundals than there are people who use them seriously.

Don’t laugh if you are from Europe Unfortunately for
dimensional purists, engineers using the SI system have copied one
of the confusing traditions that the SI system was designed to avoid.
They invented the kilogram-force, kgf, also called a kilopond, which
is 1 kg times the official value of g. That is 1 kgf = 1 kilopond =
9.80665 N. A kilopond is the force of gravity on a kilogram, exactly
so somewhere in Potsdam — well, almost.

Well, almost Why do we say ‘well, almost’ about ‘g’ being
the acceleration due to gravity? Because, unfortunately and confus-
ingly, mg is not the force due to gravity, it is the force of the spring
which holds up the mass on a rotating earth! What is called g is the
‘effective’ gravity which is the acceleration due to gravity minus a
centripetal term due to the earth’s rotation.
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B Contact: friction and
collisions

The primary interaction between reasonably sized objects, say much smaller than the
earth and much larger than an atom, is through contact 1©. Things cause contact forces 1© The most-often encountered non-contact

force is gravity, especially the gravity force
from the earth on terrestrial objects like
cars, people, rocks, and ants. In one way of
looking at things, forces mediated by mass-
less springs, strings, dashpots, and rods are
also not contact forces. Since the mass of
springs, strings, rods, and dashpots are of-
ten neglected in dynamics, they are two-
force members and the forces at their two
ends are equal and opposite. So rather than
saying bodyA interacts with a spring which
interacts with body B , for example, one
might say that the spring between body A
and B mediates a force between them. In
this case the spring force would not be a
contact force.

on each other when and where they touch. Contact between two bodies restricts their
possible motions and also determines the forces on the bodies. In order to study the
dynamics (or statics) of such systems we need a model for the relation between the
contact forces and the motions between the contacting objects. Of special concern
are sliding, rolling, and collisions.

The subjects of friction, rolling and collisions have two major components: the
rules of interaction and the motion of systems that follow these rules.

• The first part of contact mechanics is the description of the forces and kinematic
constraints in contact interactions, the rules of interactions. The fancy name
for such rules is constitutive laws. Thus we need a constitutive law for friction,
a constitutive law for collisions, and a constitutive law for rolling contact.
Since all of these behaviors are complex and no-one understands any of them
very well, there are many candidate constitutive laws for all three of the cases:
friction, rolling, and collisions. They vary in their conceptual simplicity, their
ease of use in analytical or numerical calculations, and their accuracy and
applicability. We will present the simplest rules, describe some of the short-
comings and then give some guidance towards more sophisticated rules.

• The second part of contact mechanics is the analysis of motion of various me-
chanical systems that involve contact. Since most mechanical systems involve
contact in some way or another, this second part of contact mechanics is a huge
subject. It nearly encompasses all of dynamics since most mechanical systems
involve contact of some kind or another.

711
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Our primary intent in this chapter is to communicate some of the simplest contact
models and also highlight their short-comings. We start with a discussion of the
apparently unavoidable inaccuracies of contact laws before discussing some popular
laws in more detail. As far as the consequences of these laws for real systems go, we
leave that for the other chapters.

B.1 Contact laws are all rough approx-

imations
Unfortunately, there are no simple and accurate general rules for describing contact
forces. When we study the dynamics of a system that involves the interaction of
bodies we are forced to use one or another approximate description for finding the
forces of interaction in terms of the bodies positions and velocities. Such a description
is called a constitutive law or constitutive relation. Generally people write separate
constitutive laws after categorizing the motion into being one of the three major types
of contact interaction: friction, rolling, or collision. 1©1© In practice it is not always clear how

to make the distinctions between sliding
and rolling or between sliding and colli-
sion. But at least for a first pass it is a use-
ful conceptual distinction to think of slid-
ing, rolling, and collisions as three different
kinds of contact.

We must emphasize at the outset:

Constitutive laws for contact interaction are generally only rough approxi-
mations, with theory and practice differing by 5-50% for at least some of the
quantities of interest.

Equations for forces of contact are of a lower class than the fundamental equations
in mechanics. At the scale of most engineering, the momentum balance equations
are extremely accurate, with error of well less than a part per billion. Newton’s law
of gravitational attraction is a similarly accurate law. And the laws of Euclidean
(non-Riemanian) geometry and calculus (the kinds you studied) are also extremely
accurate. Less accurate are the laws for spring’s and dashpots. But still, accuracies
of one part per thousand are possible for measuring spring stiffness, say, and perhaps
parts per hundred for dashpot constants.

But the laws for the contact interactions of solids are much less accurate. Not
only is it difficult to know the coefficient of friction between two pieces of steel with
any certainty, you also can’t trust even the concept of a coefficient of friction to have
any great accuracy. It is easy to forget this inaccuracy in contact laws when one starts
to do engineering calculations because you will see contact-force equations in books.
Once we see an equation in print, we are too-easily tempted into believing it is ‘true.’
An easy mistake to make is to use contact constitutive equations with confidence, as
if accurate, to get results that are in-fact only rough approximations at best.
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B.2 Friction
When two objects are in contact and one is sliding with respect to the other, we call
the force which resists this sliding friction. Frictional contact is usually assumed to

F

F
N N

Partial Free 
Body Diagrams

A

A

B B

Figure B.1: Two bodies in contact. The
forces between them satisfy the law of ac-
tion and re-action. It is often convenient to
decompose the force of interaction into a
part F tangent to the surface of interaction
and a part N perpendicular to the surface of
interaction.

(Filename:tfigure11.contact)

be either ‘lubricated’ or ‘dry.’ When bodies are in lubricated contact they are not in
real contact at all, a thin layer of liquid or gas separates them. Most of the metal to
metal contact in a car engine is supposed to be lubricated. The contact of the car tires
with the road is ‘dry’ unless the car is ‘hydroplaning’ on worn-smooth tires on a very
wet road. The friction forces in lubricated contact are very small compared forces
of unlubricated contact. For many purposes lubricated friction forces are neglected.
There is no quick way to estimate these small lubricated slip forces. The accurate
estimation of lubricated friction forces requires use of lubrication theory, a part of
fluid mechanics. We will drop the discussion of lubricated friction forces because
they are often negligible and because estimating them is too hard.

Dry friction forces are not small and thus cannot be sensibly neglected in dynamics
problems involving sliding contact. The simplest model for friction forces is called
Coulomb’s law of friction or just Coulomb friction. But, use of even this law is full
of subtleties.

‘Rough’ and ‘smooth’
People sometimes use the words rough and smooth to denote dry friction and lubri-
cated friction. This language seems to make sense because, when wet, very smooth
things get slippery. However, despite the dominance of this intuition, in fact dry
solids do not generally have less friction when polished than when rough. So

we do not use the words rough and smooth in this book to indicate high and
low friction.

Coulomb friction
Coulomb’s law of friction, also attributed to Amonton and DaVinci, is summarized
by the simple equation:

F = µN . (B.1)

This equation, like many other simple equations, is not really a complete description
of Coulomb’s law of friction. Some words are required.

First of all the direction of the force F on body A is in the opposite direction of
the slip velocity of A relative to B. By the principle of action and reaction we deduce
that the force on body B is in the opposite direction. This force is also opposite to
the relative slip velocity of B relative to A. That is, F resists relative motion of A
and B.

The friction force F is proportional to the normal force N with the proportionality
constant µ. The constant µ is assumed to be independent of the area of contact
between bodies A and B. In the simplest renditions of Coulomb’s law µ is assumed
to be independent of slip distance, slip velocity, time of contact, etc. When contacting

Force, F

µN

-µN

F
N

slip rate, δ̇

δ̇

Figure B.2: Coulomb friction. The re-
lation between friction force F and rela-
tive slip rate δ̇ is described by the dark line.
Since there is a jump from −µN to µN in
the friction force when the slip rate goes
from negative to positive the relation is not
a proper mathematical function between F
and δ̇. Instead the relation is a curve in the
F, δ̇ plane.

(Filename:tfigure11.coulomb)

bodies are not sliding the role of friction changes somewhat. In some sense the friction
still resists slip, in fact it is the presence of the friction force that prevents slip. But
another way to think of friction is that it puts an upper limit on the size of the force
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of interaction between two bodies which seem stuck to each other. The friction force
must be less than or equal to µN in magnitude during contact.

|F | ≤ µN (B.2)

All of the discussion above can be summarized with the following equations for the
friction force

The friction force, the part of
the force of interaction which
is tangent to the surface.

❇❇�︷ ︸︸ ︷
⇀
Fon A from B = −µ

The relative slip velocity of
the contacting points.

✂✂✌︷ ︸︸ ︷
⇀
vA/B

|⇀
vA/B | N during slip

| ⇀
Fon A from B |︸ ︷︷ ︸

✂✂✍

The magnitude of the tangen-
tial part of the contact force

≤ µN︸︷︷︸
❇❇�

An upper bound on the tan-
gential part of the contact
force

during stationary contact

For two-dimensional problems where slip can only be in one direction (or the opposite)
this pair of functions describes the dark line in the friction graph of figure B.2 in which
δ̇ is the speed of relative slip.

In practice, to use these equations you (or your computer) may have to solve
mechanics problems two or three times. First assume no-slip, solve the problem,
calculate the friction force and then make sure that it is less than µN . If not then
the assumption of no-slip leads to a violation of the friction law. Then you solve the
problem again assuming there is slip to the right and therefore a known friction force
to the left. The solution of the problem will tell you the direction of slip for this
applied force. If this slip is to the left you have found a contradiction. You have to
start again assuming slip in the left and a force to the right; then make sure that the
predicted slip is indeed to the left. Most often you will find a paradox in two of the
three possibilities (slip to the left, no slip, and slip to the right), thus leaving you with
only one solution that satisfies both Newton’s laws and the equations of friction.
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B.1 Another expression for Coulomb friction: an advanced aside

The law of Coulomb friction is both simple and confusing. Part of
the confusion comes from the requirement of calculating the friction
force with one equation during slip and then not being able to find
the friction force, at least from the friction law, when there is no slip.

We would like to confuse the issue a little further now for the
case of slip on a plane. That is, slip can be in any direction on, say,
the xy-plane, not just to the right or to the left. If we define ⇀

v to
be the sliding velocity of the point of contact of the body of interest
relative to its partner in friction, and

⇀
F to be the tangential contact

force that it causes on its partner then we could write the friction law
with a pair of inequalities which must both be satisfied at all times.

⇀
v · (

⇀
F − ⇀

F
∗
) ≥ 0

| ⇀
F | ≤ µN

where ⇀
v and

⇀
F are such that these inequalities are satisfied for every

possible
⇀
F

∗
that is tangent to the slip surface and has magnitude

| ⇀
F

∗| ≤ µN . The force
⇀
F

∗
is not any actual force in the problem.

It is just a label for the set of all possible friction forces consistent
with the friction law.

The meaning of these inequalities can be seen in the figure
below. If you are a normal reader you will have two questions:

• How is this inequality the same as the Coulomb friction law
described in the text? And,

• why bother to write the friction law in this strange way?

The answer to the first question, how are these inequalities an expres-
sion of Coulomb friction, is found by considering the various cases
of slip and no-slip. To show that these inequalities imply that fric-
tion directly opposes motion during slip takes a little thought. The
reason is that

⇀
F

∗
can be any point on or inside the circle shown. By

considering the two cases that
⇀
F

∗
is on the limit-circle just clock-

wise and just counterclockwise from the actual friction force you
can see that for the inequality (

⇀
F − ⇀

F
∗
) · ⇀

v ≥ 0 for both cases, ⇀
v

must be perpendicular to the circle.

The answer to the second question, why bother, is: The pair
of inequalities shown allow the proof of various theorems about
frictional sliding, allow a simple description of friction on dis-
tributed contacts, and also allows a simple generalization to fric-
tion that is anisotropic, that is, of different magnitude in differ-
ent directions of slip. For those who are going on to study ad-
vanced solid mechanics, this expression for the friction law shows
one of the connections between friction and classical plasticity.

µN

µN

-µN

-µN

Fy

Fx

y

x

⇀
v

⇀
v

⇀
F

⇀
F

⇀
N

⇀
F -

⇀
F *

⇀
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B.3 A short critique of Coulomb friction
In short, Coulomb’s law of friction is good because

• Coulomb’s law of friction is simple.
• Coulomb’s law of friction usefully predicts many phenomena.
• It has the right trends in many regards, in that

– sliding friction is roughly independent of slip rate, and
– the friction force is roughly proportional to the normal force.

• Other candidate laws (generally) cost more in complexity than they gain in
accuracy or usefulness.

On the other hand,

• The friction coefficient is not stable, it may vary from day to day or between
samples of nearly identical materials.

• Coulomb’s law, without a separate static coefficient of friction or an explicit
dependence on rate of slip, cannot be used to explain frictional phenomena
such as

– the squeaking of doors,
– the excitement of a violin string by a bow, and
– earthquakes from sliding rocks.

• For some materials the dependence of friction on normal force is noticeably
different from linear. Rubber on road, for example, has more friction force per
unit normal force when the normal force is low. In other words the friction
force for a given normal force is greater when the area of contact is greater.
This dependence of friction on normal stress is presumably why racing cars
have fat tires.

We expand on some of these points below.

The friction coefficient is not a stable property

Jaeger, a famous rock mechanician, is said to have presented the following empirical
friction law:

A friction experiment will make a monkey out of you.

For any pair of objects and any given experiment to measure the friction coefficient,
the measured value will likely vary from day to day. This observation seems to violate
our common notions of determinacy. Why does this apparent indeterminacy happen?
Probably because friction involves the interaction of surfaces. The chemistry of a
surface can be dramatically changed by very small quantities of material (a surface is
a very small volume!). So any change in humidity, or perhaps a random finger touch,
or a slight spray from here or there can dramatically change the surface chemistry
and hence the friction.

This problem of the non-constancy of friction from day to day or sample to
sample cannot be overcome by a better friction law. So unless one understands one’s
materials and their chemical environment extremely well, all friction laws, however
sophisticated are doomed to large inaccuracy.
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Coulomb’s friction law neglects the drop in the friction force
at the start of sliding
Most simple treatments of friction immediately introduce two coefficients of friction.
The sliding coefficient is also sometimes called the dynamic coefficient µd or the
kinetic coefficient µk . The other coefficient of friction is the ‘static’ coefficient of
friction µs .

According to standard lore, each pair of bodies has friction which is described
by the static and dynamic coefficients of friction µs and µd with the understanding
that the static coefficient of friction is greater than the dynamic coefficient of friction,
µs > µd .

Force, F

µdN
µsN

-µdN
-µsN

F
N

slip rate, δ̇

δ̇

Figure B.3: Static-Dynamic Friction.
The relation between friction velocity and
friction force is such that at all times the pair
of values is found on the dark line shown.
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According to this description, the relation between friction velocity and friction
force is as given in figure B.3. This description is useful for roughly characterizing
the following phenomenon:

It is harder to start something sliding than it is to keep it sliding.
If the dynamics problem you are working on depends on this phenomenon the

static-dynamic friction law is one way of treating it. But you should be forewarned
that, though this law is great for qualitatively explaining how a bow excites a violin
string, or why anti-lock brakes work better than all out skidding, it is not very accurate.

If one does careful experiments to try to understand in more detail how the friction
force drops from a higher value to a lower one as slip starts, one discovers a world of
phenomena that are not well captured with two simple coefficients of friction. Further,
using two coefficients of friction leads to various paradoxes and indeterminacies when
one studies slightly more complex problems. (See box B.2 on page 718.)

Friction is not always proportional to normal force
The Coulomb friction equation, applicable during slip or at impending slip,

F = µN

is most directly translated into English as: the friction force is proportional to the
normal force. This proportionality is, as far as we know, not fundamental, but rather
an often reasonable approximation to many experiments. Why the interaction of so
many solids obeys this proportionality so well is not known, though there are a few
explanations that make this experimental result theoretically plausible.

In some books you will see an additional law of friction stated as:
The friction force is independent of the area of contact.

By ‘area of contact’ is meant the area you would measure macroscopically. For
a 4 in × 8 in brick sliding on a pavement the area of contact is 32 in2 1©. The

1© Another concept of area of contact is
the actual area of contact at all the little as-
perities. This definition of area of contact
is useful for tribologists (people who study
friction) but is of little concern to people
interested in the mechanics of macroscopic
things.

N
N

N

F F
F F

2N

2F

N

F

⇒

⇒ ⇒

N

Figure B.4: Considering two blocks side
by side as one block shows how friction
being proportional to normal force means
friction is independent of area of contact.
The two blocks have twice the area as one
block, but a given normal force causes the
same friction force.

(Filename:tfigure11.area)

independence of force with area is actually equivalent to the proportionality of friction
force with normal force. Let’s explain, or at least let’s give the gist of the argument.
Imagine two identical blocks side by side on a plane as in figure B.4. The force
pushing down on each is N and the friction force to cause slip is F = µN . The act
of glueing the two together side-by-side should have no effect. Now we have one
bigger block with twice the normal force, twice the friction force and twice the area
of contact. If we assume that friction force is proportional to normal force, we know
that if we now cut the normal force in half then the friction force will be cut in half.
But now we have a new block with twice the area of contact as each of the original
blocks and it carries the same normal force and the same friction force. Thus the
friction force is unchanged by doubling the area of contact.

But in fact, some materials have friction force which does depend on the normal
force, or for a given normal force, does depend on the area of contact. The most
prominent example is the friction between rubber and pavement. For a given weight
car, a larger friction force can be generated with a fat tire than a narrow one. That is,
the ratio of the friction force to normal force decreases as the normal force increases.
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B.2 A problem with the concept of static friction

The commonly used static friction law assumes that the friction
force instantly jumps from the static value µs N to the dynamic value
µd N when slip starts. If the contacting surfaces have more than one
contact point this jump from static to dynamic friction implicitly
makes use of two simultaneous limits.

1. One limit is that the body is infinitely stiff.

2. The other limit is that the coefficient of friction instantly
drops from the static value µs to the dynamic value µk when
slip starts.

That there is a problem with simultaneous use of these limits
is highlighted by considering a body that has finite stiffness and for
which the friction gradually drops as slip starts. We should then
hope to recover the concept of static friction and rigid body slip as
a limit of this model. But, there is trouble.

Let’s get a little more specific.

Slip weakening friction law
The friction law we will employ is a ‘slip-weakening’ friction law
described by the graph below. Although this description is obviously
incomplete if slip occurs more than once or reverses direction, it
suffices for our considerations.

slip, δd

partial FBD
F
N
µs

µd F N δ̇

Here the describing equations are:

F/N ≤ µs if no slip has occurred

F/N = µs − (µs − µd )δ/d if δ ≤ d

F/N = µd if δ ≥ d

If we keep µs and µd constant and look at the limit as d → 0
this friction law becomes the classic ‘static-dynamic’ friction law
which we are now critiquing. There are other friction laws, such
as those with rate dependence, we could use that reduce to static-
dynamic friction in some limit, but these laws also would lead to
problems something like those we discuss below.

Model of a rigid body
The model for a rigid body that we employ is: two point masses are
connected with a spring. In the limit as the spring constant k goes
to infinity this model becomes, at least in the common sense of the
words, a ‘rigid body.’

k km/2 m/2 m/2 m/2∞

A sliding problem
Now let’s consider the problem of initial slip of the system shown.
For simplicity and definiteness let’s assume the spring is relaxed in
the configuration shown.

k
m/2m/2

mg/2 mg/2

mg/2 mg/2

F(t)

F(t)
FB FA

B A

F(t)

t

Now, we very slowly increase the applied force F until both masses
end up sliding. Here is the question:

What force does it take to start the pair of masses sliding?

There is no force causing block B to slide except the spring tension.
But the spring tension does not build until the spring stretches due to
the slip of A. So F increases until F = µsmg/2 at which time block
A starts to slide. When the tension in the spring reaches µsmg/2
then block B starts to slide. What is the value of F at this time?

We could work out the details for every value of the parameters,
but we need not do this generality to make our point. First let’s take
the limit that the body is rigid k → ∞.

Rigid body, gradual friction drop
In this case the two masses always move together. As slip starts
the two masses both have a friction force of µsmg/2 and the force
required to cause slip of both masses is

F = µsmg at slip,

as expected. As motion progresses this force gradually reduces to
µd mg at a rate that depends on the frictional slip weakening distance
d. But for any finite value of d the applied force must first reach
µsmg before slip proceeds.

Compliant body, sudden friction drop
Now let’s take the limit the other way. Let’s assume that the spring
has fixed stiffness, possibly very high, and look at the limit d → 0,
the limit which reduces the friction law to the classical law. In this
case block A breaks entirely free before there is any tension in the
spring. Exactly when block B will start to slip depends on the details
of all the parameters, so it turns out that finding the start of slip of
block B is a genuinely complicated problem. But, no matter what,
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the spring stretches some before block A comes to rest. Block A
may slip several times before the spring stretch is enough to cause
the slip of block B, again the details depend on the relative values
of µs and µd . But eventually block B will be excited into sliding.
This slip will most likely start when block A is already sliding. Thus
the applied force need only overcome the dynamic friction of block
A µd mg/2 and the static friction µsmg/2 of block B. Due to the
complex dynamics of the situation, it turns out that the two blocks
can sometimes end up sliding if the applied force is just a hair above
µd mg, even when K is very large (but still finite).

F =? (something less than µsmg)

The rigid-body static-friction paradox
If we take the limit k → ∞ and then d → 0 we get an overall
effective coefficient of static friction µs for the whole body. If
instead we take the limit d → 0 and then k → ∞ the effective static
friction limit does not exist, but for some arbitrarily large values of
k it can be as low as µd . That is,

the problem of initial slip of a rigid body with more than one point
of contact and with static-dynamic friction is ill-defined

This paradox can be resolved a number of ways. One is to assume
it away, effectively taking the k → ∞ limit first. Another more
complex solution, beyond this book and beyond the level of detail
that most people want to deal with, is to only use more sophisticated
friction laws and to keep track of solid deformation.

Compromise
To avoid these issues by users of this text we just use one coefficient
of friction µs = µd = µ. May the user beware if using a more
complex law than this one.
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All things considered, Coulomb’s law is alright
In this book we generally assume that µd = µs = µ; there is just one coefficient of
friction. Most often it is reasonable to assume that static friction is close enough to
dynamic friction that it is not worth the trouble to distinguish them. Of course there
are situations which one may want to understand where the transition from static to
dynamic friction is essential. For these cases a static-dynamic friction model might
provide some insight, but it may also cause basic modeling problems. Coulomb’s
law with one coefficient of friction is the simplest dry friction constitutive law. It
is the appropriate description for most purposes. It is reasonably accurate and more
elaborate laws are not particularly more accurate.
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B.4 Collision mechanics
When two solids bump into each other there must be a nearly discontinuous change
in their velocities and/or angular velocities to keep the bodies from interpenetrating.
This sudden change in velocity can only come about when there are very large forces
of interaction. The estimation of these short-lived yet large forces and their effects
on the motions of rigid bodies is the central problem in collision mechanics.

Why is it hard to find a good collision law
Ideally one would like a rule to determine how bodies move after a collision from
how they move before the collision. Such a rule would be called a collision law or a
constitutive relation for collisions. That accurate collision laws are rare at best might
be surmised from a basic problem. Just the phrase rigid body collisions is in some
sense a contradiction in terms, an oxymoron. The force generated in the contact
comes from material deformation, and deformation is just what we generally try to
neglect when doing rigid body mechanics.

There is a temptation to say that one wants to continue to neglect deformation
during the collision. And most collision laws are formulated with this approach.
But such an approach is likely to be doomed to inaccuracy in some situation or
another because the actual mechanics of the force generation at the contact comes
from material deformation, deformation that is not necessarily restricted to a small
neighborhood near the contacting points.

For simple situations, like a ball dropping vertically on a concrete floor, reasonably
approximate collision laws may be formulated and used. But for complex shaped
bodies touching at various points that are generally not known a priori, there is
generally no collision law that can be expected to be accurate.

Before Collision

After Collision

a

a

b

b
va'

va

vb'

vb

Figure B.5: The rate of approach of two
about-to-collide points is va − vb . The
rate of separation after collision is v′

b − v′
a .

The simplest collision law says v′
b − v′

a =
e(va − vb), where e is the coefficient of
restitution.

(Filename:tfigure11.vba)

With this caveat, we now introduce the concept of coefficient of restitution e for
use in the simplest collisions.

The coefficient of restitution e.
The most commonly used collision law can be summarized with this simple equation,

The speed with which collid-
ing points are separating after
the collision.

❇❇�︷ ︸︸ ︷
(v′

b − v′
a) = e︸︷︷︸

❇❇�

The coefficient of restitution,
assumed to be a constant for
given materials.

The speed at which colliding
points are approaching be-
fore collision.

✂✂✌︷ ︸︸ ︷
(va − vb), (B.3)

which can be summarized as, the rate of separation is proportional to the rate of
approach. The coefficient e is called Newton’s or Poisson’s coefficient of restitution.
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363, 638

Coriolis, 521, 549
general motion

cartesian coordinates, 281
path coordinates, 523

moving frames, 547
absolute acceleration, 548
acceleration of point glued to

moving frame, 548
acceleration relative to a body

or frame, 547
one-dimensional motion, 219
relative

general motion of a rigid body,
443

relative motion of points on a rigid
body, 385, 641

action and reaction
free body diagrams, 83
partial FBD’s of interacting bod-

ies, 96
angular momentum about a point C

theory box, one-dimensional mo-
tion, 345

angular momentum about a point C
one-dimensional motion, 345

angular acceleration
general motion of a rigid body, 443

2D, 443
angular frequency of vibration, 242
angular momentum

center of mass, 320

circular motion at constant rate
2D, 421

angular momentum about a point C,
318

alternate expressions, 321
relating it to its rate of change, 320
simplifying using the center of

mass, 319
angular velocity

general motion of a rigid body, 441
2D, 441

rigid body in 2-D , 378, 640
rigid body in 3-D, 640

balancing units, 701
ball and socket joint

free body diagrams, 87
belt drive, 780
body forces

free body diagrams, 81
brush gearing, 778

c, linear damping coefficient, 257
Calculation strategies and skills, viii

counting equations and
unknowns, 51

understanding the question, ix
carrying units, 702
cartesian coordinates

general motion
acceleration, 281
position, 281
velocity, 281

particle under the influence of no
force, 585

center of mass of a system, 316
center of percussion, 513
centrifugal force, 81
centrifugal inertial terms, 694
centripetal acceleration, 443, 520, 643,

678, 680
changing units, 702, 703
Circular motion , 359
circular motion at constant rate

acceleration, 360
2D, 360



INDEX 839

3D, 638
acceleration derivation, 361
angular momentum

2D, 421
centripetal acceleration, 643
dynamic balance, 693
kinematics, 360

2D, 360
kinetic energy

2D, 421
linear momentum

2D, 420
motion quantities

2D, 420
rate of change of angular momen-

tum
2D, 421

rate of change of linear momentum
2D, 420

static and dynamic balance, 693
static balance, 693
velocity, 360

2D, 360
3D, 638

velocity derivation, 361
circular motion at variable rate

2-D and 3-D, 384, 639
acceleration, 638
centripetal acceleration, 678, 680
energy, 676
examples, 371
extended bodies in 3-D, 676
geometry of, 676
linear momentum balance, 422
rotation of a rigid body about a

fixed axis, 677
simple pendulum, 371
velocity, 638
velocity derivation, 363

Circular motion: advanced topics , 637
coefficient of friction, µ, 715
coefficient of restitution, e, 721
collisions, 721

coefficient of restitution, e, 721
collision laws, 721
free body diagrams, 89

computers, x
graphing of curves, 360

constant rate circular motion
acceleration, 360

2D, 360
3D, 638

angular momentum
2D, 421

dynamic balance, 693
kinematics, 360

2D, 360
kinetic energy

2D, 421
linear momentum

2D, 420
motion quantities

2D, 420
rate of change of angular momen-

tum
2D, 421

rate of change of linear momentum
2D, 420

static and dynamic balance, 693
static balance, 693
velocity, 360

2D, 360
constitutive laws

dashpots, 89
springs, 89
contact mechanics, 711, 712

constrained bodies
one-dimensional motion, 343

constrained motion and applied forces
free body diagrams, 84

Constrained straight line motion , 329
contact mechanics

collisions, 721
coefficient of restitution, 721
collision laws, 721

constitutive laws, 711, 712
friction, 713

Coulomb friction, 713, 715,
716

normal force, 717
slip weakening, 718
static friction, 718

motion, 711
Contact: friction, rolling, and colli-

sions , 711
Coriolis acceleration, 521, 549
critical damping, 258
cross product, 32

distributive law, 41
special cases, 37

curve graphing, 360

damped oscillations, 257
measurement, 258
solutions, 258

damping coefficient, c, 257
dashpots

free body diagrams, 89
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differential equations
ordinary, 247
ordinary, summary box of sim-

plest ODE’s, 226
dimensionless variables, 705
dimensions, 701, 702
direct differentiation method, 538

summary, 539
disk

moment of inertia, 414, 666
dot product, 23

finding components using, 24
dot products

with other than the standard basis,
25

drawing free body diagrams, 81
dynamic balance

circular motion at constant rate,
693

Dynamics of particles , 217
Dynamics: What Is It

How Is It Done?
calculation strategies and skills,

viii
units and dimensions, 701

eb, 523
EK, 233
EK, 321
êb, 523
ên , 522
êR , 361, 519
êt , 522
êθ , 361, 519
eigenvectors of [I ], 664
energy

circular motion at variable rate,
676

energy balance equation
circular motion at constant rate,

360
energy balance

equation, 321
equivalent force systems

in free body diagrams, 83
extended bodies in 3-D

circular motion at variable rate,
676

f , natural frequency of vibration, 243
force

centrifugal, 81
what is, 2

force units, 702

forced oscillations
frequency response, 266

measurement, 267
forced oscillations and resonance, 264
forces that do no work, 293
frames˙⇀Q formula derivation, 532

˙⇀Q formula summary, 537
acceleration, 547

absolute acceleration, 548
acceleration of a point glued to

moving frame, 548
acceleration relative to a body

or frame, 547
direct differentiation method

summary, 539
velocity

absolute velocity, 545
free body diagrams, 80

ball and socket joint, 87
body forces, 81
collisions, 89
constrained motion and applied

forces, 84
cuts at hinges, 86
cuts at rigid connections, 84
definition and features, 80
equivalent force systems in, 83
friction, 90
how to draw, 81
ideal wheels, 93
interactions, 83
string, rope, wires, light chain, 87
summary, 95

Free body diagrams , 79
frequency response, 266

measurement, 267
friction, 713

coefficient of friction, µ, 715
Coulomb friction, 713, 715, 716
free body diagrams, 90
normal force, 717
slip weakening, 718

Fuller, Buckminster, 138

gears, 183
Sturmey-Archer hub, 470

General motion of a point mass or sys-
tem of point masses

cartesian coordinates, 281
particle under the influence of no

force, 584
path coordinates, 522
polar coordinates, 518
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General Motion of a Rigid Body
acceleration

absolute, 443
relative, 443

angular acceleration, 443
2D, 443

angular velocity, 441
2D, 441

momenta balance, 452
General Motion of a rigid body

pure rolling in 2-D
planetary gear, 470

pure rolling in2D
Sturmey-Archer hub, 470

General motion of a rigid body
pure rolling in 2-D , 467

General Motion of a rigid body
rolling of round objects on round

surfaces, 468
General Motion of a Rigid Body

summary of motion quantities,
453

velocity, 438
absolute, 442
relative, 441

General planar motion of particles and
rigid bodies , 437

graphing curves, 360
gyration, radius of, 411
⇀
HC, 318, 345
˙⇀HC, 318, 345

harmonic oscillator, 240
one-dimensional motion, 240

hinges
free body diagrams, 86

hoop
moment of inertia, 414, 666

[I], 420, 672
[I], 410, 661
ideal pulley

in a free body diagram, 114
ideal wheels

free body diagrams, 93
interactions

free body diagrams, 83
Introduction to vibrations , 701

⇀
κ , curvature, 522
kinematics

advanced, preview summary box,
324

circular motion at constant rate,
360

2D, 360
direct differentiation method, 538

summary, 539
one-dimensional motion, 219

Kinematics using time-varying base
vectors , 517, 581

kinetic energy, 321
alternate form, 321
circular motion at constant rate

2D, 421
neglecting in the work-energy

equation, 292
one-dimensional motion, 233
rate of change of, 321

λ, oscillation frequency, 242
⇀
L, 222, 315
˙⇀L, 222, 317
left-hand side of the energy equation

forces that do no work, 293
potential energy of a force, 293
work of a force, 292

length
units, 701, 702

lever, 182
light chain

free body diagrams, 87
linear algebraic equations, 60
linear damping coefficient, c, 257
linear momentum, 317

circular motion at constant rate, 2-
D , 420

one-dimensional motion, 222
rate of change of, 317

linear momentum balance
circular motion at variable rate,

definition of, 422
logarithmic decrement, 258
loudspeaker

resonance, 266

µ, coefficient of friction, 715
mass

units, 701
matrices

solving systems of equations, 60
mechanics, its three pillars, 2
mechanics, what is it, 1
mixed triple product, 38
moment of inertia

polar, 410
2-D examples, 414, 666
used in equations of mechanics,

420, 672
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moment of inertia matrix, 676
derivation, 668
sphere, 662

moment of inertia, scalar and matrix,
410, 661

momenta balance
general motion of a rigid body, 452

momentum balance equations
circular motion at constant rate,

360
motion

contact mechanics, 711
motion quantities

circular motion at constant rate
2D, 420

one-dimensional motion, 222
rigid body spinning about a fixed

axis, 661
summary, 322

moving frames
˙⇀Q formula derivation, 532
˙⇀Q formula summary, 537

acceleration, 547
absolute acceleration, 548
acceleration of a point glued to

moving frame, 548
acceleration relative to a body

or frame, 547
direct differentiation method, 538

summary, 539
velocity

absolute velocity, 545

natural frequency of vibration, f , 243
negligible mass, 111
Negligible Motion: Statics

kinetic energy, neglecting in the
work-energy equation, 292

left-hand sides of the momentum
balance equations, 107

negligible mass, 111
three-force members, 113
two-force bodies, 111

non-Newtonian frames, 284

O’, 344
one-dimensional kinematics and me-

chanics, 219
one-dimensional motion

theory box, angular momentum
about a pointC , 345

ordinary differential equations
summary box of simplest ODE’s,

226

oscillation frequency, λ, 242
overdamping, 258

parallel axis theorem
2D, 411
2D, theory box, 413
3D, 663
3D, theory box, 670

path coordinates
base vector geometry, 522
binormal base vector, êb, 523
curvature, ⇀

κ , 522
formulae, 524
general motion, 522

acceleration, 523
velocity, 523

normal base vector, ên , 522
osculating (kissing) circle, 522

parametric equation, 525
particle under the influence of no

force, 586
radius of osculating circle, ρ, 523
tangent base vector, êt , 522
tangent plane, 522

pendulum
spherical, 649

period of vibration, 242
perpendicular axis theorem

2-D , theory box, 413
perpendicular axis theorem for planar

objects, 412
plate

moment of inertia, 414, 666
Plato

discussion of spinning in circles,
386

point mass
moment of inertia, 414, 666

polar coordinates
acceleration derivation, 361
centripetal acceleration, 520
Coriolis acceleration, 521
general motion, 518

acceleration, 520
position, 518
velocity, 519

particle under the influence of no
force, 585

radial base vector, êR , 519
transverse base vector, êθ , 519
unit vectors, 361, 638
velocity derivation, 361

polar moment of inertia, 421
position
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general motion
cartesian coordinates, 281
polar coordinates, 518

one-dimensional motion, 219
potential energy of a force, 293
Power and rate of change of kinetic en-

ergy, 291
product rule, 282
products of three vectors, 38
pulley

ideal,in a free body diagram, 114
pulleys, 331
pure rolling

2D, 467

˙⇀Q formula, 532
derivation, 532
summary, 537

radius of gyration, 411
RAP, pseudo-computer language, xi
rate of change of linear momentum

one-dimensional motion, 222
rate of change of a

non-Newtonian frame, 284
Rate of change of a vector, 281
rate of change of a vector

frame dependency, 283
product rule, 282

rate of change of angular momentum
about a point C

one-dimensional motion, 345
rate of change of angular momentum

circular motion at constant rate
2D, 421

geometry of in circular motion at
variable rate, 676

rate of change of angular momentum
about a point C

theory box, one-dimensional mo-
tion, 345

rate of change of angular momentum
about a point C, 318

alternate expressions, 321
relating it to angular momentum,

320
rate of change of kinetic energy, 321
rate of change of linear momentum, 317

circular motion at constant rate, 2-
D , 420

relation of force to motion, 4
relative motion

one-dimensional motion, 274
relative motion of points on a rigid

body, 385, 641

acceleration, 385, 641
velocity, 385, 641

resonance, 264
loudspeaker, 266

restitution, coefficient of, e, 721
rigid body motion, 453

acceleration
absolute, 443
relative, 443

angular acceleration, 443
angular velocity, 441

2D, 441
centripetal acceleration, 443
general motion of a rigid body, 452
velocity, 438

absolute, 442
relative, 441

rigid body simplifications
summary box, 324

rigid connections
free body diagrams, 84

rod
moment of inertia, 414, 666

rolling of round objects on round sur-
faces, 468

rope
free body diagrams, 87

rotating frames
introduction, 386, 642

rotation of a rigid body about a fixed
axis, the general case, 677

scalar
summary tables, 8

simple pendulum, 371
sliding objects

one-dimensional motion, 346
slip weakening, 718
sphere

moment of inertia matrix, 662
spherical pendulum, 649
spring-mass system

examples, 246
springs

free body diagrams, 89
free body diagrams of, 88
parallel and series, 172, 252

static and dynamic balance
circular motion at constant rate,

693
static balance

circular motion at constant rate,
693

static friction, 718
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statics
kinetic energy, neglecting in the

work-energy equation, 292
negligible mass, 111
three-force members, 113
two-force bodies, 111

Statics , 107
Straight Line Motion

2-D and 3-D forces, 343
acceleration, 219
harmonic oscillator, 240
kinetic energy, 233
linear momentum, 222
one-dimensional kinematics and

mechanics, 219
one-dimensional motion quanti-

ties, 222
position, 219
pulleys, 331
rate of change of linear momen-

tum, 222
velocity, 219

Straight-Line Motion, 329
Straight-line motion

angular momentum about a point
C, 345

Straight-Line Motion
Highly Constrained Bodies, 343

Straight-line motion
rate of change of angular momen-

tum about a point C, 345
sliding objects, 346

Straight-Line Motion
theory box, rate of change of

angular momentum about a
pointC , 345

string
free body diagrams, 87

Sturmey-Archer hub, 470
sweet spot, 513

tensegrity structure, 133, 138
three-force members, 113
time

units, 701
triple cross product, 639

geometry of, 643
two-force bodies, 111

undamped harmonic oscillator
natural frequency of vibration, f ,

243
oscillation frequency, λ, 242
period of vibration, 242

solution, 242
underdamping, 258
unforced damped harmonic oscillator,

257
critical damping, 258
linear damping coefficient, c, 257
logarithmic decrement, 258
overdamping, 258
solutions, 258
underdamping, 258

unforced harmonic oscillator
summary, 259

unit vectors
polar coordinates, 361

units
balancing, 701
carrying, 702
changing, 702, 703
computers and calculators, 704
consistent system of

table, 705
dimensionless variables, 705
force, 702
guidelines, 704
length, 701
mass, 701
time, 701

units and dimensions, 701

variable rate circular motion
2-D and 3-D, 384, 639
acceleration, 638
acceleration derivation, 363
energy, 676
examples, 371
extended bodies in 3-D, 676
geometry of, 676
linear momentum balance, 422
rotation of a rigid body about a

fixed axis, 677
simple pendulum, 371
velocity, 638

vector
cross product, 32
dot product, 23

finding components using, 24
how to write, 9
identities, 37
mixed triple product, 38
products of three vectors, 38
rate of change of a, 281

frame dependency, 283
non-Newtonian frame, 284
product rule, 282
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skills, 27, 50
summary box, 9
triple cross product, 639

geometry of, 643
vector equations

reduction of into scalar equations,
60

Vector skills for mechanics , 7
vectors and scalars, 8
vectors, matrices, and linear algebraic

equations, 60
velocity

absolute
general motion of a rigid body,

442
as a function of position, 225
circular motion at constant rate,

360
2D, 360

circular motion at constant rate,
derivation, 361

circular motion at variable rate,
363, 638

general motion
cartesian coordinates, 281
path coordinates, 523
polar coordinates, 519, 520

general motion of a rigid body, 438
moving frames

absolute velocity, 545
one-dimensional motion, 219
relative

general motion of a rigid body,
441

relative motion of points on a rigid
body, 385, 641

Vibrations
energy method, single DOF sys-

tems, 603
forced oscillations

frequency response, 266
forced oscillations and resonance,

264
resonance

loudspeaker, 266
undamped harmonic oscillator

energy, 245
oscillation frequency, 242
period of vibration, 242
solution, 242

unforced damped harmonic oscil-
lator, 257

critical damping, 258

linear damping coefficient, c,
257

logarithmic decrement, 258
measurement, 258
overdamping, 258
solutions, 258
underdamping, 258

unforced harmonic oscillator
summary, 259

wires
free body diagrams, 87

work of a force, 292

Zero-force members, 132



Momenta and energy

Linear Momentum Angular Momentum Kinetic Energy

What system

⇀
L ˙⇀L = d

dt

⇀
L

⇀
HC ˙⇀HC = d

dt

⇀
HC

EK

In General

Lx ı̂ + L y ̂ + Lz k̂

= mtot
⇀
vcm

= d
dt (mtot

⇀
rcm)

L̇ x ı̂ + L̇ y ̂ + L̇ z k̂

= mtot
⇀
acm

“F = ma”

HCx ı̂ + HCy ̂ + HCz k̂

= ⇀
r cm/C × ⇀

vcmmtot + ⇀
H cm

= d
dt (no such thing)

ḢCx ı̂ + ḢCy ̂ + ḢCz k̂

= ⇀
r cm/C × ⇀

acmmtot + ˙⇀H cm

= (no simple general expression)

1

2
mtot v2

cm + EK/cm

One Particle P mP
⇀
vP mP

⇀
aP

⇀
r P/C × ⇀

v P mP
⇀
r P/C × ⇀

aPmP
1

2
mPv2

P

System of
Particles

∑
all particles i

mi
⇀
v i

∑
all particles i

mi
⇀
a i

∑
all particles

⇀
r i/C × ⇀

v i mi

∑
all particles

⇀
r i/C × ⇀

a i mi
1

2

∑
all particles

v2
i mi

Continuum
∫

all mass

⇀
v dm

∫
all mass

⇀
a dm

∫
all mass

⇀
r /C × ⇀

v dm
∫

all mass

⇀
r /C × ⇀

a dm
1

2

∫
all mass

v2 dm

System of Systems
(eg. rigid bodies)

∑
all sub-systems

mi
⇀
v i

∑
all sub-systems

mi
⇀
a i

∑
all sub-systems

⇀
HCi

∑
all sub-systems

˙⇀HCi

∑
all sub-systems

EKi

Rigid Bodies

One rigid body
(2D and 3D) mtot

⇀
vcm mtot

⇀
acm

⇀
r cm/C × ⇀

vcmmtot + [Icm] · ⇀
ω︸ ︷︷ ︸

⇀
H cm

⇀
r cm/C × ⇀

acmmtot

+ [Icm] · ˙⇀ω + ⇀
ω × ⇀

H cm︸ ︷︷ ︸
⇀̇
H cm

1

2
mtot v2

cm

+ 1

2
⇀
ω · [Icm] · ⇀

ω︸ ︷︷ ︸
EK/cm

2D rigid body
in xy plane
with ⇀

ω = ωk̂

mtot
⇀
vcm mtot

⇀
acm

⇀
r cm/C × ⇀

vcmmtot + I cm
zz ωk̂︸ ︷︷ ︸
⇀
H cm

⇀
r cm/C × ⇀

acmmtot + I cm
zz ω̇k̂︸ ︷︷ ︸
⇀̇
H cm

1

2
mtot v2

cm

+ 1

2
I cm
zz ω2︸ ︷︷ ︸

EK/cm

One rigid body
if

C is a fixed point

if
C is a fixed point

(2D and 3D)

mtot
⇀
vcm mtot

⇀
acm [IC] · ⇀

ω = ⇀
HC [IC] · ˙⇀ω + ⇀

ω × ⇀
HC

1

2
⇀
ω · [I

C
] · ⇀

ω

2D rigid body

with ⇀
ω = ωk̂

mtot
⇀
vcm mtot

⇀
acm I C

zzωk̂

I Co
zzω̇k̂

“M = Iα”
1

2
I C
zzω

2

TABLE I

(1)

(a) (b) (c) (d) (e)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

The table has used the following terms:
mtot =total mass of system,
mi = mass of body or subsystem i,
⇀
r cm/C = the position of the center of mass relative to
point C ,
⇀
v i = velocity of the center of mass of sub-system or
particle i ,
⇀
a i = acceleration of the center of mass of sub-system
i ,
⇀
HCi = angular momentum of subsystem i relative to
point C.
˙⇀HCi = rate of change of angular momentum of sub-

system i relative to point C.

⇀
H cm = ∑

⇀
ri/cm × (mi

⇀
v i ) angular momentum about

the center of mass˙⇀H cm = ∑
⇀
ri/cm × (mi

⇀
a i ) rate of change of angular

momentum about the center of mass
⇀
ω is the angular velocity of a rigid body,
˙⇀ω = ⇀

α is the angular acceleration of the rigid body,
[Icm] is the moment of inertia matrix of the rigid body
relative to the center of mass, and
[Io] is the moment of inertia matrix of the rigid body
relative to a fixed point (not moving point) on the body.



Summary of methods of calculating velocity and acceleration

Method Position Velocity Acceleration
In general, as measured
relative to the fixed
frame F .

⇀
r or ⇀

r P or ⇀
r P/O

⇀
v or ⇀

v P or ⇀
v P/F

⇀
a or ⇀

a P or ⇀
a P/F

Cartesian Coordinates rx ı̂ + ry ̂ + rz k̂
vx ı̂ + vy ̂ + vz k̂

= ṙx ı̂ + ṙy ̂ + ṙz k̂

ax ı̂ + ay ̂ + az k̂ = v̇x ı̂ + v̇y ̂ + żz k̂

= r̈x ı̂ + r̈y ̂ + r̈z k̂

Polar Coordinates/
Cylindrical
Coordinates

RêR + zk̂ vR êR + vθ êθ + vz k̂

= ṘêR + Rθ̇ êθ + żk̂

aR êR + aθ êθ + az k̂

= (R̈ − Rθ̇2)êR + (Rθ̈ + 2Ṙθ̇ )êθ + z̈k̂

Path Coordinates not used vêt
at êt + an ên

= v̇êt + (v2/ρ)ên

Using data from a
moving frame B with
origin at O ′ and
angular velocity
relative to the fixed
frame of ⇀

ωB . The
point P ′ is glued to B
and instantaneously
coincides with P .

⇀
r O ′/O + ⇀

r P/O ′

⇀
v P ′/F + ⇀

v P/B =

⇀̇
r O ′/O + ⇀

ωB × ⇀
r P ′/O ′︸ ︷︷ ︸

⇀
v P ′/F

+ B ⇀̇
r P/O ′︸ ︷︷ ︸
⇀
v P/B

⇀
a P ′/F + ⇀

a P/B + 2⇀
ωB × ⇀

v P/B =

⇀
a P ′/F︷ ︸︸ ︷

⇀̈
r O ′/O + ⇀

ωB × ⇀
ωB × ⇀

r P ′/O ′ + ⇀̇
ωB × ⇀

r P ′/O ′

+ B ⇀̈
r P/O ′︸ ︷︷ ︸
⇀
a P/B

+2⇀
ωB × ⇀

v P/B

‘the 5-term acceleration formula’

Some facts about path coordinates
The path of a particle is ⇀

r (t).

êt ≡ d ⇀
r (s)

ds
, êt = d ⇀

r (t)

dt

dt

ds
=

⇀
v

v
,

⇀
κ ≡ d êt

ds
= d êt

dt

1

v
, ên =

⇀
κ

|⇀
κ | , eb ≡ êt×ên, ρ = 1

|⇀
κ | .

Summary of the direct differentiation method
In the direct differentiation method, using moving frame B, we calculate

⇀
v P

⇀
v P

= d

dt
⇀
r P

= d

dt

[
⇀
r O ′/O + ⇀

r P/O ′
]∥∥

= d

dt

[
(x ı̂ + y̂ + zk̂) + (x ′ ı̂′ + y′̂ ′ + z′k̂

′
)
]

= (ẋ ı̂ + ẏ̂ + żk̂) + (ẋ ′ ı̂′ + ẏ′̂ ′ + ż′k̂
′
) +[

x ′(⇀
ωB × ı̂

′
) + y′(⇀

ωB × ̂
′
) + z′(⇀

ωB × k̂
′
)
]

but stop

as follows: 

short of identifying these three groups of three terms as ⇀
v P = ⇀

v O ′/O + ˙⇀r rel + ⇀
ωB × ⇀

r P/O .

We c

by using a combination of the product rule of differentiation and the facts that

ould calculate ⇀
a P similarly and would get a similar formula with 15 non-zero terms

˙̂ı′ = ⇀
ωB × ı̂

′, ˙̂ ′ = ⇀
ωB × ̂

′, and
˙̂
k

′ = ⇀
ωB × k̂

′
,

(3 for each term in the ‘five-term’ acceleration formula).

Table II

x

y

x'

y'

P

⇀
r P

⇀
r P/O′

⇀
r O′/O

B

F
O

O'



Object [I ]

[I cm] = m

[
0 0 0
0 0 0
0 0 0

]

[I O ] = m


 y2 + z2 −xy −xz

−xy x2 + z2 −yz
−xz −yz x2 + y2




[I cm] =

 y2

/cm + z2
/cm −x/cm y/cm −x/cm z/cm

−x/cm y/cm x2
/cm + z2

/cm −y/cm z/cm

−x/cm z/cm −y/cm z/cm x2
/cm + y2

/cm


 d m

If the axes are principal axes of the body.︷ ︸︸ ︷
[I cm] =

[
A 0 0
0 B 0
0 0 C

] With A, B, C ≥ 0 and A +
B ≥ C, B + C ≥ A, and
A + C ≥ B.

[I o] =

∫

∫

∫

∫


 y2

/o + z2
/o −x/o y/o −x/oz/o

−x/o y/o x2
/o + z2

/o −y/oz/o

−x/oz/o −y/oz/o x2
/o + y2

/o


 d m

[I o] = [I cm] + m


 y2

cm/o + z2
cm/o −xcm/o ycm/o −xcm/ozcm/o

−xcm/o ycm/o x2
cm/o + z2

cm/o −ycm/ozcm/o

−xcm/ozcm/o −ycm/ozcm/o x2
cm/o + y2

cm/o




︸ ︷︷ ︸
The 3D Parallel Axis Theorem

[I cm] =




y2
/cm −x/cm y/cm 0

−x/cm y/cm x2
/cm 0

0 0 x2
/cm + y2

/cm︸ ︷︷ ︸
I cm
zz


 d m

If the axes are principal axes of the body.︷ ︸︸ ︷
[I cm] =

[
A 0 0
0 B 0
0 0 C

]
With A+B = C (The perpen-
dicular axis theorem). Also,
A ≥ 0, B ≥ 0.

[I o] =

 y2

/o −x/o y/o 0
−x/o y/o x2

/o 0
0 0 x2

/o + y2
/o


d m

[I o] = [I cm] + m




y2
cm/o −xcm/o ycm/o 0

−xcm/o ycm/o x2
cm/o 0

0 0 x2
cm/o + y2

cm/o︸ ︷︷ ︸
d2




︸ ︷︷ ︸
The 3D Parallel Axis Theorem. The 2D thm concerns the lower right terms of these 3 matrices.

General moments of inertia.  The tableshows a point mass, a general 3-D body,
and a general 2-D body. The most general cases of the perpeendicual axis theorem
and the parallel axis theorem are also shown..

Table III

x
O

y

z

Point mass

xO

y

z

General 3D body

xO

y

z

General 2D Body

d



Object [I ]

I cm
zz = 1

12
m�2, [I cm] = 1

12
m�2

[
0 0 0
0 1 0
0 0 1

]

I O
zz = 1

3
m�2, [I O ] = 1

3
m�2

[
0 0 0
0 1 0
0 0 1

]

I cm
zz = m R2, [I cm] = m R2


 1

2 0 0
0 1

2 0
0 0 1




I cm
zz = 1

2
m R2, [I cm] = m R2


 1

4 0 0
0 1

4 0
0 0 1

2




I cm
zz = 1

12
m(a2 + b2), [I cm] = 1

12
m


 b2 0 0

0 a2 0
0 0 a2 + b2




[I cm] = 1

12
m


 b2 + c2 0 0

0 a2 + c2 0
0 0 a2 + b2




[I cm] = 2

5
m R2

[
1 0 0
0 1 0
0 0 1

]

Table IV
Examples of Moment of Inertia

Moments of inertia of some simple objects. For the rod both the [I cm] and [I O ] (for
the end point at O) are shown. In the other cases only [I cm] is shown. To calculate [I O ]
relative to other points one has to use the parallel axis theorem. In all the cases shown the
coordinate axes are principal axes of the objects.

R
x

y

z

Uniform sphere

x

y

z

a

b

c

Solid Box

x

y

z

a

b

Rectangular plate

x

y

z

Uniform disk

R

x

y

Uniform hoop

R

z

x

y

z

Uniform rod

O
�


