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@ Nowadays this routine work is often
done with CAD (computer aided design)
software. But an engineer still needs to
know the basic calculation skills, to make
sanity checks on computer calculations if
nothing else.

o

Figure 2.68: Center of mass of asystem
consisting of two points.

(Filename:tfigure3.com.twomass)
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2.6 Center of mass and gravity

For every system and at every instant in time, there is a unique location in space that
is the average position of the system’s mass. This placeis called the center of mass,
commonly designated by cm, c.o.m., COM, G, c.g., or @.

One of the routine but important tasks of many real engineersisto find the center
of mass of acomplex machi ne@. Just knowi ng the location of the center of mass of
acar, for example, is enough to estimate whether it can be tipped over by maneuvers
on level ground. The center of mass of a boat must be low enough for the boat to be
stable. Any propulsive force on a space craft must be directed towards the center of
massin order to not induce rotations. Tracking the trajectory of the center of mass of
an exploding plane can determine whether or not it was hit by a massive object. Any
rotating piece of machinery must have its center of mass on the axis of rotation if it
is not to cause much vibration.

Also, many calculations in mechanics are greatly simplified by making use of a
system’s center of mass. In particular, the whole complicated distribution of near-
earth gravity forces on a body is equivalent to a single force at the body’s center of
mass. Many of the important quantities in dynamics are similarly simplified using
the center of mass.

The center of mass of a system is the point at the position 7, defined by

_ Yo rm; .
Fam = B for discrete systems (2.30)
J Fdm .
= for continuous systems
Mot

where miot = >~ my; for discrete systems and my: = / dm for continuous systems.
See boxes 2.5 and ?? for adiscussion of the )~ and | sum notations.
Often it is convenient to remember the rearranged definition of center of mass as

Mot Py = Zmifi or mtotﬁcmszdm.

For theoretical purposes we rarely need to evaluate these sums and integral's, and
for simple problems there are sometimes shortcuts that reduce the calculation to a
matter of observation. For complex machines one or both of the formulas ?? must
be evaluated in detail.

Example: System of two point masses

Intuitively, the center of mass of the two masses shown in figure ?? is
between the two masses and closer to the larger one.  Referring to
equation ??,

Y rm
Amtot .
rymg + r,mz
mz1 + mp
ri (Mg + mp) — Fymaz + 7,y
mz + My
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?1+(7m2 )(Fz—?l)-
m+mp/ - _ 2
—/_J \

the fraction of the distance ‘the vector from 7, 10 7.

that the cmisfrom 7, to r,

so that the math agrees with common sense — the center of massison
the line connecting the masses. If my >> my, then the center of massis
near my. If my > my, then the center of massisnear mp. If my = mp
the center of massisright inthemiddle at (r; + 7,)/2. O

Continuous systems

How dowe evaluateintegralslike | (something) dm? In center of mass calculations,

(something) is position, but we will evaluate similar integrals where (something) is
some other scalar or vector function of position. Most often we label the material
by its spatia position, and evaluate dm in terms of increments of position. For 3D
solidsdm = pdV where p is density (mass per unit volume). So [ (something)dm
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29 / means add

As discussed in box 2.5 on page 70 we often add things up in
mechanics. For example, the total mass of some particlesis

Migt =My + My + Mg+ ... = ) m

137
or more specifically themassof 137 particlesis, say, Mot = Z m;.
i=1
And the total mass of abicycleis:
100,000,000, 000,000,000,000,000
m
i=1

Mpike =

wherem; are the masses of each of the 1023 (or so) atoms of metal,
rubber, plastic, cotton, and paint. But atoms are so small and there
are so many of them. Instead we often think of a bike as built of
macroscopic parts. Thetotal mass of the bike is then the sum of the
masses of thetires, thetubes, the wheel rims, the spokes and nipples,
the ball bearings, the chain pins, and so on. And we would write:

2,000

mbikeZE m;
i=1

where now the m; are the masses of the 2,000 or so bike parts. This
sum is more manageable but still too detailed in concept for some
purposes.

An approach that avoids attending to atoms or ball bearings, is
to think of sending the bike to a big shredding machine that cuts it
up into very small bits. Now we write

Mpike = Z m

where the m; are the masses of the very small bits. We don't fuss
over whether one bit is a piece of ball bearing or fragment of cotton
from the tire walls. We just chop the bike into bits and add up the
contribution of each bit. If you take the letter S, as in SUM, and

distortit (S [ /) and you get abig old fashioned German
‘S asin f‘lLM (sum). So we write

mbike:/dm

to mean the f um of all the teeny bits of mass. More formally we
meanthevalueof that suminthelimitthat al thebitsareinfinitesimal
(not minding the technical fine point that its hard to chop atomsinto
infinitesimal pieces).

The massisone of many thingswewould liketo add up, though
many of the othersalsoinvolvemass. |n center of mass calculations,
for example, we add up the positions ‘weighted’ by mass.

/

That is, you take your object of interest and chop it into a billion
pieces and then re-assembl e it. For each piece you make the vector
which is the position vector of the piece multiplied by (‘weighted
by’) its mass and then add up the billion vectors. Well really you
chop thething into atrillion trillion . . . pieces, but abillion givesthe
idea.

rdm  which means E rm.
limm; -0
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turns into a standard volume integral / (something) p dv®. For thin flat thi ngs

like metal sheets we often take p to mea\él mass per unit area A so thendm = pd A
and | (somethingyJdm = [, (something)p dA. For mass distributed along a line or
curve we take p to be the mass per unit length or arc length s and so dm = pds and
J (something)dm = [ . .(Something)p ds.

Example. The center of mass of auniform rod isnaturally inthemiddle,
as the calculations here show (see fig. ??7a). Assume the rod has length
L = 3mand massm = 7kg.

dm

——
. [Fdm  fyxipdx  p(x%/2)}
Fem = = =

2
i = L0y

Mot JEpdx — pOIE pL

_ _ So ryy = (L/2)i, or by dotting with i (taking the x component) we get
“’?;&%ssper dm = pdx that the center of massis on therod adistanced = L/2 = 1.5m from

@ unit length i the end. O
| X ‘

- — } The center of mass calculation is objective. It describes something about the object

\ L —ldx-— \ X that does not depend on the coordinate system. In different coordinate systems the
center of mass for the rod above will have different coordinates, but it will always be
a the middle of the rod.

Example. Find the center of mass using the coordinate system with s &
A infig. ??b:

7 dm L sk pds. s2/2)|k L2/2) .
oo rdm_ Jo skpdsy oS /2lg; _ p(LY/25

= (L/2A,
Mot foL pds ,0(1)|'5 oL

again showing that the center of massisin the middle. O

Note, one can treat the center of mass vector cal cul ations as separate scalar equations,
one for each component. For example:

. {A J rdm
lL-3\7r =
cm
Mot

[ xdm
Mot

} = I'xem = Xem =
Finally, thereis no law that says you have to use the best coordinate system. Oneis
free to make trouble for oneself and use an inconvenient coordinate system.

Example. Usethe xy coordinates of fig. ??c to find the center of mass
of therod.

Figure 2.69: Whereisthe center of mass X

of auniform rod? Inthe middle, asyou can [ xdm ffz g_c-gs_é pds  pcos s2 62 cos (t3—12) 0056(€z — £1)
find cal culating afew waysor by symmetry. Xem = _ =t _ 2o _ P 2 _ 2 1

(Filename:tfigurel.rodem) Mot fOL P ds - 0 (1) |l_2£1 - p(ﬁl + ZZ) o 2

Similarly yem = sin6 (€2 — £1)/2 s0

_ b —L AT
Fem = %(ces@z +s8ndj)

which still describes the point at the middle of the rod. |

The most commonly needed center of mass that can be found analytically but not
directly from symmetry is that of a triangle (see box ?? on page ??). You can
find more examples using integration to find the center of mass (or centroid) in your
calculus text.
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Center of mass and centroid

For objects with uniform material density we have

JFdm [y FpdV  pfy, FAV [, FdV

Fem = = =
cm Mot fV ,OdV 14 fV dv Vv

where the last expression is just the formula for geometric centroid. Anaogous
calculations hold for 2D and 1D geometric objects. Thus for objects with density
that does not vary from point to point, the geometric centroid and the center of mass
coincide.

Center of massand symmetry

The center of mass respects any symmetry in the mass distribution of asystem. If the
word ‘middle’ has unambiguous meaning in English then that is the location of the
center of mass, as for therod of fig. ?? and the other examplesin fig. ??.

Point Mass Two Identical Rod Triangle
. Masses
& .
@

Rectangular Plate

Symmetric Blob

Circle

Figure 2.70: The center of mass and the geometric centroid share the symmetries of the ObJECt. (ritensme:ttisures com.symm)

Systems of systems and composite objects

Another way of interpreting the formula

N rimg+r,my+ -
Fem =
my+mz+---

is that the m’s are the masses of subsystems, not just points, and that the r; are the
positions of the centers of mass of these systems. This subdivision is justified in
box ?? on page ??. The center of mass of a single complex shaped object can be
found by treating it as an assembly of simpler objects.
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Example: Two rods
The center of mass of two rods shown in figure ?? can be found as

R r,my + r,mp
_n 2
rcm—

my + mp

where r; and r,, are the positions of the centers of mass of each rod and
m; and m; are the masses. a

Example: ‘L’ shaped plate

. Consider the plate with uniform mass per unit area p.
Figure 2.71: Center of mass of two rods

(Filename:tfigure3.com.tworods) . F\| m| + F\|| m| |
rG = -
m; + my
a a (31 +2a))(2p8%) + Gai + §j)(pa®)
a =
. - . (2pa?) + (pa2)
— 2al | 5
y O
G
=[5,
G Gﬁ“\ Composite objects using subtraction
O X

It is sometimes useful to think of an object as composed of pieces, some of which
Figure 2.72; The center of mass of the  have negative mass.
‘L’ shaped object can be found by thinking
of it asarectangle plus a square.

(Filename:tfigures. 1. Lshaped) Example: ‘L’ shaped plate, again
Reconsider the plate from the previous example.
a _ -
N rimy + r,my
a rG = _—
a m; +my
a my
77777 _ @@ +apeEa? + (Gai + 3a)) (—pad)
a Il (0(22)2) + (=pa’)
— . ——
— 2a - a my
! ‘ S_ ..
oa T = g+
y
2a O
o G
= a+ ela a
,’G
0" a 2a x

Center of gravity

Figure 2.73: Another way of lookingat  The force of gravity on each little bit of an object is gm; where g isthelocal gravita-
the’L’ shaped objectisasasquareminusa o) « constant’ and my is the mass of the bit. For objects that are small compared to
smaller square in its upper right-hand cor- . . . b .
ner. the radius of the earth (a reasonable assumption for al but afew special engineering
(rrenamennizures.1.Lenapeay  CAlCUlALIONS) the gravity constant is indeed constant from one point on the object to

another (see box A.1 on page A.1 for a discussion of the meaning and history of g.)
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Not only that, all the gravity forces point in the same direction, down. (For
engineering purposes, the two intersecting lines that go from your two hands to the
center of the earth are parallel. ). Letscall thisthe —k direction. So the net force of
gravity on an object is:

Fna = X T = Zmig(—l@) = —mgl?, for discrete systems, and
= [ dF = [-gkdm = -—mgk for continuoussystems.
H/A\_/
dF

That's easy, the billions of gravity forces on an objects microscopic constituents add
up to mg pointed down. What about the net moment of thegravity forces? Theanswer
turns out to be simple. The top line of the calculation below poses the question, the

83

last line gives the lucky answer. @

MC == / d

FxdF
= /?/Cx<—gl€dm)

The net moment with respect to C.

@ We do the calculation here usi ng the f
notation for sums. But it could be donejust
aswell using ) .

A force bit is gravity acting on a mass bit.

= < / r /Cdm> X (—gl@) Cross product distributive law (g, k are constants).

= (?Cm/cm) X (—gl;)

= Femc X (—mgl@) Re-arranging terms.

Definition of center of mass.

2.10 THEORY
Why can subsystems be treated like particles when finding the center of mass?

ri
Letslook at the collection of 47 particles above and then think of it
asaset of threesubsystems: 1, 11, and |11 with 2, 14, and 31 particles
respectively. We treat masses 1 and 2 as subsystem | with center of
ma&s?, and total massm; . Similarly, we call subsystem | | masses
m3 to myg, and subsystem | | |, masses m17 to my7. We can calcu-
|ate the center of mass of the system by treating it as 47 particles, or
we can re-arrange the sum as follows:

P ?lml + 72m2 + -4 ?46m45 + ?47m47
o= mg +mp +--- 4+ My7

Fimy+7om,
“mmy (Mg + my)

mg + M2 + - - + Mgz

7'3m3+-~+?16m16
—hgFFmgg M3+ -+ Mie)

my +mz + .-+ Mgz

T ygmyz+ Fygmay
gy (M7 - Mg7)

my + Mz + .-+ My

ﬁml +F|,m|| +?“,m|||

= , where
mp +mpp +myyp
?| _ ?1m1 + ?Zmz
my + my
m = my + my
r, etc

The formula for the center of mass of the whole system reduces to
one that looks like a sum over three (aggregate) particles.

Thisideais easily generalized to the integral formulae as well
like this.

R J 7 dm
'em =
[ dm
fregionlrdm+-[region2rdm+fregion3rdm+”'
-/;egionldm+fregion2dm+j;egionldm+‘”
TyMy A+ Py + i+
m +my+my+---

The general idea of the calculations above is that center of mass
calculations are basically big sums (addition), and addition is‘ asso-
ciative’
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= Fomc X Frg Express in terms of net gravity force.

Thus the net moment is the same as for the total gravity force acting at the center of
mass.

The near-earth gravity forces acting on a system are equivalent to a single
force, mg, acting at the system’s center of mass.

For the purposes of calculating the net force and moment from near-earth (constant
) gravity forces, a system can be replaced by a point mass at the center of gravity.
The words ‘ center of mass' and ‘center of gravity’ both describe the same point in
space.

Although the result we have just found seems plain enough, here are two things
to ponder about gravity when viewed as an inverse square law (and thus not constant
like we have assumed) that may make the result above seem less obvious.

e The net gravity force on a sphere is indeed equivalent to the force of a point
mass at the center of the sphere. It took the genius Isaac Newton 3 years to
deduce this result and the reasoning involved is too advanced for this book.

e Thenet gravity force on systemsthat are not spheresisgenerally not equivalent
to aforce acting at the center of mass (this isimportant for the understanding
of tides aswell asthe orientational stability of satellites).

A recipefor finding the center of mass of a complex system
You find the center of mass of a complex system by knowing the masses and mass
centers of its components. You find each of these centers of mass by

e Treating it as a point mass, or

e Treating it as a symmetric body and locating the center of massin the middle,

or

e Using integration, or

e Using the result of an experiment (which we will discuss in statics), or

e Treating the component as a complex system itself and applying this very

recipe.
The recipe is just an application of the basic definition of center of mass (egn. ??)
but with our accumulated wisdom that the locations and masses in that sum can be
the centers of mass and total masses of complex subsystems.

One way to arrange one's dataisin atable or spreadsheet, like below. The first
four columnsarethebasic data. They arethex, y, and z coordinates of the subsystem
center of mass locations (relative to some clear reference point), and the masses of
the subsystems, one row for each of the N subsystems.

Sbsys# | 1 [ 2[3] 4 | 5 [ 6 | 7 |
Subsysl || X1 | V1 |z | m miXy m1y1 myzy
Subsys2 || x2 | Y2 | 22 my MoX2 My myzp
SubsysN XN YN | ZN my MN XN MNYN MmN ZN
Row N+1 Mot =
sums Z m; Z m; X Z m; Vi Z m; zj
L[ [ | | X | Yom | Zm |

Ymixi | Y miy | >miz

Mot Miot Miot

Result
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One next calculates three new columns (5,6, and 7) which come from each coor-
dinate multiplied by itsmass. For example the entry in the 6th row and 7th column is
the z component of the 6th subsystem’s center of mass multiplied by the mass of the
6th subsystem. Then one sums columns4 through 7. The sum of column 4 isthetotal
mass, the sums of columns 5 through 7 are the total mass-weighted positions. Finally
the result, the system center of mass coordinates, are found by dividing columns 5-7
of row N+1 by column 4 of row N+1.

Of course, there are multiple ways of systematically representing the data. The
spreadsheet-like calculation above is just one way to organize the calculation.

Summary of center of mass

All discussionsin mechanics make frequent reference to the concept of center of mass
because

For systems with distributed mass, the expressions for gravitational mo-
ment, linear momentum, angular momentum, and energy are all simpli-
fied by using the center of mass.

Simplecenter of masscal cul ations also can serve asacheck of amorecomplicated
analysis. For example, after a computer simulation of a system with many moving
partsis complete, one way of checking the calculationisto seeif the whole system’s
center of mass moves as would be expected by applying the net external force to the
system. These formulastell the whole story if you know how to use them:

~ Y rm; .
Fem = W for discrete systems or systems of systems
J Fdm .
= for continuous systems
Mot
Mt = Z m; for discrete systems or systems of systems

for continuous systems.

Il
—
o
3
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2.11 The center of massof a uniform triangleisathird of the way up from the base

The center of massof a2D uniformtriangular regionisthecentroid N on-calculus appr oach
of the area. ) ] o )
Consider the line segment from A to the midpoint M of side BC.

Y«
First we consider aright triangle with perpendicular sidesb and h /
y y — bx
<— ~h
i \

X h X
and find the x coordinate of the centroid as

XcmA == /XdA

h[ pBx hoy=px
= / / xdy | dx = / [xy] dx
0 0 0 y=0 We can divide triangle ABC into equal width strips that are parallel
h h to AM. We can group these stripsinto pairs, each adistance s from
bh b b x3 bh?2 AM. Because M isthe midpoint of BC, by proportions each of these
Xem (7) A X (ﬁx) dx= 3 3 strips has the same length £. Now in trying to find the distance of

the center of mass from the line AM we notice that all contributions
oh to the sum come in canceling pairs because the strips are of equal
= Xem = —, athird of the way to the left of the ver- ~ area and equal distance from AM but on opposite sides. Thus the
centroidison AM. Likewisefor all three sides. Thusthe centroid is
at the point of intersection of the three side bisectors.

That the three side bisectorsintersect athird of theway up from
the three bases can be reasoned by looking at the 6 triangles formed

tical base on the right. By similar reasoning, but in the y direction,
the centroid is athird of the way up from the base.

} by the side bisectors.
‘ B base A
1 4
Xem= % h X B h
The center of mass of an arbitrary triangle can be found by treating

it as the sum of two right triangles ] M »C
The two triangles marked a and a have the same area (lets call it a)

because they have the same height and bases of equal length (BM
and CM). Similar reasoning with the other side bisectors shows that
the pairs marked b have equal area and so have the pairs marked
c. But the triangle ABM has the same base and height and thus the
same area as the triangle ACM. Soa+ b+ b =a+c+c. Thus
b = cand by similar reasoninga = b and al six little triangles have
the same area. Thustheareaof bigtriangle ABCis3timesthe area
A B A D B D of GBC. Because ABC and GBC sharethe base BC, ABC must have
so the centroid isathird of theway up from the base of any triangle. 3 timesthe height as GBC, and point G isthus athird of theway up
Finally, the result holds for all three bases. Summarizing, thecen-  fromthe base.

troid of atriangleis at the point one third up from each of the bases.

Whereisthe middle of atriangle?

We have shown that the centroid of atriangleisat the point that isat
the intersection of: the three side bisectors; the three area bisectors
(which are the side bisectors); and the three lines one third of the
way up from the three bases.

If the triangle only had three equal point masses on its vertices
the center of mass lands on the same place. Thus the ‘middle’ of
atriangle seems pretty well defined. But, there is some ambiguity.
If the triangle were made of bars along each edge, each with equal
cross sections, the center of mass would be in a different location
for all but eguilatera triangles. Also, the three angle bisectors of a
triangle do not intersect at the centroid. Unless we define middle to
mean centroid, the “middle” of atriangle is not well defined.
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SAMPLE 2.39 Center of massin 1-D: Three particles (point masses) of mass2 kg,
3 kg, and 3 kg, are welded to a straight massless rod as shown in the figure. Find the
location of the center of mass of the assembly.

Solution Letusselect thefirst mass, m; = 2Kkg, to beat the origin of our co-ordinate
system with the x-axis along the rod. Since all the three masses lie on the x-axis, the
center of mass will also lie on this axis. Let the center of mass be located at Xcm On
the x-axis. Then,

3
MiotXem = Y MiXi = M1X1 + M2Xa + M3x3
i=1
= my(0) + ma(£) + m3(20)
maf + mz2¢
= Xem =

mz + Mz + mg3
3kg-0.2m+ 3kg-0.4m
2+3+3) kg

18
_ Tm —0.225m.

Alternatively, we could find the center of mass by first replacing the two 3 kg masses
with a single 6 kg mass located in the middle of the two masses (the center of mass
of the two equal masses) and then cal cul ate the value of x¢m, for atwo particle system
consisting of the 2 kg mass and the 6 kg mass (see Fig. ?7?):

« _ 6kg-03m 1.8m
‘M~ 8kg 8

= 0.225m.

SAMPLE 2.40 Center of mass in 2-D: Two particles of mass m; = 1kg and
my = 2kg are located at coordinates (1m, 2m) and (-2m, 5m), respectively, in the
xy-plane. Find the location of their center of mass.

Solution Let 7, be the position vector of the center of mass. Then,

MitFem, = M1ry + mar,
N . _ myr, + mar, _ myr, + mar,
em Miot m; + mp
_1kg(Imi +2myj) + 2kg(—2mi +5mj)
= 340
_ (Im—4mi +3(2m+10m)J — _1mi+amj.

Thus the center of massis|located at the coordinates(-1m, 4m).

| (Xem, Yem) = (=1 m, 4m) |

Geometrically, thisis just a 1-D problem like the previous sample. The center of
mass hasto be located on the straight line joining the two masses. Since the center of
massis apoint about which the distribution of massisbalanced, it is easy to see (see
Fig. ??) that the center of mass must lie one-third way from my on the line joining
the two masses so that 2kg - (d/3) = 1kg- (2d/3).

} 2m } .2m }
2 S <
2kg 3kg 3kg

Figure 2.74; vucnsmessig2.cm10)

|
my r7412 m
Xem |

Figure 2.75: (riename:stiz2 cm 108)

3kg

~

2kg

k
>
‘ .2m
>
>

[
3

8kg
f

2

.225m

Figure 2.76: (suename:stie2.cm.100)

N\,

2 -1 1

X
(m)

Figure 2.77: (ricnamessiigs.cm 20m)



88

X

Figure 2.78: (ricnamestizz.a.2)
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SAMPLE 2.41 Location of the center of mass. A structureis made up of three point
masses, m; = 1kg, mp = 2kg and mz = 3kg, connected rigidly by massless rods.
At the moment of interest, the coordinates of the three massesare (1.25m, 3m), (2m,
2m), and (0.75m, 0.5 m), respectively. At the sameinstant, the velocities of the three
masses are 2m/st, 2m/s(i — 1.5j) and 1 m/sj, respectively. Find the coordinates
of the center of mass of the structure.

Solution Just for fun, let usdo this problem two ways— first using scalar equations
for the coordinates of the center of mass, and second, using vector equations for the
position of the center of mass.

(@) Scalar calculations: Let (Xem, Yem) be the coordinates of the mass-center.
Then from the definition of mass-center,

Zmi Xi m1X1 + MoXo + M3X3
Xem = =
> m my 4+ mp + mg
1kg-1.25m+ 2kg-2m+ 3kg-0.75m
1kg+ 2kg + 3kg

75kq -
_ I5Kg Mmoo
6kg

Similarly,
Vom = domiyi  myyr + mayp + mgys
em- = Zmi - mi + My 4+ M3

1kg-3m+2kg-2m+ 3kg-0.5m
1kg + 2kg + 3kg
_ 8K m o om
6kg
Thusthe center of massis located at the coordinates (1.25m, 1.42m).
| (1.25m, 1.42m) |

(b) Vector calculations: Let r,, bethe position vector of the mass-center. Then,

3
MiotF gy = Z Mi F, = MyFy + MF, 4+ Maiy
i=1
m]_?l + mzfz + m3F3

my + My + mg

= rcm =

Substituting the values of my, mp, and mg, and r; = 1.25mi + 3mj,
r, = 2mi +2mj,and ry = 0.75mi + 0.5mj, we get,

o _ 1kg- (1250 +3j)m+ 2kg- (2 +2j)m+3kg- (0.75i + 0.5j)m
e (1+2+3)kg

(7151 +85))kg- m

a 6kg

= 125mi+1.42mj

which, of course, gives the same location of the mass-center as above.

Fem=1.25mi +1.42mj
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SAMPLE 2.42 Center of mass of a bent bar: A uniform bar of mass4 kgisbentin
the shape of an asymmetric 'Z’ as shown in the figure. Locate the center of mass of
the bar.

Solution Sincethebar isuniform alongitslength, wecan divideit into three straight
segments and use their individual mass-centers (located at the geometric centers of
each segment) to locate the center of mass of the entirebar. The mass of each segment
is proportiona toitslength. Therefore, if welet my = mz = m, then m; = 2m; and
my 4+ My + mg = 4m = 4kg which givesm = 1kg. Now, from Fig. ??,

0+ 6§
b

rz = 261"‘5_]
5¢.

¢
3 = (@t )i= i

m1?l + mz?z + m3?3
Miot
2m(ei + £j) +m(2¢ + 5 7) + m)
4m
Me2i + 2 + 2 + 37+ 30)
4am

2

= 5(131 +5))

0.5m
= T(13i +5))
= 0.812mi + 0.312mj.

Fom = 0.812MF + 0.312mj

Geometrically, we could find the center of mass by considering two masses a a
time, connecting them by aline and locating their mass-center on that line, and then
repeating the process as shown in Fig. ??. The center of mass of my and ms (each of

y y d
2m 2m/ \\d
T T = 7
o = 2
5/2[ m 4 l Yem m
. X X
‘6/4‘1 Xem
——

Figure 2.81:  (ricaamesstiaz.cm wiren)

mass m) is at the mid-point of the line connecting the two masses. Now, we replace
these two masses with a single mass 2m at their mass-center. Next, we connect this
mass-center and mp with aline and find their combined mass-center at the mid-point
of thisline. The mass-center just found is the center of mass of the entire bar.
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Figure 2.79: (richame:stie2.cm wire)

Figure 2.80: (rienamerstigz cmwire.n)
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Figure 2.82: (ricname:stisz.cm piate)

Figure 2.83:; (ricnamesisz.cm piate.s)

CHAPTER 2. \ectorsfor mechanics

SAMPLE 2.43 hift of mass-center due to cut-outs: A 2m x 2m uniform square
plate has mass m = 4kg. A circular section of radius 250 mm is cut out from the
plate as shown in the figure. Find the center of mass of the plate.

Solution Let ususe an xy-coordinate system with its origin at the geometric center
of the plate and the x-axis passing through the center of the cut-out. Since the plate
and the cut-out are symmetric about the x-axis, the new center of mass must lie
somewhere on the x-axis. Thus, we only need to find Xcm (Since yem = 0). Let my
be the mass of the plate with the hole, and my be the mass of the circular cut-out.
Clearly, m; + m2 = m = 4kg. The center of mass of the circular cut-outisat A, the
center of thecircle. The center of mass of theintact square plate (without the cut-out)
must be at O, the middle of the square. Then,

MiXem +M2Xa = Mxo =0
mp

=> Xcm = ——XA.
mz

Now, sincethe plateisuniform, the masses m; and m; are proportional to the surface
areas of the geometric objects they represent, i.e.,

my mr o
m eZ—nrz_(é)Z_n'
2
Therefore,
M, T
Xem = m (é)z_y-[d (2.31)
r
T
T @
.Zom

= —-2581x103m=—2581mm

Thus the center of mass shifts to the left by about 26 mm because of the circular
cut-out of the given size.

Xem = —25.81mm

Comments. The advantage of finding the expression for X¢y interms of r and ¢ as
in egn. (??) isthat you can easily find the center of mass of any size circular cut-out
located at any distance d on the x-axis. Thisis useful in design where you like to
select the size or location of the cut-out to have the center of mass at a particular
location.



2.6. Center of mass and gravity

SAMPLE 2.44 Center of mass of two objects: A square block of side 0.1 m and
mass 2 kg sits on the side of atriangular wedge of mass 6kg as shown in the figure.
L ocate the center of mass of the combined system.

Solution The center of mass of thetriangular wedgeislocated at h/3 above the base
and £/3 to theright of the vertical side. Let my be the mass of the wedge and r; be
the position vector of its mass-center. Then, referring to Fig. ??,

. L, h,

1= él + §J

The center of mass of the square block is located at its geometric center Co. From
geometry, we can see that the line AE that passes through C, is horizontal since
/OAB =45°(h =¢=0.3m)and /D AE = 45°. Therefore, the coordinates of C,
are(d/v/2,h). Letmy and 7, be the mass and the position vector of the mass-center
of the block, respectively. Then,

d
NE.
Now, noting that m; = 3m, or my = 3m, and my; = mwherem = 2kg, we find the
center of mass of the combined system:

m1?1+ mzfz
(my + my)
3mi + 95 + m(%i +hj)
3m+m
d .\~ ~
ml (€ + ﬁ)z + 2hj]
am
— }(i + g)i + h 7
AN 27
101m

2z
= 0.093mi 4+ 0.150mj.

em

0.3m
+0.3m)i + Tf

Fem = 0.093mi 4 0.150mj

Thus, the center of mass of the wedge and the block together is dightly closer to the
side OA and higher up from the bottom OB than C1(0.1m, 0.1 m). Thisiswhat we
should expect from the placement of the square block.

Note that we could have, again, used a 1-D calculation by placing a point mass
3m at C; and m at C,, connected the two points by a straight line, and located the
center of mass C on that line such that CC, = 3CC;. You can verify that the
distance from C1(0.1m, 0.1 m) to C(.093m, 0.15m) is one third the distance from
CtoCo(.071m, 0.3m).
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